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Tan’s contact and the phase distribution of repulsive Fermi gases:
Insights from quantum chromodynamics noise analyses
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Path-integral analyses originally pioneered in the study of the complex-phase problem afflicting lattice
calculations of finite-density quantum chromodynamics are generalized to nonrelativistic Fermi gases with
repulsive interactions. Using arguments similar to those previously applied to relativistic theories, we show
that the analogous problem in nonrelativistic systems manifests itself naturally in Tan’s contact as a nontrivial
cancellation between terms with varied dependence on extensive thermodynamic quantities. We analyze that case
under the assumption of a Gaussian phase distribution, which is supported by our Monte Carlo calculations and
perturbative considerations. We further generalize these results to observables other than the contact, as well as
to polarized systems and systems with fixed particle number. Our results are quite general in that they apply to
repulsive multicomponent fermions, they are independent of dimensionality or trapping potential, and they hold
in the ground state as well as at finite temperature.
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I. INTRODUCTION

Cold-atom experimentalists continue to engineer astonish-
ing techniques to probe fundamental properties of quantum
mechanics by means of multicomponent gases [1–9]. Access
to the properties of these remarkable systems has expanded
from the simplest thermodynamic quantities to observables
characterizing nuanced dynamical and information-theoretic
properties (see, e.g., [10,11]). Bridging a broad range of inter-
actions, compositions, and dimensions, this ever-expanding
repertoire of techniques is both celebrated and envied by
theorists, as attempting to answer similar questions about
low-temperature, strongly correlated fermions has historically
been a major challenge.

A major aspect of that challenge, one that is particularly
formidable and also shared with lattice studies of quantum
chromodynamics (QCD), is the complex phase problem
associated on the one hand with nonrelativistic, repulsive, or
imbalanced Fermi systems, and on the other with QCD at finite
quark density [12,13]. In the QCD case, the problem can be
traced back to the breaking of time-reversal invariance at finite
chemical potential (which also appears in quasirelativistic
systems such as low-energy graphene away from the Dirac
point) [14,15], which bears a strong resemblance to the
(mass- or spin-) imbalanced nonrelativistic Fermi gas [16].
Repulsive interactions, on the other hand, do not break
time-reversal invariance per se, however that symmetry is lost
upon decoupling via a Hubbard-Stratonovich transformation
[17,18]. As explained below, the partition function for Nf

identical fermion species then takes the path integral form

ZNf
=

∫
Dφ detNf M[φ], (1)

where the matrix M and its determinant are generally
complex, such that the latter cannot be used as a probability
measure. In all cases, such complex-valued fermion determi-
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nants lead to exponential cancellations creating unmanageable
statistical uncertainties in Monte Carlo calculations [19].
Because of its presence in the study of such a diverse class of
physical systems, this difficulty has seen considerable attention
from numerous perspectives ranging from polarized, low-
dimensional systems to ingenious density of states [12], dual
variables [20], holomorphic gradient flow [21], and complex
Langevin approaches to studying lattice gauge theories [22].
Sadly, as can be expected for such a ubiquitous affliction, no
general solution to this problem is believed to exist [23].

Specific though these solutions must be, there is common-
ality between the remedies that do exist, and the sharing of
intuition and techniques between the condensed-matter and
high-energy communities has never failed to be a fruitful one.
In Ref. [24], in particular, it was shown that by analyzing the
distribution of the phase of the fermion determinant in finite-
density QCD, it is possible to deduce the form of the associated
free energies, and from them it is possible to cast subleading
volume-dependent corrections to the baryon number in terms
of a derivative. This insight allows for a clean demonstration of
the origin of the associated signal-to-noise problem, and it also
provides a general nonperturbative analytic tool for obtaining
information about the distribution of this phase and in turn the
behavior of the theory.

In this work, we generalize that noise analysis to non-
relativistic many-flavor fermions with repulsive interactions
at finite temperature. We show that in those systems, the
phase problem manifests itself naturally in Tan’s contact as a
nontrivial cancellation between terms with varied dependence
on extensive thermodynamic quantities. Tan’s contact C has
direct relevance to the physics of systems with short-range
interactions studied here. Tan showed that short-distance cor-
relations in such systems are governed by C [25]. In particular,
the high-momentum tail of the momentum distribution falls
off as n(k) ∼ C/k4; C also governs changes in energy under
adiabatic changes in the coupling (see also Ref. [26]). It was
eventually shown by Braaten and colleagues [27] that the same
results can be derived using the operator-product expansion
of high-energy physics. It was also shown that the contact
appears in sum rules involving the shear and bulk viscosities,
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the superfluid density, and other response functions [28–30]
(see also Refs. [31–34]).

We further generalize these results to observables other than
the contact, as well as to polarized systems and systems with
fixed particle number.

Our results hold for a much broader class of systems than
discussed here, including all electronic systems. However,
the simple example we provide is sufficient to demonstrate
the techniques. For clarity, we maintain similar notation
to Ref. [24], but we stress several points throughout our
derivation as they differ significantly in our generalization
of these techniques to polarized systems, which we present
afterward. Finally, after briefly describing lattice Monte Carlo
calculations performed to justify some key assumptions, we
detail the extension of these derivations to systems at a fixed
particle number.

II. THE PHASE DISTRIBUTION OF REPULSIVE
FERMI GASES

To make contact with previous numerical work as well as
that included in this paper, we perform our analysis in the
Hamiltonian formulation beginning with a grand-canonical
Hamiltonian Ĥ − μN̂ with a zero-range interaction given by

Ĥ − μN̂ =
∫

ddr

⎡
⎣∑

s

ψ̂†
s (r)Kψ̂s(r) + g

2

∑
s �=s ′

n̂s(r)n̂s ′ (r)

⎤
⎦,

(2)

in terms of the differential operator K = −∇2/(2m) − μ,
which incorporates the chemical potential μ and the flavor-s
fermion number density n̂s = ψ̂

†
s ψ̂s , which enters quadrati-

cally paired to the bare coupling g.
We place the theory on a discrete temporal lattice of

dimensionless extent Nτ = �β/τ� � 1, and after implement-
ing a Trotter-Suzuki decomposition and an auxiliary field
transformation (coupled to the density channel), we cast the
partition function as

ZNf
= tr[e−β(Ĥ−μN̂)] =

∫
Dφ detNf M[φ]. (3)

The matrix M[φ] encodes the dynamics of the system and
separates into free and interacting components (see, e.g.,
Ref. [39] for further details):

M[φ] = M0 + AδM[φ] (4)

for sparse, block matrices M0 and δM[φ] and where A2 =
2(e−τg − 1). While the coupling enters the integrand through
the parameter A, the dependence of the full partition function
on g must necessarily be only through even powers of A,
because we only have two-body interactions. This distinction
is essential for our generalization. For a repulsive interaction,
g > 0 implies that A is purely imaginary so that under
conjugation A 	→ −A. This sign reversal is analogous to the
reversal of the sign of the chemical potential in this formalism’s
QCD application.

In the unpolarized case, we define the phase functional θ [φ]
for a given auxiliary field configuration φ through

detM[φ] = |detM[φ]|eiθ[φ]. (5)

For the following analysis, we define the unquenched expec-
tation value 〈·〉Nf

for a functional X[φ] as

〈X〉Nf
= 1

ZNf

∫
Dφ X[φ] detNf M[φ] (6)

and the quenched expectation value for the same functional is

〈X〉|Nf | = 1

Z|Nf |

∫
Dφ X[φ] |detNf M[φ]| (7)

with

Z|Nf | =
∫

Dφ |detNf M[φ]|. (8)

With these definitions, we express the probability density
function for the phase in terms of the phase-quenched measure
via

〈δ(θ − θ0)〉Nf
= eiNf θ0

Z|Nf |
ZNf

〈δ(θ − θ0)〉|Nf |. (9)

Representing the δ functions of Eq. (9) in terms of their Fourier
transforms, we are naturally led to consider

〈eipθ 〉Nf
∝ 1

ZNf

〈
detp/2+Nf M[φ]

detp/2M[φ]∗

〉
(10)

in the unquenched case and

〈eipθ 〉|Nf | ∝ 1

Z|Nf |

〈
detp/2+Nf /2M[φ]

detp/2−Nf /2M[φ]∗

〉
(11)

in the quenched case for integer p, both of which can be
verified using the polar form of Eq. (5). In both instances,
the proportionality constant is the normalization for the flat
measure Dφ with the absence of a subscript indicating that the
expectation is taken with respect to this measure.

As a result of (a) the peculiar combination of powers
appearing inside the expectations present in Eqs. (10) and (11),
(b) the properties of the matrix M[φ] under conjugation,
and (c) the evenness of these expressions in the variable A,
there exist transformations under which these expressions are
invariant. This is in contrast to the analogous expressions
in QCD, where conditions (a) and (b) provide the same
invariance but when instead considered in combination with
the nonzero quark chemical potential. In particular, mapping
p 	→ −2Nf − p is equivalent to inverting the ratio in Eq. (10).
This reversal combined with evenness in A establishes the
aforementioned invariance.

Although straightforward physical interpretation requires
at least the restriction of p to integer values, the functions of
Eqs. (10) and (11) are defined for arbitrary p. The associated
free energies ln〈eipθ 〉Nf

and ln〈eipθ 〉|Nf | take the form of
a power series in p with necessarily extensive coefficients
encoding the remaining physics, as can be easily shown via
the cumulant expansion. Seeking a simple and convenient
form for this power series, we note that for any δp, the
transformation p 	→ δp − p is self-inversive so that for any
function f (p), the product f (p)f (δp − p) is an invariant.
Taking f (p) = p provides a parametrization of this series in
terms of constants Xj for 0 � j < ∞ and powers of the monic
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quadratic polynomial p(p + 2Nf ). Requiring the measure to
be normalized eliminates the j = 0 contribution, and we write

ln〈eipθ 〉Nf
= −

∞∑
j=1

Xj

[
p

2

(
p

2
+ Nf

)]j

. (12)

III. GAUSSIAN NOISE AND TAN’S CONTACT

It is desirable to truncate the series of Eq. (12) beyond the
leading order in p both for the sake of convenience and because
such Gaussian approximations are in many cases justified.
Support for this truncation in the context of QCD is provided
by studies of the phase of the fermion determinant in lattice
calculations [35]. Although providing a characterization of
the phase for each system to which our generalizations are
applicable is beyond the scope of this work, we do provide
this inquiry for our prototype system.

Toward that end, we implement techniques similar to those
in Refs. [36–39], placing the system on a Euclidean spacetime
of extent Nx × Nτ periodic in space and antiperiodic in
(imaginary) time. As shown in Fig. 1, the phase assumes a
roughly Gaussian distribution over a broad range of couplings
with a width that grows with increasing interaction strength as
expected. Approximate Gaussian distributions were also found
in Ref. [40] for the logarithm of the fermion determinant in a
sign-problem-free case of two-species fermions in the unitary
limit, a property that was then used to predict the ground-state
energy of the case of Nf species [41]. It is remarkable that, in
the complex-phase case, the phase angle (i.e., the imaginary
part of the logarithm of the determinant) also displays a
Gaussian shape; neither of these properties was expected, yet
they are observed fairly universally (see, e.g., Refs. [35,42,43]
for evidence of their appearance, and more recently Ref. [44]
where such properties were shown to be useful).

It is also worth noting that a perturbative expansion of
Eqs. (10) and (11) in powers of A2 (odd terms do not contribute
for pairwise interactions like the one considered here) reveals
that calculating Xj in Eq. (12) requires proceeding to order j in
A2. In other words, at next-to-leading order, i.e., A2, there are

FIG. 1. Distribution of the phase for an unpolarized system of
nonrelativistic repulsive fermions in one dimension at finite tempera-
ture for physical dimensionless coupling λ = g

√
β of λ = 0.25, 0.5,

1.0, and 2.0 (yellow, blue, green, and red, respectively); for chemical
potential, βμ � −0.25, and for lattice size, Nx = 41.

no contributions beyond j = 1. This suggests that the main
qualitative features of the sign distribution can be captured
perturbatively. Specific quantitative features can be expected
to be nonuniversal, however.

Hereafter, we truncate the expression in Eq. (12) beyond
the first term, and following a Poisson resummation, the
distribution of the phase takes the compactified Gaussian form

〈δ(θ − θ0)〉Nf
= eiNf θ0+X1N

2
f /4 1√

πX1

∞∑
k=−∞

e−(θ0+2πk)2/X1 .

(13)

With this parametrization, we turn our attention to Tan’s
contact, which is governed by the on-site density-density
correlation

Ĉ = 1

2

∫
ddr

∑
s �=s ′

n̂s(r)n̂s ′ (r), (14)

such that 〈Ĉ〉Nf
= ∂ lnZNf

/∂g.
Analyzing the phase-fixed quantity 〈δ(θ − θ0)Ĉ〉Nf

by
introducing a Fourier representation of the δ function (as
above), we note that

〈eipθ Ĉ〉Nf
= ∂

∂ḡ

{
1

ZNf

〈
detp/2M[φ]detNf M[φ,g = ḡ]

detp/2M[φ]∗

〉}
ḡ=g

.

(15)

As above, we expect that the free energies of the expression
in angular brackets above take the form of polynomials in
the variable p with coefficients ck that must depend on
the coupling ḡ and therefore will be affected by the ḡ

derivative. Using this form and identifying factors of p with
the application instead of derivatives i∂/∂θ0, we obtain

〈δ(θ − θ0)Ĉ〉Nf
=

(
c0 + ic1

∂

∂θ0

− c2
∂2

∂θ2
0

· · ·
)

〈δ(θ − θ0)〉Nf
,

(16)

which, after integration over θ0, provides the zero mode of the
distribution, namely

〈Ĉ〉Nf
= c0, (17)

which can also be seen easily from Eq. (15) by setting p = 0.
This result, as shown in Ref. [24] for the baryon number

in QCD, elucidates the nature of the sign problem in these
systems: The answer is entirely in the leading term; the
subleading terms manifest the delicate cancellations that
produce a reliable estimate of the observable. This is in
contrast to the result of applying the above derivative directly
to our Gaussian form for the distribution of the phase and
dropping terms that grow inversely in the moment X1. Our
generalization extends to statements made in the context of
QCD regarding the orthogonality of the signal to the noise.

We have specialized the discussion to Tan’s contact as
thermodynamically conjugate to the coupling g, which is
the natural generalization of the baryon number as conjugate
to the quark chemical potential as considered in Ref. [24].
However, the result is in fact more general than advertised
there: other one-body operators Ô can be considered, with the
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corresponding modification of Eq. (15) when including such
source terms jÔ. The differentiation with respect to j would
then be followed by the limit j → 0, and the coefficients ck

are modified accordingly:

〈δ(θ − θ0)Ô〉Nf
=

(
cO,0 + icO,1

∂

∂θ0

− cO,2
∂2

∂θ2
0

· · ·
)

×〈δ(θ − θ0)〉Nf
. (18)

It is worth noting that the case of the contact is peculiar
because, even though it is a two-body operator, the Hubbard-
Stratonovich transformation allows one to compute it via a
single derivative, as with the one-body operator described
above.

IV. POLARIZED SYSTEMS

To investigate a polarized two-species gas [45–47], we
return to the partition function given in Eq. (3), taking the
chemical potentials μ↓ �= μ↑ to be distinct and writing

Z↑↓ = tr[e−β(Ĥ−μ↑N̂↑−μ↓N̂↓)] (19)

=
∫

Dφ detM↑[φ] detM↓[φ], (20)

where we have added an additional indication of which
chemical potential appears in the fermion matrix M↑,↓[φ].
We then write

detMs[φ] = |detMs[φ]| eiθs [φ] (21)

for s = ↑,↓. In a fashion analogous to that presented previ-
ously, considering the joint distribution 〈δ(θ↑ − θ↑,0)δ(θ↓ −
θ↓,0)〉↑↓ immediately yields a relationship between this distri-
bution and its value relative to the phase-quenched measure.
As before, this naturally motivates the investigation of joint
characteristic functions of the form

〈eipθ↑eiqθ↓〉↑↓ ∝ 1

Z↑↓

〈
det(p+2)/2M↑[φ]

detp/2M↑[φ]∗
det(q+2)/2M↓[φ]

detq/2M↓[φ]∗

〉

(22)

by means of their symmetries. Careful examination precludes a
parametrization as simple as the one given in Eq. (12): the char-
acteristic functions must be invariant under the transformations
p 	→ −p − 2 and q 	→ −q − 2 taken together, but separately
these replacements are not permitted. This condition can be
ensured by taking

ln〈eipθ↑eiqθ↓〉↑↓ = −
∞∑

j=1

Cj (p,q), (23)

where

Cj (p,q) = A
↑
j pj (p + 2)j + A

↓
j qj (q + 2)j − Bj (p − q)2j ,

(24)

and where the moments A
↑
j , A

↓
j , and Bj depend on both

chemical potentials. This requirement can be seen in the
residual dependence of the measure on say μ↑ even in the
case in which p = 0 and similarly for the case in which
q = 0. More information can be gleaned immediately by

noting that we may exchange the chemical potentials if we
similarly perform the swap p ↔ q. This observation relates
the coefficients for the homogeneous terms. Finally, it is
straightforward to relate the diagonal of these coefficients to
the moments Xj by taking the chemical potentials to be as in
the previous section and equating the phases. Truncating this
expression again at first order, we may again perform a Poisson
resummation, and the result of this calculation provides access
to an analysis similar to that previously obtained for the
contact. More general systems including copies of each flavor
are approachable by essentially the same techniques. [In that
case, Eq. (24) is modified in two ways. First, the homogeneous
terms are invariant under different transformations, each
depending on the relative abundance of each flavor. Second,
the factors comprising the inhomogeneous term also include as
a summand the difference between these two transformations
so that it remains invariant under their combination.]

V. FINITE SYSTEMS

To comment on systems at fixed particle number, we restrict
the grand-canonical partition function via Fourier projection
writing the canonical partition function for an N -particle
system via

QN =
∫

Dφ PN [φ], (25)

where

PN [φ] = 1

2π

∫ 2π

0
dα e−iNα detNf

(
1 + eiαU[φ]

)
, (26)

where the matrix U contains all the physical input for the
system (see, e.g., [39]). Analysis of this measure leads to
characteristic functions of the form

1

QN

∫
Dφ PN [φ] eipθ ∝ 1

QN

〈
P

(p+2)/2
N [φ]

P
p/2
N [φ]∗

〉
, (27)

where now we must require integer N so that by a change
of variables, the denominator can be rewritten so as to be
accessible by techniques described earlier. After changing
variables, we find again that the conjugation amounts to
reversing the sign of A, and the above expressions are invariant
under the transformation p 	→ −p − 2. The analysis then
proceeds as detailed previously.

VI. SUMMARY AND CONCLUSIONS

In this work, we have elucidated the origin of the debili-
tating fluctuations in lattice Monte Carlo calculations of the
Tan contact in repulsive Fermi systems, and we investigated
similar issues in polarized nonrelativistic gases as well as
in systems projected to fixed particle content. Furthermore,
we have generalized the analysis of Tan’s contact to arbitrary
one-body operators.

We accomplished the above by generalizing techniques
used to study the baryon number for finite-density QCD,
and by showing that similar arguments provide insight into
the complex phase problem encountered in the exploration
of the repulsive sector of the parameter space. In these
systems, some previous analytic work carries over almost
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without modification, although key dissimilarities force a
different correspondence: the phase problem in finite-density
QCD is due to explicit breaking of time-reversal invariance,
while in repulsive Fermi gases it is due to the signature of
the interaction; furthermore, rather than gleaning information
about particle number from the fluctuations in the action,
we are led naturally to relations involving Tan’s contact.
Specifically, we show the direct relationship between Tan’s
contact and the zero mode of the phase distribution, which
also indicates the delicate cancellations that must take place
between the higher-order terms (i.e., the features) of said phase
distribution.

In addition to the concrete insights provided by our analysis,
we have demonstrated the applicability of a huge variety
of techniques outside of their original domains, as similar
partition-function-based analytic methods, with a basis in
random matrix theory, have been applied in the context of
lattice QCD, successfully providing a wealth of information
beyond that which has been generalized above [48,49].

We perform lattice Monte Carlo calculations to verify
that the onset of these phase problems indeed presents
quasi-Gaussian phase distributions. Studying repulsive, finite-
temperature fermions in one spatial dimension, we found
results similar to those originally used to justify the application
of these techniques in relativistic theories. A perturbative
analysis of the problem indicates a direct connection between
moments of the phase distribution and orders in perturbation
theory: at a given order in the latter, contributions are only

present in moments of up to a fixed order and otherwise vanish.
Clearly, the accessibility of these insights to perturbation
theory suggests they could be further explored combining
methods detailed above with recent advances [50].

After providing this analogy and detailing the numerical
calculations required to verify key assumptions, we demon-
strated that the technique applies further still to the case of a
general two-species gas, and we have detailed the modifica-
tions made to pivotal algebraic arguments. Polarized systems
require that the generally distinct fermion determinants be
treated independently, and the two resulting phase angles lead
to generalized free energies that are multivariate polynomials.
Finally, we show that our insights apply equally well to systems
at fixed particle number. This generality establishes numerous
directions for further inquiry, all of which are necessarily
beyond the scope of the present study.

Although we have considered the case of two-body contact
interactions exclusively, we expect our results to generalize to
more general interactions and to mixed Bose-Fermi ensembles,
a subject of growing relevance [51–55]. We leave such
investigation for future study.
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