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Virial expansion for the Tan contact and Beth-Uhlenbeck formula
from two-dimensional SO(2,1) anomalies
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The relationship between two-dimensional SO(2,1) conformal anomalies in nonrelativistic systems and
the virial expansion is explored using recently developed path-integral methods. In the process, the Beth-
Uhlenbeck formula for the shift of the second virial coefficient δb2 is obtained, as well as a virial expansion
for the Tan contact. A possible extension of these techniques for higher orders in the virial expansion is
discussed.
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I. INTRODUCTION

Virial expansion has been widely used in the study of
strongly correlated systems and in other contexts, as it captures
the impact of few-body physics on the high-temperature
thermodynamics of many-body systems. The expansion has
recently been used in the study of ultracold atomic Fermi
gases [1,2], where the realization of two-dimensional (2D)
systems has now been achieved by multiple groups around
the world (see, e.g., [3,4]). While the most common form
of the expansion is that of the pressure equation of state, of
particular interest is the virial expansion of the Tan contact
[5], as the latter determines all short-range correlations in
systems with contact interactions. The calculation of virial
coefficients, however, is a challenging problem: in its most
straightforward form, computing the nth order requires solving
the m-body problem for all m � n. Thus, a number of different
approaches have been proposed to calculate the virial coeffi-
cients, all of which aim at producing a reliable and efficient
computational scheme [6,7] that bypasses finding such a full
solution.

In 2D, the existence of a scaling anomaly provides an
appealing conceptual framework to establish relationships
between different relevant aspects of these calculations, as well
as hints for a possible systematic procedure for higher-order
coefficients. A signal of the connection between the virial ex-
pansion and 2D anomalies is already present in the celebrated
Beth-Uhlenbeck (BU) formula for δb2, the shift from the free
value of the second virial coefficient, which in the case of 2D
attractive contact interactions of nonrelativistic Fermi particles
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becomes [2]

δ -b2 = eβEb − 2
∫

dk

k

e−2βεk

π2 + ln2
(

k2

Eb

) . (1)

Here Eb is the magnitude of the single bound-state energy
allowed by this system. The first term comes precisely from the
presence of this bound state, and the integral term comes from
the scattering sector, once the phase shift for the s channel has
been properly accounted for. This system possesses an SO(2,1)
symmetry [8,9], which includes scaling symmetry. If the sym-
metry is respected at the quantum level, the bound-state term
in (1) would not be included. (The existence of a finite energy
Eb would provide a scale in the system, hence breaking the
classical scaling symmetry.) The scattering term in the original
BU formula contains the derivate of the phase shift with
respect to the momentum or energy; if the scaling symmetry
is preserved, this term would be zero. Therefore, this heuristic
argument seems to signal a direct relationship between 2D
anomalies and δb2.

In this paper, we show that δb2 is indeed produced entirely
by the anomaly. We use a path-integral approach inspired by
the work of [10–16]. In the process, we will describe the virial
expansion of the Tan contact (which in 2D is interpreted as
the anomaly [17]), as well as a procedure to compute δbn, n �
2, using the Hubbard-Stratonovich (HS) representation of the
partition function.

The rest of the paper is organized as follows: In Sec. II we
will derive the anomaly, showing the identification with the
Tan contact. In this section we will also relate the anomaly with
the virial expansion and will derive the main general formula
for δbn; the explicit calculation for δb2 and its connection
with the BU formula will be shown. Section III will sketch
the procedure to calculate δbn and the first results on δb3

will be discussed. Section IV will contain conclusions and
comments. We would like to emphasize that our goal in this
paper is to lay out the framework more than to engage in
applications, although we will naturally connect with other
approaches to assess similarities and differences. We hope that
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our approach will offer insight into the questions addressed
here.

II. ANOMALY, TAN CONTACT, VIRIAL EXPANSION, AND
DERIVATION OF THE BETH-UHLENBECK FORMULA

A. Structural aspects

The partition function for a 2D dilute gas of nonrelativistic
spin-1/2 fermions is1

Z = tr[e−β(H−μN)] =
∫ [∏

σ

dψ∗
σ dψσ

]
e−SE , (2)

where

SE =
∫ β

0
dτ

∫
d2 �x

[
ψ∗

σ

(
∂τ−∇2

2
−μ

)
ψσ + cψ∗

↑ψ∗
↓ψ↓ψ↑

]
.

The Fermion fields have antiperiodicity β. The index σ

is summed over ↑,↓ values in the Euclidean action term.
Following [2], the dimensionless coupling constant c will be
selected to incorporate the nonperturbative physics connected
with the existence of a bound state. For the attractive case, the
Lippmann-Schwinger equation gives the pole of the scattering
matrix T describing the bound-state energy Eb of the two-body
problem [18,19]:

T (p′,p,E) = V (p′,p)

+
∫

d2k

(2π )2
V (p′,k)

1

E − �k2 + iε
T (k,p,E).

(3)

In momentum space, the Dirac δ potential is V (p′,p) = c.
From the previous equation one gets

1

T (E)
= 1

c
−

∫
d2k

(2π )2

1

E − �k2 + iε
.

At the bound state, 1/T (−Eb) = 0, Eb > 0, such that

1

c
= 1

c
(

Eb


2

) = 1

(2π )2

∫ 
→∞ d2�k
−Eb − �k2 + iε

= 1

4π
ln

(
Eb


2

)
+ finite constant. (4)

The expression for 1
c

is singular, and we choose to regularize
it with a large cutoff 
. This infinity will be used to cancel a
divergence that will arise in the calculation of the effects of the
interaction in the path integral of Eq. (2).

As is well known, the action SE has a classical invariance
under the following scaling transformations [part of SO(2,1)
invariance]:

τ → τ̃ = λ2τ,

�x → �̃x = λ�x,

ψ(τ,�x) → ψλ(τ̃ , �̃x) = λ−1ψ(τ,�x). (5)

1In this paper, h̄ = kB = m = 1.

Using dimensional analysis, the following equation was
derived in Ref. [16] (see Appendix A):

2E − DP = −2
∑

k

Ek

∂P

∂Ek

, (6)

where E = energy density = 〈H 〉
A

,A = 2D volume, P is the
pressure, and D the dimensionality of space (D = 2 in this
paper). The {Ek} are a set of energy parameters that may
include bound-state energies as well as those formed from
dimensionful coupling constants in SE [16]. In our case, there
is no dimensionful coupling constant (c is dimensionless) and
there is only one bound-state energy −Eb,Eb > 0 [we will use
Eb in Eq. (6) henceforth], such that

2E − 2P = −2Eb

∂P

∂Eb

. (7)

Now, ∂
∂Eb

= ∂c
∂Eb

∂
∂c

, and from Eq. (4) ∂c
∂Eb

= − c2

4πEb
; therefore

2E − 2P = c2

2π

∂P

∂c
. (8)

In the thermodynamic limit (A → ∞,� → −PA), βPA =
lnZ; hence2

∂P

∂c
= 1

βAZ
∂Z
∂c

= −4π

Ac2
〈I 〉, (9)

where

I = c2

4π

∫
d2 �x ψ

†
↑ψ

†
↓ψ↓ψ↑, (10)

which is Tan’s contact. Here, we used the fact that, in equi-
librium, 〈ψ†

↑ψ
†
↓ψ↓ψ↑〉 is τ independent to derive Eq. (9). The

scaling anomaly [17,20] is therefore

A = 2P − 2E = 2

A
〈I 〉. (11)

In Appendix B we also prove this result using the ideas and
techniques of Ref. [10].

B. Virial expansion for the anomaly

From Eq. (9), Tan’s contact can be written as

〈I 〉 = − 1

4πβZ c2 ∂

∂c
Z. (12)

Writing � = �free + δ�, where δ� is the contribution from
interactions, Z can be expressed as

Z = e−β�free
e−βδ�

= Z freeZI . (13)

Using (4), ∂
∂c

= ∂Eb

∂c
∂

∂Eb
= −4πEbc

−2 ∂
∂Eb

gives

∂Z
∂c

= 4πβc−2ZEb

∂

∂Eb

δ�, (14)

and hence

〈I 〉 = −Eb

∂

∂Eb

δ�. (15)

2〈θ̂〉 = tr (e−β(H−μN) θ̂)
tr e−β(H−μN) .
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The anomaly becomes

A = −2Eb

∂

∂Eb

(
δ�

A

)
. (16)

Defining the virial expansion by3 [21],

δ� ≡
∑
n�2

znδ�n (17)

= − 1

β2π

∑
n�2

znδbn, (17a)

where z = eβμ is the fugacity.4 Equation (15) then becomes

〈I 〉 = 1

β2π
Eb

∑
n�2

zn ∂

∂Eb

δbn, (18)

and Eq. (16) becomes

A = 2Eb

πβ2

∑
n�2

zn ∂

∂Eb

δ -bn, (19)

where δ -bn = δbn/A.
The anomaly A can also be formally computed using

the knowledge of � = �free + δ� 5 and the above virial
expansion,

A = − 2

πβ2

∑
n�2

znT
∂

∂T
δ -bn

= 2

πβ

∑
n�2

zn ∂

∂β
δ -bn. (20)

Using Eqs. (16), (17), and (20) we get

1

πβ

∂

∂β
δ -bn = −Eb

∂

∂Eb

(
δ�n

A

)
, (21)

3We use two species of fermions (↑,↓).
4One should recall that when T is sufficiently large, the fermion gas

will behave as a classical gas. Therefore the chemical potential μ will
become negative as it is for classical gases [22]. Consider the product
βμ in this limit, for 2D,

βμ = β
( − 1

β
ln

[
F T

ρ

])
,

where ρ is the density of the system, and

F = g(mk/2πh̄2),

with k the Boltzmann constant and g the degeneracy of the particles,
g = 2s + 1, for particles of spin s. Therefore, in the limit T → ∞
(notice that we also have ρ → 0) the product βμ → −∞. If we now
define the fugacity as z = eβμ, we see that order zero in the fugacity,

lim
T →∞

z = 0.

5Use 〈H 〉 = � − T ∂�/∂T − μ∂�/∂μ, P = −�/A (infinite A

limit) to compute 2P − 2E . We also used the fact that all μ depen-
dence in δ� is captured by the fugacity z; this is best seen from
the standard definition of the virial expansion, Z = tr (e−β(H−μN)) =∑

N zN trN (e−βH ), where, by definition, all the μ dependence is
therefore contained in z.

TABLE I. ω range. Here f = arctan [π/ln ( ω+2μ−(1/2)εk

Eb
)].

ω Disc{lnD−1(ω + iε,k)}
(−∞,εk/2 − 2μ − Eb) 0
(εk/2 − 2μ − Eb,εk/2 − 2μ) −2πi

(εk/2 − 2μ,εk/2 − 2μ + Eb) −2πi − 2if

(εk/2 − 2μ + Eb,∞) −2if

or

δbn = −πEb

∫ β

dβ ′β ′ ∂

∂Eb

(δ�n). (22)

Equation (22) is one of the main results in this work. Notice it
is defined up to an integration constant, more of which will be
said below. One then has to compute δ�n in order to find δbn.
The most efficient way to do this is by means of the Hubbard-
Stratonovich representation of the partition function,6

Z =
∫

[dφ∗dφ]

N
e[tr ln G−1+∫

dτ
∫

d2 �x |φ|2
c

] (23)

=
∫

[dφ∗dφ]

N
e−Seff(φ∗,φ,μ), (24)

with

G−1 =
(

∂τ − ∇2

2 − μ φ

φ∗ ∂τ + ∇2

2 + μ

)

≡
(

G−1
1 φ

φ∗ G−1
2

)
. (25)

C. Calculation of δb2: Beth-Uhlenbeck formula

We will illustrate this for the case n = 2, for which we need
to keep only up to the quadratic terms in Seff. At this point we
can follow Ref. [2] and write Z as in Eq. (13):

Z = e−β�free
e−βδ�,

δ�

A
= 1

2πi

∫ ∞

−∞
dω

∫
d2k

(2π )2
Disc{lnD−1(ω + iε,k)}fBE(ω)

= z2 δ�2

A
+ z3 δ�3

A
+ O(z4), (26)

where fBE(ω) = (eβω − 1)−1 is the Bose-Einstein distribution
function for the frequency ω. To extract the z2 contribution
from Eq. (26) we will use the zeroth-order (z0) version of

6N is the normalization constant obtained when path
integrating over φ∗,φ in trading the quadratic fermionic
interaction for (at most) quadratic terms in the action. See
http://www.weizmann.ac.il/condmat/oreg/sites/condmat.oreg/files
/uploads/tutorial11.pdf.
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FIG. 1. Shift in the second virial coefficient δ -b2 as a function
of the physical coupling ln(λ/a2D), where λ = √

2πβ is the thermal
wavelength.

D−1(ω + iε,k) given by7

D−1(ω + iε,k) = 1

4π
ln

(
−ω + iε + 2μ − εk

2

Eb

)
, (27)

with εk = k2

2 .

We recognize several regions for the ω integration as seen in
Table I. The discontinuities here been computed by studying
the branch cuts of the complex logarithmic function. Since
some of the subintegrals have Eb-dependent limits, we have
to be careful with taking the Eb derivatives. We obtain (see
Appendix C for details)

∂

∂Eb

δ�2

A
=−eβEb

πβ
− 2

πβ

∫ ∞

0
dk̃k̃

e−βk̃2

Eb

(
π2+ln2

(
k̃2

Eb

)) . (28)

Finally, using Eq. (22),

δ -b2 = −πEb

∫ β

dβ ′β ′ ∂

∂Eb

δ�2

A

= eβEb −
∫ ∞

0

dy

y

2e−βEby
2

π2 + 4 ln2 y
. (29)

This is the well-known Beth-Uhlenbeck formula for δb2

[rescaled version of Eq. (1)]. The overall integration constant in
(29) is chosen to be zero so that in the limit δ�2 → 0 we recover
the free case. We now compare our procedure with that of [2].
They obtain δb2 by explicitly computing δ�2 and then reading
off the coefficient of the z2 term. We do not have to obtain
an explicit expression for δ�2, which contains several terms
in integral form with complicated integrands. The authors of
[2] resort to first computing ∂δ�2/∂μ in order to get a more

7δ� in (26) contains an infinite number of powers zn (n � 0), but
to obtain δ�2 we only retain the zeroth-order part of D−1(ω,k). To
find the complete contributions for higher zn,n � 3, one also has to
consider the contributions from the higher powers in the effective
action (see below).

manageable expression, and then perform an integral over μ to
obtain δ�2. In our case, while the original integral expressions
in δ�2 are complicated, ∂�2

∂Eb
is easily calculated and given by

Eq. (28). We then perform a simple integration over β to get
δb2. We hope that similar simplifications will occur for higher
δbn(n � 3). One can plot the second virial coefficient as seen
in Fig. 1.8

This result agrees with those in the literature, in particular
with [21]. The corresponding term in the virial expansion
Eq. (18), I ≡ ∑

n�2 znIn, is9

I2

A
= Eb

β2π

∂δ -b2

∂Eb

=
(

Eb

βπ

)
eβEb

[
1+2

∫ ∞

0
dy

y e−βEb(y2+1)

π2 + 4 ln2 y

]
,

(30)

which agrees with Ref. [23], after the identification I2
A

=
1

2β2π
c2 is made.

III. EXTENSION FOR δbn, n � 3

A. General framework

The emphasis in this paper is on the close connection
between 2D anomalies and the virial expansion for the Tan
contact. Equations (11)–(18) accomplish this, and in particular,
Eq. (29) reflects this relationship for δb2. As a bonus, this for-
mulation naturally suggests a procedure to compute δbn,n � 3.

In this section we will give a sketch of the procedure and will
report on partial results for δb3. While complete analytical and
numerical results will be reported elsewhere, we show here
that even though the complexity of the details increases, the
methodology itself is a direct extension of the calculations for
δb2.

We begin by writing Eq. (24) as

Z = Zfree

∫
[dφ∗dφ]

N
e−(S2+δS), (31)

where S2 is the quadratic piece of Seff that gives the entire
contribution to δ�2,10 namely,

S2 =
∫

dxdy φ∗(y)�−1(y − x)φ(x), (32)

with

�−1(y − x) ≡ −1

c
δ(x − y) + G1(x − y)G2(y − x), (33)

and δS contains an infinite number of nonlocal terms with
even powers (2n) of the fields, n � 2.11 One can then use the
standard expansion of the exponential and the Wick theorem
to calculate Z [19], where the contraction between φ∗(y) and
φ(x) is

φ∗(y)φ(x) ≡ �(y − x). (34)

8We are plotting δ -b2 vs ln ( λ

a2D
), a2D = 2D scattering length, to

compare with Ref. [21]. Here ln (βEb) = 2 ln ( λ

a2D
) − ln(2π ).

9The nth term is Eb

β2π

∂

∂Eb
δbn = −E2

b

β2

∫ β
dβ ′ β ′ ∂2

∂E2
b

(δ�n).
10Here we use “covariant notation,” i.e., x = (τ,�x), etc.
11G1 and G2 were defined in (25).
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The first term in δS is

S4 = 1

2

∫ 4∏
i=1

dxiφ
∗(x1)φ(x2)φ∗(x3)φ(x4)G1(x1 − x2)

×G2(x2 − x3)G1(x3 − x4)G2(x4 − x1). (35)

As for δb2, it is convenient to work in momentum space.
Equation (26) now receives extra contributions coming also
from these higher terms in the effective action, as well as those
coming from higher orders from D−1(ω,k). Collecting all the
similar terms, one then systematically finds δ�3, δ�4, . . . ,

and one then uses Eq. (22) to find δb3,δb4, . . . , . The actual
calculations will require explicit treatment of Matsubara sums
(just as for δb2).

B. Sketch of the calculation of δb3

While the calculational scheme for δbn described above is
systematic and straightforward, the actual details are not trivial.
We will present here the first details, including preliminary
numerical evaluations, of δb3. Beyond what will be discussed
below, we have produced further analytical expressions coming
from the Wick expansion term, Eq. (43), below. Extensive
numerical work is currently underway; full details will be
published elsewhere.

Let us start by writing the quadratic part of the grand
potential, Eq. (26), as

δ�0

A
= 1

2πi

∫ ∞

−∞
dω

∫
d2k

(2π )2
Disc{lnD−1(ω+iε,k)}fBE(ω),

(36)

which comes from the quadratic partition function

Z0 =
∫

[dφ∗dφ]

N
e−S2 . (37)

On the other hand, the general form for the partition function
is written as

Z = Zfree

∫
[dφ∗dφ]

N
e−(S2+δS)

= ZfreeZ0

(
1 − Z−1

0

∫
[dφ∗dφ]

N
e−S2δS

)

= Zfreee
−βδ�, δ� = δ�0 + δ�̃. (38)

δb3 is therefore expected to have contributions from both δ�0

and δ�̃.
(i) From δ�0: Let us remember that the term D−1 has an

expansion in the fugacity12 z,

D−1 = D−1(z0)(1 − zD(z0)B) + O(z2), (39)

where

B =
∫

d2k

(2π )2

e−βk2/2 + e−β(k+q)2/2

ω + iε − (
k2

2 + (k+q)2

2

) + 2μ
, (40)

12This comes when one expands the Fermi Dirac distribution as
fk = ze−βk2/2 − z2e−βk2 + O(z3) in fk = 1

eβ(k2/2−μ)+1
.

−

−

−

−

FIG. 2. Contribution from δ�0 to δb3 compared with [21].

and hence

lnD−1 = lnD−1(z0) − zD(z0)B + O(z2). (41)

(ii) From δ�̃13:

Z = ZfreeZ0

[
1 − Z−1

0

∫
[dφ∗dφ]

N
e−S2δS

]

= ZfreeZ0[1 − 〈δS〉0] = ZfreeZ0[1 − C]. (42)

Using Eq. (35) and defining xij = xi − xj , the quantity C is
given by

C = 1

2

∫ 4∏
i=1

dxiG1(x12)G2(x23)G1(x34)G2(x41)

×〈φ†(x1)φ(x2)φ†(x3)φ(x4)〉0, (43)

where what is left to do is evaluate the expectation value by
using Wick’s theorem, taking into account the order in fugacity
for the product in the Gs. This is to be done in momentum space
[x → (ωn,�k)] such that

φ∗(y)φ(x) ≡ �(y − x) (44)

will introduce terms proportional to the Bose-Einstein distri-
bution and therefore both Fermi and Bose Matsubara sums
will appear. Using Eq. (41) in Eq. (36), one can show that the
contribution from δ�0 to the third virial coefficient is

δb0
3 = 4

∫ ∞

0

dω e−4ω

ln
(

βEb

3ω

)2 + π2

[
Ei(ω) + ln

(
βEb

3ω

)]
,

(45)

where Ei(x) is the exponential integral [24].
(iii) Figure 2 shows δb0

3 vs βEb. The comparison with
the results by the authors of Ref. [21] who computed δb3

using other methods shows that it is indeed necessary to
compute the Wick term contribution to δb3, the analytical
expressions of which we have. Once the numerical evaluation

13Note 〈Â〉0 = Z−1
0

∫ [dφ∗dφ]
N

e−s2A.
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is completed, we will compare with Ref. [21] in a forthcoming
publication [25].

IV. CONCLUSIONS AND COMMENTS

In this paper we have demonstrated an intimate connection
between 2D SO(2,1) scaling anomalies and the existence of
the Tan contact, namely, the contact is essentially the anomaly,
Eq. (11). This identification allowed us to derive an expression
for the shift of the nth virial coefficient, Eq. (22), in terms
of ∂(δ�n)

∂Eb
, where δ�n is the corresponding part of � coming

from interactions, Eq. (17). In particular, we were able to
derive δb2, which coincides with the Beth-Uhlenbeck formula,
validating in this fashion the original heuristic motivation for
this work, i.e., the connection between 2D SO(2,1) scaling
anomalies and the nonzero value of δb2. In the process, we
also derived the nth virial expansion for the Tan contact,
and a systematic and self-consistent procedure to calculate
δbn, n � 3 was developed through a formal expansion of the
path integral. Partial results for δb3 were discussed; the full
calculation will be reported elsewhere. We have also recently
discovered a mapping of the anomalous 2D two-body contact
interaction studied in this paper and the anomalous 1D three-
body contact interaction [26]. Applications of these ideas to
other systems with SO(2,1) symmetry in molecular, atomic,
condensed-matter, high-energy, and biological physics are
underway.
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APPENDIX A: DERIVATION OF EQ. (6)

Consider the set of microscopic parameters gj (cou-
pling constants from the Lagrangian). We can form en-
ergy parameters Ej taking suitable powers of gj ; con-
sider also possible bound states and energies of the
system Eb�, hence forming the set of energy parame-
ters Ek = {Ej ,Eb�}. The grand thermodynamical poten-
tial � = �(β,μi,V ,Ek) for a homogeneous system in D-
spatial dimensions must have the form (� is an extensive
variable)

�(β,μi,V ,Ek) = Vβ−1−D/2f (zi,βEk), (A1)

where f (zi,βEk) is a dimensionless function of dimensionless
variables and zi = eβμi is the fugacity corresponding to μi . It
is straightforward to show that [16]

β
∂�

∂β

∣∣∣∣
zi ,V

=
(

−1 − D

2

)
� +

∑
k

Ek

∂�

∂Ek

. (A2)

Using the thermodynamic identity E = ∂(β�)
∂β

|zi ,V
= � +

β ∂�
∂β

|zi ,V
, we get (also use � = −PV )

2E − DPV = 2

(
� + β

∂�

∂β

∣∣∣∣
zi ,V

)
− DPV

= 2

(
� −

(
1 + D

2

)
� +

∑
k

Ek

∂�

∂Ek

)
− DPV

= −2
∑

k

Ek

∂P

∂Ek

V . (A3)

Therefore

2E − DP = −2
∑

k

Ek

∂P

∂Ek

. (A4)

APPENDIX B: HEURISTIC DERIVATION OF EQ. (11)

Consider the partition function for the scaled system τ →
λ2τ, �x → λ�x,

Z → Zλ =
∫ [

dψ∗λ
σ dψλ

σ

]
e−Sλ[ψ∗,ψ]

= J Z̃, (B1)

where

Sλ[ψ∗,ψ] ≡
∫ β

0
dτ

∫
d2 �x

[
ψ∗

σ

(
∂τ − ∇2

2
−μ̃

)
ψσ

+ cλψ∗
↑ψ∗

↓ψ↓ψ↑

]
(B2)

and where J is the Jacobian of the transformation ψσ ,ψ∗
σ →

ψλ
σ , ψ∗λ

σ , μ̃ = λ2μ, and Z̃ is

Z̃ = tr (e−β(H (λ)−Nμ̃)), (B3)

where

H (λ) =
∫

d2 �x (H0 + cλψ∗
↑ψ∗

↓ψ↓ψ↑). (B4)

In Eq. (B4) H0 is the free Hamiltonian and cλ is the rescaled
coupling constant (under �k → λ−1�k):

1

c
→ 1

cλ
= 1

(2π )2

∫ 
̃=λ−1
→∞ d2 �̃k
−Eb − �̃k2 + iε

= 1

(2π )2

∫ 
→∞ d2�k
−λ2Eb − �k2 + iε

= 1

c
(

λ2Eb


2

) .

(B5)

Under an infinitesimal dilation λ = 1 + δλ,

δZ|λ=1 ≡ Zλ=1+δλ − Z

= δJ (λ)Z̃|λ=1 + J (λ)|λ=1

(
∂Z̃

∂λ

)∣∣∣∣
λ=1

δλ. (B6)

It is straightforward to show that

δZ|λ=1 = δJ (λ)|λ=1Z + 2Z

[
μβ〈N〉 +

∫ β

0
dτ 〈I 〉

]
δλ,

(B7)
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where the angle brackets 〈 〉 denote the thermal average and I

is Tan’s contact,

I = c2

4π

∫
d2 �x ψ

†
↑ψ

†
↓ψ↓ψ↑. (B8)

On the other hand, in the large-A (volume in 2D) limit,

Z = e−β� = eβPA, (B9)

and

Zλ = eβλP λAλ

, (B10)

and with λ = 1 + δλ, using thermodynamic identities [10],
after some algebra one obtains

δZ = 2βZ[μ〈N〉 + PA − 〈H 〉]δλ. (B11)

Comparing Eqs. (B7) and (B11) we get (E = 〈H 〉
A

)

PA − 〈H 〉 = Jacobian term + 〈I 〉. (B12)

In Refs. [10–13,15,16] the Jacobian term was shown to be
proportional to c2(ψ∗

↑ψ↓)2 where ψ∗
↑ψ↓ is a constant back-

ground value (finite). In our case, c = c(Eb/

2) → 0 when


 → ∞, and below, when we calculate the virial coefficients,
an expansion around ψ∗

↑ψ↓ = 0 will be performed. In either
case, the Jacobian term in this case is zero and the anomaly is
completely captured by the Tan contact [17]. The final result
is then

Anomaly = A = 2P − 2E = 2

A
〈I 〉. (B13)

APPENDIX C: DERIVATION OF EQ. (28)

The definition for the complex logarithm is

ln(x + iy) = ln
√

x2 + y2 + iArg(y,x), (C1)

where

Arg(y,x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arctan(y/x), x > 0
arctan(y/x) + π, x < 0,y � 0
arctan(y/x) − π, x < 0,y < 0
π/2, x = 0,y > 0
−π/2, x = 0,y < 0
Undefined, x = y = 0.

(C2)

TABLE II. Discontinuities and drops.

ω Discontinuity (hi) Drop

(∞,εk/2 − 2μ − EB ) 0 —
(εk/2 − 2μ − EB,εk/2 − 2μ) −2πi +2πi

(εk/2 − 2μ,εk/2 − 2μ + EB ) −2πi + h3 0
(εk/2 − 2μ + EB,∞) h3 0

Let us analyze the different possibilities for ω in h ≡
Disc(lnD−1):

h = ln

[
1

4π
ln

(
−ω + 2μ − εk

2

Eb

− iε

)]
(C3)

− ln

[
1

4π
ln

(
−ω + 2μ − εk

2

Eb

+ iε

)]
. (C4)

Therefore we recognize two regions for the variable ω,
(i) ω < εk

2 − 2μ, where

h =
{

0, ω < εk

2 − 2μ − EB,

−2iπ ≡ h1,
εk

2 − 2μ − EB < ω < εk

2 − 2μ.

(C5)

(ii) ω > εk

2 − 2μ, where

h =
{−2πi + h3 ≡ h2,

εk

2 − 2μ < ω < εk

2 − 2μ + EB,

h3, ω > εk

2 − 2μ + EB,

(C6)

where

h3 ≡ −2i arctan

[
π

ln
(

ω+2μ−(1/2)εk

EB

)
]
. (C7)

The results for the regions of ω are summarized in Table II.
Consider the following expression:∫ ∞

a(t)
h(x,t)dx =

∫ b(t)

a(t)
h1(x,t)dx +

∫ c(t)

b(t)
h2(x,t)dx

+
∫ ∞

c(t)
h3(x,t)dx, (C8)

where h = Disc(lnD−1), x = ω, and t = EB . Following
Eq. (22), we need to take the derivative with respect to t :

∂

∂t

∫ ∞

a(t)
h(x,t)dx = −∂a(t)

∂t
h1(a(t),t) + ∂b(t)

∂t
[h1(b(t),t) − h2(b(t),t)] + ∂c(t)

∂t
[h2(c(t),t) − h3(c(t),t)]

+
∫ b(t)

a(t)

∂

∂t
h1(x,t)dx +

∫ c(t)

b(t)

∂

∂t
h2(x,t)dx +

∫ ∞

c(t)

∂

∂t
h3(x,t)dx

= −∂a(t)

∂t
h1(a(t),t) + ∂b(t)

∂t
[Drop1] + ∂c(t)

∂t
[Drop2] +

∫ b(t)

a(t)

∂

∂t
h1(x,t)dx

+
∫ c(t)

b(t)

∂

∂t
h2(x,t)dx +

∫ ∞

c(t)

∂

∂t
h3(x,t)dx. (C9)

Here Dropi corresponds to the drop of the function hi when its argument x goes from x − δ to a value x + δ with δ � 1. These
terms are recorded in Table II.
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We then obtain the following expression:

∂

∂EB

δ�

A
= 1

2πi

∫
d2k

(2π )2

{
∂

∂EB

(
εk

2
− 2μ − EB

)
(2iπ )fB(ω = ξk) +

∫ ∞

εk/2−2μ

∂h3

∂EB

fB(ω)dω

}

= 1

2πi

∫
d2k

(2π )2

⎧⎨
⎩−z2eβEB (2πi)e−βεk/2 −

∫ ∞

εk/2−2μ

dω

∫
d2k

(2π )2

fB(ω)(2iπ )

EB

[
π2 + ln2

(ω+2μ− εk
2

EB

)]
⎫⎬
⎭ + O(z3)

= − z2

πβ
eβEB − z2

∫ ∞

0
dω̃

∫
d2k

(2π )2

eβ(ω̃− εk
2 )

EB

(
π2 + ln2

(
ω̃
EB

)) + O(z3)

= − z2

πβ

(
eβEB + 2

∫ ∞

0
dk̃k̃

e−βk̃2

EB

(
π2 + ln2

(
k̃2

EB

))
)

+ O(z3), (C10)

where ξk ≡ εk/2 − 2μ − EB , and we have used the change of variables ω = ω̃ − 2μ + εk

2 and the substitution ω̃ → k̃2.
Thus, at second order in the fugacity we obtain

∂

∂Eb

δ�2

A
= − 1

πβ

(
eβEb + 2

∫ ∞

0
dk̃k̃

e−βk̃2

Eb

(
π2 + ln2

(
k̃2

Eb

))
)

. (C11)
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