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We show that a system of three species of one-dimensional fermions, with an attractive three-body
contact interaction, features a scale anomaly directly related to the anomaly of two-dimensional fermions
with two-body contact forces. We show, furthermore, that those two cases (and their multispecies
generalizations) are the only nonrelativistic systems with contact interactions that display a scale
anomaly. While the two-dimensional case is well known and has been under study both experimentally
and theoretically for years, the one-dimensional case presented here has remained unexplored. For the
latter, we calculate the impact of the anomaly on the equation of state, which appears through the
generalization of Tan’s contact for three-body forces, and determine the pressure at finite temperature. In
addition, we show that the third-order virial coefficient is proportional to the second-order coefficient of
the two-dimensional two-body case.
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Introduction.—The study of manifestations of scaling
SO(2,1) anomalies in nonrelativistic systems has received
considerable attention in recent years. Anomalies appear
when a symmetry is present at the classical level, but is
broken by quantum fluctuations; the prime example in
nonrelativistic physics is the two-dimensional (2D) Fermi
gas with attractive contact interactions [1–5]. On the
experimental side, ultracold-atom experiments have shed
light on the thermodynamic, collective-mode, and transport
properties of that 2D system [6–20] (see also Refs. [21,22]).
On the theory side, there have been multiple nonperturba-
tive studies of basic ground-state [23–26] and thermody-
namic [27–31] quantities, and transport [32–34]. In
particular, Ref. [35] spelled out the relationship between
these anomalies and the Tan contact for 2D fermion
systems with two-body contact interactions, and put
forward a computational framework to access the shift
of the virial coefficients Δbn, n ≥ 2 using a Hubbard-
Stratonovich transformation.
In this work, we show that a system of one-dimensional

(1D) fermions with an attractive three-body contact inter-
action presents a scaling anomaly of the same kind as that
of the 2D case with two-body forces. Naturally, the system
is nontrivial only if at least three fermion species are present
in the problem, which implies straightforward results (e.g.,
the virial coefficients are nontrivial starting at third order)
as well as more challenging aspects (namely, dealing with a
three-body problem for any useful calculation). While here
we consider unpolarized distinguishable species (no mass
asymmetry or population imbalance), generalizations to
more species and asymmetric cases could and should also
be studied.

Hamiltonian.—The system is defined by the following
Hamiltonian:

Ĥ ¼
X

s¼1;2;3

Z
dp ϵðpÞâ†s;pâs;p þ g

Z
dx n̂1ðxÞn̂2ðxÞn̂3ðxÞ;

ð1Þ
where ϵðpÞ ¼ ðℏ2p2=2mÞ. Here, â†s;p and âs;p are the
fermionic creation and annihilation operators for particles
of species s and momentum p, and n̂sðxÞ is the corre-
sponding density at position x. In what follows we will
take ℏ ¼ kB ¼ m ¼ 1 (we will, however, show m in the
following equations in order to distinguish it from the total
and reduced masses). A crucial feature of this system is
that, since the 1D density has units of inverse length
(dimension 1 in powers of momentum), the integrated
product of densities has units of energy, rendering the bare
coupling g dimensionless. As we show below, however, the
coupling runs nontrivially with the cutoff, and the physical
coupling (dimensionally transmuted scale [36]) is the
binding energy of the three-body system.
Renormalization and the three-body problem.—As

anticipated, in order to renormalize the problem we
determine the connection between the bare coupling g
and the binding energy ϵB of the three-body system. We
will show here that the system forms such a three-body
bound state at arbitrarily small g, and we will do so by
mapping our problem onto a 2D one-body problem
interacting with an external Dirac delta potential. That
problem is of course what results from considering a two-
body problem with a two-body delta function interaction,
when going to the center-of-mass frame.
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The 1D three-particle Schrödinger equation for our
system takes the form

�
−
∇2

X

2m
þ gδðx2 − x1Þδðx3 − x2Þ

�
ψðXÞ ¼ EψðXÞ ð2Þ

where we used the shorthand notation X ¼ ðx1; x2; x3Þ and
∇2

X ¼ ð∂2=∂x21Þ þ ð∂2=∂x22Þ þ ð∂2=∂x23Þ. One way to see
the equivalence advertised above is already evident at this
point: Eq. (2) corresponds to a 3D one-body problem [if we
identify the coordinates by ðx; y; zÞ ¼ ðx1; x2; x3Þ] with an
external linelike delta potential saturating at x ¼ y ¼ z.
By symmetry, we may factorize such a 3D problem into a
trivial part for the unrestricted motion parallel to the line,
and a nontrivial part for the 2D motion perpendicular to the
line (which sees a pointlike delta potential). As we show
below, that factorization corresponds in the 1D problem to
the center-of-mass (c.m.) and relative motions.
To be explicit, we proceed by separating the c.m. motion

by the change of variables Q ¼ 1
3
ðx1 þ x2 þ x3Þ; q1 ¼

x2 − x1; q2 ¼ ð1= ffiffiffi
3

p Þðx1 þ x2 − 2x3Þ. Writing ψðXÞ ¼
ΦðQÞϕðq1; q2Þ, we obtain an equation for the c.m. motion,
as usual,−∇2

Q=ð2MÞΦðQÞ¼Ec:m:ΦðQÞ, whereM¼3m. For

the relative coordinates q1, q2 [note q2¼ð2= ffiffiffi
3

p Þðx2−x3Þ
when q1 ¼ x2 − x1 ¼ 0],

�
−∇2

q

2m̄
þ g̃δðq1Þδðq2Þ

�
ϕðq1; q2Þ ¼ Erϕðq1; q2Þ; ð3Þ

where m̄ ¼ m=2 is the reduced mass, g̃ ¼ ð2= ffiffiffi
3

p Þg, is the
effective coupling, Er is the energy of relative motion, and
∇2

q ¼ ð∂2=∂q21Þ þ ð∂2=∂q22Þ, which thus reduces the prob-
lem to that of a single particle in 2D with a delta function
potential at the origin. The problem is easily solved in
momentum space, where one finds that the wave function
takes the form ϕ̃ðpÞ ∝ 1=ðp2 − ErÞ, and the binding energy
ϵB ¼ −Er of the three-body bound state (trimer) depends on
the coupling as

ϵB
Λ2

¼ e4π=g̃; ð4Þ

where g̃ < 0, and Λ is a momentum cutoff that is required to
regularize ultraviolet divergences [1,37]. Using the above
relation, one identifies the trimer binding energy ϵB as the
physical coupling, and as the emerging scale that breaks scale
invariance.
It is noteworthy that for n-body contact interactions in d

dimensions, the units of the bare coupling are L−2þdðn−1Þ,
such that there are only two physically relevant solutions
for which the coupling is dimensionless: n ¼ d ¼ 2, i.e.,
the 2D case with a two-body interaction, and n ¼ 3, d ¼ 1,
which is the 1D case shown here (see, however, Ref. [38],

where ways to avoid this constraint were explored in the
context of the Efimov effect).
Below, we will use a lattice regularization of the problem

to arrive at many-body results. The relation between the
bare lattice coupling glat and the binding energy is then
given implicitly by (see Supplemental Material [39])

1

glat
¼ −

1

L2

X
k

1

ϵk þ ϵB
; ð5Þ

where L ¼ Nxl is the lattice size, l is the lattice spacing,
ϵk ¼ ðk21 þ k22 þ k23Þ=2, k ¼ ð2π=LÞðn1; n2; n3Þ, and the
sum covers all available values of n1, n2, n3 on the finite
momentum lattice, with the constraint n1 þ n2 þ n3 ¼ 0
(i.e., vanishing total momentum).
Results: Anomaly in the equation of state.—In truly scale

invariant systems, such as noninteracting ones, the pressure
P may be written in terms of the inverse temperature β
and the chemical potential μ as P ¼ βαfðβμÞ, where
α ¼ −d=2 − 1 and d is the number of spatial dimensions.
The advantage of isolating the dependence on the dimen-
sionful parameter β is that one readily derives, using
thermodynamic identities and partial differentiation with
respect to β and μ, the well-known result

P ¼ 2

d
E
V
; ð6Þ

where E is the total energy and V is the d-dimensional
volume. In scale-anomalous systems like the one put
forward here, the pressure acquires a second physical,
dimensionless parameter via the anomaly, which we will
write as βϵB, where ϵB is the binding energy of the three-
body problem described above. Thus, P ¼ βαfðβμ; βϵBÞ.
Following the same derivation outlined above, one can
easily see that

P −
2

d
E
V
¼ 2

d
βα

∂f
∂ðβϵBÞ βϵB ¼ 2

d
βα

∂f
∂ lnðβϵBÞ ; ð7Þ

which shows that the emergence of the second parameter
results in a contribution to the equation of state that breaks
the scale invariant result of Eq. (6).
Anomaly as Tan’s contact.—Specializing to our case, the

anomalous term in Eq. (7) is proportional to a generaliza-
tion of Tan’s contact to the case of three-body forces.
Indeed, since βPV ¼ lnZ, where V ¼ L is the volume and
Z ¼ Tr exp ½−βðĤ − μN̂Þ� is the grand-canonical partition
function, the only way in which f can depend on ϵB is
through the dimensionless bare coupling g that appears
in Ĥ:

∂f
∂ lnðβϵBÞ ¼

ffiffiffi
β

p
L

∂ lnZ
∂g

∂g
∂ lnðβϵBÞ ; ð8Þ
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where

1

βL
∂ lnZ
∂g ¼ −

1

L

Z
dxhn̂1ðxÞn̂2ðxÞn̂3ðxÞi ¼ −hn̂1n̂2n̂3i;

ð9Þ

and the angle brackets denote a thermal expectation value
in the grand-canonical ensemble; we also assume the
system is spatially homogeneous. Thus, for our scale-
anomalous 1D system

P − 2
E
L
¼ C3; ð10Þ

where we have identified

C3 ¼ 2
∂P

∂ lnðβϵBÞ ¼ −2
∂g

∂ lnðβϵBÞ hn̂1n̂2n̂3i; ð11Þ

as the generalization of Tan’s contact density for the case of
three-body forces [40–43]. Note that the dimensions of the
contact density are those of pressure or energy density,
which in 1D amounts to 1=L3. Thus, the contact factorizes
into a three-body piece (namely, ∂g=∂ lnðβϵBÞ, which gives
the β-independent contribution) and a many-body piece
(the thermal expectation value of the triple density oper-
ator); for the former, Eq. (4) gives

∂g
∂ lnðβϵBÞ ¼ −

1

2π
ffiffiffi
3

p g2; ð12Þ

in the continuum. On the lattice, using the relationship
between glat and ϵB,

∂glat
∂ lnðβϵBÞ ¼ −g2lat

1

L2

X
k

ϵB
ðϵk þ ϵBÞ2

; ð13Þ

where the sum is constrained as in Eq. (5) (see
Supplemental Material [39]). For the continuum case,
plugging Eq. (12) into Eq. (10) gives a contact-term
expression similar to the 2D one:

P − 2
E
L
¼ g2

π
ffiffiffi
3

p hn̂1n̂2n̂3i: ð14Þ

Virial coefficients and high-temperature
thermodynamics.—Because the system proposed here con-
tains no two-body forces, the coefficients bn of the virial
expansion are identical to those of the noninteracting case

up to second order: b1 ¼ 1; b2 ¼ bð0Þ2 , where in general

bð0Þn ¼ ð−1Þnþ1=n3=2. The third-order coefficient b3 and
above, however, are directly affected by the anomaly.
Indeed, if the interacting n-body partition function is
Qn, the first nontrivial one in our system is Q3.

Therefore, Δb3 ≡ b3 − bð0Þ3 ¼ ΔQ3=Q1, where bð0Þ3 is the
noninteracting third order virial coefficient, and we have
used the exact expression b3 ≡Q3=Q1 −Q2 þQ2

1=3 (see,
e.g., Ref. [44]) together with the fact that Q1 and Q2

are unaffected by the three-body interaction. Moreover,
ΔQ3 ¼ ΔQ1;1;1, where Qn1;n2;n3 is the partition function of
the system with nj particles of species j. In translation-
invariant systems it is always possible to factor out the
center-of-mass motion, such that ΔQ3 ¼ Qc:m:

3 ΔQrel
1;1;1,

where Qc:m:
3 ¼ ffiffiffi

3
p

L=λT and λT ¼ ffiffiffiffiffiffiffiffi
2πβ

p
. Similarly, the

two-body 2D case satisfies

Δb2D2 ≡ b2D2 − bð0Þ;2D2 ¼ ΔQ2D
2

Q2D
1

¼ Qc:m:;2D
2 ΔQrel;2D

1;1

Q2D
1

; ð15Þ

where Qc:m:;2D
2 ¼ 2L2=λ2T and Δb2D2 is given by the Beth-

Uhlenbeck formula (see also Supplemental Material [39]).
Since we showed above that the relative motion of the
three-body 1D problem is captured by the dynamics of
the two-body problem in 2D, we have (at fixed βϵB),
ΔQrel

1;1;1 ¼ ΔQrel;2D
1;1 . Thus, putting together the above equa-

tions we arrive at

Δb3 ¼
Qc:m:

3

Q1

Q2D
1

Qc:m:;2D
2

Δb2D2 ¼ Δb2D2ffiffiffi
3

p ; ð16Þ

where the 1D, three-flavor single-particle partition function
is Q1 ¼ 3L=λT , and the 2D, two-flavor analogue is
Q2D

1 ¼ 2L2=λ2T . Note that the factor of 1=
ffiffiffi
3

p
in the above

equation relating Δb3 and Δb2D2 is unrelated to the factor
of 2=

ffiffiffi
3

p
relating g and g̃.

From the above, we obtain the high-temperature (strictly,
low-fugacity) behavior of the pressure and Tan’s contact
using their virial expansions, namely,

βðP−P0Þ¼
Q1

L

X∞
k¼1

Δbkzk; βC3¼
Q1

L

X∞
k¼1

ckzk; ð17Þ

where ck ¼ 2∂bk=∂ lnðβϵBÞ.
In addition, the relationship between Δb2D2 and Δb3

yields the thermodynamics of the three-body problem,
since the change in the corresponding partition function

is Q3 −Qð0Þ
3 ¼ Q1Δb3, where Qð0Þ

3 ¼ ðQ1=3Þ3.
Toward the many-body properties.—Despite the close

connection between the 1D and 2D problems explained
above, in particular at the few-body level, the many-body
properties certainly differ; e.g., one expects a Berezinskii-
Kosterlitz-Thouless superfluid transition in the 2D case,
and possibly a modified version of it in 1D, although it is
unknown to us at the moment even if the 1D system is
superfluid in the ground state. To provide a first look at the
thermodynamics, we present here perturbative results for
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the pressure at finite temperature and density. To obtain
those results, we put the system on a spacetime lattice and
use a Hubbard-Stratonovich transformation to represent the
interaction. Specifically, we write for a given point in the
spacetime lattice, using the dimensionless form of the
lattice density operators,

e−τglatn̂1n̂2n̂3 ¼
Z
Γ

dσ
3π

Y
j¼1;2;3

½1þ Bn̂jfðσÞ�; ð18Þ

where Γ ¼ ½−3π=2; 3π=2�, fðσÞ ¼ ei2σ=3 cos2 σ, B3 ¼
Cðe−τglat − 1Þ with C ¼ 64=15, glat is the lattice bare
coupling, and τ is the temporal lattice spacing in units
of l2. Using this transformation, we may write the partition
function as Z ¼ R

Dσ det3M½σ�, where the matrix M½σ� is
the usual fermion matrix encoding the dynamics and input
parameters, including the fugacity z. One may use this
formulation of the many-body problem to carry out
Monte Carlo calculations [45,46]; however, the imaginary
parts of fðσÞ imply that there would be a so-called phase
problem. Instead, for such calculations one should resort to
fixed-node methods, which we will carry out elsewhere.
Here, we evaluate the pressure at next-to-leading order in
perturbation theory, as we outline next. Expanding the
effective action S½σ� ¼ −3 ln detM½σ� in powers of B, along
the lines of the work of Ref. [47], and keeping only the
leading contribution, we obtain

lnðZ=Z0Þ ¼ NτNx ln

�Z
Γ

dσ
3π

exp (3KBfðσÞ)
�
; ð19Þ

where

K ¼ 1

Nx

X
p

ze−βp
2=2

1þ ze−βp
2=2

; ð20Þ

all of which is evaluated numerically. To renormalize
the coupling, we compute the change in the third-order
virial coefficient in our approximation and tune glat to
match the exact Δb3 derived above, and thus obtain the
physical coupling βϵB; see Ref. [48]. Using lnðZ=Z0Þ ¼
βVðP − P0Þ, in Fig. 1 we show P=P0 as a function of
βμ for βϵB ¼ 0.1, alongside the virial expansion, to
illustrate the shape of the equation of state of this
system. The increase P=P0 as a function of βμ is character-
istic of systems with attractive interactions (see, e.g.,
Refs. [30,49]). (See Supplemental Material [39] for the
corresponding result for the contact C3.)
Because of the formation of three-body bound states at

vanishingly small attractive coupling, we expect to have an
effective description in terms of composite fermions, i.e.,
trimers at strong coupling. As the trimer states become
localized with increased coupling, Pauli exclusion dictates
that their interaction should be repulsive. Thus, we expect a
behavior that is rather different from the fermion-boson

crossover phenomenon featured in 2D; instead, we expect a
fermion-trimer crossover, where both ends are of fermionic
character (see Fig. 2). For weak attraction, where the
trimers are loosely bound, the trimer-trimer interaction
may be attractive, which would result in trimer pairing. At
fixed lnðϵB=ϵFÞ, there should exist a crossover temperature
T� above which the trimers break into unbound fermions.
Finally, the more general situation where the particle pop-
ulation is asymmetric, e.g., majority or minority type 1 and

 0.7
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-3 -2.5 -2 -1.5 -1 -0.5  0  0.5  1

P
/P

0

βμ

βεB = 0.1P / P0 (NLO)
3rd order virial (exact)
4th order virial (NLO)
5th order virial (NLO)

FIG. 1. Solid line: Pressure, in units of the noninteracting
counterpart, of the 1D anomalous many-body system at
βϵB ¼ 0.1, as a function of βμ. The various virial-expansion
results show the exact contribution up to third order (Δb3 was
used to tune the lattice coupling), and perturbative results up to
fourth and fifth orders from the evaluation of the pressure at next-
to-leading order in lattice perturbation theory.

FIG. 2. Conjectured many-body behavior of the 1D anomalous
system as a function of temperature T and dimensionless
coupling lnðϵB=ϵFÞ, where ϵF is the Fermi energy. At low
temperatures, the system forms large trimers (at weak coupling)
and localized repulsive trimers (pointlike identical fermions, at
strong coupling). Whether the attractive interaction is enough to
overcome Pauli exclusion and lead to trimer-trimer pairing, it
remains an open question. At high temperature (crossover
schematically shown here as T�), unbound fermions reappear
(with residual three-body correlations).
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equal population of 2 and 3, or all different, may lead to a
variety of situations (e.g., fermion-mediated attractive inter-
action between dimers), to be explored elsewhere.
Summary and conclusions.—We have shown that a

system of 1D fermions with an attractive three-body contact
interaction features a scale invariance which, while present
at the classical level (the coupling g is dimensionless), is
broken by quantum fluctuations which generate a three-
body bound state at arbitrarily small couplings. To show it,
we mapped the three-body 1D problem to a two-body 2D
problem (or, rather, both are mapped onto the same one-
body 2D problem in a Dirac delta potential). Thus, this
system presents a scale anomaly in a remarkable way: it
lives in 1D but it is locally (around any region where
particles scatter) like its 2D two-body counterpart, which is
reminiscent of the concept of holography. We have shown
that the anomaly is directly related to Tan’s contact, which
introduces a change in the equation of state in a way that is
essentially identical to that of the 2D case. In addition, we
have shown that the third order virial coefficient of our 1D
system is proportional to the second-order coefficient of the
2D system; we provide a perturbative calculation of the
many-body pressure; and we conjecture an overall picture
of the physics of the system in the temperature-coupling
plane. The experimental realization of 1D multispecies
systems does not pose a problem to current ultracold atom
experiments; however, the realization of a fine-tuned three-
body interaction (without a two-body piece) is likely a
challenge. A recent proposal was put forward in Ref. [50],
where the bosonic droplets with three-body interactions
were analyzed. In such an experiment, the study of
collective modes would be an interesting avenue to observe
the impact of scale invariance breaking [3,5].
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