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Third- and fourth-order virial coefficients of harmonically trapped fermions
in a semiclassical approximation
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Using a leading-order semiclassical approximation, we calculate the third- and fourth-order virial coefficients
of nonrelativistic spin-1/2 fermions in a harmonic trapping potential in arbitrary spatial dimensions, and
as functions of temperature, trapping frequency, and coupling strength. Our simple, analytic results for the
interaction-induced changes �b3 and �b4 agree qualitatively, and in some regimes quantitatively, with previous
numerical calculations for the unitary limit of three-dimensional Fermi gases.
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I. INTRODUCTION

The properties of fermions at finite temperature and density
are in part governed by the dimensionless product βμ, where
β = 1/(kBT ) is the inverse temperature and μ is the chemical
potential. Typically, the region βμ � 0 displays a crossover
between quantum and classical physics, while z = eβμ � 1
indicates a dilute limit where the thermodynamics is given by
the virial expansion, which expands a given physical quantity
in powers of z. Since μ is coupled to the particle number
N , the virial expansion at order N contains the physics of
the N-body problem. In the simplest case, the coefficients bn

of the virial expansion determine the pressure, density, and
compressibility, as well as other elementary thermodynamic
quantities such as energy and entropy. The change in bn due
to interactions is usually denoted �bn.

The previous work of Ref. [1] calculated the third- and
fourth-order virial coefficients �b3 and �b4, respectively,
at leading order (LO) in a semiclassical lattice approxima-
tion (SCLA), of homogeneous spin-1/2 fermions in arbitrary
dimension. The follow-up work of Ref. [2] extended those
results up to �b7, while Ref. [3] carried out calculations
up to next-to-next-to-leading order in the SCLA for up to
�b5. In this article we provide another piece of the puzzle
by generalizing the calculations of Ref. [1] to systems in a
harmonic trap of frequency ω. We present our derivations with
intermediate steps in detail and give analytic formulas for �b3

and �b4 as functions of βω in arbitrary spatial dimension d .
Our results, which will be given in terms of �b2, are thus also
functions of the coupling strength.

II. HAMILTONIAN AND FORMALISM

As our focus is on systems with short-range interactions,
such as dilute atomic gases or dilute neutron matter, the
Hamiltonian reads

Ĥ = Ĥ0 + V̂int, (1)

where

Ĥ0 = T̂ + V̂ext, (2)

and

T̂ =
∑
s=1,2

∫
dd x ψ̂†

s (x)

(
− h̄2∇2

2m

)
ψ̂s(x) (3)

is the kinetic energy,

V̂ext = 1

2
mω2

∫
dd x x2[n̂1(x) + n̂2(x)], (4)

is the spherically symmetric external trapping potential, and

V̂int = −gd

∫
dd x n̂1(x)n̂2(x), (5)

is the interaction.
In the above equations, the field operators ψ̂s, ψ̂

†
s cor-

respond to particles of species s = 1, 2, and n̂s(x) are the
coordinate-space densities. For the remainder of this work, we
will set h̄ = kB = m = 1.

A. Thermodynamics and the virial expansion

The equilibrium thermodynamics of our quantum many-
body system can be captured by the grand-canonical partition
function, namely,

Z = tr[e−β(Ĥ−μN̂ )] = e−β�, (6)

where β is the inverse temperature, � is the grand thermo-
dynamic potential, N̂ is the total particle number operator,
and μ is the overall chemical potential (we will not consider
polarized systems in this work).

As the calculation of Z is a formidable problem in the pres-
ence of interactions, we resort to approximations or numerical
evaluations in order to access the thermodynamics. To that
end, in this work we will use the virial expansion, which is
an expansion around the dilute limit z → 0, where z = eβμ is
the fugacity, i.e., it is a low-fugacity expansion (see Ref. [4]
for a review on recent applications of the virial expansion to
ultracold atoms). The coefficients accompanying the powers
of z in the expansion � are the virial coefficients bn,

−β� = lnZ = Q1

∞∑
n=1

bnzn, (7)
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where Q1 is the one-body partition function. Using the fact
that Z is itself a sum over canonical partition functions QN of
all possible particle numbers N , namely,

Z =
∞∑

N=0

zN QN , (8)

we obtain expressions for the virial coefficients

b1 = 1, (9)

b2 = Q2

Q1
− Q1

2!
, (10)

b3 = Q3

Q1
− b2Q1 − Q2

1

3!
, (11)

b4 = Q4

Q1
−

(
b3 + b2

2

2

)
Q1 − b2

Q2
1

2!
− Q3

1

4!
, (12)

and so on. In this work we will not pursue the virial expansion
beyond b4. The QN can themselves be written in terms of the
partition functions Qa,b for a particles of type 1 and b particles
of type 2,

Q1 = 2Q1,0, (13)

Q2 = 2Q2,0 + Q1,1, (14)

Q3 = 2Q3,0 + 2Q2,1, (15)

Q4 = 2Q4,0 + 2Q3,1 + Q2,2, (16)

and so on for higher orders. In the absence of intraspecies
interactions, only Q1,1, Q2,1, Q3,1, and Q2,2 are affected, such
that the change in b2, b3, and b4 due to interactions is entirely
given by

�b2 = �Q1,1

Q1
, (17)

�b3 = 2�Q2,1

Q1
− �b2Q1, (18)

�b4 = 2�Q3,1 + �Q2,2

Q1
− �

(
b3 + b2

2

2

)
Q1 − �b2

2
Q2

1. (19)

To calculate �Qm,n, we implement a semiclassical approx-
imation, as described in the next section. Once we obtain
the virial coefficients, one may rebuild the grand-canonical
potential � to access the thermodynamics of the system as a
function of the various parameters.

In order to connect to the physical parameters of the
systems at hand, we will use the value of �b2 as a renormal-
ization condition by relying on the exact answers as functions
of βω and the physical coupling λ. These exact answers are
not always known analytically, but they can easily be obtained
numerically by solving the two-body problem of interest.

Although in this work we will focus on systems in a har-
monic trap, thus far the identities presented in this section are
more general. As a reference for the trapped case, we present
here the calculation of the noninteracting virial coefficients
for arbitrary βω. (We note that such a calculation, while
simple, does not appear in the literature.) Starting from the
logarithm of the noninteracting partition function in d spatial

dimensions, we have, for two fermion species,

lnZ = 2
∑

n

ln

(
1 + ze−βωd/2

d∏
i=1

e−βωni

)
. (20)

Expanding in powers of z on both sides, and switching the
order of the sums, we obtain

Q1

∞∑
k=1

b0
kzk = 2

∞∑
k=1

zk (−1)k+1

k
e−βωdk/2

( ∞∑
n=0

e−βωkn

)d

= 2
∞∑

k=1

zk (−1)k+1

2d k

(
1

sinh(βωk/2)

)d

. (21)

To identify the noninteracting virial coefficients b0
n, we need

Q1,

Q1 = 2
∑

n

e−βEn = 2e−βωd/2

(
1

1 − e−βω

)d

(22)

= 2

(
1

2 sinh(βω/2)

)d

. (23)

Thus, the virial coefficients of a trapped noninteracting spin-
1/2 Fermi gas in d dimensions are

b0
n = (−1)n+1

n

(
sinh(βω/2)

sinh(βωn/2)

)d

. (24)

Notably, in the limit βω � 1, we obtain

b0
n → (−1)n+1

(
1

n

)d+1

, (25)

which agrees in d = 3 with the local density approximation
result quoted in Ref. [4]. The simple result of Eq. (24) should
be a textbook calculation, but it does not appear elsewhere,
to the best of our knowledge. Note that for the homogeneous
(i.e., untrapped) system, the noninteracting virial coefficients
in d dimensions are

b0,hom
n = (−1)n+1

(
1

n

) d
2 +1

, (26)

such that b0
n = b0,hom

n n− d
2 for βω � 1.

B. Semiclassical lattice approximation

To calculate the interaction-induced change �Qm,n, we
implement an approximation which consists in keeping the
leading term in the commutator expansion,

e−β(Ĥ0+V̂int ) = e−βĤ0 e−βV̂int × e− β2

2 [Ĥ0,V̂int] × · · · , (27)

where the higher orders involve exponentials of nested com-
mutators of Ĥ0 with V̂int. Thus, the leading order in this ex-
pansion consists in setting [Ĥ0, V̂int] = 0, which corresponds
to a semiclassical approximation. Another way to see this
approximation is in terms of a Trotter-Suzuki factorization,
i.e.,

e−β(Ĥ0+V̂int ) = lim
n→∞(e−βĤ0/ne−βV̂int/n)n, (28)

where the n = 1 case is the leading order we pursue in this
work and higher orders can be defined by increasing n.

063626-2



THIRD- AND FOURTH-ORDER VIRIAL COEFFICIENTS … PHYSICAL REVIEW A 100, 063626 (2019)

C. Example: Calculation of �Q1,1 and �b2

In the approximation proposed above, the two-particle
problem is analyzed as follows:

Q1,1 = Tr[e−βĤ0 e−βV̂int ]

=
∑

k1,k2,x1,x2

〈k1k2|e−βĤ0 |x1x2〉〈x1x2|e−βV̂int |k1k2〉

=
∑

k1,k2,x1,x2

e−β(Ek1 +Ek2 )Mx1,x2 |〈k1k2|x1x2〉|2, (29)

where we have inserted complete sets of states in coordinate
space {|x1x2〉} and in the basis |k1k2〉 of eigenstates of Ĥ0,
whose single-particle eigenstates |k〉 have eigenvalues Ek.
We have also made use of the fact that V̂int is diagonal in
coordinate space, such that

Mx1,x2 = 1 + Cδx1,x2 , (30)

where

C = (eβgd − 1)	d . (31)

Here [5], we treated the interaction by placing the system on
a spatial lattice of spacing 	, as in Ref. [2], which will set the
scale for all the dimensionful quantities from this point on. We
therefore assume from this point on that any remaining powers
of 	 have been absorbed into gd , which now represents a lattice
coupling, such that the combination βgd is dimensionless.

Thus,

�Q1,1 = C
∑

k1,k2,x

	d e−β(Ek1 +Ek2 )|φk1 (x)|2|φk2 (x)|2, (32)

and we will use normalized single-particle wave functions in
Cartesian coordinates which in one dimension (1D) take the
form

φn(x) = 1√
2nn!

(ω

π

)1/4
e−ωx2/2Hn(

√
ωx), (33)

where the Hn are Hermite polynomials. We note in passing
that, in d dimensions, φk(x) has units of 	−d/2, since ω has
units of 	−2; thus, �Q1,1 is dimensionless as expected.

The sums over k1 and k2 in Eq. (32) are independent and
identical and take the form

∞∑
n=0

e−βEn |φn(x)|2 =
√

ω

π
e−βω/2−ωx2

G(βω,
√

ωx), (34)

for each Cartesian dimension, where the function G can be
calculated as a special case of Mehler’s formula [6],

G(k, y) ≡
∞∑

n=0

e−kn

2nn!
[Hn(y)]2 = exp[2y2/(1 + ek )]√

1 − e−2k
.

This formula encodes the finite-temperature, single-particle
density matrix of a noninteracting, nonrelativistic system in a
harmonic trapping potential, and therefore its use is essential
in the calculations that follow.

Squaring the result, we obtain, in one spatial dimension,

�Q11 = 2C
∫ ∞

0
dx

ω

2π sinh(βω)
exp[−2ωx2 tanh(βω/2)]

= C

√
ω

4

1√
π sinh(βω) sinh(βω/2)

, (35)

where we have performed the last Gaussian integral along
with some hyperbolic function simplifications. Note that
�Q11 is a dimensionless quantity; we have, in the above
equation, implicitly replaced a sum with an integral by taking
the continuum limit. In doing so, notice that C has dimensions
of 	d [see Eqs. (30) and (31), and formulas below].

Generalizing to d spatial dimensions,

�Q11 = C

[√
ω

4

1√
π sinh(βω) sinh(βω/2)

]d

. (36)

Using Eq. (22), we find that Q1 cancels exactly in the final
expression, as expected, such that

�b2 = C

2

[ √
ω

2
√

π sinh(βω)

]d

= C

λd
T

1

2

[
βω

2 sinh(βω)

] d
2

, (37)

where we have used the thermal wavelength λT = √
2πβ to

write the result in as a function of βω.
As mentioned above, we will use this result to connect to

the physical coupling λ of a given system, as a renormalization
condition at a given value of βω. To that end, we first solve
for C/λd

T ,

C

λd
T

= 2�b2

[
2 sinh(βω)

βω

] d
2

. (38)

In the unitary limit of the 3D Fermi gas [7], for instance, the
exact answer for �b2 is known [4],

�b2 = 1

2

(
e−βω/2

1 + e−βω

)
= 1

4 cosh(βω/2)
. (39)

Using that result in Eq. (38) yields

C

λ3
T

= e−βω/2

1 + e−βω

[
2 sinh(βω)

βω

]3/2

. (40)

As we will show below, this type of renormalization is very
practical as our results for �b3 and �b4 are simple quadratic
functions of C/λd

T with βω-dependent coefficients.

III. RESULTS

Following the steps outlined above in the example calcu-
lation of �b2, we have calculated the various contributions to
�b3 and �b4, which we present in this section. In all cases,
the central component of the calculation is the use of the
analytic form of Mehler’s kernel, which effectively reduces
the calculation to a small number of Gaussian integrals.

A. Result for �Q2,1 and �b3

With small modifications to the example for �b2, it is
straightforward to show that

�Q2,1 = C

λd
T

[
βω

4 sinh3(βω)

] d
2

×
[

1

2
d
2 tanhd

(
βω/2

) −
(

2 cosh2(βω/2)

4 cosh2(βω/2) − 1

) d
2
]
,

(41)

063626-3



K. J. MORRELL, C. E. BERGER, AND J. E. DRUT PHYSICAL REVIEW A 100, 063626 (2019)

and using the results of the previous section, it is easy to
assemble the final answer for �b3 in our approximation using

�b3 = 2�Q2,1

Q1
− �b2Q1. (42)

Note that Q1 diverges in the βω → 0 limit, but that diver-
gence will cancel out in the final expression for �b3. Indeed,
after simplifications, we obtain

�b3 = − C

λd
T

[
βω

2 sinh(βω)

] d
2
(

1

4 cosh2(βω/2) − 1

) d
2

, (43)

which is manifestly finite in the βω → 0 limit. In that limit,

�b3 → − C

λd
T

1

6
d
2

. (44)

We recall the result of Ref. [1] for the homogeneous case,
namely,

�bhom
3 = − C

λd
T

1

2
d
2

, (45)

which shows that the relationship between the homogeneous
and trapped cases, pointed out in the Introduction, is also
satisfied once interactions are turned on.

B. Result for �Q3,1, �Q2,2, and �b4

Again following the steps outlined above, we obtain

2�Q3,1

Q1
= C

2λd
T

[√
2βω sinh(βω/2)

2 sinh2(βω)

]d
{(

1

2 tanh3(βω/2)

) d
2

+ 2 tanh
d
2 (βω)

(
cosh(βω) + 1

2 cosh(βω) + 1

) d
2

− 2 coth
d
2 (βω/2)

(
cosh(βω) + 1

2 cosh(βω) + 1

) d
2

−
(

1

2 tanh(βω/2)

) d
2

}
, (46)

�Q2,2

Q1
= C

2λd
T

[√
2βω sinh(βω/2)

2 sinh2(βω)

]d
{(

1

2 tanh3(βω/2)

) d
2

− 2 coth
d
2 (βω/2)

(
cosh(βω) + 1

2 cosh(βω) + 1

) d
2

+
(

tanh(βω)

2

) d
2

+
(

C

2λd
T

)
(2βω)

d
2

2d

[
1

tanhd (βω/2)
+ 1 − 2[sech(βω) + 1]

d
2

]}
. (47)

Combining these with results from the previous sections,
the final answer for �b4 can be assembled using

�b4 = 2�Q3,1 + �Q2,2

Q1
− �

(
b3 + b2

2

2

)
Q1 − �b2

2
Q2

1. (48)

After several simplifications and cancellations (which can
be tracked by their degree of divergence as βω → 0, while the
final result for �b4 is finite), we obtain

�b4 = C

2λd
T

[√
2βω sinh(βω/2)

2 sinh2(βω)

]d

×
{

2 tanh
d
2 (βω)

(
cosh(βω) + 1

2 cosh(βω) + 1

) d
2

+
(

tanh(βω)

2

) d
2

+
(

C

2λd
T

)
(2βω)

d
2

2d
[1 − 2[sech(βω) + 1]

d
2 ]

}
. (49)

In this case, the limit βω → 0 yields

�b4 → C

λd
T

4− d
2 (3− d

2 + 2−d−1) +
(

C

λd
T

)2

4−d−1(1 − 2
d
2 +1).

(50)

Once again, we recall the homogeneous result

�bhom
4 = C

λd
T

(
3− d

2 + 2−d−1
)

+
(

C

λd
T

)2

4− d
2 −1

(
1 − 2

d
2 +1

)
,

(51)

and find that �b4 = �bhom
4 4− d

2 , as expected.

C. Results in terms of �b2

Finally, collecting our results for �b3 and �b4 and express-
ing them in terms of �b2 [via Eq. (38)], we obtain

�b3 = −2

(
1

4 cosh2(βω/2) − 1

) d
2

�b2, (52)

and

�b4 =
(

1

2 cosh(βω)

) d
2

f1(βω, d )�b2 + f2(βω, d )(�b2)2,

(53)
where

f1(βω, d )=
(

1

2 cosh(βω/2)

)d

+ 2

(
1

4 cosh2(βω/2) − 1

) d
2

,

(54)

and

f2(βω, d ) =
(

1

2 cosh(βω/2)

)d

− 2

(
1

4 cosh2(βω/2) − 2

) d
2

.

(55)

The above formulas for �b3 and �b4 are the main result
of this work. In the following, we explore their behavior as
a function of d and βω, focusing in particular on the unitary
limit of the 3D Fermi gas. While numerical results exist for
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FIG. 1. �b3/�b2 (top) and �b4/�b2 (bottom) as functions of
the spatial dimension d at fixed βω = 0.1, 1.0, and 5.0, for �b2

corresponding to the unitary limit in d = 3, Eq. (39).

these quantities in some cases, in particular in 2D [8–11]
(see also Refs. [12–14]) and in 3D at unitarity [15–19], most
of those correspond to homogeneous systems and do not
feature explicit, analytic dependence on the dimension nor on
βω, as shown here. Our results are therefore useful in that
they are able to provide analytic insight into the behavior of
virial coefficients across dimensions, and as a function of the
temperature (or trapping frequency) as well as the coupling
strength. Below, we evaluate our formulas and discuss the
resulting answers.

D. Qualitative behavior

To illustrate our analytic results, in Fig. 1 we show
�b3/�b2 and �b4/�b2 as a function of the spatial dimension
d , at various βω, fixing �b2 to its value in the unitary limit
(as a reference point). We find that, as d increases, the mag-
nitude of the interaction-induced change �bn decreases. This
suggests that, using �b2 as the fixed, dimension-independent
coupling, the radius of convergence of the virial expansion
increases with d . This is consistent with the idea that, in higher
dimensions, the kinetic energy dominates over the interactions
and mean-field type of approaches capture the behavior of the
system correctly.

As a comparison with previous calculations, we show in
Fig. 2 our results in 3D at unitarity as a function of βω,

FIG. 2. Comparison of our LO-SCLA results for �b3 (top) and
�b4 (bottom) as a function of βω. The high-temperature fits and
PIMC results are from Ref. [20]; the sum-over-states results are from
Ref. [21].

superimposed with the data from Ref. [20]. While we do not
expect, a priori, good quantitative agreement in this strong-
coupling regime, we find at least qualitative agreement for
both �b3 and �b4, and surprisingly good agreement at the
quantitative level for �b4. Clearly, the LO-SCLA is able to
capture more than just the shape of the βω dependence of the
virial coefficients.

IV. SUMMARY AND CONCLUSIONS

In this article we have implemented a semiclassical approx-
imation, at leading order, to calculate the virial coefficients
�b3 and �b4 of harmonically trapped Fermi gases. Our
calculations yield analytic answers as functions of βω and,
by defining the lattice coupling C so as to match �b2 to
the known exact result, we also obtain the dependence on
the physical coupling strength. Notably, our results are also
analytic functions of the spatial dimension d , allowing us to
study the behavior of the virial expansion across dimensions.
We find that, at fixed �b2, the magnitude of �bn decreases as
d increases, for all βω.

Although there have been many (and very precise) determi-
nations of virial coefficients in the literature, they are mostly
numerical and focus on specific dimensions or couplings (and
most of them are for homogeneous systems). Our approach
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and results are, in that sense, complementary: We do not
expect high precision from the LO-SCLA, but through it we
are able to study, explicitly, the variations with the parameters
of the problem, which yield qualitative analytic insight into
the properties of the virial expansion. We have demonstrated
the quality of our leading-order results for �b3 and �b4 in
the unitary limit by showing that they qualitatively follow the
expected answers, which is an encouraging sign to proceed
to next-to-leading order in future work. Furthermore, the
approximate agreement with prior results at unitarity suggests
that, between the noninteracting regime and the unitary point,
that agreement should be even better than shown here.

We would like to stress that the calculation presented here
is nonperturbative in the same sense as in lattice Monte Carlo
approaches, except that we have implemented a very coarse
temporal lattice. Increasing the order of the approximation
(beyond LO-SCLA studied here) amounts to reducing the
temporal lattice spacing effects. Those effects disappear in the
limit where either Ĥ0 or V̂int appear on their own. When both

are present, the regime of validity of the SCLA at a given order
is controlled by the magnitude of the commutator [Ĥ0, V̂int],
i.e., it will depend on the coupling strength.

Finally, it should be pointed out that the renormalization of
the lattice theory based on �b2 does not by itself eliminate all
the lattice artifacts. Future studies should explore the use of
improved actions (see, e.g., Refs. [22,23]), potentially making
use of prior knowledge of �b3 where available, to enhance the
quality of the expansion.

ACKNOWLEDGMENTS

We would like to thank D. Blume and Y. Yan for kindly
providing us with their data. This material is based upon
work supported by the National Science Foundation under
Grant No. PHY1452635 (Computational Physics Program).
C.E.B. acknowledges support from the U.S. Department of
Energy through the Computational Science Graduate Fellow-
ship (DOE CSGF) under Grant No. DE-FG02-97ER25308.

[1] C. R. Shill and J. E. Drut, Virial coefficients of 1D and 2D
Fermi gases by stochastic methods and a semiclassical lattice
approximation, Phys. Rev. A 98, 053615 (2018).

[2] Y. Hou, A. Czejdo, J. DeChant, C. R. Shill, and J. E.
Drut, Leading-order semiclassical approximation to the first
seven virial coefficients of spin-1/2 fermions across spatial
dimensions, arXiv:1907.10120 [Phys. Rev. A (to be
published)].

[3] Y. Hou and J. E. Drut, Semiclassical approximation to virial
coefficients beyond the leading order, arXiv:1908.00174.

[4] X.-J. Liu, Virial expansion for a strongly correlated Fermi
system and its application to ultracold atomic Fermi gases,
Phys. Rep. 524, 37 (2013).

[5] Notice that the constant C resembles the so-called Mayer func-
tion in classical statistical physics. However, the connection is
only a coincidence, as in our case it comes from the fermionic
statistics, whereby exp[βn̂1(x)n̂2(x)] = 1 + Cn̂1(x)n̂2(x).

[6] H. Bateman and A. Erdélyi, Higher Transcendental Functions.
II (McGraw-Hill, New York, 1953).

[7] The BCS-BEC Crossover and the Unitary Fermi Gas, edited by
W. Zwerger (Springer, Berlin, 2012).

[8] X.-J. Liu, H. Hu, and P. D. Drummond, Exact few-body re-
sults for strongly correlated quantum gases in two dimensions,
Phys. Rev. B 82, 054524 (2010)

[9] V. Ngampruetikorn, J. Levinsen, and M. M. Parish, Pair Cor-
relations in the Two-Dimensional Fermi Gas, Phys. Rev. Lett.
111, 265301 (2013).

[10] M. Barth and J. Hofmann, Pairing effects in the nondegenerate
limit of the two-dimensional Fermi gas, Phys. Rev. A 89,
013614 (2014).

[11] V. Ngampruetikorn, M. M. Parish, and J. Levinsen, High-
temperature limit of the resonant Fermi gas, Phys. Rev. A 91,
013606 (2015).

[12] C. Chaffin and T. Schäfer, Scale breaking and fluid dynamics in
a dilute two-dimensional Fermi gas, Phys. Rev. A 88, 043636
(2013).

[13] W. S. Daza, J. E. Drut, C. L. Lin, and C. R. Ordóñez, Virial
expansion for the Tan contact and Beth-Uhlenbeck formula
from two-dimensional SO(2,1) anomalies, Phys. Rev. A 97,
033630 (2018).

[14] C. R. Ordoñez, Path-integral Fujikawa approach to anomalous
virial theorems and equations of state for systems with SO(2,1)
symmetry, Physica 446, 64 (2016).

[15] D. Lee and T. Schäfer, Cold dilute neutron matter on the lattice.
I. Lattice virial coefficients and large scattering lengths, Phys.
Rev. C 73, 015201 (2006).

[16] X.-J. Liu, H. Hu, and P. D. Drummond, Virial Expansion for A
Strongly Correlated Fermi Gas, Phys. Rev. Lett. 102, 160401
(2009).

[17] X.-J. Liu, H. Hu, and P. D. Drummond, Three attractively
interacting fermions in a harmonic trap: Exact solution, ferro-
magnetism, and high-temperature thermodynamics, Phys. Rev.
A 82, 023619 (2010).

[18] X. Leyronas, Virial expansion with Feynman diagrams, Phys.
Rev. A 84, 053633 (2011).

[19] D. B. Kaplan and S. Sun, A New Field Theoretic Method
for the Virial Expansion, Phys. Rev. Lett. 107, 030601
(2011).

[20] Y. Yan and D. Blume, Path Integral Monte Carlo Determina-
tion of the Fourth-Order Virial Coefficient for Unitary Two-
Component Fermi Gas with Zero-Range Interactions, Phys.
Rev. Lett. 116, 230401 (2016).

[21] D. Rakshit, K. M. Daily, and D. Blume, Natural and unnatural
parity states of small trapped equal-mass two-component Fermi
gases at unitarity and fourth-order virial coefficient, Phys. Rev.
A 85, 033634 (2012).

[22] J. E. Drut and A. N. Nicholson, Lattice methods for strongly
interacting many-body systems, J. Phys. G: Nucl. Part. Phys.
40, 043101 (2013).

[23] J. E. Drut, Improved lattice operators for non-
relativistic fermions, Phys. Rev. A 86, 013604
(2012).

063626-6

https://doi.org/10.1103/PhysRevA.98.053615
https://doi.org/10.1103/PhysRevA.98.053615
https://doi.org/10.1103/PhysRevA.98.053615
https://doi.org/10.1103/PhysRevA.98.053615
http://arxiv.org/abs/arXiv:1907.10120
http://arxiv.org/abs/arXiv:1908.00174
https://doi.org/10.1016/j.physrep.2012.10.004
https://doi.org/10.1016/j.physrep.2012.10.004
https://doi.org/10.1016/j.physrep.2012.10.004
https://doi.org/10.1016/j.physrep.2012.10.004
https://doi.org/10.1103/PhysRevB.82.054524
https://doi.org/10.1103/PhysRevB.82.054524
https://doi.org/10.1103/PhysRevB.82.054524
https://doi.org/10.1103/PhysRevB.82.054524
https://doi.org/10.1103/PhysRevLett.111.265301
https://doi.org/10.1103/PhysRevLett.111.265301
https://doi.org/10.1103/PhysRevLett.111.265301
https://doi.org/10.1103/PhysRevLett.111.265301
https://doi.org/10.1103/PhysRevA.89.013614
https://doi.org/10.1103/PhysRevA.89.013614
https://doi.org/10.1103/PhysRevA.89.013614
https://doi.org/10.1103/PhysRevA.89.013614
https://doi.org/10.1103/PhysRevA.91.013606
https://doi.org/10.1103/PhysRevA.91.013606
https://doi.org/10.1103/PhysRevA.91.013606
https://doi.org/10.1103/PhysRevA.91.013606
https://doi.org/10.1103/PhysRevA.88.043636
https://doi.org/10.1103/PhysRevA.88.043636
https://doi.org/10.1103/PhysRevA.88.043636
https://doi.org/10.1103/PhysRevA.88.043636
https://doi.org/10.1103/PhysRevA.97.033630
https://doi.org/10.1103/PhysRevA.97.033630
https://doi.org/10.1103/PhysRevA.97.033630
https://doi.org/10.1103/PhysRevA.97.033630
https://doi.org/10.1016/j.physa.2015.11.019
https://doi.org/10.1016/j.physa.2015.11.019
https://doi.org/10.1016/j.physa.2015.11.019
https://doi.org/10.1016/j.physa.2015.11.019
https://doi.org/10.1103/PhysRevC.73.015201
https://doi.org/10.1103/PhysRevC.73.015201
https://doi.org/10.1103/PhysRevC.73.015201
https://doi.org/10.1103/PhysRevC.73.015201
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevA.82.023619
https://doi.org/10.1103/PhysRevA.82.023619
https://doi.org/10.1103/PhysRevA.82.023619
https://doi.org/10.1103/PhysRevA.82.023619
https://doi.org/10.1103/PhysRevA.84.053633
https://doi.org/10.1103/PhysRevA.84.053633
https://doi.org/10.1103/PhysRevA.84.053633
https://doi.org/10.1103/PhysRevA.84.053633
https://doi.org/10.1103/PhysRevLett.107.030601
https://doi.org/10.1103/PhysRevLett.107.030601
https://doi.org/10.1103/PhysRevLett.107.030601
https://doi.org/10.1103/PhysRevLett.107.030601
https://doi.org/10.1103/PhysRevLett.116.230401
https://doi.org/10.1103/PhysRevLett.116.230401
https://doi.org/10.1103/PhysRevLett.116.230401
https://doi.org/10.1103/PhysRevLett.116.230401
https://doi.org/10.1103/PhysRevA.85.033634
https://doi.org/10.1103/PhysRevA.85.033634
https://doi.org/10.1103/PhysRevA.85.033634
https://doi.org/10.1103/PhysRevA.85.033634
https://doi.org/10.1088/0954-3899/40/4/043101
https://doi.org/10.1088/0954-3899/40/4/043101
https://doi.org/10.1088/0954-3899/40/4/043101
https://doi.org/10.1088/0954-3899/40/4/043101
https://doi.org/10.1103/PhysRevA.86.013604
https://doi.org/10.1103/PhysRevA.86.013604
https://doi.org/10.1103/PhysRevA.86.013604
https://doi.org/10.1103/PhysRevA.86.013604

