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Virial coefficients of trapped and untrapped three-component fermions
with three-body forces in arbitrary spatial dimensions
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Using a coarse temporal lattice approximation, we calculate the first few terms of the virial expansion of a
three-species fermion system with a three-body contact interaction in d spatial dimensions, both in homogeneous
space and in a harmonic trapping potential of frequency ω. Using the three-body problem to renormalize, we
report analytic results for the change in the fourth- and fifth-order virial coefficients �b4 and �b5 as functions of
�b3. Additionally, we argue that in the ω → 0 limit the relationship bT

n = n−d/2bn holds between the trapped (T)
and the homogeneous coefficients for arbitrary temperature and coupling strength (not merely in scale-invariant
regimes). Finally, we point out an exact, universal (coupling- and frequency-independent) relationship between
�bT

3 in one dimension with three-body forces and �bT
2 in two dimensions with two-body forces.

DOI: 10.1103/PhysRevA.101.063630

I. INTRODUCTION

Motivated by the recent interest in one-dimensional (1D)
Fermi and Bose gases in the fine-tuned situation where only
three-body interactions are present [1–9], we explore here
the thermodynamics of fermions with a contact three-body
interaction in the region of low fugacity (which corresponds to
a dilute regime and therefore high temperatures in units of the
energy scale set by the density). We focus on the fermionic
case but explore the problem in arbitrary dimension d . To
that end, we implement a semiclassical lattice approximation
(SCLA) to calculate the virial coefficients bn and carry out
their evaluation up to n = 5 at leading order (LO) in that
approximation.

The LO-SCLA was introduced in Ref. [10] as a way to
estimate virial coefficients in two-component Fermi gases.
The approximation seems crude in its definition but performs
surprisingly well when the lowest nontrivial order in the virial
expansion is used as a renormalized coupling constant (b2 for
two-body forces, for example, and b3 in this work). Not sur-
prisingly, the approximation was seen to work better at weak
coupling, which makes sense, as the radius of convergence
of the virial expansion was found to be quickly reduced as a
result of the interaction. In Ref. [11] the next-to-leading-order
SCLA was explored up to b7, displaying the convergence
properties up to the unitary point (in three dimensions),
and in Ref. [12] the LO-SCLA was used for systems in a
harmonic trap, showing that the approximation can capture
the dependence on the trap frequency ω. In both cases, the
analytic dependence of virial coefficients on the dimension
was obtained, as is the case here. This is to be contrasted
with conventional methods to calculate virial coefficients,
which can be very precise but are limited to specific situations
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(coupling strength, dimension, etc.) and are typically unable
to provide analytic insight, as they are entirely numerical.

Our analytic formulas for the virial coefficients, although
approximate, support and shed light on the relationship bT

n →
n−d/2bn in the ω → 0 limit, where the superindex T indicates
the harmonically trapped situation. This connection is well
known to be valid in the noninteracting limit and in the so-
called unitary limit of spin-1/2 fermions in three dimensions,
both of which feature temperature-independent coefficients
bn. As we argue, that relationship is actually valid for all
temperatures and coupling constants and holds for three-body
interactions just as well as for two-body interactions. Finally,
we point out an exact, coupling- and frequency-independent
relationship between �bT

3 in one dimension with three-body
forces and �bT

2 in two dimensions with two-body forces.

II. HAMILTONIAN AND VIRIAL EXPANSION

We focus on a nonrelativistic Fermi system with a three-
body contact interaction, such that the Hamiltonian for three
flavors 1, 2, 3 is Ĥ = T̂ + V̂ , where

T̂ =
∫

dd x ψ̂†
s (x)

(
− h̄2∇2

2m

)
ψ̂s(x), (1)

and

V̂ =−gd

∫
dd x n̂1(x)n̂2(x)n̂3(x), (2)

where the field operators ψ̂s and ψ̂†
s are fermionic fields for

particles of types 1, 2, 3 (summed over s above), and n̂s(x) are
the coordinate-space densities. In the remainder of this work,
we take h̄ = kB = m = 1. Besides the above, we also consider
the case in which an external trapping potential term is added
to the Hamiltonian, of the form

V̂ext = 1

2
mω2

∫
dd x x2[n̂1(x) + n̂2(x) + n̂3(x)]. (3)
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One way to characterize the thermodynamics of the above
system is through the virial expansion [13], which is an
expansion around the dilute limit z → 0, where z = eβμ is
the fugacity, i.e., it is a low-fugacity expansion, where β is
the inverse temperature and μ the chemical potential coupled
to the total particle number operator N̂ . The coefficients
accompanying the powers of z in the expansion of the grand-
canonical potential � are the virial coefficients; specifically,

−β� = lnZ = Q1

∞∑
n=1

bnzn, (4)

where

Z = Tr[e−β(Ĥ−μN̂ )] =
∞∑

N=0

zN QN (5)

is the grand-canonical partition function, Q1 is the one-body
partition function, b1 = 1, and the higher-order coefficients
require solving the corresponding few-body problems,

Q1b2 = Q2 − Q2
1

2!
, (6)

Q1b3 = Q3 − b2Q2
1 − Q3

1

3!
, (7)

Q1b4 = Q4 −
(

b3 + b2
2

2

)
Q2

1 − b2
Q3

1

2!
− Q4

1

4!
, (8)

Q1b5 = Q5 − (b4 + b2b3)Q2
1 − (

b2
2 + b3

)Q3
1

2

−b2
Q4

1

3!
− Q5

1

5!
, (9)

and so forth.
Since Q1 ∝ V , the above expressions display precisely how

the volume dependence cancels out in each bn. In particular,
the highest power of Q1 will always involve single-particle
(i.e., noninteracting) physics and will therefore cancel in the
change due to interactions �bn, such that

Q1�b2 = �Q2, (10)

Q1�b3 = �Q3 − �b2Q2
1, (11)

Q1�b4 = �Q4 − �

(
b3 + b2

2

2

)
Q2

1 − �b2

2
Q3

1, (12)

Q1�b5 = �Q5 − �(b4 + b2b3)Q2
1

−1

2
�

(
b2

2 + b3
)
Q3

1 − �b2

3!
Q4

1, (13)

and so on. Note that, when only three-body interactions are
present, as in the case we consider here, there is no change
in the two-body spectrum, i.e., �b2 = 0. Therefore, the above
expressions simplify to

Q1�b3 = �Q3, (14)

Q1�b4 = �Q4 − �b3Q2
1, (15)

Q1�b5 = �Q5 − (�b4 + b2�b3)Q2
1 − �b3

2
Q3

1. (16)

In terms of the partition functions QMNL of M particles of
type 1, N of type 2, and L of type 3, we have

�Q3 = �Q111, (17)

�Q4 = 3�Q211, (18)

�Q5 = 3�Q311 + 3�Q221. (19)

From the above equations we see that there is only a small
number of nontrivial contributions to each virial coefficient.
The main task is calculating each of these terms and for that
purpose we use a coarse lattice (or semiclassical) approxima-
tion, as explained next.

III. THE SEMICLASSICAL APPROXIMATION
AT LEADING ORDER

To carry out our calculations of virial coefficients we intro-
duce a Trotter-Suzuki factorization of the Boltzmann weight.
At the lowest possible order, the Trotter-Suzuki factorization
amounts to keeping only the leading term in the formula

e−β(T̂ +V̂ ) = e−βT̂ e−βV̂ × e− β2

2 [T̂ ,V̂ ] × . . . , (20)

where higher orders involve exponentials of nested commuta-
tors of T̂ with V̂ . Taking the leading order in this expansion
is equivalent to setting [T̂ , V̂ ] = 0, which is why we refer
to it as a semiclassical approximation. As Refs. [10–12]
have shown, this seemingly crude approximation provides
surprisingly good answers, especially at weak coupling, and is
therefore useful toward examining the virial expansion in an
analytic fashion. Below, we give two explicit examples of the
application of our approximation to the calculation of virial
coefficients.

A. A simple example: �b3

As the simplest example, we consider Q111,

Q111 =
∑

p j

〈P|e−βT̂ e−βV̂ |P〉 (21)

=
∑

p j

e−β(p2
1+p2

2+p2
3 )/2m〈P|e−βV̂ |P〉, (22)

where we have used a collective momentum index P =
(p1, p2, p3). Inserting a coordinate-space completeness rela-
tion to evaluate the potential energy factor, we obtain

e−βV̂ |X〉 =
∏

z

(1 + Cn̂1(z)n̂2(z)n̂3(z))|X〉

= |X〉 + C
∑

z

δ(x1 − z)δ(x2 − z)δ(x3 − z)|X〉

= [1 + Cδ(x1 − x3)δ(x2 − x3)]|X〉, (23)

where C = (eβgd − 1)�2d , � is an ultraviolet regulator in the
form of a spatial lattice spacing, and we have used the
fermionic relation n̂2

s = n̂s. We have also introduced a col-
lective index X = (x1, x2, x3). The C-independent term yields
the noninteracting result, such that we may write

�Q111 = C
∑
p j ,xk

e−β(p2
1+p2

2+p2
3 )/2m

× δ(x1 − x3)δ(x2 − x3)|〈X|P〉|2, (24)
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which simplifies substantially when using a plane-wave basis
since |〈X|P〉|2 = 1/V 3, where V is the d-dimensional volume
of the system. We then find

�Q111 = C
Q3

100

V 2
, (25)

where

Q100 =
∑

p1

e−βp2
1/2m. (26)

Thus,

�b3 = C
Q3

100

V 2Q1
= C

Q2
1

27V 2
= 1

3

C

λ2d
T

, (27)

where Q1 = 3Q100 = 3V/λd
T , λT = √

2πβ is the thermal
wavelength, and V is the system’s spatial volume. This re-
lationship between the bare coupling constant C and the phys-
ical quantity �b3 provides a way to renormalize the problem.
In other words, �b3 will play the role of the renormalized
dimensionless coupling constant.

The general form of the change �QMNL in the partition
function for M type 1 particles, N type 2 particles, and L type
3 particles, with a contact interaction, is given by

�QMNL =
∑
P̄,X̄

e−βP̄2/2m|〈X̄|P̄〉|2(C fa(X̄) + C2 fb(X̄) + · · · ),

(28)

where P̄ and X̄ represent all momenta and positions of the
M + N + L particles, and the functions fa, fb, . . . , which
encode the matrix element of e−βV̂ , depend on the specific
MNL case being considered. The wave function 〈X̄|P̄〉 is a
product of three Slater determinants which, using a plane-
wave single-particle basis, leads to Gaussian integrals over the
momenta P̄.

B. Another example: �b4 in a harmonic trap

In this section we consider the case in which the system is
held in a harmonic trapping potential of frequency ω. As the
expressions for the virial coefficients in terms of the canonical
partition functions carry over to this case, we simply add the
superindex ‘T’ to denote quantities in the trapped system. To
calculate �bT

4 we need �bT
3 and QT

1 . The latter is of course
trivial, as there is no interaction in that case (see Ref. [12]),

QT
1 = 3

∑
n

e−βEn = 3e−βωd/2

(
1

1 − e−βω

)d

(29)

= 3

(
1

2 sinh(βω/2)

)d

, (30)

where En is the single-particle energy level of the harmonic
oscillator (separated in d-dimensional Cartesian coordinates
such that n represents a d-dimensional vector of harmonic
oscillator quantum numbers).

To obtain �bT
3 , we proceed as in the previous example to

obtain the analog of Eq. (25) for the trapped case:

�QT
111 = C

∑
n j ,xk

e−β(En1 +En2 +En3 )

× δ(x1 − x3)δ(x2 − x3)|〈x1x2x3|n1n2n3〉|2. (31)

The sums over x3 and x2 can be carried out right away, and
moreover,

|〈x1x2x3|n1n2n3〉|2 = |φn1 (x1)|2|φn2 (x2)|2|φn3 (x3)|2, (32)

where φn(x) is the single-particle harmonic oscillator wave
function in d-dimensional Cartesian coordinates. Using the
above, we obtain

�QT
111 = C

∑
x

ρ3(x; βω), (33)

where

ρ(x; βω) =
∑

n

e−βEn |φn(x)|2. (34)

Note that
∑

x ρ(x; βω) = QT
1 /3.

Using the Mehler kernel (see Ref. [12]) evaluated at equal
spatial arguments, we find that

ρ(x; βω) = ω
d
2

e−ω tanh(βω/2)x2

(2π sinh(βω))
d
2

, (35)

where we note that tanh(βω/2) > 0 for all βω > 0. Carrying
out the resulting Gaussian integrals and simplifying,

�bT
3 = �QT

111

QT
1

= 1

3
d
2 +1

(
βω

sinh(βω)

)d C

λ2d
T

, (36)

where λT = √
2πβ.

Note that, as βω → 0, we obtain

�bT
3 = 1

3
d
2 +1

C

λ2d
T

= 1

3
d
2

�b3, (37)

where in the latter equality we have used Eq. (28).
For �bT

4 , we need �QT
211, which is easily seen to be

given by

�QT
211 =C

∑
x,x′

ρ2(x; βω)[ρ(x; βω)ρ(x′; βω)−ρ2(x, x′; βω)]

=�QT
111QT

1 /3−C
∑
x,x′

ρ2(x; βω)ρ2(x, x′; βω), (38)

where

ρ(x, x′; βω) =
∑

n

e−βEnφn(x)φn(x′), (39)

which, using the Mehler kernel, becomes

ρ(x, x′; βω) = ω
d
2 e−ω coth(βω)(x2+x′2 )/2+ω csch(βω)x·x′

(2π sinh(βω))
d
2

. (40)

Thus, in the continuum limit,

�bT
4 = 3

�QT
211

QT
1

− �bT
3QT

1

= −3C

QT
1

∑
x,x′

ρ2(x; βω)ρ2(x, x′; βω)

= − C

λ2d
T

1

2
d
2

[
βω

sinh(βω)

1

(1 + 3 cosh(βω))
1
2

]d

(41)

= −3
d
2 +1

2
d
2

1

(1 + 3 cosh(βω))
d
2

�bT
3 . (42)
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Note that, in the βω → 0 limit, our approximation yields

�bT
4 = −3

d
2

2d

3

2
d
2

�bT
3 = − 1

2d

3

2
d
2

�b3, (43)

which we use below.

IV. RESULTS IN HOMOGENEOUS SPACE

A. Virial coefficients

Using the steps outlined above, we have calculated �b4

and �b5 and obtained

�b4 = −C
Q1Q1(2β )

9V 2
= −3

Q1(2β )

Q1
�b3, (44)

�b5 = C

(
(Q1(2β ))2

9V 2
+ Q1Q1(3β )

9V 2

)

=
(

3(Q1(2β ))2

Q2
1

+ 3Q1(3β )

Q1

)
�b3 (45)

for the fermionic three-species system with a three-body con-
tact interaction in d spatial dimensions. In the latter equation,
the first term on the right-hand side represents the contribution
of Q221, and the second term that of Q311.

In the continuum limit, it is easy to perform the resulting
Gaussian integrals that determine Q1 and obtain

�b4 = − 3

2
d
2

�b3, (46)

�b5 = 3

(
1

2d
+ 1

3
d
2

)
�b3. (47)

Using these results, one may calculate the pressure, den-
sity, compressibility, and even Tan’s contact (with knowledge
of �b3 as a function of the interaction strength, e.g., βεB in
one or two dimensions, where εB is the trimer binding energy).
To provide a description of the thermodynamics that is as
universal as possible across spatial dimensions, we use �b3 as
the measure of the interaction strength and display our results
in terms of that parameter. Furthermore, one may also define
a (dimensionless) contact density as

C = λd
T

V

∂ lnZ
∂�b3

, (48)

which differs from the conventional definition by a chain-
rule factor ∂�b3/∂λ (which in turn can be determined by
solving the three-body scattering problem), where λ is the
d-dimensional coupling constant. To make the expression
dimensionless, we have used the thermal wavelength λT =√

2πβ.

B. Thermodynamics and contact across dimensions

The interaction-induced change in the pressure �P can be
written in dimensionless form in arbitrary dimension as

βV �P = Q1

∞∑
k=1

�bk zk. (49)

FIG. 1. Density, in units of λd
T = (2πβ )d/2, as a function of

ln z = βμ, at �b3 = 0.25, for d = 1 (top, blue line), d = 2 (middle,
green line), and d = 3 (bottom, red line).

Similarly, the interaction-induced change in the density can be
written as

λd
T �n = 3

∞∑
k=1

k �bk zk, (50)

and, using our definition of the contact in Eq. (49),

�C = 3
∞∑

k=1

∂�bk

∂�b3
zk . (51)

Implementing our LO-SCLA results, we obtain

βλd
T �P 
 3�b3 z3

[
1 − 3

2
d
2

z + 3

(
1

2d
+ 1

3
d
2

)
z2

]
, (52)

λd
T �n 
 9 �b3 z3

[
1 − 4

2
d
2

z + 5

(
1

2d
+ 1

3
d
2

)
z2

]
, (53)

�C 
 3z3

[
1 − 3

2
d
2

z + 3

(
1

2d
+ 1

3
d
2

)
z2

]
. (54)

As an example, in Fig. 1 we display the density as a function
of the logarithm of the fugacity ln z = βμ for �b3 = 0.25 and
for d = 1, 2, 3.

The behavior of �n as a function of βμ in Fig. 1 is as
expected for a system with attractive interactions, namely,
the interaction-induced change in the density is positive and
enhanced by increasing βμ (or, equivalently, washed out
at low densities, i.e., for large and negative βμ). Also as
expected (and as observed in Refs. [10] and [11] for two-body
interactions), interaction effects are more pronounced in lower
dimensions at fixed �b3.

V. RESULTS IN A HARMONIC TRAP

A. Fourth- and fifth-order virial coefficients

We have generalized our example of �bT
4 , discussed in a

previous section, to �bT
5 . For future reference, we show both

results:

�bT
4 = −3

d
2 +1

2
d
2

1

(1 + 3 cosh(βω))
d
2

�bT
3 , (55)
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FIG. 2. �bT
4 (lower three, blue lines) and �bT

5 (upper three, red
lines), in units of �bT

3 , as a function of βω in the LO-SCLA. Results
are shown in d = 1 (dotted lines), d = 2 (dashed lines), and d = 3
(solid lines).

�bT
5 = 3

d
2 +1

([
1

12 cosh2(βω) + 4 cosh(βω) − 1

] d
2

+
[

1

12 cosh2(βω) + 8 cosh(βω)

] d
2

)
�bT

3 . (56)

In Fig. 2 we show these results in d = 1, 2, 3 as a function
of βω. In contrast to the behavior of �bT

4 for the case of
two-body interactions, explored in Refs. [12] and [14], here
both �bT

4 and �bT
5 display monotonic behavior. Furthermore,

at this order in the SCLA, both �bT
4 and �bT

5 are proportional
to �bT

3 , such that the results in Fig. 2 are universal predictions
in the sense of being coupling independent.

B. A universal relation in the βω → 0 limit

Note that, in the βω → 0 limit, where the homogeneous
system is recovered,

�bT
5 → 3

d
2 +1 1

5
d
2

(
1

2d
+ 1

3
d
2

)
�bT

3 = 3

5
d
2

(
1

2d
+ 1

3
d
2

)
�b3.

(57)

Using Eqs. (44), (47), and (58), we find that trapped and
untrapped virial coefficients are related, in the βω → 0 limit,
as follows:

�bT
3 = 3− d

2 �b3, (58)

�bT
4 = 4− d

2 �b4, (59)

�bT
5 = 5− d

2 �b5. (60)

Although we have only explored �bT
n for n = 3, 4, and 5 here

(the cases n = 1 and 2 are trivially satisfied as well), the fact
that the above relationship holds points us to conjecture that
the relation

bT
n

∣∣
βω→0 = n− d

2 bn (61)

is universally valid for all n, couplings, and temperatures
(it is well known to be satisfied by noninteracting gases).

Other authors (see, e.g., [13,15,16]) have noted (and proven
using the local density approximation) that this relationship
is satisfied in the unitary limit (where the bn are tempera-
ture independent), and the same connection was found for
n = 3, 4 in systems with two-body forces in Ref. [12] for
arbitrary couplings (within the LO-SCLA). In principle, there
is no special reason why bT

n should not approach bn when
the trapping potential is removed. That there is a d- and
n-dependent factor connecting these two quantities in the non-
interacting case is merely a geometrical artifact of the choice
of basis in which the calculations are performed (namely,
the harmonic oscillator basis in the trapped case and plane
waves in the homogeneous case), which has no impact on
physical quantities. Based entirely on dimensional analysis,
however, the natural guess is that bT

n may approach bn times
a dimensionless function of temperature and other dynamical
scales. (That would actually change the partition function in
a nontrivial way, in particular, concerning Tan’s contact, but
let us put that aside for the moment.) Such a dimensionless
function could only result from the interplay between the
trapping potential V̂ext and the interaction V̂ , possibly leading
to subtleties in the ω → 0 limit (similar to those arising
from degenerate perturbation theory). However, the fact that
[V̂ext, V̂ ] = 0 suggests that there should be no such subtlety
and therefore no residual dependence on interaction-related
scales in the relationship between bT

n and bn as βω → 0. In
that limit, the dimensionless quantities bT

n and bn should be
related by a coupling- and temperature-independent function;
their connection should be entirely geometrical and fully
determined by the noninteracting case, for which bT

n = n− d
2 bn

when βω → 0. We therefore conclude that the conjecture is
true for all n, coupling strengths, and temperatures.

C. An exact relation across systems and dimensions

Finally, we point out a coupling-independent relationship
between the 1D case with a three-body interaction (i.e., the
1D case of the system studied in this work) and the 2D
case with only two-body interactions (denoted below by the
superindex “2b2D”). As pointed out in Ref. [17], there exists
an exact relationship between the three-body problem of the
former situation and the two-body problem of the latter. That
relationship yields a simple proportionality rule between the
corresponding virial coefficients, given by

�b3 = Qc.m.
111

Qc.m., 2b2D
11

Q2b2D
1

Q1
�b2b2D

2 , (62)

where the superscript “c.m.” indicates the partition function
associated with the center-of-mass motion, which is not af-
fected by the interactions and completely factorizes (both in
the spatially homogeneous and in the harmonically trapped
case). In the spatially homogeneous case, the proportional-
ity factor between �b3 and �b2b2D

2 is 1/
√

3, as shown in
Ref. [17]. On the other hand, in the harmonically trapped case,
the relationship becomes

�bT
3 = 2

3�bT,2b2D
2 . (63)

We stress that while this relationship is restricted to the 1D
values of �bT

3 and �bT,2b2D
2 , it is valid for all couplings and all

values of βω and in that sense it is universal.
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For completeness and future reference, we provide here
details on the origin of this correspondence for the trapped
case, which first appeared in Ref. [5], based on the 2D solution
in Ref. [18]. The Schrödinger equation for this system takes
the form[

−∇2
r

2m
+ gδ(x − y)δ(y − z) + 1

2
mω2r2

]
ψ (r) = Eψ (r),

(64)

where x, y, and z again indicate the different-flavor particles,
r = (x, y, z), and

∇2
r = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (65)

Factoring out the center-of-mass motion by defining Q =
1√
3
(x + y + z), q1 = 1√

2
(y − x), q2 = 1√

6
(x + y − 2z), and

ψ (x, y, z) = �(Q)φ(q), with q = (q1, q2), we obtain[
− 1

2m

∂2

∂Q2
+ 1

2
mω2Q2

]
�(Q) = Ec.m.�(Q), (66)

for the c.m. motion, and[
−∇2

q

2m
+ g̃δ(q) + 1

2
mω2q2

]
φ(q) = Erφ(q), (67)

where g̃ = g/
√

3 is the effective coupling and Er is the energy
of relative motion, which is identical to that of a single particle
in a 2D harmonic oscillator potential with a δ potential at
the origin. This establishes the exact relationship between our
three-body 1D problem and its two-body 2D counterpart with
two-body interactions.

As in the spatially homogeneous case, the eigenvalues
εω = Er/ω of the harmonically trapped system are determined
implicitly, in this case as solutions to

1

g̃
= m

π

�ω∑
n=0

1

εω − (2n + 1)
→ m

2π

[
ψ0

(
1 − εω

2

)
− ln �ω

]
,

(68)

where ψ0(z) is the digamma function, where �ω is a UV
cutoff. Unlike in the untrapped problem, with its unique bound
state, the trapped problem admits an infinite set of discrete

excited states (all with positive energy). The problem is renor-
malized by relating the bare coupling to the εω occurring in
the lowest-energy branch.

VI. SUMMARY AND CONCLUSIONS

In this work we have calculated the high-temperature
thermodynamics of three-flavored Fermi gases with a contact
three-body interaction in d spatial dimensions, as determined
by the virial expansion. We carried out calculations in homo-
geneous space as well as in a harmonic trapping potential of
frequency ω. To that end, we implemented a coarse temporal
lattice approximation at leading order (the LO-SCLA) and
calculated the change in the virial coefficients �bn due to
interaction effects. In this context, we established a relation
between the first two nontrivial virial coefficients, namely,
�b4 and �b5, as functions of �b3. In addition, we argued that
in the βω → 0 limit, the relationship �bT

n = n−d/2�bn holds
between the trapped and the homogeneous coefficients for ar-
bitrary n, coupling strengths, and temperatures; furthermore,
it is valid for systems with two- and three-body interactions.
We showed that our calculations reproduce that relationship
for n = 3, 4, 5. Finally, we showed a relationship between the
harmonically trapped case in one dimension with three-body
interactions and its analog in two dimensions with two-body
interactions, namely, �bT

3 = 2
3�bT,2b2D

2 . In closing, a com-
ment is in order regarding the nature of purely contact (i.e.,
nonderivative) three-body interactions for d > 1. The dimen-
sion of the coupling constant for such an n-body interaction
is Ld (n−1)−2 (where L has units of length), which is always
positive for n = 3 and d > 1, indicating that the three-body
interaction is an irrelevant operator in d > 1. Therefore, renor-
malizing to a nontrivial interaction effect will likely require
the systematic inclusion of a two-body interaction. The effect
of not including the latter would appear when calculating at
higher orders in the temporal lattice approximation, where
it would manifest as a progressive shrinkage of the range of
values of �b3 for which renormalization is possible with just
a three-body coupling.
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Two cold atoms in a harmonic trap, Found. Phys. 28, 549
(1998).

063630-7

https://doi.org/10.1142/S0217732319502912
https://doi.org/10.1103/PhysRevA.98.053615
https://doi.org/10.1103/PhysRevA.100.063627
https://doi.org/10.1103/PhysRevA.100.063626
https://doi.org/10.1016/j.physrep.2012.10.004
https://doi.org/10.1103/PhysRevLett.116.230401
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevA.82.023619
https://doi.org/10.1103/PhysRevLett.120.243002
https://doi.org/10.1023/A:1018705520999

