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Thermodynamics of rotating quantum matter in the virial expansion
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We characterize the high-temperature thermodynamics of rotating bosons and fermions in two-dimensional
(2D) and three-dimensional (3D) isotropic harmonic trapping potentials. We begin by calculating analytically the
conventional virial coefficients bn for all n in the noninteracting case, as functions of the trapping and rotational
frequencies. We also report on the virial coefficients for the angular momentum and associated moment of inertia.
Using the bn coefficients, we analyze the deconfined limit (in which the angular frequency matches the trapping
frequency) and derive explicitly the limiting form of the partition function, showing from the thermodynamic
standpoint how both the 2D and 3D cases become effectively homogeneous 2D systems. To tackle the virial
coefficients in the presence of weak interactions, we implement a coarse temporal lattice approximation and
obtain virial coefficients up to third order.
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I. INTRODUCTION

The exploration of the phases of matter in regimes gov-
erned by quantum mechanics, i.e., quantum matter, is now
carried out with increasing accuracy and controllability in
ultracold-atom experiments [1–3]. The ability to tune the
interaction strength via Feshbach resonances [4], introduce
imbalances such as mass and polarization [5], vary the number
of internal degrees of freedom, and control the temperature
and external trapping potential have led to a huge parameter
space that experimentalists can realize and manipulate [6].
These have, in turn, enabled a large body of work that con-
tinues to grow both qualitatively and quantitatively toward
elucidating the properties of quantum systems in extreme
conditions as a function of internal as well as thermodynamic
parameters.

Most notably, experiments already more than two decades
old achieved the first realizations of atomic Bose-Einstein
condensates [7,8] and, about a decade later, fermionic super-
fluids [9,10], and since then experimentalists have continued
to probe these systems in the various ways mentioned above
and more. In particular, for both bosonic and fermionic sys-
tems, experimentalists early on realized rotating condensates
and observed vortices and vortex lattices [11–13], the lat-
ter widely regarded as the “smoking gun” for superfluidity.
From the condensed-matter standpoint, the interest in rotating
condensates is often associated with the realization of exotic
strongly correlated states (such as those associated with the
fractional quantum Hall effect; see, e.g., [14]). In those sys-
tems, the limit of large vortex number, i.e., large angular mo-
mentum, corresponds to the “deconfinement limit” in which
the angular frequency matches the trapping frequency, and is
of particular interest as it admits a simple description (in the
case of weak interactions) in terms of Landau levels.

*Present address: Department of Physics, Boston University,
Boston, MA 02215, USA.

While there exists a considerable body of work on such
rotating condensates (see, e.g., [14,15] for reviews), i.e., work
addressing the ground-state and low-temperature phases, less
is known about the specifics of the high-temperature be-
havior of these systems. In particular, little is known about
the quantum-classical crossover and how strong correlations
(which play a crucial role in determining the shape of the
phase diagram [16]) affect the normal phase of rotating
strongly coupled matter.

In this work, we provide another piece of the puzzle by ana-
lyzing the high-temperature thermodynamics of rotating Bose
and Fermi gases in two dimensions (2D) and 3D. To that end,
we use the virial expansion and implement a coarse temporal
lattice approximation recently put forward in Refs. [17–19].
The approximation allows us to bypass the requirement of
solving the n-body problem to access the nth-order virial
coefficient, which will be essential to address the effects of
interactions. For the sake of simplicity, we focus on systems
with two particle species with a contact interaction across
species (i.e., no intraspecies interaction). These are routinely
realized experimentally with ultracold atoms, both fermionic
and bosonic. (Note that cases with intraspecies interactions are
also possible, but independently tuning inter- and intraspecies
interactions in experiments may pose a challenge.) Along the
way, we present in detail several results for noninteracting
systems which, while easy to obtain and should be textbook
material, do not appear in the literature to the best of our
knowledge. For both the interacting and noninteracting cases,
we show results for the angular momentum and moment of
inertia, as a function of temperature and rotation frequency,
which can be experimentally tested.

Previous work addressing the high-temperature thermody-
namics of rotating quantum gases, e.g., in interacting [20–23]
as well as noninteracting [24,25] regimes, presents differ-
ent analyses which are complementary to the present work.
For instance, Refs. [20,21] address the thermodynamics of
trapped rotating fermions using few-body solutions to obtain
virial coefficients up to third order, but they only display the
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leading trapping frequency dependence of the results (which
include energy and entropy, but not angular momentum or
moment of inertia). On the other hand, Ref. [22] focuses
on the effective theory for the lowest Landau level for a
single species of bosons with intraspecies interactions (which
is a different system and regime from the one considered
here). Finally, Refs. [24,25] analyze the thermodynamics of
rotating fermions, but do not report explicit results for virial
coefficients.

II. HAMILTONIAN AND FORMALISM

As our focus is on systems with short-range interactions,
such as dilute atomic gases or dilute neutron matter, the
Hamiltonian reads

Ĥ = Ĥ0 + V̂int, (1)

where

Ĥ0 = T̂ + V̂ext − ωzL̂z, (2)

and

T̂ =
∑
s=1,2

∫
dd x ψ̂†

s (x)

(
− h̄2∇2

2m

)
ψ̂s(x) (3)

is the kinetic energy,

V̂ext = 1

2
mω2

tr

∫
dd x x2 [n̂1(x) + n̂2(x)] (4)

is the spherically symmetric external trapping potential,

V̂int =−gd

∫
dd x n̂1(x)n̂2(x) (5)

is the interaction, and

L̂z =−i
∑
s=1,2

∫
dd x ψ̂†

s (x)(x∂y − y∂x )ψ̂s(x) (6)

is the angular momentum operator in the z direction. In polar
or spherical coordinates, the differential operator in the above
second-quantized form becomes simply −i∂/∂φ, where φ is
the azimuthal angle. In the above equations, the field operators
ψ̂s, ψ̂

†
s correspond to particles of species s = 1, 2, and n̂s(x)

are the coordinate-space densities. In the remainder of this
work, we will take h̄ = kB = m = 1.

A. Thermodynamics and the virial expansion

The equilibrium thermodynamics of our quantum many-
body system is captured by the grand-canonical partition
function, namely,

Z = tr
[
e−β(Ĥ−μN̂ )

] = e−β�, (7)

where β is the inverse temperature, � is the grand thermody-
namic potential, N̂ is the total particle number operator, and μ

is the chemical potential for both species.
At this point, it is useful to review the parameters that

control our system, including the thermodynamic ones; they
are β, μ, ωtr, ωz, and gd . We may then form dimensionless
parameters, which we may choose to be βμ, βωtr, βωz, and
λ, where the latter will typically involve a scattering length

and will depend on whether we are examining the 2D or 3D
problems (see below).

As the calculation of Z is a formidable problem in the
presence of interactions, we resort to approximations and
numerical evaluations in order to access the thermodynamics.
To that end, in this work we will explore the virial expansion
(see Ref. [26] for a review; see, also, [27]), which is an
expansion around the dilute limit z → 0, where z = eβμ is the
fugacity, i.e., it is a low-fugacity expansion. The coefficients
accompanying the powers of z in the expansion � are the
virial coefficients bn,

−β� = lnZ = Q1

∞∑
n=1

bnzn, (8)

where Q1 is the one-body partition function. Using the fact
that Z is itself a sum over canonical partition functions QN of
all possible particle numbers N , namely,

Z =
∞∑

N=0

zN QN , (9)

we obtain expressions for the virial coefficients,

b1 = 1, (10)

b2 = Q2

Q1
− Q1

2!
, (11)

b3 = Q3

Q1
− b2Q1 − Q2

1

3!
, (12)

and so on. In this work, we will not pursue the virial expansion
beyond b3. The QN can be written in terms of the partition
functions Qa,b for a particles of type 1 and b particles of
type 2,

Q1 = 2Q1,0, (13)

Q2 = 2Q2,0 + Q1,1, (14)

Q3 = 2Q3,0 + 2Q2,1, (15)

and so on for higher orders. In the absence of intraspecies
interactions, only the Q1,1 and Q2,1 are affected, such that the
change in b2 and b3 due to interactions is entirely given by

	b2 = 	Q1,1

Q1
, (16)

	b3 = 2	Q2,1

Q1
− 	b2Q1. (17)

We will use these expressions to access the high-
temperature thermodynamics of bosons and fermions. To cal-
culate 	Q1,1 and 	Q2,1, we will implement a coarse temporal
lattice approximation, as described in the next section. Once
we obtain the virial coefficients, we will rebuild the grand-
canonical potential � to access the thermodynamics of the
system as a function of the various parameters. In order to
connect to the physical parameters of the systems at hand, one
may use the value of 	b2 as a renormalization condition by
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relying on the exact answer [28], which is known at ωz = 0,
namely,

	b(2D)
2 = e−βωtr

2

∞∑
n=0

[
e−βωtr2νn(λ) − e−βωtr2n

]
, (18)

	b(3D)
2 = e−βωtr3/2

2

∞∑
n=0

[
e−βωtr2νn(λ) − e−βωtr2n

]
(19)

(see Ref. [29] for the 2D case and [30] for the 3D case),
where ωtr[2νn(λ) + d/2] is the energy of the d-dimensional
two-body problem in the center-of-mass frame. Using these
expressions, one may fix the value of the dimensionless cou-
pling for each system, for a given βωtr. The use of 	b2 as
a physical quantity to renormalize the coupling constant was
advocated in Refs. [17–19].

B. Single-particle basis and single-particle partition
function in 2D and 3D

In evaluating the results of the coarse temporal lattice
approximation presented below, we will use the eigenstates
of Ĥ0 in 2D and 3D, in polar and spherical coordinates,
respectively. We therefore present them in detail here for
future reference, along with the corresponding single-particle
partition function.

1. Two spatial dimensions

In 2D, the single-particle eigenstates of Ĥ0 in 2D are given
by (see the Appendix)

〈x|k〉 = 1√
2π

Rkm(ρ)e−imφ, (20)

where

Rkm(ρ) = N (2D)
km ω

1/2
tr e−ρ2/2ρ|m|L|m|

k (ρ2), (21)

where ρ = ω
1/2
tr r, and

N (2D)
km =

√
2

√
k!

(k + |m|)! , (22)

with L|m|
k the associated Laguerre functions. We have used

polar coordinates r, φ, and a collective quantum number k =
(k, m), with k = 0, 1, . . . and m can take any integer value.
The corresponding energy is

Ekm = ωtr(2k + |m| + 1) + ωzm. (23)

With this spectrum, it is a simple matter to calculate Q1,
which by definition is

Q1 =
∑

k

e−βEk . (24)

Thus, in 2D,

Q1 = 2
∑
k,m

e−βEkm = 2 e−βωtr

(1 − e−βω+ )(1 − e−βω− )
, (25)

where ω± = ωtr ± ωz and the overall factor of 2 reflects the
fact that we have two particle species.

2. Three spatial dimensions

In 3D, the single-particle eigenstates of Ĥ0 in 3D are

〈x|k〉 = Rkl (ρ)Pm
l (cos θ )e−imφ, (26)

where Pm
l (x) are the associated Legendre functions and

Rkl (ρ) = N (3D)
kl ω

3/4
tr e−ρ2/2ρ lLl+1/2

k (ρ2), (27)

where

N (3D)
kl =

√
1√
4π

2k+2l+3 k!

(2k + 2l + 1)!!
. (28)

Here, we have used spherical coordinates r, θ, φ, where θ is
the polar angle and φ is the azimuthal angle. The collective
quantum number k = (k, l, m) is such that k � 0, l � 0, and
−l � m � l . The corresponding energy is

Eklm = ωtr(2k + l + 3/2) + ωzm. (29)

Here, the corresponding single-particle partition function
is given by

Q1 = 2e−βωtr3/2

(1 − e−βωtr )(1 − e−βω+ )(1 − e−βω− )
. (30)

C. Coarse temporal lattice approximation

To calculate the interaction-induced change in the canon-
ical partition functions 	Q1,1 and 	Q2,1, we propose an
approximation which consists in keeping only the leading
term in the Magnus expansion,

e−β(Ĥ0+V̂int ) = e−βĤ0 e−βV̂int × e− β2

2 [Ĥ0,V̂int] × · · · , (31)

where the higher orders involve exponentials of nested com-
mutators of Ĥ0 with V̂int. Thus, the leading order (LO) in this
expansion consists in setting [Ĥ0, V̂int] = 0, which becomes
exact in the limit where either Ĥ0 or V̂int can be ignored
(i.e., respectively, the strong- and weak-coupling limits). Pre-
vious explorations of this approximation, by us and others
[17–19,28,31,32], indicate that LO-level results (the so-called
semiclassical approximation) for trapped systems are not only
qualitatively but also quantitatively correct at weak coupling.

1. Two-body contribution �Q1,1.

To calculate 	b2, we will need the above result for Q1, but
also 	Q1,1. At leading order in our coarse temporal lattice
approximation,

Q1,1 = tr1,1[e−βĤ0 e−βV̂int ]

=
∑

k1,k2,x1,x2

〈k1k2|e−βĤ0 |x1x2〉〈x1x2|e−βV̂int |k1k2〉

=
∑

k1,k2,x1,x2

e−β(Ek1 +Ek2 )Mx1,x2 |〈k1k2|x1x2〉|2, (32)

where we have inserted complete sets of states in coordinate
space {|x1x2〉} and in the basis {|k1k2〉} of eigenstates of Ĥ0,
whose single-particle eigenstates |k〉 have eigenvalues Ek.
We have also made use of the fact that V̂int is diagonal in
coordinate space, such that

Mx1,x2 = 1 + C�−dδx1,x2 , (33)
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FIG. 1. n2
β (x)/ωd

tr as a function of the radial coordinate ρ, for
several cutoff values of the quantum numbers k, m in 2D (top four
blue curves) and k, l in 3D (bottom four red curves); in the latter
case, the quantum number m is summed over its full range [−l, l].
In this plot, ωz/ωtr = 1/2.

where C = �d (eβgd − 1), and we have introduced a spatial
lattice spacing � as a regulator.

Thus,

	Q1,1 = C
∑

k1,k2,x

�d e−β(Ek1 +Ek2 )|〈k1k2|x x〉|2. (34)

The computationally demanding part of this calculation
is the overlap function |〈k1k2|x x〉|2. In this particular case,
i.e., for 	Q1,1, the overlap function can be factorized as
|〈k1|x〉|2|〈k2|x〉|2. Upon summing over k1, k2, we obtain a
simpler expression,

	Q1,1 = C
∑

x

�d n2
β (x), (35)

where

nβ (x) =
∑

k

e−βEk |〈k|x〉|2, (36)

which is the finite-temperature density profile of the system in
the trapping potential. The exponential decay with the energy
will enable us to cut off the sum over k without significantly
losing precision. We show a representative example of such
cutoff effects in Fig. 1.

Notice that nβ (x) has units of ω
d/2
tr [which corresponds to

(length)−d ] and it is a function of the dimensionless ratio ρ =
ω

1/2
tr r (see below for 2D and 3D examples), where r = |x|.

Upon taking the continuum limit,

	Q1,1 → C

λd
T

∫
dd x̄ (2πβωtr )

d/2
n2

β (x̄)

ωd
tr

, (37)

where x̄ = ω
1/2
tr x is dimensionless.

Thus, in 2D,

nβ (x) = ωtr
e−ρ2

2π

∑
k,m

e−βEkm f 2D
km (ρ2), (38)

whose units come from the prefactor ωtr and, as expected
from symmetry considerations, is only a function of the radial
coordinate (concentric with the trapping potential). Here,

f 2D
km (ρ2) ≡ 2 k!

(k + |m|)!ρ
2|m|[L|m|

k (ρ2)
]2

. (39)

Similarly, in 3D,

nβ (x) = ω
3/2
tr

e−ρ2

√
4π

∑
k,l,m

e−βEklm f 3D
kl (ρ2)

[
Pm

l (cos θ )
]2

, (40)

where

f 3D
kl (ρ2) ≡ 2k+2l+3 k!

(2k + 2l + 1)!!
ρ2l

[
Ll+1/2

k (ρ2)
]2

. (41)

Using the above results, together with Eq. (16) for 	b2, we
solve for the dimensionless quantity C/λd

T in terms of 	b2:

C

λd
T

= 	b2
Q1

(2πβωtr )d/2

[∫
dd x̄

n2
β (x̄)

ωd
tr

]−1

. (42)

2. Three-body sector: �Q2,1 for fermions

Following the same steps outlined above, it is straightfor-
ward to show that

	Q2,1 = C

2

∑
k1k2k3

e−β(Ek1 +Ek2 +Ek3 )

×
∑
x1x2

|〈x1x2x1|k1k2k3〉|2. (43)

The overlap can be simplified slightly by factoring across
distinguishable species,

〈x1x2x1|k1k2k3〉 = 〈x1x2|k1k2〉〈x1|k3〉, (44)

where 〈x1x2|k1k2〉 is a Slater determinant of single-particle
states,

〈x1x2|k1k2〉 = 〈x1|k1〉〈x2|k2〉 − 〈x2|k1〉〈x1|k2〉. (45)

As in the case of 	Q1,1, we will sum over the energy
eigenstates first, and then perform the spatial sum. To that end,
it is useful to define

nF
β (x1, x2) = nβ (x1)

∑
k1k2

e−β(Ek1 +Ek2 )|〈x1x2|k1k2〉|2, (46)

such that

	Q2,1 = C

2

∑
x1x2

nF
β (x1, x2). (47)

As in the case of nβ (x), the exponential decay with the energy
allows us to cut off the double sum in nF

β (x1, x2) without
significantly affecting the precision of the whole calculation.

3. Three-body sector: �Q2,1 for bosons

The bosonic case differs from the fermionic case in that we
must use a permanent rather than a Slater determinant. Thus,

nB
β (x1, x2) = nβ (x1)

∑
k1k2

e−β(Ek1 +Ek2 )|〈x1x2|k1k2〉|2, (48)
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where the two-body overlap is now symmetric in its argu-
ments, as befits bosons,

〈x1x2|k1k2〉 = 〈x1|k1〉〈x2|k2〉 + 〈x2|k1〉〈x1|k2〉. (49)

4. Gaussian quadrature

As shown above, the single-particle wave functions [cf.
Eqs. (20) and (26)] and the associated density functions nβ (x),
nF,B

β (x1, x2), are governed in the radial variable by a Gaus-
sian decay. For that reason, it is appropriate to calculate the
corresponding integrals using the Gauss-Hermite quadrature.
The corresponding M points xi and M weights wi allow us to
estimate integrals according to∫ ∞

−∞
dx e−x2

f (x) =
M−1∑
i=0

wi f (xi ). (50)

In this work, we use the same quadrature points and weights
as in our previous work of Refs. [33–35].

III. RESULTS

A. Noninteracting virial coefficients at finite angular momentum

For future reference and because we have not been able to
locate these results elsewhere in the literature, we present here
the calculation of the noninteracting virial expansion when
ωz 	= 0. We begin with the well-known result for the partition
function of spin-1/2 fermions in terms of the single-particle
energies E :

lnZ = 2
∑

E

ln(1 + ze−βE ), (51)

which is valid for arbitrary positive z, whereas for (doubly
degenerate) bosons,

lnZ = 2
∑

E

ln

(
1

1 − ze−βE

)
, (52)

which is valid for arbitrary z < exp(βE0), where E0 is the
ground-state energy [z = exp(βE0) being the well-known
limit of Bose-Einstein condensation]. From these expressions,
it is easy to see that the virial coefficients bn for noninter-
acting bosons and fermions differ by a factor of (−1)n+1.
As is well known, for homogeneous, nonrelativistic fermions
in d dimensions, bn = (−1)n+1n−(d+2)/2. Below, we address
the generalization of this formula to harmonically trapped
systems at finite angular momentum in 2D and 3D.

1. Two spatial dimensions

In 2D, E = Ekm = ωtr(2k + |m| + 1) + ωzm, where k � 0
and m is summed over all integers. Thus, we may write the
sum by Taylor expanding the logarithm as

lnZ = 2
∞∑

n=1

(−1)n+1

n
zne−nβωtr

∞∑
k=0

e−βωtr2kn

×
[ ∞∑

m=0

e−βω+mn +
∞∑

m̄=1

e−βω−m̄n

]
, (53)

where ω± = ωtr ± ωz. Carrying out the sums over k, m, m̄, we
obtain

lnZ = Q1

∞∑
n=1

bnzn, (54)

where

Q1bn = 2 (−1)n+1

n

e−nβωtr

(1 − e−nβω+ )(1 − e−nβω− )
. (55)

Finally, to determine bn, we use Q1 as derived above in
Eqs. (25) and (30), such that

bn = (−1)n+1

n
e−βωtr (n−1) (1−e−βω+ )(1−e−βω− )

(1−e−nβω+ )(1−e−nβω− )
. (56)

Note that the bn are always finite, in particular in the “decon-
finement limit” referred to in Sec. I, where ω− → 0,

bn → bDL2D
n ≡ (−1)n+1

n2
e−βωtr (n−1) (1 − e−2βωtr )

(1 − e−2nβωtr )
. (57)

On the other hand, Q1 diverges in that limit because the
energy spectrum then becomes independent from m. Simply
put, in that limit, the centrifugal motion due to rotation is
strong enough to overcome the trapping potential and the
system escapes to infinity. In terms of lnZ , the divergence
may be regarded as a phase transition at ωz = ωtr. Below we
further interpret this limit, considering the 2D and 3D cases
simultaneously.

We can now derive a virial expansion for the angular
momentum and the z component of the moment of inertia,

〈L̂z〉 = ∂ lnZ
∂ (βωz )

= Q1

∞∑
n=1

Lnzn, (58)

where

Ln = 1

Q1

∂ (Q1bn)

∂ (βωz )
= nbn

e−nβω− − e−nβω+

(1 − e−nβω+ )(1 − e−nβω− )
(59)

and

Iz = ∂2 lnZ
∂ (βωz )2

= Q1

∞∑
n=1

Inzn, (60)

where

In = 1

Q1

∂ (Q1Ln)

∂ (βωz )

= −nLn

[
e−nβω+ + e−nβω−

e−nβω+ − e−nβω−
+ 2(e−nβω+ − e−nβω− )

(1 − e−nβω+ )(1 − e−nβω− )

]
. (61)

Note that correctly, Ln → 0 at ω+ = ω−, which corre-
sponds to ωz = 0, i.e., no rotation. On the other hand, as
may be expected from our previous discussion, Ln → ∞ as
ω− → 0, as in that limit the induced rotation overpowers the
external potential that holds the system together. Furthermore,
at ωz = 0, a finite moment of inertia remains,

In → 2n(−1)n+1e−(2n−1)βωtr
(1 − e−βωtr )2

(1 − e−nβωtr )4
, (62)
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FIG. 2. Noninteracting bn normalized by their nonrotating, non-
interacting values bn(βωz = 0), as functions of n for a few values of
βωz and fixed βωtr = 5. The ratio bn/bn(βωz = 0) is the same for
bosons and fermions, and is the same in 2D and 3D.

which characterizes the static response to small rotation fre-
quencies within the virial expansion, as a function of βωtr.

2. Three spatial dimensions

In 3D, E = Eklm = ωtr(2k + l + 3/2) + ωzm, where k �
0, l � 0, and −l � m � l . Therefore, analyzing the problem
as in the 2D case, we obtain

Q1bn = 2 (−1)n+1

n

e− 3
2 nβωtr

(1−e−nβωtr )(1−e−nβω+ )(1−e−nβω− )
(63)

and

bn = (−1)n+1

n
e− 3

2 βωtr (n−1)

× (1 − e−βωtr )(1 − e−βω+ )(1 − e−βω− )

(1 − e−nβωtr )(1 − e−nβω+ )(1 − e−nβω− )
. (64)

As in the 2D case, the bn are always finite and, in particular
in the deconfinement limit ω− → 0,

bn → bDL3D
n ≡ (−1)n+1

n2
e− 3

2 βωtr (n−1)

× (1 − e−βωtr )

(1 − e−nβωtr )

(1 − e−2βωtr )

(1 − e−2nβωtr )
, (65)

whereas Q1 diverges in that limit. In this case, the problem
can be traced back to the infinite sequence of states for
which � = −m. We can also obtain expressions for the virial
expansion of the angular momentum and the moment of
inertia. Because the dependence of Q1bn on ω+ and ω− is
the same in 2D and 3D, the relationship between Ln and bn

is identical in 2D and 3D, i.e., Eq. (59) is valid in 3D, as
long as the bn corresponding to 3D is used in the right-hand
side. Similarly, Eq. (61) for In carries over to 3D, as long as
the Ln corresponding to 3D is used in the right-hand side. As
expected, and as in the 2D case, Ln → 0 at ωz = 0, whereas

In → 2n(−1)n+1e− 1
2 βωtr (5n−3) (1 − e−βωtr )3

(1 − e−nβωtr )5
. (66)

FIG. 3. Noninteracting Lz/Q1 for bosons in 3D, as a function of
ωz/ωtr for a few different temperatures βωtr, at third order in the
virial expansion.

The impact of rotation, i.e., a finite βωz on a noninteracting
system, is displayed in Fig. 2, where we show the ratio of
the rotating to nonrotating virial coefficients. This ratio is the
same for bosons and fermions in the noninteracting case and
it drastically increases as ωz approaches ωtr. At large n, this
ratio becomes

bn

bn(βωz = 0)
→ (1 − e−βω+ )(1 − e−βω− )

(1 − e−βωtr )2
. (67)

Naturally, the total angular momentum will increase with
ωz. For a noninteracting system, the result is shown in Fig. 3
as a function of ωz/ωtr, at several temperatures βωtr. At small
ωz, we find the linear response regime from which we can
extract the moment of inertia Iz, as shown in Fig. 4. At the
lowest temperatures (highest values of βωtr), the response of
the system to rotation is highly suppressed, as seen in both
Figs. 3 and 4. On the other hand, at high temperatures (low

FIG. 4. Noninteracting Iz/Q1 for bosons in 3D, as a function of
ωz/ωtr for a few different temperatures βωtr, at third order in the
virial expansion.
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βωtr), where response is higher, we find a mild nonlinear
regime in which Iz varies as a function of ωz/ωtr.

3. The virial expansion in the deconfinement limit

Using the limiting expressions for the trapped, rotating bn

in 2D and 3D, namely, Eqs. (57) and (65), respectively, we
may analyze the behavior of the system in that limit. To that
end, we analyze those equations isolating their asymptotic
form, which dominates the behavior of the virial expansion
series,

bDL2D
n 
 2

(−1)n+1

n2
e−βωtrn sinh(βωtr ), (68)

bDL3D
n 
 4

(−1)n+1

n2
e− 3

2 βωtrn sinh(βωtr/2) sinh(βωtr ). (69)

We thus see that the thermodynamics of the deconfined limit
is governed in 2D by

lnZ
Q1


 −2 sinh(βωtr ) Li2(−e−βωtr z), (70)

where Lin(x) is the polylogarithm function of order n. Simi-
larly, in 3D, we obtain

lnZ
Q1


 −4 sinh(βωtr/2) sinh(βωtr ) Li2
( − e− 3

2 βωtr z
)
. (71)

Notably, and prefactors aside, both the 2D and 3D cases
are completely captured by the same polylogarithm function.
More specifically, Li2(x) is the same function that character-
izes the 2D homogeneous quantum gas (both fermions and
bosons). We therefore see explicitly how, in the deconfined
limit, the maximized angular momentum flattens the (3D) sys-
tem and effectively turns it into a homogeneous 2D gas, with
a shifted chemical potential. While above we have written
the results for fermions, analogous expressions are valid for
bosons.

B. Interaction effects on the virial expansion

In this section we use our results for 	b2 and 	b3 to
calculate the angular momentum equation of state, as well as
the static response encoded in the moment of inertia. Denoting
the noninteracting grand-canonical partition function by Z0,
we have

ln (Z/Z0) = Q1

∞∑
n=2

	bnzn, (72)

such that the interaction effect on the angular momentum
virial coefficient Ln is

	Ln = 1

Q1

∂ (Q1	bn)

∂ (βωz )
= ∂ (	bn)

∂ (βωz )
+ 	bn

∂ (ln Q1)

∂ (βωz )
, (73)

and its counterpart for the moment of inertia is

	In = 1

Q1

∂ (Q1	Ln)

∂ (βωz )
= ∂ (	Ln)

∂ (βωz )
+ 	Ln

∂ (ln Q1)

∂ (βωz )
, (74)

where, using the previous equation for 	Ln,

∂ (	Ln)

∂ (βωz )
= ∂2(	bn)

∂ (βωz )2
+ ∂ (	bn)

∂ (βωz )

∂ (ln Q1)

∂ (βωz )
+ 	bn

∂2(ln Q1)

∂ (βωz )2
.

(75)

FIG. 5. Interaction-induced change in the angular momentum of
a 3D Fermi gas with attractive and repulsive contact interactions,
as a function of the rotation frequency ωz in units of the trapping
frequency ωtr, at z = exp(−2.0).

Using the above formulas, along with the expressions
obtained above for 	b2 and 	b3 in the coarse temporal
lattice approximation, we readily obtain expressions for the
interaction-induced change in the second- and third-order
virial coefficients for the angular momentum and moment of
inertia, namely, 	L2, 	L3, 	I2, and 	I3. Based on those,
we can rebuild 〈L̂z〉/Q1 and Iz/Q1 and explore their change
due to interactions in the virial region, which we show for
fermions in Figs. 5 and 6. In both figures, we find that
interactions change the response to rotation: both the angular
momentum and the moment of inertia are modified by correla-
tions, and the effect increases with ωz. In particular, attractive
interactions tend to make the system more compact (i.e., they
reduce the size of the cloud), thus reducing the moment of
inertia and the total angular momentum, for a given rotational

FIG. 6. Interaction-induced change in the moment of inertia of
a 3D Fermi gas with attractive and repulsive contact interactions,
as a function of the rotation frequency ωz in units of the trapping
frequency ωtr, at z = exp(−2.0).
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frequency. The corresponding opposite behavior is found for
repulsive interactions.

IV. SUMMARY AND CONCLUSIONS

In this work, we have characterized the thermodynamics
of rotating Bose and Fermi gases in 2D and 3D using the
virial expansion. To that end, we calculated the effect of
rotation on the virial coefficients bn corresponding to the
pressure and density equations of state, as well as on the virial
coefficients for the angular momentum Ln and moment of
inertia In. We carried out calculations for interacting as well
as noninteracting systems.

In the absence of interactions, we obtained analytic for-
mulas for bn, Ln, and In in 2D and 3D, which were absent
from the literature to the best of our knowledge. We noted
that while the bn remain finite when ωz approaches ωtr, the
Ln, and In coefficients diverge, as does the single-particle
partition function Q1. The origin of the divergence is traced
back to the fact that the system becomes unstable at ωz = ωtr;
in that deconfinement limit, the high angular velocity enables
particles to escape the trapping potential. By exploring the
asymptotic behavior of bn in that limit, we found that (up to
overall factors) it corresponds to that of a homogeneous 2D
gas with a chemical potential shifted by the zero-point energy
of the trapping potential.

To address the interacting cases, we implemented a coarse
temporal lattice approximation, which allowed us to bypass
solving the rotating n-body problem to calculate the nth-order
virial coefficient, which we accessed at second and third
orders. While calculations at such orders have been shown to
capture at least part of the high-temperature thermodynamics
of ultracold gases (see, e.g., Ref. [26]), it is a natural question
of whether higher-order coefficients can be computed. In the
proposed approximation, higher orders have been computed
with and without a trapping potential [17–19,27,31,32], but
at considerably higher computational cost, which will only
increase when adding finite angular momentum. (Specifically,
the computational scaling arises from nested sums that scale
with the size of the single-particle basis, such that each new
coefficient is exponentially more expensive to compute than
its predecessor). On the other hand, we have shown that the
noninteracting bn are exponentially suppressed with n, with
a characteristic decay set by βωtr, which likely persists once
interactions are turned on, thus limiting the motivation to
pursue higher-order virial coefficients for trapped systems.

Based on those results, we obtained qualitative estimates
for the angular momentum as well as the moment of inertia,
as functions of the angular velocity 0 < ωz < ωtr and tem-
perature βωtr. Notably, we find that both the interacting and
noninteracting cases display linear response to rotation at low
ωz, as expected, but we are also able to distinguish a nonlinear
regime in which Iz varies with ωz; this is most evident at high
temperatures and above ωz/ωtr 
 0.1.

Our work represents a step toward characterizing the prop-
erties of rotating matter in high-temperature regimes. Future
studies using increased computational power should be able to
explore higher-order corrections to the coarse lattice approxi-
mation presented here.
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APPENDIX: SINGLE-PARTICLE BASIS IN 2D

For completeness, in this Appendix we show the solution
of the Schrödinger equation for a harmonically trapped parti-
cle coupled to the z component of angular momentum in 2D.
The purpose of presenting this information is to establish our
notation and to provide a reference point for future work.

We begin with the Schrödinger equation in polar
coordinates,(

− ∂2

∂r2
− 1

r

∂

∂r
− 1

r2

∂2

∂φ2
+ m2ω2

trr
2 − 2mE

)
�(r, φ) = 0.

We then change variables such that ρ = m
√

ωtrr, and m, h̄ =
1, which yields

r → 1√
ωtr

ρ,

∂

∂r
→ √

ωtr
∂

∂ρ
,

∂2

∂r2
→ ωtr

∂2

∂ρ2
.

With those replacements, we write �(ρ, φ) as a product of
functions of two individual variables, �(ρ, φ) = R(ρ)�(φ),
such that[
−

(
ρ2 ∂2

∂ρ2
+ ρ

∂

∂ρ
+ ∂2

∂φ2

)
+ ρ4 − 2ρ2 E

ωtr

]
R(ρ)�(φ) = 0.

This decouples our partial differential equation into two
ordinary equations, each of which must be equal to a
constant m̃2,

− 1

�(φ)

∂2

∂φ2
�(φ) = m̃2,

− ρ2

R(ρ)

∂2R(ρ)

∂ρ2
− ρ

R(ρ)

∂R(ρ)

∂ρ
+ ρ4 − 2ρ2 E

ωtr
= −m̃2.

We can solve the equation for �(φ) straightforwardly:
�(φ) ∝ eim̃φ , with the constraint that m̃ must be an integer
to ensure the solution is not multivalued.

The equation for ρ, setting Ẽ = E/ωtr, is then

−ρ2 ∂2R(ρ)

∂ρ2
− ρ

∂R(ρ)

∂ρ
+ (m̃2 + ρ4 − 2ρ2Ẽ )R(ρ) = 0.

(A1)

At long distances (ρ → ∞), we have a harmonic oscillator
equation,

−∂2R(ρ)

∂ρ2
+ ρ2R(ρ) = 2ẼR(ρ), (A2)
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which indicates that at long distances, the solution behaves as
a Gaussian.

At short distances (ρ � 1), on the other hand, our equation
reduces to

−ρ2 ∂2R(ρ)

∂ρ2
− ρ

∂R(ρ)

∂ρ
+ m̃2R(ρ) = 0. (A3)

We can approach this by proposing proposing R(ρ) = R0ρ
c,

which leads to an equation for the power c in terms of our
constant m̃,

−c2 = m̃2, c = ±m̃. (A4)

The case m̃ = 0 yields two solutions: a constant R(ρ) = R0

and R(ρ) = ln ρ. We can discard the second one since it
diverges at the origin, which our wave function should not do.
For the same reason, we discard the case m̃ < 0. Therefore,
the short-distance behavior is R(ρ) ∝ ρ|m̃|.

Based on the above analysis, we propose, for the full
solution, the form

R(ρ) = e−ρ2/2ρ|m̃|F (ρ), (A5)

where F (ρ) is a function to be determined. This captures the
behavior of R(ρ) in our limiting cases. With that form, the

radial equation becomes

ρ2 ∂2F (ρ)

∂ρ2
+ ∂F (ρ)

∂ρ
(bm̃ρ − 2ρ3) − 2am̃ρ2F (ρ) = 0, (A6)

where am̃ ≡ 1 − Ẽ + |m̃| and bm̃ ≡ 2|m̃| + 1. We propose a
power series form,

F (ρ) =
∞∑

k=0

ρkck, (A7)

and obtain algebraic equations for ck from Eq. (A6). Analyz-
ing the lowest powers, we obtain the following conditions:
From the lowest two powers of ρ, we find that c0 is not fixed,
but that c1 = 0. The remaining coefficients are related by the
recursion

ck+2 = 2(k + am̃)

(k + 2)(k + 1 + bm̃)
ck . (A8)

Thus, if both c0 and c1 vanish, then the solution vanishes
identically. On the other hand, setting c0 = 1, only the odd
coefficients vanish and we obtain the remaining coefficients
recursively. The overall normalization can be set after the fact
since the equation is linear. The series terminates if k = am̃ for
some k = 2n � 0 (recall that only the even-k survive), which
yields the quantization condition,

E

ωtr
= 2n + |m̃| + 1. (A9)
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