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In the current era of precision quantum many-body physics, one of the most scrutinized systems is the
unitary limit of the nonrelativistic spin-1=2 Fermi gas, due to its simplicity and relevance for atomic,
condensed matter, and nuclear physics. The thermodynamics of this strongly correlated system is
determined by universal functions which, at high temperatures, are governed by universal virial coefficients
bn that capture the effects of the n-body system on the many-body dynamics. Currently, b2 and b3 are well
understood, but the situation is less clear for b4, and no predictions have been made for b5. To answer these
open questions, we implement a nonperturbative analytic approach based on the Trotter-Suzuki
factorization of the imaginary-time evolution operator, using progressively finer temporal lattice spacings.
By means of these factorizations and automated algebra codes, we obtain the interaction-induced change
Δbn from weak coupling to unitarity. At unitarity, we find that Δb3 ¼ −0.356ð4Þ in agreement with
previous results, Δb4 ¼ 0.062ð2Þ, which is in agreement with all previous theoretical estimates but at odds
with experimental determinations, andΔb5 ¼ 0.078ð6Þ, which is a prediction. We show the impact of those
answers on the density equation of state and Tan contact, and trace their origin back to their polarized and
unpolarized components.
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Introduction.—With the advances in precise ultracold
atom experiments on one hand, and new and powerful
algorithms and machines on the other, quantum many-body
physics has in many ways entered a precision era.
Experimentally, ultracold atoms are arguably the cleanest
and most malleable systems [1], and also those where an
ever-increasing number of observables can be measured
with unprecedented precision [2]. On the computational
side, progress has been steady in a wide range of areas:
from advanced benchmarks of paradigmatic condensed
matter systems like the Hubbard model [3] to percent-level
calculations in lattice QCD [4].
In this broad quantum many-body context, one of the

most sought-after systems, due to its relevance to atomic,
condensed matter, and nuclear physics, is the unitary limit
of the three-dimensional spin-1=2 Fermi gas [5]. This
system is remarkable for its deceptive simplicity: it is just
a two-species Fermi gas with an attractive zero-range
interaction, tuned to the threshold of two-body bound-state
formation (i.e., infinite scattering length). While simple to
define, the problem is challenging for many-body theory, as
there are no small parameters to perform a controlled
expansion. In nature, the system is realized approximately
in dilute neutron matter in the crust of neutron stars [6] and
practically exactly in ultracold-atom experiments [2]. In the
latter, Feshbach resonances enable varying the coupling
strength by dialing an external magnetic field [7], such that
a large portion of the so-called BCS-BEC crossover (which
contains the unitary limit) can be realized and explored
[8–10]. The strongly coupled region around unitarity is also

interesting due to its strong pairing correlations, which
modify both the superfluid phase as well as the normal
phase [11,12]. Crucially, the unitary limit features a non-
relativistic conformal invariance [13], which is responsible
for its hallmark property of universality [14]: it is charac-
terized by dimensionless functions that are insensitive to
the details of the underlying interactions.
Experiments realizing the unitary Fermi gas can achieve

temperatures low enough to probe the superfluid state, but
also high enough to access the normal state and the
quantum-classical crossover. The latter is also of relevance
to nuclear astrophysics [15–17] and is characterized by the
virial expansion [18], whose behavior is determined by
universal virial coefficients bn (universal in the sense of
being independent from temperature as well as from the
microscopic details of the interaction). At nth order, these
coefficients capture the thermodynamic contributions of the
n-body system. While the calculation of bn of noninteract-
ing gases is a textbook example, the interacting counterpart
poses a challenging problem, especially so as n is increased
beyond n ¼ 2. Below, we will use the noninteracting value

bð0Þn ¼ ð−1Þnþ1n−5=2 as a reference and work in terms of the

interaction-induced change Δbn ¼ bn − bð0Þn . The second-
order case is given by the celebrated Beth-Uhlenbeck (BU)
formula [19,20]

Δb2 ¼
eλ

2

ffiffiffi
2

p ½1þ erfðλÞ�; ð1Þ
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where λ ¼ ffiffiffi
β

p
=a0, a0 is the s-wave scattering length, and β

is the inverse temperature. (The unitary limit corresponds to
λ ¼ 0; in this Letter we will focus on the λ ≤ 0 sector.)
Meanwhile, the third-order coefficient Δb3 is much more
challenging to compute and has been approached numeri-
cally [21] as well as analytically [22–26], at and away from
unitarity. In turn, work on Δb4 has largely focused on the
unitary limit [27–30] (see however Ref. [31]). Notably,
while there is good agreement on Δb3 between theory and
experiment [32,33], the situation is less clear for Δb4, as we
explain below. There have been no estimates of Δb5, to the
best of our knowledge.
In this Letter, we contribute to the exploration of the

quantum-classical crossover by calculating Δb4 and Δb5
(along with their counterparts for polarized systems) for
spin-1=2 fermions with attractive interactions, covering
from weak coupling to the unitary limit. To that end, we
implement and progressively refine a factorization of the
Boltzmann weight, extrapolating to the continuum limit of
that factorization at the end. Our method is similar to the
one originally advocated in Ref. [34] but with dramatic
improvements and optimizations that enabled the present
work. Below, we outline the formalism and basic aspects of
the method, leaving the most technical details for the
Supplemental Material [35].
Hamiltonian, virial expansion, and computational

method.—The Hamiltonian that describes dilute, two-
species Fermi gases is Ĥ ¼ T̂ þ V̂, where

T̂ ¼
X
s¼↑;↓

Z
d3xψ̂†

sðxÞ
�
−
ℏ2∇2

2m

�
ψ̂ sðxÞ; ð2Þ

and

V̂ ¼ −g
Z

d3xn̂↑ðxÞn̂↓ðxÞ; ð3Þ

where ψ̂ s; ψ̂
†
s are the fermionic field operators for particles

of spin s ¼ ↑;↓, and n̂sðxÞ ¼ ψ̂†
sðxÞψ̂ sðxÞ are the coor-

dinate-space densities. In the remainder of this Letter, we
will take ℏ ¼ kB ¼ m ¼ 1. The contact interaction is
singular in three-dimensional space, such that regulariza-
tion and renormalization are needed (see below).
The virial expansion is an expansion of the equilibrium

many-body problem around the dilute limit z → 0, where
z ¼ eβμ is the fugacity and μ the chemical potential coupled
to the total particle number operator N̂. In powers of z, the
grand-canonical partition function is

Z ¼ tr½e−βðĤ−μN̂Þ� ¼
X∞
N¼0

zNQN; ð4Þ

where QN ¼ trN ½expð−βĤÞ� is the N-body partition func-
tion. Calling Z0 the noninteracting limit of Z, we may

write the virial expansion for the pressure P (relative to the
noninteracting pressure P0) as

βðP − P0ÞV ¼ ln ðZ=Z0Þ ¼ Q1

X∞
n¼2

Δbnzn; ð5Þ

where V is the system volume, Q1 ¼ 2V=λ3T is the single-
particle partition function, λT ¼ ffiffiffiffiffiffiffiffi

2πβ
p

is the thermal
wavelength, and the interaction-induced change Δbn is
related to the interaction change ΔQN by Taylor-expanding
the logarithm of Eq. (4) (and its noninteracting counterpart)
around z ¼ 0 (see, e.g., Ref. [34] for explicit formulas). To
evaluate the ΔQN relevant for Δbn, we introduce a Trotter-
Suzuki (TS) factorization of the imaginary-time evolution
operator

e−βĤ ≃ ðe−βT̂=ð2kÞe−βV̂=ke−βT̂=ð2kÞÞk; ð6Þ

which defines the kth order in the proposed approximation.
When calculating QN , Eq. (6) will appear inside a trace,
such that the remainder scales as ∼k−2. Our code calculates
symbolically the diagonal matrix elements of the right-hand
side of Eq. (6) in a complete set of Slater determinant
multiparticle states (built out of plane-wave single-particle
states), inserting completeness relations between kinetic-
and potential-energy factors as needed. The resulting
momentum sums become Gaussian integrals in the con-
tinuum limit (see below), which are carried out analytically
and automatically. Previous work carried out calculations at
k ¼ 1 for Δbn up to n ¼ 4 (the so-called semiclassical
approximation of Refs. [34,45,46]); and k ¼ 2 up to n ¼ 7
[34]. (See also Ref. [47] for an application of the same
technique to systems with three-body forces.) For the
calculations presented here, we dramatically improved
our implementation, extending our analysis of n ¼ 3, 4,
5 for k as large as possible with the computational resources
available to us, respectively, k ¼ 21, 12, 9.
Renormalization.—To renormalize the contact interac-

tion, we implemented two different procedures, both of
them regularized by placing the system on a spatial lattice
of spacing l, which is implicitly taken to zero at the end of
the calculation by replacing momentum sums with integrals
from −∞ to ∞. These renormalization procedures, which
yield consistent results at large-enough order k in Eq. (6)
(see also [35]), are as follows.
The first way is to tune the lattice theory so that the

order-k factorized calculation of Δb2 matches the con-
tinuum value set by the BU formula Eq. (1) (e.g., Δb2 ¼
1=

ffiffiffi
2

p
at unitarity). To that end, we tune the dimensionless

coupling C̃ [35] to reproduce the desired dimensionless
value of Δb2. This is the same renormalization procedure
used in Refs. [34,45,46] and it amounts to following the
“line of constant Δb2” as k is varied.
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The second way to renormalize is more conventional: at
a given factorization order k, we tune the coupling so as to
reproduce the largest eigenvalue of the exact two-body
transfer matrix, namely expð−βE0=kÞ, where E0 is the
exact two-body ground-state energy. The matrix elements
of the order-k factorized transfer matrix can be easily
computed, in particular in the center-of-mass frame. Using
those matrix elements, it is easy to see [35] that the desired
C̃ is given by

C̃ ¼ 1

ð2πxÞ32 lim
Λ→∞

�XΛ
a

1

exp½− 4π2x
k ðη20 − a2Þ� − 1

�−1
; ð7Þ

where x ¼ β=L2, L is the size of system, and a is a three-
component integer vector. Here, η20 is set by the ground-state
energy and given by Lüscher’s formula [48]; at unitarity
η20 ≃ −0.0959. Taking the continuum limit amounts to
opening the length scale window l ≪ λT ≪ L, which
corresponds to calculating C̃ in the limit Λ → ∞ and
x → 0. This procedure follows the “line of constant E0”
as k is varied. Since Δb2 is sensitive to the whole energy
spectrum, not just the ground-state energy E0, the two
procedures yield answers which differ at finite k, but which
must be consistent at large enough k if the continuum limit is
approached. We show our consistency checks in [35].
Results.—Using the methods described above, we

obtained estimates for Δbn, for n ¼ 3, 4, 5 by extrapolating
to the large-k limit, with uncertainties in our answers
resulting from that extrapolation [35]. The results are
shown in Fig. 1, where we parametrize the coupling
strength using the ratio Δb2=ΔbUFG2 , where ΔbUFG2 ¼
1=

ffiffiffi
2

p
is the value of Δb2 at unitarity. [The corresponding

scattering length can be obtained via Eq. (1).]
As mentioned above, Δb3 was estimated numerically as

well as (semi)analytically by several authors [21,23–26],
and is by now a well-understood number; at unitarity it is
ΔbUFG3 ≃ −0.3551 (we quote only the first few digits of the
exact-diagonalization result of Ref. [21], which is enough
for our needs here). We obtain ΔbUFG3 ¼ −0.356ð4Þ which,
while not as precise as previous determinations, agrees with
them. Our results are also in excellent agreement with
Leyronas’ analytic result [24].
Also shown in Fig. 1 (top) are our results for Δb4,

compared with prior theoretical estimates of its value at
unitarityΔbUFG4 . Our resultΔbUFG4 ¼ 0.062ð2Þ at face value
compares well with every other theoretical estimate (see
however our subspace discussion below), namely Yan and
Blume [29]: ΔbUFG4 ¼ 0.078ð18Þ; Endo and Castin [30]:
ΔbUFG4 ¼ 0.0620ð8Þ, and Ngampruetikorn et al. [31]:
ΔbUFG4 ¼ 0.06. While the last two are a conjecture and
an approximate result, respectively, Yan and Blume’s is a
Monte Carlo result with a comparatively large uncertainty
encompassing all prior theoretical estimates. Our calcula-
tion, like Yan and Blume’s, comes from a first-principles

nonperturbative approach but does not incur statistical
errors and thus provides a substantial reduction in the
overall uncertainty.
There have also been attempts to determine ΔbUFG4 from

experimental data on the equation of state [e.g., ENS [32]:
0.096(15), and MIT [33]: 0.096(10); see also our
Fig. 2 (top)]. However, those analyses face a challenging
numerical problem, namely fitting a fourth-order polyno-
mial with no knowledge of the size of higher order
contributions or where the fourth order truly dominates;
we return to this below. While the Monte Carlo result of
Ref. [29] overlaps with the above analyses, our result
disagrees with them (as do Refs. [30,31]). [However, it may
be argued that a 2σ error analysis of the ENS’s and our
results brings them into marginal agreement.]
To understand the origin of our ΔbUFG4 , we refer to

Fig. 1 (bottom), which shows the two components that

FIG. 1. Top: our results for Δb3 (blue), Δb4 (red), and −Δb5
(green) shownwith error bands as functions of the coupling strength
given byΔb2=ΔbUFG2 . (We plot−Δb5 to avoid display interference
with Δb4 around unitarity.) The dashed line shows Δb3 from
Ref. [24]. The dark red cross (with errorbar) shows theMonte Carlo
results of Ref. [29]: ΔbUFG4 ¼ 0.078ð18Þ; the dark red plus sign
(with small error bar) indicates the conjecture of Ref. [30]:
ΔbUFG4 ¼ 0.0620ð8Þ; finally, the dark red dot shows the approxi-
mate results of Ref. [31]: ΔbUFG4 ¼ 0.06. Bottom: subspace con-
tributionsΔbmj as functions of the coupling strength.Our results are
shown as error bands, color coded as in the top plot by n ¼ mþ j:
blue forΔb21, red forΔb31 andΔb22, and green forΔb41 andΔb32.
The redcross (with errorbar) showsRef. [29]:ΔbUFG31 ¼ 0.0848ð64Þ
and ΔbUFG22 ¼ −0.0920ð128Þ; the red dot shows Ref. [31]:
ΔbUFG31 ¼ 0.100 and ΔbUFG22 ¼ −0.144; finally, the red plus sign
(with small error bar) shows Ref. [30]: ΔbUFG31 ¼ 0.09188ð16Þ and
ΔbUFG22 ¼ −0.1220ð8Þ.Our results are closest to the latter;weobtain
ΔbUFG31 ¼ 0.0931ð8Þ and ΔbUFG22 ¼ −0.1244ð7Þ.
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make up the full result Δb4 ¼ 2Δb31 þ Δb22: the polarized
sector Δb31 and the unpolarized sector Δb22 (defined
in [35]). For essentially all couplings studied here, Δb31
is increasingly positive and Δb22 increasingly negative as
unitarity is approached, which results in the nonmonotonic
behavior of Δb4 in Fig. 1 (top), and its low value at
unitarity. Figure 1 (bottom) also yields a more detailed
comparison with prior theoretical approaches at unitarity.
Specifically, at the 95% confidence level [51] our result for
Δb31 overlaps with Endo and Castin [30] but not with Yan
and Blume [29] nor with Ngampruetikorn et al. [31]. On
the other hand, at the same level our Δb22 also overlaps
with Endo and Castin [30] and marginally with Yan and
Blume [29], but not with Ngampruetikorn et al. [31]. This
analysis suggests that the closer agreement for Δb4 at
unitarity shown in the top panel of Fig. 1 is due at least in
part to error compensation between Δb31 and Δb22.
For the fifth-order virial coefficient at unitarity we

obtain ΔbUFG5 ¼ 0.078ð6Þ, which is the first estimate of

this universal quantity, to the best of our knowledge.
Figure 1 (top) shows Δb5 as a function of the coupling.
As with Δb4, the nonmonotonicity of Δb5 can be
traced back to the competition between two sectors with
(largely) monotonic but opposite behavior. As shown in
Fig. 1 (bottom),Δb41 andΔb32 become progressively more
negative and more positive, respectively, as the coupling is
increased (with the exception of a small region at very weak
couplings where Δb32 is negative). Thus, Δb5 ¼ 2Δb41 þ
2Δb32 is nonmonotonic; furthermore, it changes sign from
negative to positive around Δb2=ΔbUFG2 ≃ 0.63 and pro-
ceeds to grow in magnitude enough to overtakeΔb4. This is
notable because the “normal” ordering jΔb3j > jΔb4j >
jΔb5j is preserved from weak couplings up to
Δb2=ΔbUFG2 ≃ 0.96, but jΔb5j > jΔb4j after that, in par-
ticular at unitarity. Crucially, such a large Δb5 could easily
interfere with the experimental determination of Δb4,
which would explain the discrepancies between our results
and the experimental equation-of-state analyses of Δb4.
The subspace contributions Δbmj mentioned above

allow us to study the first steps of the “polaron sequence”
Δbm1. Beyond the qualitative resemblance of jΔbm1j for all
m, we find that jΔbm1j decreases as m is increased for all
the couplings we studied (see Table I in particular), which
we interpret as due to the largely noninteracting majority
particles (as the interaction is of zero range). Furthermore,
we observe that the sequence alternates in sign, which we
conjecture will persist for arbitrary m.
In a harmonic trapping potential of frequency ω, the bn

(being dimensionless) acquire a dependence on βω. In the
high-temperature limit βω → 0, the relationshipΔbTnðβωÞ →
ΔbTn ¼ Δbn=n3=2 holds [21], where ΔbTnðβωÞ is the trapped
coefficient, and ΔbTn its high-temperature limit. At unitarity,
ΔbT2 ¼ 1=4, and we find ΔbT3 ¼ −0.0685ð8Þ, ΔbT4 ¼
0.00775ð25Þ, and ΔbT5 ¼ 0.0070ð5Þ. Notably, the factor
n−3=2 restores the “normal order” jΔbT3 j > jΔbT4 j > jΔbT5 j,
in contrast to the homogeneous case, supporting the notion
that trapping potentials enhance the convergence of the virial
expansion [21].
Finally, in Fig. 2 (top) we use our results to obtain the

density equation of state and compare with the experiment
of Ref. [33]. While our results at fourth order are somewhat
farther away from the data than those of Ref. [29], the fifth-
order contribution considerably improves the agreement for
z ¼ 0.5–0.73. In Fig. 2 (bottom) we compare our results

FIG. 2. Top: density equation of state at unitarity as a function of
the fugacity z showing our virial expansion results (error bands)
compared with the data of Ref. [33]. The fourth-order virial
expansion is also shownusing the central value forΔb4 ofRef. [29].
Bottom: tan contact at unitarity as a function of temperature T in
units of the Fermi temperature TF ¼ ð3π2nÞ2=3=2, where n is
the density, compared with the experimental measurements of
Refs. [49,50]. The vertical dash-dotted line shows the critical
temperature Tc=TF ¼ 0.167ð13Þ of Ref. [33].

TABLE I. Estimates for Δb3 to Δb5 in the unitary limit,
including the subspace coefficients for the polarized case Δbmj.

n ¼ 3 n ¼ 4 n ¼ 5

ΔbUFGn −0.356ð4Þ 0.062(2) 0.078(6)
ΔbUFGðn−1Þ1 −0.178ð2Þ 0.0931(8) −0.0598ð7Þ
ΔbUFGðn−2Þ2 … −0.1244ð7Þ 0.0988(29)
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for the Tan contact [52–54] with the measurements of
Refs. [49,50]. For clarity, we only compare with experi-
ments; we include theoretical approaches and the polarized
case in [35]. Our fifth-order results appear to follow the
trend of the experimental data for temperatures as low
as T=TF ≃ 0.45.
Summary and conclusions.—In this work we have

performed a fully nonperturbative calculation of the fourth-
and fifth-order virial coefficients of attractively interacting
spin-1=2 fermions, from weak coupling to the unitary limit.
To that end, we implemented a TS factorization of the
imaginary-time evolution operator, using progressively
finer temporal lattice spacings and extrapolating to the
continuous-time limit. The traces of these factorizations
were calculated analytically using automated algebra to
access the canonical partition functions that yield the
interaction-induced changes Δbn. We found that the
universal values at unitarity are ΔbUFG3 ¼ −0.356ð4Þ, in
agreement with previous calculations; ΔbUFG4 ¼ 0.062ð2Þ,
in agreement with previous theoretical estimates (see
however our subspace discussion around Fig. 1) but at
odds with experimental equation-of-state analyses; and
finally ΔbUFG5 ¼ 0.078ð6Þ, which is a prediction. We also
presented the subspace contributions Δb31, Δb22, Δb41,
and Δb32, which tend to grow in magnitude with the
coupling strength but come with opposite sign and thus
compete withinΔbn. TheΔbij are important as they govern
the virial expansion of polarized gases (see, e.g., [55]). To
show the impact of our ΔbUFG4 and ΔbUFG5 , we compared
with the experimental determination of the density equation
of state and the Tan contact. Our answers yield an
improvement over lower orders, which is remarkable
considering the size of the contributions and that the
system is strongly correlated.
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