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Strongly correlated Fermi systems with pairing interactions become superfluid below a critical
temperature Tc. The extent to which such pairing correlations alter the behavior of the liquid at
temperatures T > Tc is a subtle issue that remains an area of debate, in particular regarding the appearance
of the so-called pseudogap in the BCS-BEC crossover of unpolarized spin-1=2 nonrelativistic matter.
To shed light on this, we extract several quantities of crucial importance at and around the unitary limit,
namely, the odd-even staggering of the total energy, the spin susceptibility, the pairing correlation function,
the condensate fraction, and the critical temperature Tc, using a nonperturbative, constrained-ensemble
quantum Monte Carlo algorithm.
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Introduction.—Dilute, two-component Fermi gases with
short-range interactions are relevant to a variety of systems
in nuclear and condensed matter physics [1,2]. In ultracold
atomic gases [3,4], the strength of the interaction can be
tuned essentially at will by driving the system across a
Feshbach resonance using an external magnetic field [5],
from a weakly coupled state, well described by Bardeen,
Cooper, Schrieffer (BCS) theory, to a state with molecular
bound states corresponding to a Bose-Einstein condensate
(BEC). A smooth crossover [1,6] links these limiting
regimes as one changes the sign of the inverse scattering
length 1=ðkFaÞ, where kF is the Fermi momentum. On the
BCS side, when 1=ðkFaÞ ≪ −1, pairing correlations and
Cooper pairs disappear with the superconducting order
parameter Δ at the critical temperature Tc. Conversely, the
BEC regime, where 1=ðkFaÞ ≫ 1, is characterized by the
preformation of pairs below T� ≫ Tc. It is common to
define T� as the temperature at which pairing correlations
vanish and declare that T� ¼ Tc on the BCS side. Between
these extremes there exists a “pseudogap” regime, where
one finds effects of pairing correlations without super-
fluidity and long-range order for temperatures Tc≤T≤T�.
The precise scattering length at which the pseudogap
regime begins is still debated [7]. Specifically, the existence
of a pseudogap in the unitary limit, where 1=ðkFaÞ ¼ 0, is
not settled.
Though the pseudogap is commonly defined as a

suppression of the single-particle density of states near
the Fermi surface, there are several competing definitions,
whose differing signatures have led to debates about their
respective existence [7]. The pseudogap should be identi-
fiable from measurement of the single-particle spectrum,
spin susceptibility, and even-odd energy staggering, among
others. Even when researchers agree on the definition and
observable signature, there are still subjective judgments

regarding the size of the effects. For example, how much
suppression of the spin susceptibility, or how much even-
odd energy staggering above Tc, is necessary to claim
evidence for a pseudogap? As argued by Mueller [7], the
main challenge in understanding and even defining the
pseudogap is that one is dealing with a strongly correlated
system in the normal phase. On one hand, said strong
correlations preclude perturbative approaches. On the other
hand, the lack of order prevents modeling the low-energy
excitations by following the conventional routes of effec-
tive field theory around an ordered state (i.e., mean-field or
mean-field-plus-fluctuations approaches). To form a coher-
ent picture of the phenomenology, it is imperative to
continue gathering information on the behavior of these
kinds of systems, in particular the universal, highly malle-
able ultracold-atom systems considered here.
We offer perspective on this issue by studying pseudogap

signatures for 0.0 ≤ 1=ðkFaÞ ≤ 0.3. We expect to see such
signatures for the highest couplings and then detect either
their disappearance or maintenance as we approach uni-
tarity from the BEC side. We perform auxiliary-field
quantum Monte Carlo (AFQMC) lattice simulations with
constrained ensembles using particle-projection methods,
with a previously introduced model and method [8,9],
modified to employ a cubic (rather than spherical) momen-
tum cutoff. As Werner and Castin [53] explain, a cubic
lattice with an additional spherical cutoff breaks Galilean
invariance inducing OðKÞ effects in the effective range
expansion, whereK is the center-of-mass momentum of the
two-particle system. In contrast, a pure cubic cutoff breaks
the symmetry at OðK2Þ. This is particularly important in
the unitary regime, where a noticeable fraction of Cooper
pairs have finite K. In addition to previously employed
projections for the total particle number, we introduce a
new projection for the particle asymmetry only, which is
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free of the infamous sign problem [54]. We simulate on a
cubic lattice of size L ¼ Nxl, set units such that
ℏ ¼ kB ¼ m ¼ 1, and set the spatial lattice spacing to
l ¼ 1, which is equivalent to a choice of “lattice units.” Nx
therefore dictates the lattice size and approach to the
thermodynamic limit. We use N to denote the total particle
number N ≡ N↑ þ N↓, where Nσ is the number of spin-σ
particles with σ ∈ f↑;↓g, not to be confused with the
particle number asymmetry N− ≡ N↑ − N↓.
Results.—We determined the condensate fraction, criti-

cal temperature, spin susceptibility, even-odd pairing
gap, and energy per particle. We also performed the first
finite-temperature measurements of the Tan contact away
from unitarity. Given the ongoing debate over pseudogap
signatures and the relationship between the Tan contact,
which is dominated by short-range interaction effects, and
pairing, which characterizes long-range correlations (see
Refs. [7,55]), we defer these results to the Supplemental
Material [9]. Error bars on individual points represent

statistical errors and show the standard error of the mean.
Error bands in Figs. 3 and 4 incorporate statistical errors
and finite volume effects and represent the standard error of
the mean.
Condensate fraction: The condensate fraction can be

obtained from the asymptotic behavior of the quantity
hðrÞ [56–58]:

α¼ lim
r→∞

hðrÞ; hðrÞ ¼N
2
½g2ðrÞ− g1ðrÞ2�;

g2ðrÞ ¼
�
2

N

�
2
Z

d3r1d3r2hψ†
↑ðr10Þψ†

↓ðr20Þψ↓ðr2Þψ↑ðr1Þi;

g1ðrÞ ¼
2

N

Z
d3r1hψ†

↑ðr10Þψ↑ðr1Þi; r1;20≡ r1;2þ r; ð1Þ

which acts as an order parameter, characterizing the
extent of off-diagonal long-range order [59]. In Fig. 1,
we show our results for α at different scattering lengths.

FIG. 1. Left: The condensate fraction α as a function of temperature at different scattering lengths; at a fixed temperature, α increases
toward the BEC limit. At all scattering lengths, the condensate fraction tends to decrease with an increase in lattice size. At
1=ðkFaÞ ¼ 0.2, Astrakharchik et al. [56] estimated the zero-temperature condensate fraction as αðT ¼ 0Þ ≈ 0.65. Right (top):
characteristic temperatures in the BCS-BEC crossover; Tc is the superfluid critical temperature; Ts is a lower bound on the temperature
at which the spin susceptibility peaks; and T� is the temperature at which the pairing gap disappears. Our estimate for Tc agrees with the
experimental value from Ku et al. [61]. Right (bottom): α at unitarity; error bars for our results are typically within the marker size. Also
shown: the experimental results of Ku et al. [61], Sanner et al. [62], and the previous AFQMC studies of Bulgac et al. [57] (BDM) and
Jensen et al. [63] (JGA). We also plot zero-temperature results by Astrakharchik et al. [56] (ABCG) and He et al. [64] (HLLL). The large
condensate fraction measured by Sanner et al. is relevant to our comparison of the spin susceptibility in Fig. 2. The JGA estimates,
derived from the maximum eigenvalue of the two-body density matrix, are closer to the experimental results especially at high
temperature, whereas the finite-size scaling of our results, derived from the asymptotic values of hðkFrÞ, yields more accurate estimates
of the critical temperature Tc. The discrepancy between our results and BDM, which are also derived from the asymptotic behavior of
hðkFrÞ, support the argument of Jensen et al. [63] that the difference is due to the BDM spherical momentum cutoff. Tc estimates are
compatible with previous estimates by Burovski et al. [58] and Bulgac et al. [57]. Estimates for T� are compatible with previous results
by Magierski et al. [65].

PHYSICAL REVIEW LETTERS 125, 060403 (2020)

060403-2



An alternative approach is to estimate α as the maximum
eigenvalue of g2 [60]. Comparing our results to those of the
eigenvalue method, and to experimental values in the right
panel of Fig. 1, suggests that the eigenvalue method
approaches the experimental α more quickly than our
asymptotic value method, most noticeably at higher T.
However, we also use the finite-size scaling of α to

determine Tc. By calculating α at multiple temperatures
and lattice sizes, we obtain “crossing temperatures” (i.e.,
lattice-size-dependent estimates of Tc) from which we
extrapolate to infinite volume to determine the true Tc
[9,56–58]. That procedure yields Tc as shown in Fig. 1,
which are consistent with previous studies [57,58] and in
agreement with the experimental result Tc=εF ¼ 0.167ð13Þ
at unitarity [61].
Spin susceptibility: A probe of the normal state char-

acter of the pairing is the spin susceptibility χS, which should
be suppressed below T�, as fermions bind into pairs, making
the gas strongly diamagnetic [66]. This is also naturally
related to the fluctuations in particle asymmetry by

χS ¼
1

TV
hN̂2

−i ¼
1

TV
hðN̂↑ − N̂↓Þ2i: ð2Þ

In Fig. 2, we show our results for χS. We use the particle-
asymmetry constrained ensemble, which is completely
sign-problem free [9]. Our results demonstrate an expected
decrease in the maximal value of χS as 1=ðkFaÞ increases
toward the BEC regime. We also find a moderate sup-
pression of χS above Tc, which increases towards the BEC
regime. In the lower panel of Fig. 2, we compare our results
at unitarity to two previous AFQMC calculations [60,67],
an estimate using strong-coupling Luttinger-Ward theory
[68], an experimental result from Sanner et al. [62], the
prediction from normal Fermi liquid theory (nFLT), and a
self-consistent NSR estimate from Pantel et al. [69]. The
deviation from FLT behavior confirms symmetry based
arguments by Rothstein and Shrivastava [70] that 3D
unitary Fermi gases cannot be adequately described by
nFLT in the range Tc < T < TF. Our suppression in χS is
less severe than in calculations by Wlazłowski et al. [67],
supporting the argument by Jensen et al. [60] that said
suppression is affected by the choice of spherical cutoff.
The experimental value is suppressed due to their finite
condensate fraction even above Tc, which can be seen in
Fig. 1. However, our spin susceptibility is more suppressed
than in both Jensen et al. and Enss and Haussmann [68],
and, more importantly, the effect seems to grow for larger
systems rather than lessen. Figure 2 also shows our results
for the spin susceptibility for 0.1 ≤ 1=ðkFaÞ ≤ 0.3. To our
knowledge, these are the first QMC measurements of χS
away from unitarity.
Tajima et al. [71,72] identified the temperature at which

χS peaks as Ts, and the temperature range Tc < T < Ts as
the “spin-gap” range where there are fewer free spins to
contribute to χS. Although they find that Ts ∼ T�, the exact

relationship between these two temperatures requires fur-
ther study. We present only lower bounds for the temper-
ature Ts in Fig. 1.
Energy stagger pairing gap: The even-odd staggering

of systems with fixed particle numbers has been used as a
measure of pairing since early studies of nuclear structure
[73]. On the other hand, the physical origin of the
pseudogap, and, consequently, the way one should measure
it, has been the core of a long debate since the early days of
high-Tc superconductivity (see Randeria [74] for a review).
It should be noted that our use of the even-odd staggering
gap as a measure of the pseudogap presupposes that the
pseudogap origin lies in the preformation of Cooper pairs
above Tc. Several finite-difference formulas have been used
to circumvent this (see Ref. [75] for in-depth discussions).

The simplest one is the three-point estimate, Δð3Þ
E , which

assumes a linear equation of state. If the equation of state

has positive curvature, Δð3Þ
E will underestimate the pairing

gap when N is even and overestimate the pairing gap when
N is odd. Instead, we use the five-point expression

FIG. 2. Top: AFQMC results for the spin susceptibility χS at
four different scattering lengths, scaled by its zero-temperature
noninteracting counterpart, χ0 ¼ 3N=ð2VεFÞ. Bottom: At uni-
tarity, we compare our result to two previous AFQMC studies:
Jensen et al. [60] (JGA) and Wlazłowski et al. [67] (WMDBR);
the experimental result of Sanner et al. [62]; a self-consistent
Luttinger-Ward result (EH) [68]; the normal Fermi liquid theory
prediction; and a self-consistent NSR result (PDU) [69].
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Δð5Þ
E ¼ð−1ÞN

8

X
s¼�1

½4EðNþ sÞ−EðNþ2sÞ−3EðNÞ�; ð3Þ

where EðNÞ is the ground state energy of a system
with N total particles, which will be achieved when

jN−j ¼ modðN; 2Þ. In addition to calculating Δð5Þ
E , we

propose another estimation method, which is to fit the
energies calculated for many different values of N and N−
to a two-parameter equation of state,

E
EFG

ðξ;ΔðfÞ
E Þ ¼ ξþ jN−j

ΔðfÞ
E

EFG
; ð4Þ

where ξ½T=εF; 1=ðkFaÞ� is a temperature-dependent gen-
eralization of the Bertsch parameter, εF ¼ ðℏ2k2FÞ=ð2mÞ is
the Fermi energy, EFG ¼ 3NεF=5 is the energy of a free
Fermi gas at zero-temperature, and we use jN−j ∈ f0; 1; 2g
for the fitting procedure [9]. Regardless of the estimation
scheme, we expect ΔE to become finite below some
temperature T�. If T� exceeds the critical temperature
Tc, this garners support for the existence of a pseudogap.
In Fig. 3, we present our results for the even-odd pairing

gap, derived from both Δð5Þ
E and ΔðfÞ

E [9]. Our method for
calculating both the pairing gap and the energy equation of
state produces a profusion of data points, making visual
comparison difficult. We therefore plot the results of a
regression that includes all lattice sizes with Nx ≥ 8, with
further details provided in the Supplemental Material [9]. In
the lower panel, we compare our results at unitarity to
previous theoretical and experimental studies: an AFQMC
measurement of the spectral gapwhich employed a spherical
momentum cutoff [65]; a constrained ensemble AFQMC
study [60] that estimated Δð3Þ with a cubic cutoff, but
without relative temperature corrections, which we discuss
in the Supplemental Material [9]; two low-temperature
experimental results [76,77]; and a zero-temperature
QMC reference result [78]. We can view our results as
charting a middle course between the Jensen et al. results
and the Magierski et al. results, all of which can be
interpreted as approaching the low-temperature reference
results. However, the comparison is fraught since the
spectral gap computed by Magierski et al. [65] is a priori
a different quantity than the even-odd pairing gap and the
critical temperature computed by Jensen et al. is lower than
ours and also the experimentally determined value.
Despite the large uncertainties at low temperatures, we

can appreciate certain features of the pairing gap. It is
weaker, compared to the low temperature limit, for temper-
atures above Tc, however, it cannot be said to vanish
immediately above the Tc error band even at unitarity. Our

estimates for T�, derived from spline fits [9] of both Δð5Þ
E ,

see Eq. (3), andΔðfÞ
E , see Eq. (4), are presented in Fig. 1 and

are comparable with a previous AFQMC study that
determined T� from the spectral gap [65], as opposed to
the even-odd energy gap [60]. At 1=ðkFaÞ ≈ 0.3, we detect

a plateau in the pairing gap above Tc. At this scattering
length, na3 ∼ 1 so that the interparticle separation is of the
same scale as the Cooper pair size, indicating a crossing
into the “pure” BEC regime, where the pseudogap main-
tains a plateau to very high temperatures.
Energy equation of state: Equation (4), which para-

metrizes the energies of systems with various numbers of
N↑;↓, also allows us to extract the temperature- and coupling
constant-dependent Bertsch parameter ξ½T=εF; 1=ðkFaÞ�. In
Fig. 4 we show our results for ξ½T=εF; 1=ðkFaÞ� for each
scattering length and compare to previous results. Similar to
the results by Drut et al. [79] at unitarity, we did not capture
the curvature in the equation of state seen by Ku et al. [61]
below Tc. However, our results at unitarity do approach the
reference values at zero temperature. We have a similar level
of agreement with the results of Van Houcke et al. [80],
which are not shown in Fig. 4, but are in excellent agreement
with experiment in the normal state. We provide a table of
values and errors for both ξ and Δ in the Supplemental
Material [9].

FIG. 3. Top: AFQMC results for ΔE at four different scattering
lengths, scaled by the Fermi energy εF. We incorporate results for
all lattices with Nx ≥ 8 using a regression technique described in
the Supplemental Material [9]. Bottom: At unitarity, we compare
our results to the AFQMC results of Jensen et al. [60] (JGA) and
Magierski et al. [65] (MWB); the zero-temperature QMC
prediction of Carlson and Reddy [78] (CR); and the experimental
results of Hoinka et al. [76] and Schirotzek et al. [77].
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Conclusion.—We performed the first ab initio finite-
temperature calculations of the spin susceptibility χS and
Tan contact C away from unitarity, in addition to determin-
ing the condensate fraction α, the critical temperature Tc,
the even-odd pairing gap ΔE, and the Bertsch parameter ξ.
For both the spin susceptibility and the even-odd pairing
gap, we find no discontinuities as we reduce the coupling,
but rather a smooth reduction in pseudogap signatures.
Since the BCS-BEC crossover is smooth, we do not

expect an abrupt and discontinuous emergence of the
pseudogap. Questions about where the pseudogap emerges
are therefore analogous to long-debated questions about
where the Earth’s atmosphere ends [83]. Since the field is
young, we have not yet developed the pseudogap analog of
the Kármán line from space science. We have provided
context to this discussion by looking for signatures of the
pseudogap between 0.0≤1=ðkFaÞ≤0.3. At 1=ðkFaÞ ¼ 0.3,
we see strong pseudogap signatures, which diminish
towards unitarity. However, all characteristic temperatures
T� in Fig. 1 exceed the critical temperature Tc at all
scattering lengths. Based on our results, we conclude it is
premature to exclude unitarity from the pseudogap regime.
Future work should include more refined extrapolations to
the limit of zero-effective range, infinite volume, and zero
density.
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