Structured Purpose: Implementing Python in purposive sample selection for evaluation interviews Valerie A. Lucas¹, Tara Carr¹, Gaurav Dave¹ ¹Abacus Evaluation, Center for Health Equity Research at University of North Carolina at Chapel Hill

SCHOOL OF MEDICINE Abacus Evaluation

Introduction

- **Rapid Diagnostics for Underserved Populations (RADX-UP)** is a grant funded by the National Institutes of Health (NIH) to improve COVID-19 testing uptake in community sites across the Unites States, territories, and Tribal Nations.
- A key evaluation objective was to *conduct* qualitative, semi-structured interviews to understand the context of project implementation at a subset of sites.
- We chose to use Python instead of traditional purposive sampling for a *more systematic and structured approach* to better account for the characteristics of the available sites and the *aims of the research* in our sampling.

Methodology

We designed and implemented a sample selector in Python, a programming language, using the sample size and project characteristics as constraints. We aimed for a sample size of nine out of 69 sites.

Applying nine initial conditions to construct sets of nine sites and create computationally manageable site sets (ex. requiring the 1st site to be an LGBTQ+ community and the 2nd site to be a rural community).

Sequentially applying more conditions (ex. requiring ≥1 site to be a Pacific Islander community, then ≥ 2 sites to use an experimental methodology).

All Possible Sets of Nine Sites $N = \binom{69}{9} =$ 56,672,074,888 Sets of Nine Sites with Initial Conditions n = 32,366,880 Final Set of Nine Sites n = 1

Researchers and evaluators can make the subjective process of purposive sampling individuals or programs more systematic with a simple Python program.

View and download the Python file from the Carolina Digital Repository

Methodology (cont.)

- Each project has *characteristics like study* design, target population, and region of the United States from which we created selection priorities and further narrowed the sample set.
- The program takes about **30** minutes to run on an ordinary laptop computer.

Log of Count of Possible Sets in the Sample Narrowing Process

Results

Characteristics of Project Population and Final Sample

- Hispanic/Latino/Latinx
 - Black
 - **Older Adults**
 - Youth
 - Asian
 - American Indian
- People who use drugs
 - Rural
 - **Pacific Islander**
- Immigrants & refugees
 - Low SES
 - LGBTQ+

Conclusions

Contact Information Valerie Lucas, valerie lucas@med.unc.edu

Acknowledgments RADx-UP community & academic partners, RADx-UP CDCC, NIH 1U24MD016258-01

RADXUPJ

The process yielded a *diverse sample* that met 23 of our narrowing criteria. Selection design *maximizes "intersectional" projects*, those that work with more than one possibly overlapping target population.

Our Python code provides a more *structured* method of purposive sampling for interviews,

provided there are known characteristics of a population of evaluation subjects.

Tracking & evaluation teams can *rank*

conditions for a sample of evaluation projects from most important to least important.