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Abstract

Having millions of mobile applications from Google Play and Apple’s App store, the
smartphone is becoming a necessity in our daily life. People could access a wide
variety of services by using the mobile application, between which user interfaces
(UIs) work as an important proxy. A well-designed UI makes an application easy,
practical, and efficient to use. However, due to the rapid application iteration speed
and the shortage of UI designers, developers are required to design the UIs and
implement them in a short time. As a result, they may be unaware of or compromise
some important factors related to usability and accessibility during the process of
developing user interfaces of mobile applications. Therefore, efficient and useful
tools are needed to enhance the efficiency of the development of user interfaces.

In this thesis, I proposed three techniques to improve the efficiency of designing
and developing user interfaces through semantic and data-driven analyses. First, I
proposed a UI design search engine to help designers or developers quickly create
trendy and practical UI designs by exposing them to UI designs in real applications.
I collected a large-scale UI design dataset by automatically exploring UIs from top-
downloaded Android applications, and designed an image autoencoder-based UI
design engine to enable finer-grained UI design search.

Second, during the process of understanding the real UIs implementation, I found
that existing applications have a severe accessibility issue of lacking labels for image-
based buttons. Such an issue will hinder the blind users to access the key functional-
ities on UIs. As blind users need to rely on screen readers to read content on UIs, it
requires the developers to set up appropriate labels for image-based buttons. There-
fore, I proposed LabelDroid, which aims to automatically generate labels (i.e., the
content description) of image-based buttons to assist the implementation process of
UIs.

Finally, as the above techniques all require the view hierarchical information,
which contains the bounds and type of contained elements, to achieve the goals, some
UIs may fail to have a complete view hierarchy or do not have such information. For
example, UIs in the design-sharing platforms do not have any metadata about the
elements. To do this, I conducted the first large-scale empirical study on evaluating
existing object detection methods of detecting elements in UIs. By understanding
the unique characteristics of UI elements and UIs, I proposed a hybrid method to
boost the accuracy and precision of detecting elements on user interfaces. Such a
fundamental method can be beneficial to many downstream applications, such as UI
design search, UI code generation, and UI testing.

In conclusion, I proposed three techniques to enhance the efficiency of designing
and developing the user interfaces on mobile applications through semantic and
data-driven analyses. Such methods could easily generalize to a broader scope, such
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as user interfaces of desktop apps and websites. I expect my proposed techniques
and the understanding of user interfaces can facilitate the following research.
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Chapter 1

Introduction

Smartphones are becoming a necessity in our daily life. Millions of mobile applica-
tions from Google Play store and Apple App store provide rich functionalities and
services to end-users to facilitate our life, between which graphical user interfaces
(GUIs) work as an important proxy. A well-designed GUI makes an application easy,
practical and efficient to use, which significantly affects the success of the application
and the loyalty of its users [1; 2; 3]. For example, in the competitive mobile applica-
tion market, the design of an application’s GUI, or even its icon, has become crucial
for distinguishing an application from competitors, attracting user downloads, re-
ducing users’ complaints and retaining users [4; 5; 6], and thus make the company
thrive. For end-users, user-friendly applications can enrich and facilitate their lives.
However, the design and implementation of these user interfaces involve many chal-
lenges and inefficiency.

The development cycle of a mobile application involves many roles, including de-
signers, developers, and end-users. Designers design every user interface (UI) in the
application, choosing the appropriate widgets and icons, organizing them in a rea-
sonable and easy-to-understand layout, and adding attractive and comfortable visual
effects to every widget and the whole UI [7]. The developers then implement these
designs using programming languages. They not only need to precisely implement
the UI design from the designer, but also need to consider some “invisible” aspects
that are not presented in the UI design. For example, developers need to choose a
suitable layout element to group related UI elements on user interfaces while such
layout elements are invisible in the pixel image from designers [8]. In addition, de-
velopers may also need to consider adding an accessibility label to the image-based
buttons to ensure the accessibility of the minority (e.g. the blind users) [9; 10]. More-
over, due to the lack of sufficient design knowledge, developers need to iteratively
communicate with the designers to understand requirements and explore all infor-
mation that is implicitly expressed in the complicated design [11]. Apart from the
above situation, developers often have to play the designer role in software develop-
ment, especially in the start-up companies and open-source projects. In this thesis,
we aim to identify the problems during the mobile user interface development pro-
cess, and try to tackle with the identified problems through semantic and data-driven
analyses.
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2 Introduction

1.1 Motivations and Goals

1.1.1 UI Design Search Engine

Designing a UI is not a trivial task. This process needs no only specific knowledge
of design principles and guidelines (e.g., Android Material Design [12], iOS Human
Interface Guidelines [13]), but also the understanding of design space which has
the great variations in visual components that can be potentially used, their layout
options, and visual effect choices. However, many developers often have to work
as designers. For example, in a survey of more than 5,700 developers [14], 51%
respondents reported that they do not have much UI design training but they work
on UI design tasks, more so than other development tasks. While they can find
some initial inspiration by browsing high-rated designs in design sharing platforms
or use keywords to search the wanted design, these methods could only provide
coarse-grained instructions that may not meet their needs.

As the advanced UI design search can consider UI designs as images, a naive solu-
tion could be searching UI designs by image similarity of certain image features such
as color histogram [15] or Scale-Invariant Feature Transform (SIFT) [16]. Although
such image features are useful for measuring image similarity, they are agonistic of
the visual semantics (visual components and their compositions) of a GUI. As such,
image-wise similar UI designs are very likely design-wise irrelevant. Alternatively,
one can heuristically match individual visual components based on their type, posi-
tion and size for measuring the similarity of two UI designs [17; 18; 19]. However,
such methods are restricted by the pre-defined component matching rules, and is
sensitive to the cut-off matching thresholds. Furthermore, individual component-
matching heuristics often retrieve many irrelevant UI designs, because individual
component matching cannot effectively encode the visual composition of compo-
nents in a GUI as a whole. An effective mechanism is needed to support such devel-
opers to explore and learn about the UI design space in their UI design work.

1.1.2 Enhancing the Accessibility

Once the UIs are designed for a mobile application, developers then need to im-
plement them using programming language. However, while the design provides
cues on what elements are present and how should they position on the UIs, many
important attributes related to accessibility are not visible on the UIs and would be
easily compromised and ignored by the developers. For example, a well-designed
UI may contain some icons, like a trash icon. While users can easily understand that
by clicking that icon, a delete action will be performed. However, for people with
disabilities, especially for the blind users, they need additional UI cues to understand
that icons. According to the World Health Organization(WHO) [20], it is estimated
that approximately 1.3 billion people live with some form of vision impairment glob-
ally, of whom 36 million are blind. Compared with the normal users, they may be
more eager to use the mobile apps to enrich their lives, as they need those apps to
represent their eyes. Ensuring full access to the wealth of information and services
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provided by mobile apps is a matter of social justice [21].
While developers can add the additional UI cues, i.e., the accessibility label, to the

source code to fix the issues, many apps remain a serious accessibility issue. Based
on our empirical study in Section 5.2, more than 77% apps out of 10,408 apps miss
such labels for the image-based buttons, resulting in the blind’s inaccessibility to the
apps. Some existing work tries to help developers spot the potential accessibility
issues [22; 23; 24; 25], but none of them can help fix the label-missing problem. An
efficient and useful automated tool is needed to generate the labels for enhancing the
accessibility.

1.1.3 Recognizing UI Elements.

Detecting Graphical User Interface (GUI) elements in GUI images is a domain-specific
object detection task. It supports many software engineering tasks, such as GUI au-
tomation and testing [26; 27; 28; 29], supporting advanced GUI interactions [30; 31],
GUI search [32; 17], and code generation [33; 34; 8]. By recognizing UI elements, the
aforementioned tasks can be extended to UIs without metadata, i.e., the coordinates
and types of UI elements on UIs. For example, we could include the UI design in
design sharing platforms in the search engine, and update with the most trendy UI
design constantly. In addition, while some metadata exist, it may not be always ac-
curate. For example, Zhang et al. [35] also found that 59% of screens contain some
UI elements that are not in the metadata, and 94% of their investigated apps have at
least one such screen. Existing studies for GUI element detection directly borrow the
mature methods from computer vision (CV) domain, including old fashioned ones
that rely on traditional image processing features (e.g., canny edge, contours), and
deep learning models that learn to detect from large-scale GUI data. Unfortunately,
these CV methods are not originally designed with the awareness of the unique char-
acteristics of GUIs and GUI elements and the high localization accuracy of the GUI
element detection task. A detailed analysis on the unique characteristics of UI de-
signs and a systematic empirical study on existing object detection techniques are
needed to explore the potential issues and refine them.

1.2 Main Works and Contributions

This thesis consists of three works: wireframe-based UI design search engine [7],
automated accessibility label generation [10], and UI element detection [36]. All
works are published in top-tier conferences or journals, and all source code, models
and datasets are released in GitHub repositories.

In the first work, to enable a fine-grained search of UI design and tackle the pro-
posed challenge, we propose a deep-learning-based UI design search engine, called
WAE, to fill in the gap. The key innovation of our search engine is to train a wire-
frame image autoencoder using a large database of real-application UI designs, with-
out the need for labelling relevant UI designs. We implement our approach for An-
droid UI design search and conduct extensive experiments with artificially created
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relevant UI designs and human evaluation of UI design search results. Our exper-
iments confirm the superior performance of our search engine over existing image-
similarity or component-matching-based methods and demonstrate the usefulness of
our search engine in real-world UI design tasks

In the second work, we first conducted a large-scale empirical study on 10,408
Android mobile applications to examine the accessibility issues. We found that more
than 77% of apps have issues of missing labels. Most of these issues are caused by
developers’ lack of awareness and knowledge in considering the minority. And even
if developers want to add the labels to UI components, they may not come up with
concise and clear descriptions as most of them are of no visual issues. To overcome
these challenges, we develop a deep-learning-based model, called LabelDroid, to
automatically predict the labels of image-based buttons by learning from large-scale
commercial apps in Google Play. The experimental results show that our model can
make accurate predictions and the generated labels are of higher quality than that
from real Android developers.

In the third work, we perform the first systematic analysis of the problem scope
and solution space of GUI element detection, and identify the key challenges to be
addressed, the limitations of existing solutions, and a set of unanswered research
questions. We then conduct the first large-scale empirical study of seven represen-
tative GUI element detection methods on over 50k GUI images to understand the
capabilities, limitations and effective designs of these methods. This study not only
sheds the light on the technical challenges to be addressed but also informs the
design of new GUI element detection methods. We accordingly design a new GUI-
specific old- fashioned method for non-text GUI element detection which adopts a
novel top-down coarse-to-fine strategy, and incorporates it with the mature deep
learning model for GUI text detection. Our evaluation on 25,000 GUI images shows
that our method significantly advances the start-of-the-art performance in GUI ele-
ment detection.

1.3 Thesis Statement

I believe that by understanding mobile user interfaces through semantic and data-
driven analyses, the efficiency of mobile user interface development can be improved.

1.4 Thesis Outline

The following chapters are organized as follows:
Chapter 3 presents the literature review of this thesis including existing UI design

datasets, UI design search engines, accessibility guidelines and empirical studies,
accessibility testing tools, and UI elements detection techniques from pixel.

In Chapter 4, I design and develop a deep-learning-based UI design search en-
gine to help designers and developers better understand the design space related to
their current design, and enable them to search for similar UI designs in a targeted
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manner. It not only helps them create a trendy, useful and practical UI that is precise
enough and contains necessary functions, it also enhances the efficiency of design
prototyping.

In Chapter 5, I conduct an empirical study to evaluate the accessibility issue
of lacking labels for image-based buttons to understand the accessibility support
of mobile applications. I then develop a tool, LabelDroid, to assist developers in
implementing the accessibility features of user interfaces.

In Chapter 6, I systematically summarize the unique characteristics of user inter-
faces and UI elements, and conduct an empirical study to evaluate seven state-of-the-
art object detection techniques. Based on the understanding of the advantages and
disadvantages of existing techniques, I develop a hybrid top-to-down coarse-to-fine
element detection method, specifically designed for user interfaces.

Chapter 8 provides a summary of this thesis and proposes the potential directions
in the future.
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Chapter 2

Background

In this chapter, we give some background information about Android accessibility
background to assist the following reading.

2.1 Android Accessibility Background

2.1.1 Content Description of UI component

Android UI is composed of many different components to achieve the interaction
between the app and the users. For each component of Android UI, there is an
attribute called android:contentDescription in which the natural-language string
can be added by the developers for illustrating the functionality of this component.
This need is parallel to the need for alt-text for images on the web. To add the label
“add playlist” to the button in Figure 5.2, developers usually add a reference to the
android:contentDescription in the layout xml file, and that reference is referred to the
resource file string.xml which saves all text used in the application. Note that the
content description will not be displayed in the screen, but can only be read by the
screen reader.

Figure 2.1: Source code for setting up labels for “add playlist” button (which is
indeed a clickable ImageView).

7
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Figure 2.2: Examples of image-based buttons. 1⃝ clickable ImageView; 2⃝ 3⃝
ImageButton.

2.1.2 Screen Reader

According to the screen reader user survey by WebAIM in 2017 [37], 90.9% of respon-
dents who were blind or visually impaired used screen readers on a smart phone.
As the two largest organisations that facilitate mobile technology and the app mar-
ket, Google and Apple provide the screen reader (TalkBack in Android [38] and
VoiceOver in IOS [39]) for users with vision impairment to access to the mobile apps.
As VoiceOver is similar to TalkBack and this work studies Android apps, we only
introduce the TalkBack. TalkBack is an accessibility service for Android phones and
tablets which helps blind and vision-impaired users interact with their devices more
easily. It is a system application and comes pre-installed on most Android devices.
By using TalkBack, a user can use gestures, such as swiping left to right, on the screen
to traverse the components shown on the screen. When one component is in focus,
there is an audible description given by reading text or the content description. This
screen reader software adds spoken, audible and vibration feedback to your device.
When you move your finger around the screen, TalkBack reacts, reading out blocks
of text or telling you when you’ve found a button. Apart from reading the screen,
TalkBack also allows you to interact with the mobile apps with different gestures. It
provides spoken feedback as you navigate around the screen, by describing your ac-
tions and informing you of any notifications. For example, users can quickly return
to the home page by drawing lines from bottom to top and then from right to left
using fingers without the need to locate the home button. TalkBack also provides
local and global context menus, which respectively enable users to define the type of
next focused items (e.g., characters, headings or links) and to change global setting.

2.1.3 Android Classes of Image-Based Buttons

There are many different types of UI components [40] when developers are develop-
ing the UI such as TextView, ImageView, EditText, Button, etc. According to our
observation, the image-based nature of the classes of buttons make them necessary
to be added with natural-language annotations for two reasons. First, these compo-
nents can be clicked i.e., as important proxies for interaction than static components
like TextView with users. Second, the screen readers cannot directly read the image
to natural language. In order to properly label an image-based button such that it
interacts properly with screen readers, alternative text descriptions must be added
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in the button’s content description field. Figure 2.2 shows two kinds of image-based
buttons.

2.1.3.1 Clickable Images

Images can be rendered in an app using the Android API class android.widget.ImageView[41].
If the clickable property is set to true, the image functions as a button ( 1⃝ in Fig-
ure 2.2). We call such components Clickable Images. Different from normal images
of which the clickable property is set to false, all Clickable Images are non-decorative,
and a null string label can be regarded as a missing label accessibility barrier.

2.1.3.2 Image Button

Image Buttons are implemented by the Android API class android.widget.ImageButton [42].
This is a sub-class of the Clickable Image’s ImageView class. As its name suggests,
Image Buttons are buttons that visually present an image rather than text ( 2⃝ 3⃝ in
Figure 2.2).
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Chapter 3

Literature Review

3.1 UI Design Prototyping

UI Design Datasets: Many UI design kits [43; 44; 45; 46] are publicly available on
the web. Designers also share their UI designs on social media platforms such as
Dribbble [47], UI Movement [48]. They are a great source for design inspirations, but
they cannot expose developers to a large UI design space of real applications. Many
UI designs in these platforms are only for demonstration purposes for people to find
inspirations, and some are not implemented into a real application. Furthermore,
these platforms support only simple keyword-based search. Alternatively, existing
applications provide a large repository of UI designs. To harness these UI designs,
people resort to automatic GUI exploration methods to simulate the user interaction
with GUI and collect UI screenshots of existing applications, which can support data-
driven applications such as UI code generation [33; 8; 34], GUI search [18; 49; 50;
51], design mining [52], design linting [53], UI accessibility [10], user interaction
modeling [32; 54] and privacy and security [55]. In the same vein, my work builds a
large database of real-application UI designs by automatic GUI exploration. Different
from existing work, I further wirify UI screenshots to support wireframe-based UI
design search.

UI Design Search: Some techniques [49; 50; 52] support UI search by images,
but they use low-level image features such as color histogram together with other
UI information (if available) such as component type, text displayed. Although these
image features are useful for measuring image similarities, they are agnostic of the
visual semantics of a GUI. Therefore, image-wise similar UI designs are likely to
be design-wise irrelevant. Other techniques [17; 18; 19] support GUI search by UI
sketches. But they essentially convert both query UI and UIs in the database into a
tree of GUI components and then find similar GUIs by computing the optimal match-
ing of component trees. However, these methods are restricted to the pre-defined
component matching rules, and are sensitive to the cut-off matching thresholds. Fur-
thermore, individual component-matching heuristics often retrieve many irrelevant
UI designs, because individual component matching cannot effectively encode the
visual composition of components in a GUI as a whole. Different from these exist-
ing works, I propose a tool that truly models UIs as images and uses deep learning
features to encode the visual semantics of UIs to retrieve design-wise relevant UIs to
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assist the prototyping process in a finer manner. The most related work is Rico [32],
which envisions the possibility of deep learning based UI search and demonstrates
several examples based on simple fully-connected layers model with highly simpli-
fied data. Compared with their work, I develop a sophisticated model suitable for
the variety of real-life UI designs, implement a working prototype and conduct sys-
tematic empirical studies.

UI Implementation Automation: Nguyen and Csallner [33] detect components in
UI screenshots by rule-based image processing method and generate GUI code. They
support only a small set of most commonly used GUI components. More powerful
deep-learning based methods [8; 56; 34] have been recently proposed to leverage the
big data of automatically collected UI screenshots and corresponding code. Different
from these UI code generation methods which require high-fidelity UI design image,
my approach requires only UI wireframes which can be fast prototyped even for
inexperienced developers. Furthermore, my method returns a set of diverse UI de-
signs for exploring the design space, rather than the code implementing a specific UI
design. Some recent works explore issues between UI designs and their implementa-
tions. Moran et al. [11] check if the implemented GUI violates the original UI design
by comparing the images similarity with computer vision techniques. A follow-up
work by them [57] further detects and summarizes GUI changes in evolving mobile
apps. UI design search finds similar UI designs, and then these techniques may be
applied to further detect the differences between similar UI designs which may help
refine the search results.

3.2 App Accessibility

App Accessibility Guideline: Google and Apple are the primary organizations that
facilitate mobile technology and the app marketplace by Android and IOS platforms.
With the awareness of the need to create more accessible apps, both of them have re-
leased developer and designer guidelines for accessibility [58; 59] which include not
only the accessibility design principles, but also the documents for using assistive
technologies embedding in the operating system [59], and testing tools or suites for
ensuring the app accessibility. The World Wide Web Consortium (W3C) has released
their web accessibility guideline long time ago [60] And now they are working to-
wards adapting their web accessibility guideline [60] by adding mobile characteristics
into mobile platforms. Although it is highly encouraged to follow these guidelines,
they are often ignored by developers. Different from these guidelines, our work is
specific to users with vision impairment and predicts the label during the developing
process without requiring developers to fully understand long guidelines.

App Accessibility Studies for Blind Users: Many works in Human-Computer
Interaction area have explored the accessibility issues of small-scale mobile apps [61;
62] in different categories such as in health [63], smart cities [64] and government
engagement [65]. Although they explore different accessibility issues, the lack of
descriptions for image-based components has been commonly explicitly noted as a
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significant problem in these works. Park et al [62] rated the severity of errors as
well as frequency, and missing labels is rated as the highest severity of ten kinds of
accessibility issues. Kane et al [66] carry out a study of mobile device adoption and
accessibility for people with visual and motor disabilities. Ross et al [67] examine the
image-based button labeling in a relative large-scale android apps, and they specify
some common labeling issues within the app. Different from their works, my study
includes not only the largest-scale analysis of image-based button labeling issues to
better understand the the issues, but also a solution for solving those issues by a
model to predict the label of the image.

There are also some works targeting at locating and solving the accessibility is-
sues, especially for users with vision impairment. Eler et al [68] develop an auto-
mated test generation model to dynamically spot the potential accessibility issues in
the mobile apps, but fail to directly fix them. Zhang et al [69] leverage the crowd
source method to annotate the GUI element without the original content descrip-
tion. For other accessibility issues, they further develop an approach to deploy the
interaction proxies for runtime repair and enhancement of mobile application acces-
sibility [9] without referring to the source code. Although these works can also help
ensure the quality of mobile accessibility by spotting accessibility issues that need
to be fixed or providing some annotation tools to ease the labeling process, they still
need much effort from developers. For the missing accessibility label issues, develop-
ers still need to figure out how to add concise, easy-to-understand descriptions to the
GUI components for users with vision impairment. Instead, the model proposed in
my work can automatically recommend the label for image-based components and
developers can directly use it or modify it for their own apps.

App Accessibility Testing Tools It is also worth mentioning some related non-
academic projects. There are mainly two strategies for testing app accessibility (for
users with vision impairment) such as manual testing, and automated testing with
analysis tools. First, for manual testing, the developers can use the built-in screen
readers (e.g., TalkBack [38] for Android, VoiceOver [39] for IOS) to interact with
their Android device without seeing the screen. During that process, developers can
find out if the spoken feedback for each element conveys its purpose. Similarly, the
Accessibility Scanner app [23] scans the specified screen and provides suggestions to
improve the accessibility of your app including content labels, clickable items, color
contrast, etc. But the problem with it is that developers have to manually explore
each screen and run the Accessibility Scanner on it. The shortcoming of this tool is
that the developers must run it in each screen of the app to get the results. Such
manual exploration of the application might not scale for larger apps or frequent
testing, and developers may miss some functionalities or elements during the manual
testing. However that process will be very time-consuming and labor-extensive and
the developers may miss some functionalities or elements during the manual testing.

Second, developers can also automate accessibility tasks by resorting testing frame-
works like Android Lint, Espresso and Robolectric, etc. The Android Lint [22] is a
static tool for checking all files of an Android project, showing lint warnings for vari-
ous accessibility issues including missing content descriptions and providing links to
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the places in the source code containing these issues. Apart from the static-analysis
tools, there are also testing frameworks such as Espresso [24] and Robolectric [25]
which can also check accessibility issues dynamically during the testing execution.
And there are counterparts for IOS apps like Earl-Grey [70] and KIF [71]. Note that
all of these tools are based on official testing framework. For example, Espresso,
Robolectric and Accessibility Scanner are based on Android’s Accessibility Testing
Framework [72].

Although all of these tools are beneficial for the accessibility testing, there are still
three problems with them. First, it requires developers’ well awareness or knowl-
edge of those tools, and understanding the necessity of accessibility testing. Second,
all these testing are reactive to existing accessibility issues which may have already
harmed the users of the app before issues fixed. In addition to these reactive testing,
we also need a more proactive mechanism of accessibility assurance which could
automatically predicts the content labeling and reminds the developers to fill them
into the app. The goal of my work is to develop a proactive content labeling model
which can complement the reactive testing mechanism.

3.3 UI Detection from Pixels

GUI design, implementation and testing are important software engineering tasks,
to name a few, GUI code generation [8; 73; 34], GUI search [19; 74; 51; 7; 75], GUI
design examination [11; 76; 53], reverse-engineering GUI dataset [32; 54], GUI acces-
sibility [10], GUI testing [27; 29; 77; 28; 78] and GUI security [55; 79]. Many of these
tasks require the detection of GUI elements. As an example, [28] shows that exploit-
ing exact widget locations by instrumentation achieves significantly higher branch
coverage than predicted locations in GUI testing, but widget detection (by YOLOv2)
can interact with widgets not detected by instrumentation. My work focuses on the
foundational technique to improve widget detection accuracy, which opens the door
to keep the advantage of widget detection while achieving the benefits of instrumen-
tation in downstream applications like GUI testing.

To detect the UI elements in GUIs, we need to first locate the elements and then
classifies the type. Existing element detection techniques can be divided into two
types: old fashioned and deep learning techniques. Old fashioned techniques rely
on either edge/contour aggregation [33; 80; 34] or template matching [81; 27; 26; 30].
Nguyen et al. [33] first propose REMAUI to localise UI elements using old-fashioned
techniques. They leverage Canny edge [82] and contour map [83] to detect primitive
visual features, and then localise the elements based on some predefined rules. In
their work, they only recognise two types of GUI elements, i.e., text elements or
image elements, and two types of high-level components (container and list item).
Following their work, Moran et al. [34] reuse their technique to localise GUI elements
and combine the deep learning technique to classify image elements into fine-grained
categories. The most recent technique Xianyu [80], proposed by Alibaba, uses image
binarisation and horizontal/vertical slicing to obtain GUI elements. However, these
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old-fashioned techniques are error-prone to aggregate these fine-grained regions into
GUI elements, especially when GUIs contain images with physical-world objects. On
the other hand, template matching methods improve over edge/contour aggregation
by guiding the region detection and aggregation with high-quality sample images or
abstract prototypes of GUI elements. But this improvement comes with the high cost
of manual feature engineering. As such, it is only applicable to simple and standard
GUI widgets (e.g., button and checkbox of desktop applications). It is hard to apply
template-matching method to GUI elements of mobile applications which have large
variance of visual features.

In comparison, deep learning models [84; 51; 85; 28; 86] remove the need of man-
ual feature engineering by learning GUI element features and their composition from
large numbers of GUIs. Gallery D.C. [51] apply Faster RCNN [84] to detect GUI el-
ements in UI screenshots to create a component gallery for designers and white et
al. [28] leverage YOLOv2 [87] to detect GUI elements to improve GUI testing. How-
ever, while these deep learning techniques are originally designed for objects in natu-
ral scene, which has many differences from GUI elements in mobile UIs. Considering
the image characteristics of GUIs and GUI elements, the high accuracy requirement
of GUI-element region detection, and the design rationale of existing object detection
methods, we raise a set of research questions regarding the effectiveness features and
models originally designed for generic object detection on GUI elements, the region
detection accuracy of statistical machine learning models, the impact of model ar-
chitectures, hyperparameter settings and training data, and the appropriate ways of
detecting text and non-text elements.

In our work, we aim to systematically study these research questions and we
conducted the first large-scale empirical study of GUI element detection methods.
Our empirical study shows that old-fashioned methods perform poorly for both text
and non-text GUI element detection. Generic object detection models perform bet-
ter than old-fashioned ones, but they cannot satisfy the high accuracy requirement
of GUI element detection. Therefore, based on our result from empirical study, we
proposed a technique, UIED, that advances the state-of-the-art in GUI element detec-
tion by effectively assembling the effective designs of existing methods and a novel
GUI-specific old-fashioned region detection method.
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Chapter 4

Wireframe-based UI Design Search
through Image Autoencoder

4.1 Introduction

Graphical User Interface (GUI) is ubiquitous in modern desktop software, mobile
applications and web applications. It provides a visual interface between a software
application and its end users through which they can interact with each other. A
well-designed GUI makes an application easy, practical and efficient to use, which
significantly affects the success of the application and the loyalty of its users [1; 2; 3].
For example, in the competitive mobile application market, the design of an appli-
cation’s GUI, or even its icon, has become crucial for distinguishing an application
from competitors, attracting user downloads, reducing users’ complaints and retain-
ing users [4; 5; 6].

Designing the visual composition of a GUI is an integral part of software devel-
opment. Based on the initial user needs and software requirements, the designers
usually first design a wireframe of the desired GUI by selecting highly-simplified vi-
sual components with special functions (for example those shown in Figure 4.1) and
determining the layout of the selected components that can support the interactions
appropriate to application data and the actions necessary to achieve the goals of
users, and modify their designs iteratively by comparing with existing online design
examples. They then add high-fidelity visual effects to the GUI components, such
as colors and typography, and add application-specific texts and images to the GUI
design. Of course, the wireframe design and the high-fidelity GUI design are inter-
weaving and iterative during which designers continually explore the design space
by removing unnecessary visual components, adding missing components, and re-
fining the components’ layout and visual effects.

To satisfy users’ needs, designing a good GUI demands not only the specific
knowledge of design principles and guidelines (e.g., Android Material Design [12],
iOS Human Interface Guidelines [13]), but also the understanding of design space
which has the great variations in visual components that can be potentially used,
their layout options, and visual effect choices. As shown in Figure 4.2, the design
space of a GUI, even for the simple sign-up feature, can be very large. However,
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due to the shortage of UI designers [88], software developers who do not have much
understanding of UI design space often have to play the designer role in software
development, especially in the start-up companies and open-source projects. For
example, in a survey of more than 5,700 developers [14], 51% respondents reported
that they do not have much UI design training but they work on UI design tasks,
more so than other development tasks. In fact, when developing an application, what
software developers and designers focus on are totally different. Developers try to
make the application work while designers target at making it adorable [89], which
makes it tough for software developers to directly work as designers. An effective
mechanism is needed to support such developers to explore and learn about the UI
design space in their UI design work.

Providing developers with a UI design search engine to search existing UI designs
can help developers quickly build up a realistic understanding of the design space
of a GUI and get inspirations from existing applications for their own application’s
UI design. However, compared with the well-supported code search [90; 91; 92;
93], there has been little support for UI design search. Existing UI design search
methods [47; 48; 49] are based on keywords describing software features, UI design
patterns or GUI components. Although keyword-based UI search could provide
some initial design inspirations, a more advanced UI design search engine is still
needed to explore the design space in a more targeted manner, which can directly
take as input a schematic UI (e.g., a wireframe) that the developers sketch and returns
high-fidelity UI designs alike to the input (see Section 4.2 for a motivating scenario).
However, a few keywords can hardly describe the visual semantics of a desired UI
design, such as visual components used and their layout.

As the advanced UI design search can consider UI designs as images, a naive solu-
tion could be searching UI designs by image similarity of certain image features such
as color histogram [15] or Scale-Invariant Feature Transform (SIFT) [16]. Although
such image features are useful for measuring image similarity, they are agonistic of
the visual semantics (visual components and their compositions) of a GUI. As such,
image-wise similar UI designs are very likely design-wise irrelevant. Alternatively,
one can heuristically match individual visual components based on their type, posi-
tion and size for measuring the similarity of two UI designs [17; 18; 19]. However,
such methods are restricted by the pre-defined component matching rules, and is
sensitive to the cut-off matching thresholds. Furthermore, individual component-
matching heuristics often retrieve many irrelevant UI designs, because individual
component matching cannot effectively encode the visual composition of compo-
nents in a GUI as a whole.

The most related work is Rico [32], which introduces a new UI dataset, discusses
five potential usages and demonstrates the possibility of assisting UI search. Their
dataset is collected by automatic app exploration and manual exploration by re-
cruiting crowd workers. In terms of UI search demonstration, they use a simple
multilayer perceptron with only six fully connected layers, simplify the UI compo-
nents as text/non-text, and show several examples without any detailed statistics on
performance results. As discussed above, UI designs are sophisticated with many



§4.1 Introduction 19

VideoView

Switch ProgressBar

CheckBox

ChronometerSpinner RadioButton ToggleButton

ImageView

Rating Bar

SeekBar

Figure 4.1: The most common wireframe components for Android UI design. Each
component has its own function. For example, TextView will show text to the user

and EditText enables user to input text.

variants, so it is impossible to merely use text and non-text to express the core con-
cepts of one UI design. Besides, the complex combination of different widgets with
arbitrary numbers and positions shows a huge design space in terms of typology.
Therefore, a naive method with highly simplified widgets is not enough to tackle
this task. Note that the Rico evaluation only shows several examples without any
detailed studies on retrieval accuracy, data issue, model limitation, failure cases and
usefulness evaluation. Thus, we cannot know the generalization or performance of
their model.

In this chapter, I present an approach to develop a deep-learning-based UI design
search engine using a convolutional neural network instead of purely fully connected
layers. To expose developers to diverse, real-application UI designs for a variety of
software features, I use automatic GUI exploration methods like in [8] to build a
large database of UI screenshots (and their corresponding wireframes) of existing
applications. I further identify 16 user interaction components which narrow the
gap between designers and developers by analyzing several design platforms and UI
implementation details. My approach performs wireframe-based UI design search.
A wireframe captures the type and layout information of visual components, but
ignores their high-fidelity visual details. As such, they can be fast prototyped and
refined with minimal effort, and can retrieve visually-different but semantically rel-
evant UI designs (see Figure 4.2 for example). My approach does not perform in-
dividual component matching, but it attempts to judge the relevance of the whole
UI designs. A key challenge in developing such a robust UI-design relevance model
is that no labelled relevant UI designs exist and it requires heavy manual efforts
to annotate such a large dataset. Thus, I cannot use supervised learning methods
like [94; 95] to train the model for encoding the visual semantics of UI designs. To
overcome this challenge and relieve the heavy manual efforts, we design a wireframe
autoencoder which can be trained using a large database of UI wireframes in an un-
supervised way. Once trained, this autoencoder can encode both the query wireframe
by the user and the UI screenshots of existing applications through their correspond-
ing wireframes in a vector space of UI designs. In this vector space, retrieving UI
screenshots alike to the query wireframe can be easily achieved by k-nearest neigh-
bors (kNN) search.

As a proof of concept, I implement my approach for searching Android mobile
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application UI designs in a database of 54,987 UI screenshots from 25 categories 1

of 7,748 top-downloaded Android applications in Google Play. I evaluate the per-
formance, generalization and usefulness of my UI design search engine2 with an
automatic evaluation of 4,500 pairs of relevant UI designs generated by component-
scaling and component-removal operations, the human evaluation of the relevance
of the top-10 UI designs returned for 50 unseen query UIs from 25 applications (not
in my database), and a user study with 18 non-professional UI designers on five UI
design tasks. My evaluation confirms the superior performance of my approach than
the baselines based on low-level image features (color histogram and SIFT), individ-
ual component-matching heuristics and fully connected layers based neural network.
The user study participants highly appreciate the relevance, diversity and usefulness
of UI design search results by my tool in assisting their design work. They also
point out several user needs for UI design search, such as constraint-aware UI design
search, more flexible encoding of component layouts.

The contributions can be summarized as follows:

• We propose a novel deep-learning based approach using convolutional neural
network in an unsupervised manner for building a UI design search engine
that is flexible and robust in face of the great variations in UI designs.

• We build a large wireframe database of UI designs of top-downloaded An-
droid applications by exploring different wireframing approaches, and develop
a web-based search interface to implement our approach.

• Our extensive experiments demonstrate the performance, generalization and
usefulness of our approach and tool support, and point out interesting future
work.

4.2 Motivating Scenario

A start-up company needs to design the UIs for its mobile application. Like many
small companies [88], it does not have a professional UI designer due to budget
constraints. So the design work is assigned to a software developer Lucy. Lucy
has some desktop software front-end development experience, but never designs a
mobile application UI.

The first task for Lucy is to design a sign-up UI for collecting user information,
such as user name, password and email, during user registration. Based on her
prior desktop software development experience, Lucy designs a very basic sign-up
UI (Figure 4.2 (a)). It has several side-by-side TextView and EditView: TextView
for displaying a label for the information to be collected, and EditView for entering

1Since Google Play updated their app categories after my data collection, the number of categories
(25) of the crawled dataset is different from the current number (35) in Google Play.

2All UI design images in this chapter and all experiment data and results can be downloaded at my
Github repository https://github.com/chenjshnn/LabelDroid

https://github.com/chenjshnn/LabelDroid
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Figure 4.2: UI design search: benefits and challenge

the information. At the bottom, it has a button for submitting the entered user
information.

Lucy is afraid that her design is not complete, nor trendy for mobile applications.
She would like to see if other applications design sign-up UIs like hers, but she does
not want to randomly download and install applications from app market just to see
their sign-up UIs (if any). Not only is it time-consuming, but it also cannot give a
systematic view of relevant UI designs. A better solution is to feed her UI design
into an effective UI design search engine which can return similar but visual-effect-
diverse UI designs from a large database of UI designs.

Lucy tries to use such a UI design search engine to obtain a list of UI designs alike
to her initial sign-up UI design. Observing the returned UI designs, Lucy realizes
that although her initial design has the basic functionality, it does miss some nice
and important features. For example, she can add a show/hide password button
(e.g., Figure 4.2 (b)), which is convenient for users to confirm the entered password.
Furthermore, sign-up UI is a good place for users to access and acknowledge relevant
terms and conditions (e.g., Figure 4.2 (c)). Based on such observations, Lucy refines
her design as the one in Figure 4.2 (d) (changes highlighted in blue box) and search
the UI design database again.

Observing the search results, Lucy gains a realistic understanding of what a
trendy sign-up form needs, including visual components, layout options and visual
effects, and further refines her design. For example, mobile applications often have
a navigation button at the top (e.g., the back button in Figure 4.2 (b)/(c)/(e)/(f)) to
facilitate the navigation among UI pages. Furthermore, unlike the traditional side-by-
side label-text input design in desktop software, mobile applications use an editable
text with hint to achieve the same effect (Figure 4.2 (c)/(e)/(f)). This design works
better for mobile devices which have much smaller screens than desktop computer.
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Figure 4.3: An overview of my approach. It consists of two phases: training and
testing/search phases. For the training phase, I first prepare the dataset by crawling
apps from Google Play and automatically exploring UIs in each app. After that,
I use the collected metadata for each user interface to obtain the low-fidelity UI
design, i.e. the wireframe. I then design and train a CNN-based image autoencoder
model to learn the representation of each wireframe in an un-supervised manner.
For the testing/search phase, given a wireframe from the designer, I first obtain the
corresponding vector representation using the trained model, and then use kNN to

find the similar designs.

Based on these design inspirations, Lucy further refines her design as the one in Fig-
ure 4.2 (g). Comparing the UI design search results ((e.g., Figure 4.2 (h)/(i)/(j)) with
the design in Figure 4.2 (g), Lucy is now confident in her final UI wireframe. Further-
more, observing many relevant and diverse UI designs gives Lucy many inspirations
for designing high-fidelity visual effects (e.g., color system, typography) for her UIs.

As UI designs in Figure 4.2 shows, the design space of a GUI can be very huge,
with the great variations in: (1) the type of visual component used (e.g., checkbox
in many UI designs versus switch unique in Figure 4.2 (h)); (2) the number of vi-
sual components in a design (e.g., editable text and button in Figure 4.2 (g), (i) and
(j)); (3) the position and size of visual components (e.g., editable text and button in
Figure 4.2 (b) versus (h)); and (4) the layout of visual components (e.g., side-by-side
label-textinput in Figure 4.2 (a) versus up-down label-textinput in Figure 4.2 (b), or
left-checkbox + right-text in Figure 4.2 (c) versus left-text + right-switch in Figure 4.2
(h)). Achieving the above-envisioned benefits of UI design search requires the search
engine to be flexible and robust in face of the great variations, and to achieve a good
balance between similarity and variation in UI designs.
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4.3 Approach

Figure 4.3 presents the overview of my proposed deep-learning based approach for
building a UI design search engine that is flexible and robust in the face of the
great variations in UI designs. My approach consists of three main steps: 1) build
a large database of diverse, real-application UI designs using automatic GUI explo-
ration based methods (Section 4.3.1); 2) train a CNN-based wireframe autoencoder
for encoding the visual semantics of UI designs using a large database of UI design
wireframes (Section 4.3.2); and 3) embed the UI designs in a latent vector space using
the trained wireframe encoder and support wireframe-based kNN UI design search
(Section 4.3.3)

4.3.1 Large Database of Real-Application UI Designs

A large database of diverse, real-application UI designs for a variety of different
software features is necessary to expose developers to the realistic UI design space.
To that end, I adopt automatic data collection method to first build a large database of
UI designs from existing applications, and then use collected data to further construct
my wireframe dataset.

4.3.1.1 Automatic GUI Exploration

Different techniques can be used for automatically explore the GUIs of mobile ap-
plications [8; 32], web applications [52; 50], or desktop applications [96]. Although
technical details are different, these techniques work conceptually in the same way.
They automatically explore the GUI of an application by simulating user interactions
with the application, and output the GUI screenshot images and the runtime visual
component information which identifies each component’s type and coordinates in
the screenshots. During the GUI exploration process, the same GUIs may be repeat-
edly visited, but the duplicated screenshots are discarded to ensure the diversity of
the collected UI designs. To enhance the quality of the collected UI designs, fur-
ther heuristics can be implemented to filter out meaningless UIs, for example, the
home screen of mobile device, the simple UIs without much design like a UI with
only one image component. In detail, I first crawl apps from Google Play, and au-
tomatically install and run the app in the simulator. For each app, my simulator
interacts with the app by simulating the user’s actions including clicking buttons,
entering text, and scrolling the screen. When entering one new page, my tool will
take a screenshot of the current UI and dump the XML runtime code. The XML
runtime code contains all information about the current UI, including all contained
components with their corresponding bounds, class, text, boolean attributes regard-
ing executability (such as checkable, clickable and scrollable) and the hierarchical
relationship among them. To ensure the coverage of the explored UIs, I also apply
the rules set in [8], which define the probability (or weight) of each potential action-
able component to be pressed. There rules are defined as: (1) actions with higher
frequency are given lower weights since I need to give other rare actions chance to
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Figure 4.4: Bar chart of the frequency of each component contained in our dataset

perform; (2) actions which would lead to more subsequent UIs would have higher
weights in order to explore various UIs; and (3) some special actions (such as hard-
ware back and scroll) would be controlled in case they close current page or impact
others’ actions at the wrong time. The actual weights of each executable components
are given by weights(a) = (α ∗ Ta + β ∗ Cα)/γ ∗ Fa, where a, Ta, Cα are the action, the
weights of different types of actions and the number of unexplored executable com-
ponents in current UI respectively, and α, β, γ are the hyperparameters. Since this
collection process is automatic, some UIs may be revisited several times and I need
to remove duplicate data. To this end, I compare current dumped XML code files
with the collected data by comparing the hash value of GUI component sequences.

4.3.1.2 Wirification

My approach performs wireframe-based UI design search. Therefore, different from
existing reverse-engineering methods, I need to further obtain a UI wireframe for
each collected UI screenshot in the database. To that end, I have two steps. First, I
define a set of wireframe components that are essential for different kinds of user
interactions at the design level by analysing popular designer’s tools and the under-
lying implementation details of UIs. Second, I find the “right” representation of each
component by my exploration experiments.

Selection of component types. First, there are two types of Android UI compo-
nents in terms of functionality: layout components and UI control components [97].
The UI control components (e.g., button, textView, ImageView) are the visible com-
ponents I could see and interact with, while layout components (e.g., linearLayout,
relativeLayout) are used for constraining the position relationship among UI control
components. As the input of this work is just the wireframe which involves more
about the control component selection with rough position, I am concerned with
only UI control components (I briefly mention it as UI components). There are 21
UI components in our dataset, which I choose as the candidate components for the
wireframe. When converting an UI screenshot with corresponding run-time code,
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...
CompType: ImageView
Coordinate:[273,337][526,590]
...

Wirify

Figure 4.5: The visual rendering of the wireframe illustrates that top large ImageView.
The view hierarchy information contains the type and coordinates of each element
contained in the user interface. We use this information to generate the correspond-

ing wireframe for each UI.

I consider two factors: (1) Components with similar function and similar visual ef-
fect would not have much difference when designing the wireframe; (2) Components
which are rarely used may not be very useful for the UI design. For the first consid-
eration, I merge MultiAutoCompleteTextView with EditText. Both of them enable
editable text, but MultiAutoCompleteTextView has additional text auto-complete
function. However, this function can be achieved in EditText by manifesting the
underlying background code. I also merge ImageButton with Button because they
both enable users to click them and then trigger some events. In terms of the sec-
ond consideration, I ignore CalenderView, TimePicker and DatePicker components
as they appear only once in our dataset(see Figure 4.4). The low frequency may be-
cause they further separate into several children components, such as TextView and
Spinner. As a result, I leave with 16 components as my final set of wireframe units.
The 16 types of components are also widely covered by popular wireframe tools for
mobile UI design like Adobe XD [98], Fluid UI [99], Balsamiq Mockups [100]. In
the implementation of the wireframing process, I use the representation of EditText
to represent MultiAutoCompleteTextView, and the representation of Button to rep-
resent ImageButton in the wireframe. I do not draw CalenderView, TimePicker and
DatePicker in the wireframe for the above reason. For other components, I draw
them with their own representations in the wireframe. I release the source code of
the wireframe transformation in my Website3.

Wirification Process. After defining the 16 core wireframe components, a UI
screenshot is then wirified into a UI wireframe using the XML runtime code file I
dumped during the automatic explorations of apps. Note that there is no uncer-
tainty during this process as it is completely a rule-based process. I wireframe the
screenshot according to its dumped run-time code directly from the Android op-
erating system, which contains the type and coordinates of each component in a UI
screenshot. Therefore, these UI screenshots and the corresponding runtime code files
are perfectly matched, and there will be no error during the wireframe transforma-

3https://github.com/chenjshnn/LabelDroid

https://github.com/chenjshnn/LabelDroid
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tion. Figure 4.5 illustrates this high-level wirification process: the UI wireframe is
of the same size as the UI screenshot, and has a white canvas on which a wireframe
component is drawn at the same position and of the same size as each corresponding
visual component in the UI screenshot (e.g., ImageView). However, the wireframe
components ignore the color and the text/image content of the corresponding visual
components.

Exploration of the best representation way of wireframes. In addition to this,
I need to define the representation of these components to construct my final wire-
frame dataset. I do not use the default images of popular tools [98; 100; 99] as they
are not precise or general enough. Instead, I represent them with simple rectangles in
different colors, which can explicitly tell the model that those components are differ-
ent. Due to the huge design space, it is unrealistically to consider all colors and color
palettes, so I consider three typical variants to represent these visual components,
namely different grey-scale values, different colors, and different colors with differ-
ent textures. The detailed exploration setup and results of the best representation of
components will be discussed later in Section 4.5. Note that to avoid potential dis-
traction, we present the wireframe as text with different grey-scale color background
to help readers better understand these wireframes in the chapter.

4.3.2 CNN-Based Wireframe Autoencoder

Determining the relevance of UI designs is a challenging task, in that it requires en-
coding not only visual components individually, but also the visual composition of
the components in a UI as a whole. The design space of what components to use
and how to compose them in a UI is huge, and thus cannot be heuristically enumer-
ated. CNN-based model can automatically learn latent features from a large image
database, which has outperformed hand-crafted features in many computer vision
tasks [101; 95; 102]. Although I have a large database of UI designs, the relevance of
these UI designs are unknown. Therefore, I have to train a CNN model for encoding
the visual semantics of UI designs in an unsupervised way. To that end, I choose
to use a CNN-based image autoencoder architecture [103] that requires only a set
of unlabeled input images for model training. As illustrated in Figure 4.6, our au-
toencoder takes as input a UI wireframe image. It has two components: an encoder
compresses the input wireframe into a latent vector representation through convo-
lution and downsampling layers, and then a decoder reconstructs an output image
from this latent vector representation through upsampling and transposed convolu-
tion layers. The reconstructed output image should be as similar to the input image
as possible, which indicates that the latent vector captures informative features from
the input wireframe design for reconstructing it. This latent vector representation of
UI designs can then be used to measure the relevance of UI designs.

Convolution A convolution operation performs a linear transformation over an
image such that different image features become salient. According to the research
of CNN visualization [104; 101], shallow convolutional layers detects simple features
such as edges, colors and shapes, which are then composed in the deep convolutional
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Figure 4.6: The architecture of our wireframe autoencoder

layers to detect domain-specific features (e.g., the visual semantics of UI designs in
our work).

An image is represented as a matrix of pixel values, i.e., 0 ⩽ phwd ⩽ 255 where h,
w and d are the height, width and depth of the image. d = 1 for grayscale image and
d = 3 for RGB color image. The convolution of an image uses a kernel (i.e., a small
matrix like 3 × 3 × d of learnable parameters) and slide the kernel over the image’s
height and width by 1 pixel at a time. At each position, the convolution operation
multiplies the kernel element-wise with the kernel-size subregion of the image, and
sums up the values into an output value. The transposed convolution is the opposite
to the normal convolution. It multiples a value with a kernel and outputs a kernel-
size matrix. A convolutional layer can apply a number of kernels (n). The output
matrix (h × w × n) after a convolutional layer is called a feature map, which can be
fed into the subsequent network layers for further processing. Each kernel map h×w
in the feature map corresponds to a kernel, and can be regarded as an image with
some specific features highlighted.

Downsampling & Upsampling Within the encoder, downsampling (also called
pooling) layers take as input the output feature map of the preceding convolutional
layers and produce a spatially (height and width) reduced feature map. A down-
sampling layer consists of a grid of pooling units, each summarizing a region of size
z × z of the input kernel map. As the downsampling layer operates independently
on each input kernel map, the depth of the output feature map remains the same as
that of the input feature map. In our architecture, I adopt 1-max pooling [105] which
takes the maximum value (i.e., the most salient feature) in the z × z region. 1-max
pooling brings the benefits of the invariance to image shifting, rotation and scaling,
leading to a certain level of insensitivity to encoding component spatial variations in
UI designs.

Within the decoder, I use the upsampling layers which are opposite to down-
sampling. They increase the spatial size (height and width) of the feature map by
replacing each value in the input feature map with multiple values. In our architec-
ture, I adopt the nearest-neighbor interpolation [106], i.e., enrich the original pixel in
the feature map into a z × z region with the same value as the original pixel. The
upsampling layers progressively increase the spatial size of the feature map until
the decoder finally reconstructs an output wireframe of the same size as the input
wireframe.

Model Training The encoder and the decoder are trained as an end-to-end sys-
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Figure 4.7: Examples of kNN search in UI design space
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tem. Given a UI wireframe image X, the encoder compresses it into the latent vec-
tor V: ϕ : X → V where ϕ represents the function of the encoder’s convolutional
and downsampling layers. Then the decoder decodes the latent vector V into an
output wireframe image Y: ψ : V → Y where ψ represents the function of the
decoder’s upsampling and transposed convolutional layers. The target is to min-
imize the difference between the input wireframe X and the output wireframe Y:
argminϕ,ψ∥X − Y∥2. I train the wireframe autoencoder to minimize the reconstruc-
tion errors with mean square error (MSE) [107], i.e., L(X, Y) = ∥X − Y∥2. At the
training time, I optimize the MSE loss over the training dataset using stochastic gra-
dient descent [108]. The decoder backpropogates error differentials to its input, i.e.,
the encoder, allowing us to train a wireframe encoder using unlabelled input wire-
frames.

4.3.3 kNN Search in UI Design Space

As shown in Figure 4.2, by training the wireframe autoencoder, I obtain a convolu-
tional encoder which can encode an input wireframe into a latent vector represen-
tation. Given a database of automatically-collected UI screenshots (can be different
from the UI screenshots used for model training), I use this trained wireframe en-
coder to embed the UI screenshots through their corresponding wireframes into a
UI design space S. Each UI screenshot uis is represented as a latent vector V(uis)
in this UI design space. Given a query wireframe w fq drawn by the user, I also
use the trained wireframe encoder to embed w fq into a vector V(w fq) in the UI
design space. Then, I perform k-nearest neighbors (kNN) search in the UI design
space to find the UI screenshots uis whose embedding is the top-k most similar
(by Mean Square Error (MSE) in this work) to that of the query wireframe, i.e.,
argmink

uis∈S||V(uis), V(w fq)||2. Figure 4.7 shows some examples of UI design results
from my empirical studies. The fourth example shows that my model can success-
fully encode the visual semantics of rather complex UI designs.

4.4 Implementation

4.4.1 Data Collection

We develop a proof-of-concept tool for searching Android mobile application UI
designs. The backend UI design space contains 54,987 UI screenshots from 7,748
Android applications belonging to 25 application categories. We crawl the top-
downloaded Android applications from Google Play, because studies show that the
download number of an application correlates positively with the quality of the ap-
plication’s GUI design [4; 5]. There are three types of Android Apps: native, hybrid
and web apps [109]. The underlying implementations of these types are different.
Native apps use Android native widgets or widgets derived from them, hybrid apps
utilize WebView to encode their HTML/CSS part components into an Android Ap-
plication, and web apps directly use HTML/CSS/JavaScript. In this chapter, we only
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Figure 4.8: The core page of our User Interface Search Website.

collect UIs from native and hybrid applications because they are easy to download
and install from app store, while there is no such “app store” for web applications.
We remove some UIs, whose WebView takes over half of the screen. We keep small
WebView component because most of them are advertisement

We use the automatic GUI exploration method in [8] to build a large database of
UI screenshots from these Android applications, and the detailed process is stated
in Section 4.3.1.1. In total, we crawled 8,000 Android apps from Google Play with
the highest installation numbers and successfully ran 7,748 Android applications and
collected 54,987 UI screenshots. Note that some apps were discarded due to the need
of extra hardware support or the absence of some certain third party libraries in
our emulator. The median number of UI screenshots per application is three. Our
database contains very diverse UI designs (see Figure 4.3 for some randomly selected
examples). More examples can be seen in our Github repository4.

4.4.2 Model Hyperparameters

The wireframe autoencoder in our tool is configured as follows. The input wireframe
is a RGB color image and scaled to 180 × 228 for efficient processing. The encoder
uses four convolutional layers, which use 16 3x3x3 kernels, 32 3x3x16 kernels, 32
3x3x32 kernels, and 64 3x3x32 kernels, respectively. Each convolutional layer is fol-
lowed by a ReLU(x) = max(0, x) non-linear activation function, a 1-max pooling
layer with 2 × 2 pooling region, and a batch normalization layer [110]. The decoder
upsamples a value in the input kernel map into a 2 × 2 region of that value. It has
four upsampling layers. After each upsampling layer, the decoder uses a transposed
convolutional layer, which uses 32 3x3x64 kernels, 32 3x3x32 kernels, 16 3x3x32 ker-

4https://github.com/chenjshnn/WAE

https://github.com/chenjshnn/WAE
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nels, 3 3x3x16 kernels, respectively.

4.4.3 Tool Implementation

We use k=10 for KNN in all our experiments and our tool5. Figure 4.8 shows the
frontend of our tool. A demo video of this search interface is available in our Github
repository4, which demonstrates the UI design search process of our motivating sce-
nario. Using our tool, the user draws a UI wireframe on the left canvas. The tool
currently supports 16 most frequently-used types of wireframe components as shown
in Figure 4.1. We identify these wireframe components as core for Android mobile
applications by surveying Android GUI framework and popular UI design tools such
as Adobe XD [98], Fluid UI [99], Balsamiq Mockups [100] as stated in Section 4.3.1.2.
Once the user clicks search button, the system returns the top-10 (i.e., k=10 for KNN)
UI designs in the UI design space that are most similar to the wireframe on the
drawing canvas. The user can iteratively refine the wireframe and search relevant UI
designs.

4.5 Effective of the different representation of wireframes

In this section, we evaluate the effectiveness of the different representation of wire-
frames and try to answer these questions: Which kind of color palates used to repre-
sent the wireframe performs the best? Why does the performances differ?

4.5.1 Dataset

To answer these questions, we first construct several wireframe datasets using differ-
ent representations of wireframes as the training datasets. In details, we investigate
three types of representation of visual components, including different grey-scale
values, different colors and different colors with different textures. We denote these
as grey-level, color-level and texture-level wireframes respectively. An example of
these three representations can be seen in Figure 4.9. For three kinds of training
dataset, we can directly generate them using the method stated in Section 4.3.1.2.

Second, to evaluate the performance of a UI-design search method in terms of
different representations of wireframe, we require a dataset of relevant UI designs.
Unfortunately, no such datasets exist. It is also impossible to manually annotate such
a dataset in a large UI design database for large-scale experiments of a method’s
capability in face of different UI design variations. Inspired by the data augmentation
methods used for enhancing the training of deep learning models [116; 117], we
change a UI screenshot in our Android UI design database to artificially create pairs
of relevant but variant UI designs.

Based on the position/size of components in a UI screenshot (see Section 4.3.1),
we perform two types of change operations which are suitable for UI designs: com-

5We do not make K too big as developers tend not to browse a long list of recommendations [111;
112; 113; 114; 115].
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(a) Original (b) Grey-level (c) Color-level (d) Texture-level

Figure 4.9: Example of different input format. From left to right, they are original UI
images, color-level wireframe, grey-level wireframe and texture-level wireframe

ponent scaling and component removal. Component scaling is to scale down all visual
components in a UI wireframe to their center point by 5%, 10%, 15%, 20%, 25%,
or 30% pixels (round-up) of their original size (see Figure 4.10(a)) which simulates
design variations in component position/size. Component removal is to randomly
remove some visual components that cover 10%±5 %, 20%±5% or 30%±5% of the
total area of all components (see Figure 4.10(b)) which simulates design variations in
component type/number. We denote 10%±5 %, 20%±5% or 30%±5% in component
removal treatment as removal10, removal20 and removal30 for simplicity. As the ex-
amples in Figure 4.2 show, such design variations are commonly present in relevant
UI designs. In reality, these two types of design variations may occur at the same
time. But we perform the two types of changes separately to investigate a search
method’s capability of handling different types of design variations.

We randomly select two sets of screenshots from 25 categories, and each set is
comprised of 500 screenshots. Note that for each set, the proportion of the screen-
shots taken from each category is the same as the original proportion of each category
in the total database. We then apply the six scaling treatments to the first set and the
three component-removal treatments to the second set. The UI screenshots in the sec-
ond set should have at least 5 UI components so that there are some components left
after component removal. As a result, we obtain 4500 pairs of original-treated UIs,
which are considered as relevant but variant UI designs. We have nine experiments
(one for each treatment). For example, the Scale10 experiment uses the UIs obtained
by 10% component scaling as query. Note that we generate the corresponding ex-
perimental wireframe dataset three times using the above mentioned three types of
representation of wireframes, which means that we have three experimental datasets,
each of them contains 4500 pairs of original-treated UIs. Using this dataset, we eval-
uate how well a search method can retrieve the original UI in the database using a
treated UI design as query in terms of different representation of wireframes.
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(a) Original (b) Scale5 (c) Scale20 (d) Scale30

(a) Examples of component-scaling treatment

(a) Original (b) Removal10 (c) Removal20 (d) Removal30

(b) Examples of component-removal treatment

Figure 4.10: Examples of component-scaling and component-removal treatment

4.5.2 Evaluation Metrics

We evaluate the performance of a UI-design search method by two metrics: Preci-
sion@k (Pre@k) (k=1) and Mean Reciprocal Rank (MRR). The higher value a metric
is, the better a search method performs. Precision@k is the proportion of the top-k
results for a query UI that are relevant UI designs. As we consider the original UI as
the only relevant UI for a treated UI in this study, we use the strictest metric Pre@1:
Pre@1=1 if the first returned UI is the original UI, otherwise Pre@1=0. MRR com-
putes the mean of the reciprocal rank (i.e., 1/r) of the first relevant UI design in the
search results over all query UIs.

4.5.3 Results

Quantitative Results. Figure 4.11 shows the results of evaluating the three different
representation wireframes. Overall, the color-level model remains a slight advan-
tage over grey-level model in both component-scaling and component-removal treat-
ments, with a 5%-10% and 0.01-0.1 increase in Pre@1 and MRR respectively. The rea-
son may be that the color-level model mainly focuses on the boundary of contained
components in a wireframe instead of the exact pixel values, and the color-level wire-
frame input includes three channels encoding more information while the grey-level
wireframes includes only one channel. In contrast, there are large margins between
the performances of the color-level model and of the texture-level model, especially
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Figure 4.11: Results of three types of representation

(a) Original screenshot (b) Wireframe (c) Grey-level (d) Color-level (e) Texture-level

Figure 4.12: Heatmaps for the grey-level, color-level and texture-level wireframe

in component-removal treatments. This may be because the texture information is
too complex and may confuse the model after several max-pooling layers.

CNN Visualization. To better understand the impacts of different represen-
tations, we visualize these models using vanilla (i.e., standard) backpropagation
saliency [118] in Figure 4.12. We can find that the heatmap of the color-level model is
the clearest, while that of the texture-level model is the vaguest with much noise. The
grey-level heatmap is vaguer than color-level one because the differences between
component and background is small in the grey one. In conclusion, the color-level
model performs the best and we choose it as the representation of our wireframe
dataset.

4.6 Accuracy Evaluation

Our deep-learning based approach for UI design search is the first technique of its
kind. It is designed to find relevant UI designs in face of the great variations in UI de-
signs. In this evaluation, our goal is to evaluate how well our approach achieves this
design goal, and how well it compares with image-similarity based or component-
matching based UI design search. We use the color-level wireframe dataset in this
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evaluation as the effectiveness of this kind of representation have been proved in
Section 4.5.3.

4.6.1 Dataset and Metrics

To automatically evaluate and compare the effectiveness of our model and the base-
lines, we use the same treatments to construct the experimental dataset, while at
this time, we only need to consider one kind of representation of wireframes. We
again randomly select 500 UI images from 25 categories, which are different from
the data in Section 4.5, to construct the experimental dataset, and then apply the
nine treatments stated in Section 4.5.1. In total, we have 4500 pairs of original-treated
UIs, which are considered as relevant but variant UI designs. Using this dataset,
we evaluate how well a search method can retrieve the original UI in the database
using a treated UI design as query. Beside, we also take the same metrics stated in
Section 4.5.2

4.6.2 Baselines

We consider four baselines: two of them computes image similarity using simple
color histogram and advanced SIFT feature respectively, the third one implements
the component-matching heuristics proposed by GUIFetch [18], and the last one uses
the naive neural network with fully connected layers from Rico [32].

Image-feature based similarity. Color histogram is a simple image feature that
represents the distribution of colors in each RGB (red, green, blue) channel. It has
been widely used for image indexing and image retrieval [15; 119; 120]. The scale-
invariant feature transform (SIFT) [16] is an advanced image feature widely used for
image retrieval [121; 122], object recognition [16], image stitching [123]. It locates
keypoints in images and use the local features of the keypoints to represent images.
Different images can have different numbers of keypoints but each keypoint is rep-
resented in a same-dimensional feature vector. These two baselines return the top-k
most similar UI designs by the image-feature similarity.

Heuristic-based component matching. GUIFetch [18] is a recently proposed
technique for searching similar GUIs by a similarity metric computed from the matched
components between the two GUIs. It matches the components of the same type.
The similarity of the two components is calculated based on the differences of the
two components’ x-coordinate, y-coordinate, length and width. If the difference of
one factor is within a given threshold, the similarity score increases by 10, other-
wise 0. After computing the similarity score for each pair of components in the two
UIs, it uses a bipartite matching algorithm [124] to determine an optimal component
matching. The similarity scores of the matched components are summed up and then
divided by the maximum similarity value that the components in the query UI can
have (i.e., 40 multiplies the number of components in the query UI). It then returns
the top-k UIs with the highest similarity scores to the query UI.

Neural-network-based matching. Rico [32] is a UI dataset introduced to support
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various tasks in the UI design domain. It demonstrates the potential usage of UI
search based on a naive neural network with six fully connected layers within the
autoencoder framework. The latent vectors from their model are used as the features
of their wireframe dataset. In terms of inference, they first extract the latent vector of
the query wireframe, compare it with the latent vectors of their dataset, and then re-
turn the nearest neighbors as recommendations. For a fair comparison, we adopt the
same configuration mentioned in their paper for training the model on our dataset.

4.6.3 Results

Runtime Performance We run the experiments on a machine with Intel i7-7800X
CPU, 64G RAM and NVIDIA GeForce GTX 1080 Ti GPU. Take the inference time
of the Scale10 experiment as an example. Our W-AE (short for Wireframe Autoen-
coder), Rico, GUIFetch, SIFT and color-histogram take 561.2 seconds, 771.4 seconds,
7446.9 seconds, 3944.6 seconds and 523.6 seconds for 500 queries, respectively. In
general, W-AE is about 12 times and six times faster than the GUIFetch and SIFT
baselines, and is as fast as the color-histogram and Rico baselines.

Retrieval Performance Figure 4.13 shows the performance metrics of the five
methods in the nine treated-UI-as-query experiments. The color-histogram baseline
and the SIFT baseline have close performance in all component-scaling experiments.
At the component scaling ratio 10%, their performance metrics become lower than
0.2, and at the ratio 20% or higher, their performance metrics become close to 0. For
component removal experiments, the advanced SIFT feature performs better than
the simple color histogram feature. This is because the UIs treated by component
removal still have many intact components (see Figure 4.10(b)), which have the same
keypoints (and thus the same SIFT features) as their counterparts in the original
UIs. This helps to retrieve the original UIs for the component-removal-treated UIs.
Nevertheless, at the component-removal ratio 20% or higher, the performance metrics
of the SIFT baseline become lower than 0.5.

In contrast, our W-AE is much more robust in face of large component-scaling
and component-removal variations, because our CNN model can extract more ab-
stract, sophisticated UI-design related image features through deep neural network,
which are much less sensitive to image differences than low-level image features
like color histogram or SIFT. At the component scaling ratio 20%, our W-AE still
achieves 70.0% Precision@1 and 0.73 MRR. The performance of our W-AE degrades
(but is still much better than the four baselines) when the component-scaling ratio is
25% or higher. This is because many small-size visual components (such as check-
box, switch or small text) will become hardly visible even for human eyes (see Fig-
ure 4.10(a)). Similarly, the features of such extremely-small components will become
invisible to the “eye” (i.e., convolutional kernels) of the CNN model, and thus cannot
contribute to the measurement of the UI-design similarity. Although such extremely-
small UI components can test the limits of a search method in extreme conditions,
they would rarely exist in real-word UIs because they are not user friendly. At the
component-removal ratio 20%, our W-AE still achieves 84.6% Precision@1 and 0.88
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Figure 4.13: Results of nine automatic experiments

MRR. The model performance degrades (again still much better than the baselines) at
the component-removal ratio 30%. However, as the example in Figure 4.10(b) shows,
the treated UI with components covering 30% less area than the original UI may
become not-so-similar anymore to the original UI. But we still consider the original
UI as the ground truth for the treated UI in our automatic experiments, which may
result in the biased metrics for all the evaluated methods.

Our W-AE outperforms Rico on all metrics by large margins. The Rico baseline
performs better than other baselines but the performance gap between Rico and our
W-AE model keeps growing as the UI components and layout similarity decreases.
Within the component-scaling experiments, the Rico baseline is comparable to our
W-AE at the scaling ratio 5%-10%, but degrades quickly when the ratio is 25% or
higher. This is because Rico applies fully connected layers, which consider every
pixel in the UIs without filtering out meaningless and noisy ones, leading to sensi-
tivity to small input changes. In comparison, our W-AE performs convolution and
pooling strategies to extract the core features from UIs which is much more stable.
A similar observation also applies to experiments of removal treatment. The fully
connected neural network baseline achieves relatively good performance at the ratio
10% and then drops to 70.6% Precision@1 and 0.77 MRR at the ratio 20%, and 47.6%
Precision@1 and 0.57 MRR at the ratio 30%.

Among all component-scaling experiments, the GUIFetch baseline achieves com-
parable performance as our W-AE only at the scaling ratio 5%. However, the per-
formance of the GUIFetch baseline drops significantly when the component-scaling
ratio increases, and becomes close to 0 at the scaling ratio 20% or higher. This is
because of the sensitivity of the GUIFetch’s component matching rules (see Sec-
tion 4.6.2). When the component-scaling ratio is large, the position and size of the
corresponding components in the treated UI and the original UI will no longer be
close enough under the threshold, and thus will not be matched. For all component-
removal experiments, the GUIFetch baseline “unsurprisingly” achieves the perfect
performance (all metrics being 1.0). This perfect performance is because all compo-
nents left in a treated UI are intact and thus can match their counterpart components
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Query NGT Screenshot GT Screenshot

(a) Several well-aligned, close-by, same-type components as
one component

Query NGT Screenshot GT Screenshot

(b) Similarity of large components overshadows that of small
components

Query NGT Screenshot GT Screenshot

(c) Foreground components are overlooked

Figure 4.14: Examples of non-ground-truth (NGT) UI ranked before ground-truth
(GT) UI
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in the original UI. Furthermore, the GUIFetch’s similarity metric considers only the
matched versus unmatched components in the query UI. As such, the treated UI
and the original UI end up with the similarity score 1.0. However, our generaliza-
tion study shows that the component-matching heuristics and the similarity metric
of GUIFetch do not work well in reality for finding relevant UI designs for real-world
query UIs as judged by human.

Retrieval Failure Analysis To gain deeper insight into our CNN model’s ca-
pability of encoding the visual semantics of UI designs, we manually examine the
retrieval-failure cases in which the ground-truth (GT) UI is ranked after other non-
ground-truth (NGT) UIs, and identify three main causes for retrieval failures in our
automatic experiments. Figure 4.14 shows the typical examples for these three types
of retrieval failures.

First, the query UI contains several well-aligned, close-by, same-type components,
but the model returns some UIs that have some same-type but bigger and less num-
ber of components in the corresponding UI region (Figure 4.14 (a)). This reveals the
limitation of our model in distinguishing several well-aligned, close-by, same-type
components from one another. However, certain level of modeling fuzziness is im-
portant for retrieving similar UI designs with variant numbers of components (such
as Figure 4.2 (g) versus (h)/(i)/(j) and the Image Gallery example in Figure 4.16). It
is important to note that we use pairs of the original and treated UIs as relevant UI
designs in our automatic experiments, and consider all other UIs in the database as
“irrelevant” for a query UI. However, as the example in Figure 4.14 (a) shows, the
non-ground-truth UIs can still be relevant to the query UIs. Such UI design relevance
can only be judged by human, as we do in the generalization experiment and user
study.

Second, the query UI contains a UI component (usually an ImageView) covering
a large area of the UI, and the model returns some UIs that are similar to the query
UI only by that large component, but not similar in other parts of the UI designs (Fig-
ure 4.14 (b)). Such retrieval results indicate that our model does not treat the features
from small or large visual components equivalently. This inequivalent treatment is
reasonable as large components are visually more evident, but it may result in the
similarity of large components overshadowing that of small components.

Third, the query UI contains some foreground UI components overlapping a large
background component, but the returned UIs contain only the background compo-
nent without the foreground components, especially when the foreground and back-
ground components are of the same type. Overlapping components, especially the
same-type ones, can be visually indistinguishable in UI wireframes, because they
lack high-fidelity visual effects (e.g., distinct colors or images) to tell them apart.
They pose a threat to our wireframe-based UI design search. However, according
to our observation, most of UI designs with overlapping components have a back-
ground image on top of which real-functional UI components are laid. By removing
such background images when generating the UI wireframes, this threat could be
mitigated.
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In the face of component-scaling and component-removal variations in UI designs, our
CNN-based method that models the visual semantics of the whole UI designs significantly
outperforms the image-similarity based and the component-matching based methods. But
the performance of our method could be further enhanced by the capability of modeling
well-aligned, close-by components, small-size components, and overlapping components.

4.7 Generalization Evaluation

To further evaluate our model when applied to real world applications, we conduct
a human evaluation of the relevance of the UI design search results. We do this by
searching the UI design database using unseen UI designs as queries to confirm the
generalization of our model. To this end, we need to construct another dataset of un-
seen UIs. We introduce this dataset, the human evaluation procedure and the metrics
in the following. Based on the performance results of the three baseline methods in
our automatic evaluation in Section 4.6.3, we use the GUIFetch baseline in this study.
We do not use the color-histogram and SIFT baselines for two reasons. First, our au-
tomatic evaluation shows that the color-histogram and SIFT baselines have very poor
performance even in face of artificial design variations. Second, human evaluation
of the relevance of UI design search results is labor intensive, and considering two
more baselines will double the manual evaluation effort.

4.7.1 Dataset of Unseen Query UIs

The UI design database of our tool contains UI screenshots from 25 categories of
Android applications. We randomly download one more application per category
which have not been included in our proof-of-concept implementation. The same
reverse-engineering method [8] is used to obtain the UI screenshots of this newly
downloaded application. We generate the corresponding UI wireframes for the col-
lected UI screenshots as described in Section 4.3.1. We select two UI wireframes per
application and obtain 50 UI wireframes as the query UI design in this study. The
selected UI wireframes contain variant types and numbers of visual components,
according to our observation.

4.7.2 Procedure

We recruited five participants, P1, P2, P3, P4 and P5, from our school as human
annotators. They have been working on Android app development for at least two
years. For each query UI, we obtain the top-10 search results (i.e., 20 UI designs in
total) by our method and the GUIFetch baseline respectively. To avoid expectancy
bias, these 20 UI designs are randomly mixed together so that the human annotators
have no knowledge about which UI design is returned by which method and the
ranking of that UI design in the search results. The two annotators examine the UI
design search results independently. For each query UI wireframe, they classify each
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Table 4.1: Pairwise comparisons of inter-rater agreements
P1 P2 P3 P4 P5

P1 - 0.43 0.37 0.45 0.48
P2 0.43 - 0.38 0.51 0.49
P3 0.37 0.38 - 0.43 0.42
P4 0.45 0.51 0.43 - 0.56
P5 0.48 0.49 0.42 0.56 -

Table 4.2: Results of human relevance evaluation
Relaxed Moderate Strict

W-AE GUIFetch W-AE GUIFetch W-AE GUIFetch
Pre@1 0.84 0.64 0.5 0.32 0.14 0.16
Pre@5 0.77 0.65 0.47 0.34 0.20 0.13
Pre@10 0.75 0.62 0.43 0.31 0.15 0.12
MRR 0.90 0.78 0.62 0.48 0.27 0.24

of the 20 UI designs as relevant or irrelevant to the query UI. The annotators are given
the original UI screenshot of the query UI wireframe as a reference for comparison.

4.7.3 Metrics

We use two statistical methods to measure the inter-rater agreement between two
human annotators and among all five human annotators. For the first metric, we
compute Cohen’s kappa statistics [125], which is suitable for measuring the agree-
ment between two raters accessing multiple items into two categories. For the second
metric, we compute Fleiss’s kappa statistics [126], which is used to evaluate the agree-
ment between multiple raters. Based on the five annotators’ judgment of UI design
relevance, we regard a returned UI design as relevant by three strategies: strict (all
annotators label it as relevant) moderate (the majority of annotators label it as rel-
evant) and relaxed (at least one annotator labels it as relevant). We then compute
Precision@k (k=1, 5, 10) and MRR. We do not use Recall and Mean Average Precision
(MAP) in this study because it is impossible to manually annotate all relevant UI
designs for a query UI in a large UI-design database (54,987 UI screenshots in our
proof-of-concept implementation).

4.7.4 Generalization Results

All participants spent about 120 minutes to rate the relevance of the 1000 UI designs
to their corresponding query UI wireframes. Table 4.1 shows the Cohen’s kappa re-
sults of the pairwise comparisons among all five participants. For these comparisons,
most of the kappa statistics fall in the range of 0.42-0.56, which indicates a moderate
to substantial agreement. We further conducted the Fleiss’s kappa [126] to evaluate
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the agreement among all raters. The Fleiss’s kappa for the 2500 (500x5) annotations
of UI design search results by our method and the GUIFetch baseline are 0.41 and
0.51, respectively. We consider this level of agreement as acceptable because it can be
rather subjective for determining the relevance of UI designs, depending on different
background, experience, education and even culture of the human annotators.

According to our observations and interviews, there are four aspects these anno-
tators that are most concerned with, including the semantic meaning of the UI (i.e.,
functionality), the layout, the types of components and the number of components.
Some participants focus more on some aspects while others are more concerned with
other parts. Some participants are rather strict while others are relatively relaxed.
Different from manual-labelling tasks like image classification, there is no hard right
or wrong answer for checking each recommendation result. Therefore, the Cohen’s
and Fleiss’s kappa rates are not so high. However, in summary, the overall feedback
quantitative results from all participants still reflect that our method is much better
than the baseline as we discuss later.

Table 4.2 shows the performance metrics of our method and the GUIFetch base-
line. Our W-AE significantly outperforms the GUIFetch baseline in relaxed and mod-
erate strategies by a large margin, and maintains an advantage over GUIFetch in the
strict strategy. By the relaxed strategy, our W-AE has comparable performance as its
performance in the scaling-10% and removal-20% experiments (see Figure 4.13). In
the moderate strategy, our W-AE still achieves precision@1=0.5 and MRR=0.62. By
the strict strategy, our W-AE remains a small advantage over GUIFetch. Since this
study involves many variations, it is hard to reach an agreement for five participants.
The GUIFetch baseline in reality no longer has the perfect performance as it does in
the component-removal experiments. Its performance is also much worse than that
of some scaling experiments where the GUIFetch performs well.

Our CNN-based method can robustly retrieve relevant UI designs for a set of diverse, unseen
real-application query UIs. In contrast, individual component-matching based heuristics
find much fewer relevant UI designs for these real-application query UIs.

4.8 User Study

We then conduct a user study to evaluate the usefulness of our search engine and
diversity of the retrieved UI designs. We choose five UI design tasks from Daily UI
design challenge6, recruit 18 students to design these tasks, search relative UIs and
modify their draft using our tool, and then rate the usefulness and diversity of the
recommendations. In the following, we introduce the details of these five tasks, the
experiment procedure and the metrics used in this RQ.

6https://www.dailyui.co/

https://www.dailyui.co/
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4.8.1 UI Design Tasks

We select five UI design tasks from Daily UI design challenge6: sign-up, image gallery,
login, preference setting, and navigation drawer. These five UIs cover essential features of
Android mobile applications: sign-up and image gallery are typical UIs for collecting
user inputs and displaying information content, respectively. login is a common
feature for user authentication, and preference setting is commonly used for software
customization. navigation drawer is a core interaction feature to provide users the
access to all app functionalities. Furthermore, these features are easy to understand
even for non-professional UI designers who are the targeted users in this study

4.8.2 Procedure

We recruit 18 students from our school through the school’s mailing list. Although
six students have some front-end software development experience, none of the par-
ticipants have Android UI design experience. In other word, they are inexperienced
designers, same as Lucy in Section 4.2. Participants are given the five UI design
tasks and are asked to design a UI wireframe for each task. Each task is allocated
15-30 minutes. Due to the time limitation, we do not ask the participants to design
high-fidelity visual effects of the UIs. To assist their design work, the participants use
our web tool to draw the UI wireframes and search our database of 54,987 Android
UI designs (see Section 4.4). The tool returns the top-10 UI designs for a query UI.
We give the participant a tutorial of tool usage and a 15-minute warm-up session to
learn to use the tool. For each task, the participants can search as many times as they
wish. For the last search, they are asked to select the UI designs in the search results
that they consider relevant to the query UI wireframe they draw. They are also asked
to rate the overall diversity and usefulness of the search results of the last search by
5-point Likert scale (1 being the lowest and 5 being the highest). In detail, useful-
ness refers to how useful search results help participants understand/adjust design
options if they are facing real UI design tasks. For example, when participants are
searching for some UIs related building a sign-up page, the recommendations from
our search engine fit into their design requirements. Diversity refers to the diversity
of the recommendation results, for example, whether the recommended UIs involve
variant component usage/layouts or color/size/font effects which may be beyond
their expectations.

4.8.3 Metrics

We record the times of search by the participants for each task. Based on the relevance
judgment of UI design search results for the last search, we compute Precision@k
(k=1, 5, 10) and MRR. We do not report Recall and MAP as it is impossible to annotate
all relevant UI designs in our database of 54,987 UI screenshots for a user-drawn UI
wireframe.
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Figure 4.15: Boxplot for diversity and usefulness ratings by participants

4.8.4 Results

The 18 participants perform in total 168 times of search in the five UI design tasks.
Among the 90 participant-task sessions, 59 has one search, 12 has two searches, and
20 has three or more searches. The times of search is reasonable considering the short
experiment time for each task, as well as the time for drawing UI wireframes. Ac-
cording to the participants’ relevance judgment of search results, our W-AE achieves
precision@1=0.44, precision@5=0.40, precision@10=0.38, and MRR=0.59. These per-
formance metrics fall in between those for the strict and relaxed strategies in our
generation study, which demonstrates the practicality our search engine in support
of real-world UI design tasks.

Figure 4.15 shows the boxplot of diversity and usefulness ratings of the search
results by the 18 participants. For both these two aspects, the results from our model
earn the scores of a median of 4 and the majority of them have a score falling in
the range of 3 to 5, which indicates that our UI design search engine is satisfying.
Besides,among all 90 searches they rate, the participants rate the search results’ di-
versity at 4 or 5 for 57 (63.3%) searches, and rate the search results’ usefulness at 4 or
5 for 51 (56.7%) searches. The motivating scenario illustrated in Section 4.2 is actually
derived from the design work by one participant in our user study. We can observe
the diversity and usefulness of the search results for inspiring that participant’s de-
sign of sign-up UI. Figure 4.16 shows two more examples of the search results for
the design of navigation drawer and image gallery respectively. For the two user-
drawn UI wireframes, our tool returns many relevant UI designs as annotated by the
users (highlighted in blue check). Furthermore, the users give 4 or 5 ratings for the
diversity and usefulness of the search results, and provide some positive feebacks
and useful suggestions on the search results. Even for the irrelevant UI design (e.g.,
the 4th UI for the query navigation drawer wireframe), our model’s recommenda-
tion stills makes some sense as that UI is visually similar to the query wireframe.
For the image gallery search results, in addition to the top-3 UI designs that have
almost the same UI layout as the query UI wireframe, the other returned UI designs
demonstrates diverse UI layouts for designing image gallery.

Our search engine does not produce satisfactory search results for 17 searches
according to the participants’ 1 or 2 diversity and usefulness ratings. By interview-
ing the participants, we identify two main reasons for unsatisfactory search results.
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Figure 4.16: Examples of the search results in our user study (check marks indicate
that users consider a design relevant)
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First, our model tends to return the UI designs that are overall similar to the query
UIs. Although this improves the diversity of the search results which is beneficial
for gaining design inspirations, it cannot guarantee the presence of some particular
UI components or a particular component layout in the returned UI designs that the
users want (see the feedback on the search results for image gallery in Figure 4.16).
To solve this problem, we may consider more advanced model such as variational au-
toencoder [127] which can force a greater loss when some user-desired components
or component layouts in the query UI do not appear in the search results.

Second, some participants complain that our model are sometimes strict to the
location of the components in a UI. For example, when the user draws the switch
buttons in the middle region of a preference setting UI, our tool does not return
relevant UI designs. But when he moves the switch button to the right side of the
UI, our tool can return many relevant preference setting UIs. This example actually
shows that our model learns very well the characteristics of preference setting UIs
in which switch buttons usually appear on the right side of the UI. Although this
modeling capability is desirable to filter out irrelevant UIs, it may make the search of
relevant UIs too strict to a particular component layout. To relax the search results, we
may use structure similarity of images [128] or attribute graph [129] which support
more abstract encoding of the component layout in UIs, and thus more flexible UI
design search.

4.9 Threats to Validity

We discuss two types of threats of validity in our work, namely, internal validity and
external validity.

4.9.1 Internal Validity

Internal validity refers to the threat that may impact the results to causality [130].
First, our automatic evaluation allows us to conduct large-scale experiments to un-
derstand our approach’s strengths and weaknesses, but it considers only component-
scaling and component-removal variations separately. Real-world UI design varia-
tions would be much more complex. However, in order to dive into the influence
that each treatment brings, we need to control the variable and it is also not feasi-
ble to try every combination of these two treatments. To alleviate this influence, we
further conduct generalization experiments and a user study to evaluate our tool by
human participants. The performance of our approach in these studies aligns well
with that of our automatic evaluation, which gives us confidence in the practicality
of our approach for real-world UI design search.

Second, to confirm the generalization of our model, we recruited five students
with over two years of experience in Android development to manually examine
the results from our model and baselines. However, the notion of the concept of
relevance may vary among them and thus impact the results. Some of them may put
more emphasis on the semantic meaning of the UI, while some may consider a UI
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comprised of similar components as relevant. They both make sense since designers
may directly reuse the design from the same scenario, but also get inspirations from
UIs with similar layout and similar constructions. To keep the evaluation consistent
among different participants, we gave them a tutorial to learn the general meaning of
these concepts, and a 15-minute warm-up time to get familiar with the tool and the
experimental process. Besides, the Cohen’s kappa values and the Fleiss’s kappa value
indicate a moderate agreement between these participants. It is reasonable since the
variations we stated above. We involved five students to try and avoid potential
bias as best we can and analyse the results in terms of three strategies, namely strict,
moderate and relaxed strategies, as states in Section 4.7.3. We assert that by involving
five participants and analysing results in terms of these three strategies, this threat to
validity is reasonably mitigated. Albeit participants’ variance, the overall results still
show that our approach outperforms other baselines by aggregating their feedback.

4.9.2 External Validity

External validity refers to the threat that may limit the ability to generalize [130].
First, our data collection tool could collect the majority UI elements from applica-
tion, but could not capture the detailed HTML elements in the WebView component
and some elements in UIs which require some specific engines, such unity3d game
engines. Therefore, such limitation may make us lose the UI designs from web com-
ponents and game UIs. However, the GUI design in these UI which contain HTML
elements should be like those UIs which use the native elements. The different im-
plementation is merely an alternative to construct the user interface, while the un-
derlying design principles should be the same. We collect a database of 54,987 UI
screenshots from 25 categories of 7,746 top-downloaded Android applications and
we believe such large-scale database could cover the majority of UI designs. We let
the extension of our tool to collecting UI elements in WebView components and in
specific engine as the future work. Second, our approach is general, but our current
tool supports only Android UI design search. To further validate the generalizability
of our approach, not only should the current tool be further enriched with more UI
designs from further Android applications, but it should also be extended to other
applications (e.g., iOS, web application). Currently, we have already tested our mod-
el/tool on 25 categories of Android apps which demonstrates the generalization of
our tool to some extent. As the composition of a user interface is similar in terms
of these platforms, we believe that our approach can also be applied with some cus-
tomization. But this will need to be further explored in the future.

4.10 Conclusion

In this chapter, I present a novel deep learning based approach for UI design search.
At the core of our approach is a UI wireframe image autoencoder. Adopting image
autoencoder architecture removes the barrier, i.e., labeled relevant UI designs which
is impossible to prepare at large scale, for training UI design encoder. Trained using
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a large database of unlabeled UI wireframes automatically-collected from existing
applications, our wireframe encoder learns to encode more abstract and richer vi-
sual semantics of the whole UI designs than keywords, low-level image features and
component type/position/size matching heuristics, leading to superior performance
than the search methods based on these types of primitive information. Our ap-
proach demonstrates the promising usefulness in supporting developers to explore
and learn about a large UI design space. As the first technique of its kind, our em-
pirical studies also reveal technical and user needs for developing more robust and
more usable UI design search methods.



Chapter 5

Predicting Natural Language Labels
for Mobile GUI elements

5.1 Introduction

Given millions of mobile apps in Google Play [131] and App store [132], the smart
phones are playing increasingly important roles in daily life. They are conveniently
used to access a wide variety of services such as reading, shopping, chatting, etc.
Unfortunately, many apps remain difficult or impossible to access for people with
disabilities. For example, a well-designed user interface (UI) in Figure 5.1 often has
elements that don’t require an explicit label to indicate their purpose to the user. A
checkbox next to an item in a task list application has a fairly obvious purpose for
normal users, as does a trash can in a file manager application. However, to users
with vision impairment, especially for the blind, other UI cues are needed. According
to the World Health Organization(WHO) [20], it is estimated that approximately 1.3
billion people live with some form of vision impairment globally, of whom 36 million
are blind. Compared with the normal users, they may be more eager to use the
mobile apps to enrich their lives, as they need those apps to represent their eyes.
Ensuring full access to the wealth of information and services provided by mobile
apps is a matter of social justice [21].

Fortunately, the mobile platforms have begun to support app accessibility by
screen readers (e.g., TalkBack in Android [38] and VoiceOver in IOS [39]) for users
with vision impairment to interact with apps. Once developers add labels to UI
elements in their apps, the UI can be read out loud to the user by those screen
readers. For example, when browsing the screen in Figure 5.1 by screen reader, users
will hear the clickable options such as “navigate up”, “play”, “add to queue”, etc. for
interaction. The screen readers also allow users to explore the view using gestures,
while also audibly describing what’s on the screen. This is useful for people with
vision impairments who cannot see the screen well enough to understand what is
there, or select what they need to.

Despite the usefulness of screen readers for accessibility, there is a prerequisite
for them functioning well, i.e., the existence of labels for the UI components within
the apps. In detail, the Android Accessibility Developer Checklist guides developers
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Figure 5.1: Example of UI components and labels.

Figure 5.2: Source code for setting up labels for “add playlist” button (which is
indeed a clickable ImageView).

to “provide content descriptions for UI components that do not have visible text" [58]. With-
out such content descriptions1, the Android TalkBack screen reader cannot provide
meaningful feedback to a user to interact with the app.

Although individual apps can improve their accessibility in many ways, the most
fundamental principle is adhering to platform accessibility guidelines [58]. However,
according to our empirical study in Section 5.2, more than 77% apps out of 10,408
apps miss such labels for the image-based buttons, resulting in the blind’s inacces-
sibility to the apps. Considering that most app designers and developers are of no
vision issues, they may lack awareness or knowledge of those guidelines targeting
for blind users. To assist developers with spotting those accessibility issues, many
practical tools are developed such as Android Lint [22], Accessibility Scanner [23],
and other accessibility testing frameworks [24; 25]. However, none of these tools can
help fix the label-missing issues. Even if developers or designers can locate these
issues, they may still not be aware how to add concise, easy-to-understand descrip-
tions to the GUI components for users with vision impairment. For example, many
developers may add label “add” to the button in Figure 5.2 rather than “add playlist”
which is more informative about the action.

To overcome those challenges, we develop a deep learning based model to auto-
matically predict the content description. Note that we only target at the image-based
buttons in this work as these buttons are important proxies for users to interact with
apps, and cannot be read directly by the screen reader without labels. Given the

1“labels” and “content description” refer to the same meaning and we use them interchangeably in
this paper
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UI image-based components, our model can understand its semantics based on the
collected big data, and return the possible label to components missing content de-
scriptions. We believe that it can not only assist developers in efficiently filling in
the content description of UI components when developing the app, but also enable
users with vision impairment to access to mobile apps.

Inspired by image captioning, we adopt the CNN and transformer encoder de-
coder for predicting the labels based on the large-scale dataset. The experiments
show that our LabelDroid can achieve 60.7% exact match and 0.654 ROUGE-L score
which outperforms both state-of-the-art baselines. We also demonstrate that the pre-
dictions from our model is of higher quality than that from junior Android devel-
opers. The experimental results and feedbacks from these developers confirm the
effectiveness of our LabelDroid.

Despite the usefulness of screen readers for accessibility, there is a prerequisite
for them functioning well, i.e., the existence of labels for the UI components within
the apps. In detail, the Android Accessibility Developer Checklist guides developers
to “provide content descriptions for UI components that do not have visible text" [58]. With-
out such content descriptions2, the Android TalkBack screen reader cannot provide
meaningful feedback to a user to interact with the app.

Although individual apps can improve their accessibility in many ways, the most
fundamental principle is adhering to platform accessibility guidelines [58]. However,
according to our empirical study in Section 5.2, more than 77% apps out of 10,408
apps miss such labels for the image-based buttons, resulting in the blind’s inacces-
sibility to the apps. Considering that most app designers and developers are of no
vision issues, they may lack awareness or knowledge of those guidelines targeting
for blind users. To assist developers with spotting those accessibility issues, many
practical tools are developed such as Android Lint [22], Accessibility Scanner [23],
and other accessibility testing frameworks [24; 25]. However, none of these tools can
help fix the label-missing issues. Even if developers or designers can locate these
issues, they may still not be aware how to add concise, easy-to-understand descrip-
tions to the GUI components for users with vision impairment. For example, many
developers may add label “add” to the button in Figure 5.2 rather than “add playlist”
which is more informative about the action.

To overcome those challenges, we develop a deep learning based model to auto-
matically predict the content description. Note that we only target at the image-based
buttons in this work as these buttons are important proxies for users to interact with
apps, and cannot be read directly by the screen reader without labels. Given the
UI image-based components, our model can understand its semantics based on the
collected big data, and return the possible label to components missing content de-
scriptions. We believe that it can not only assist developers in efficiently filling in
the content description of UI components when developing the app, but also enable
users with vision impairment to access to mobile apps.

Inspired by image captioning, we adopt the CNN and transformer encoder de-

2“labels” and “content description” refer to the same meaning and we use them interchangeably in
this paper
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coder for predicting the labels based on the large-scale dataset. The experiments
show that our LabelDroid can achieve 60.7% exact match and 0.654 ROUGE-L score
which outperforms both state-of-the-art baselines. We also demonstrate that the pre-
dictions from our model is of higher quality than that from junior Android devel-
opers. The experimental results and feedbacks from these developers confirm the
effectiveness of our LabelDroid.

Our contributions can be summarized as follow:

• To our best knowledge, this is the first work to automatically predict the label of
UI components for supporting app accessibility. We hope this work can invoke
the community attention in maintaining the accessibility of mobile apps.

• We carry out a motivational empirical study for investigating how well the
current apps support the accessibility for users with vision impairment.

• We construct a large-scale dataset of high-quality content descriptions for ex-
isting UI components. We release the dataset3 for enabling other researchers’
future research.

5.2 Motivational Mining Study

While the main focus and contribution of this work is developing a model for pre-
dicting content description of image-based buttons, we still carry out an empirical
study to understand whether the development team adds labels to the image-based
buttons during their app development. The current status of image-based button la-
beling is also the motivation of this study. But note that this motivational study just
aims to provide an initial analysis towards developers supporting users with vision
impairment, and a more comprehensive empirical study would be needed to deeply
understand it.

5.2.1 Data Collection

To investigate how well the apps support the users with vision impairment, we ran-
domly crawl 19,127 apps from Google Play [131], belonging to 25 categories with the
installation number ranging from 1K to 100M.

We adopt the app explorer [8] to automatically explore different screens in the
app by various actions (e.g., click, edit, scroll). During the exploration, we take the
screenshot of the app GUI, and also dump the run-time front-end code which iden-
tifies each element’s type (e.g., TextView, Button), coordinates in the screenshots,
content description, and other metadata. Note that our explorer can only success-
fully collect GUIs in 15,087 apps. After removing all duplicates by checking the
screenshots, we finally collect 394,489 GUI screenshots from 15,087 apps. Within the
collected data, 278,234(70.53%) screenshots from 10,408 apps contain image-based

3https://github.com/chenjshnn/LabelDroid

https://github.com/chenjshnn/LabelDroid
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Table 5.1: Statistics of label missing situation
Element #Miss/#Apps #Miss/#Screens #Miss/#Elements
ImageButton 4,843/7,814 (61.98%) 98,427/219,302(44.88%) 241,236/423,172(57.01%)
Clickable Image 5,497/7,421 (74.07%) 92,491/139,831(66.14%) 305,012/397,790(76.68%)
Total 8,054/10,408 (77.38%) 169,149/278,234(60.79%) 546,248/820,962(66.54%)

Figure 5.3: The distribution of the category of applications with different rate of
image-based buttons missing content description

buttons including clickable images and image buttons, which forms the dataset we
analyse in this study.

5.2.2 Current Status of Image-Based Button Labeling in Android Apps

Table 5.1 shows that 4,843 out of 7,814 apps (61.98%) have image buttons without
labels, and 5,497 out of 7,421 apps (74.07%) have clickable images without labels.
Among all 278,234 screens, 169,149(60.79%) of them including 57.01% image buttons
and 76.68% clickable images within these apps have at least one element without
explicit labels. It means that more than half of image-based buttons have no labels.
These statistics confirm the severity of the button labeling issues which may signifi-
cantly hinder the app accessibility to users with vision impairment.

We then further analyze the button labeling issues for different categories of mo-
bile apps. As seen in Figure 5.3, the button labeling issues exist widely across dif-
ferent app categories, but some categories have higher percentage of label missing
buttons. For example, 72% apps in Personalization, 71.6% apps in Game, and 71.8%
apps in Photography have more than 80% image-based button without labels. Person-
alization and Photography apps are mostly about updating the screen background, the
alignment of app icons, viewing the pictures which are mainly for visual comfort.
The Game apps always need both the screen viewing and the instantaneous interac-
tions which are rather challenging for visual-impaired users. That is why developers
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Figure 5.4: Box-plot for missing rate distribution of all apps with different installation
numbers.

rarely consider to add labels to image-based buttons within these apps, although
these minority users deserve the right for the entertainment. In contrast, about 40%
apps in Finance, Business, Transportation, Productivity category have relatively more
complete labels for image-based buttons with only less than 20% label missing. The
reason accounting for that phenomenon may be that the extensive usage of these
apps within blind users invokes developers’ attention, though further improvement
is needed.

To explore if the popular apps have better performance in adding labels to image-
based buttons, we draw a box plot of label missing rate for apps with different in-
stallation numbers in Figure 5.4. There are 11 different ranges of installation number
according to the statistics in Google Play. However, out of our expectation, many
buttons in popular apps still lack the labels. Such issues for popular apps may post
more negatively influence as those apps have a larger group of audience. We also
conduct a Spearman rank-order correlation test [133] between the app installation
number and the label-missing rate. The correlation coefficient is 0.046 showing a
very weak relationship between these two factors. This result further proves that the
accessibility issue is a common problem regardless of the popularity of applications.
Therefore, it is worth developing a new method to solve this problem.

Summary: By analyzing 10,408 existing apps crawled from Google Play, we find
that more than 77% of them have at least one image-based button missing labels.
Such phenomenon is further exacerbated for apps categories highly related to pic-
tures such as personalization, game, photography . However, out of our expecta-
tion, the popular apps do not behave better in accessibility than that of unpopular
ones. These findings confirm the severity of label missing issues, and motivate our
model development for automatic predicting the labels for image-based buttons.
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Figure 5.5: Overview of our approach

5.3 Approach

Rendering a UI widget into its corresponding content description is the typical task
of image captioning. The general process of our approach is to firstly extract im-
age features using CNN [134], and encode this extracted informative features into
a tensor using an encoder module. Based on the encoded information, the decoder
module generates outputs (which is a sequence of words) conditioned on this ten-
sor and previous outputs. Different from the traditional image captioning meth-
ods based on CNN and RNN model or neural translation based on RNN encoder-
decoder [135; 136; 112], we adopt the Transformer model [137] in this work. The
overview of our approach can be seen in Figure 5.5.

5.3.1 Visual Feature Extraction

To extract the visual features from the input button image, we adopt the convo-
lutional neural network [138] which is widely used in software engineering do-
main [94; 118; 139]. CNN-based model can automatically learn latent features from a
large image database, which has outperformed hand-crafted features in many com-
puter vision tasks [95; 84]. CNN mainly contains two kinds of layers, i.e., convolu-
tional layers and pooling layers.

Convolutional Layer. A Convolution layer performs a linear transformation of
the input vector to extract and compress the salient information of input. Normally,
an image is comprised of a H ×W ×C matrix where H, W, C represent height, width,
channel of this image respectively. And each value in this matrix is in the range of 0 to
255. A convolution operation uses several small trainable matrices (called kernels) to
slide over the image along the width and height in a specified stride. Each movement
will compute a value of output at the corresponding position by calculating the sum
of element-wise product of current kernel and current sub-matrix of the image. One
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kernel performs one kind of feature extractor, and computes one layer of the final
feature map. For example, for an image I ∈ RHWC, we feed it in a convolutional
layer with stride one and k kernels, the output will have the dimension of H′×W ′× k,
where H′ and W ′ are the times of movement along height & width.

Pooling Layer. A pooling layer is used to down-sample the current input size to
mitigate the computational complexity required to process the input by extracting
dominant features, which are invariant to position and rotation, of input. It uses a
fixed length of window to slide the image with a fixed stride and summarises current
scanned sub-region to one value. Normally, the stride is same as the window’s size
so that the model could filter meaningless features while maintaining salient ones.
There are many kinds of strategy to summarise sub-region. For example, for max-
pooling, it takes the maximum value in the sub-region to summarise current patch.
For average pooling, it takes the average mean of all values in current patch as the
output value.

5.3.2 Visual Semantic Encoding

To further encode the visual features extracted from CNN, we first embed them using
a fully-connected layer and then adopt the encoder based on the Transformer model
which was first introduced for the machine translation task. We select the Trans-
former model as our encoder and decoder due to two reasons. First, it overcomes the
challenge of long-term dependencies [140], since it concentrates on all relationships
between any two input vectors. Second, it supports parallel learning because it is
not a sequential learning and all latent vectors could be computed at the same time,
resulting in the shorter training time than RNN model. Within the encoder, there are
two kinds of sublayers: the multi-head self-attention layer and the position-wise feed
forward layer.

Multi-head Self-attention Layer Given a sequence of input vectors X = [x1, x2, ..., xn]T(X ∈
Rn×dembed), a self-attention layer first computes a set of query (Q), key (K), value (V)
vectors (Q/K ∈ Rdk×n, V ∈ Rdv×n) and then calculates the scores for each position
vector with vectors at all positions. Note that image-based buttons are artificial im-
ages rendered by the compiler with the specified order i.e., from left to right, from
top to bottom. Therefore, we also consider the sequential spatial information to cap-
ture the dependency between the top-left and bottom-right features extracted by the
CNN model. For position i, the scores are computed by taking the dot product of
query vector qi with all key vectors k j(j ∈ 1, 2, ...n).

In order to get a more stable gradient, the scores are then divided by
√

dk. After
that, we apply a softmax operation to normalize all scores so that they are added
up to 1. The final output of the self-attention layer is to multiply each value vector
to its corresponding softmax score and then sums it up. The matrix formula of this
procedure is:

Sel f _Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (5.1)

where Q = We
q XT, K = We

k XT, V = We
vXT and We

q ∈ Rdk×dembed , We
k ∈ Rdk×dembed ,
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We
v ∈ Rdv×dembed are the trainable weight metrics. The so f tmax(QKT

√
dk
) can be regarded

as how each feature (Q) of the feature sequence from CNN model is influenced by
all other features in the sequence (K). And the result is the weight to all features V.

The multi-head self-attention layer uses multiple sets of query, key, value vectors
and computes multiple outputs. It allows the model to learn different representation
sub-spaces. We then concatenate all the outputs and multiply it with matrix We

o ∈
Rdmodel×hdv (where h is the number of heads) to summarise the information of multi-
head attention.

Feed Forward Layer Then a position-wise feed forward layer is applied to each
position. The feed-forward layers have the same structure of two fully connected
layers, but each layer is trained separately. The feed forward layer is represented as:

Feed_ f orward(Z) = We
2 × (We

1 × Z + be
1) + be

2 (5.2)

where We
1 ∈ Rd f f ×dmodel , We

2 ∈ Rdmodel×d f f , be
1 ∈ Rd f f , be

2 ∈ Rdmodel are the trainable
parameters of two fully connected layers.

Besides, for each sub-layer, Transformer model applies residual connection [138]
and layer normalization [141]. The equation is LayerNorm(x + Sublayer(x)), where x
and Sublayer(x) are the input and output of current sub-layer. For input embedding,
Transformer model also applies position encoding to encode the relative position of
the sequence.

5.3.3 Content Description Generation

As mentioned in Section 5.3.2, the encoder module is comprised of N stacks of layers
and each layer consists of a multi-head self-attention sub-layer and a feed-forward
layer. Similar to the encoder, the decoder module is also of M-stack layers but with
two main differences. First, an additional cross-attention layer is inserted into the
two sub-layers. It takes the output of top-layer of the encoder module to compute
query and key vectors so that it can help capture the relationship between inputs
and targets. Second, it is masked to the right in order to prevent attending future
positions.

Cross-attention Layer. Given current time t, max length of content description
L, previous outputs Sd(∈ Rdmodel×L) from self-attention sub-layer and output Ze(∈
Rdmodel×n) from encoder module, the cross-attention sub-layer can be formulated as:

Cross_Attention(Qe, Ke, Vd) = so f tmax(
Qe(Ke)T
√

dk
)Vd (5.3)

where Qe = Wd
q Z, Ke = Wd

k Z, Vd = Wd
v Sd, Wd

q ∈ Rdk×dmodel , Wd
k ∈ Rdk×dmodel and

Wd
v ∈ Rdv×dmodel . Note that we mask Sd

k = 0 (for k ≥ t) since we currently do not know
future values.

Final Projection. After that, we apply a linear softmax operation to the output of
the top-layer of the decoder module to predict next word. Given output D ∈ Rdmodel×L

from decoder module, we have Y′ = So f tmax(D ∗ Wd
o + bd

o ) and take the tth output
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Figure 5.6: Example of our dataset

of Y’ as the next predicted word. During training, all words can be computed at the
same time by masking Sd

k = 0 (for k ≥ t) with different t. Note that while training, we
compute the prediction based on the ground truth labels, i.e, for time t, the predicted
word y′t is based on the ground truth sub-sequence [y0, y1, ..., yt−1]. In comparison,
in the period of inference (validation/test), we compute words one by one, based
on previous predicted words, i.e., for time t, the predicted word y′t is based on the
ground truth sub-sequence [y′0, y′1, ..., y′t−1].

Loss Function. We adopt Kullback-Leibler (KL) divergence loss [142] (also called
as relative entropy loss) to train our model. It is a natural method to measure the
difference between the generated probability distribution q and the reference proba-
bility distribution p. Note that there is no difference between cross entropy loss and
KL divergence since Dkl(p|q) = H(p, q)− H(p), where H(p) is constant.

5.4 Implementation

To implement our model, we further extract the data analysed in Section 5.2 by
filtering out the noisy data for constructing a large-scale pairs of image-based buttons
and corresponding content descriptions for training and testing the model. Then, we
introduce the detailed parameters and training process of our model.

5.4.1 Data Preprocessing

For each screenshot collected by our tool, we also dump the runtime XML which in-
cludes the position and type of all GUI components within the screenshot. To obtain
all image-based buttons, we crop the GUI screenshot by parsing the coordinates in
the XML file. However, the same GUI may be visited many times, and different GUIs
within one app may share the same components. For example, a menu icon may
appear in the top of all GUI screenshots within the app. To remove duplicates, we
first remove all repeated GUI screenshots by checking if their corresponding XML
files are the same. After that, we further remove duplicate image-based buttons if
they are exactly same by the pixel value. But duplicate buttons may not be 100%
same in pixels, so we further remove duplicate buttons if their coordinate bounds
and labels are the same because some buttons would appear in a fixed position but
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Table 5.2: Details of our accessibility dataset.
#App #Screenshot #Element

Train 6,175 10,566 15,595
Validation 714 1,204 1,759
Test 705 1,375 1,879
Total 7,594 13,145 19,233

with a different background within the same app. For example, for the “back” button
at the top-left position in Figure 5.1, once user navigates to another news page, the
background of this button will change while the functionality remains.

Apart from the duplicate image-based buttons, we also remove low-quality la-
bels to ensure the quality of our training model. For all content description, we first
transform them into lower case and remove punctuation. Then, for non-english lan-
guages, we translate them using google translation API. We manually observe 500
randomly selected image-based buttons from Section 5.2, and summarise three types
of meaningless labels. First, the labels of some image-based buttons contain the class
of elements such as “image button”, “button with image”, etc. Second, the labels
contain the app’s name. For example, the label of all buttons in the app Ringtone

Maker is “ringtone maker”. Third, some labels may be some unfinished placehold-
ers such as “test”, “content description”, “untitled”, “none”. We write the rules to
filter out all of them, and the full list of meaningless labels can be found in our
website.

After removing the non-informative labels, we translate all non-English labels of
image-based buttons to English by adopting the Google Translate API. For each label,
we add < start >, < end > tokens to the start and the end of the sequence. We also
replace the low-frequency words with an < unk > token. To enable the mini-batch
training, we need to add a < pad > token to pad the word sequence of labels into
a fixed length. Note that the maximum number of words for one label is 15 in this
work.

After the data cleaning, we finally collect totally 19,233 pairs of image-based but-
tons and content descriptions from 7,594 apps. Note that the app number is smaller
than that in Section 5.2 as the apps with no or uninformative labels are removed. We
split cleaned dataset into training, validation4 and testing set. For each app category,
we randomly select 80% apps for training, 10% for validation and the rest 10% for
testing. Table 5.2 shows that, there are 15,595 image-based buttons from 6,175 apps
as the training set, 1,759 buttons from 714 apps as validation set and 1,879 buttons
from 705 apps as testing set. The dataset can also be downloaded from our site.

5.4.2 Model Implementation

We use ResNet-101 architecture [138] pretrained on ImageNet dataset [143] as our
CNN module. As you can see in the leftmost of Figure 5.5, it consists of a convolution

4for tuning the hyperparameters and preventing the overfitting

https://github.com/chenjshnn/LabelDroid
https://github.com/chenjshnn/LabelDroid
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layer, a max pooling layer, four types of blocks with different numbers of block
(denoted in different colors). Each type of block is comprised of three convolutional
layers with different settings and implements an identity shortcut connection which
is the core idea of ResNet. Instead of approximating the target output of current
block, it approximates the residual between current input and target output, and then
the target output can be computed by adding the predicted residual and the original
input vector. This technique not only simplifies the training task, but also reduces
the number of filters. In our model, we remove the last global average pooling layer
of ResNet-101 to compute a sequence of input for the consequent encoder-decoder
model.

For transformer encoder-decoder, we take N = 3, dembed = dk = dv = dmodel = 512,
d f f = 2048, h = 8. We train the CNN and the encoder-decoder model in an end-to-
end manner using KL divergence loss [142]. We use Adam optimizer [144] with β1 =
0.9, β2 = 0.98 and ϵ = 10−9 and change the learning rate according to the formula
learning_rate = d−0.5

model × min(step_num−0.5, step_num × warmup_steps−1.5) to train
the model, where step_num is the current iteration number of training batch and the
first warm_up training step is used to accelerate training process by increasing the
learning rate at the early stage of training. Our implementation uses PyTorch [145]
on a machine with Intel i7-7800X CPU, 64G RAM and NVIDIA GeForce GTX 1080 Ti
GPU.

5.5 Accuracy Evaluation

We first evaluate the accuracy of our proposed tool, LabelDroid, with automated
testing. We use randomly selected 10% apps including 1,879 image-based buttons
as the test data for accuracy evaluation. None of the test data appears in the model
training.

5.5.1 Evaluation Metric

To evaluate the performance of our model, we adopt five widely-used evaluation
metrics including exact match, BLEU [146], METEOR [147], ROUGE [148], CIDEr [149]
inspired by related works about image captioning. The first metric we use is exact
match rate, i.e., the percentage of testing pairs whose predicted content description
exactly matches the ground truth. Exact match is a binary metric, i.e., 0 if any differ-
ence, otherwise 1. It cannot tell the extent to which a generated content description
differs from the ground-truth. For example, the ground truth content description
may contain 4 words, but no matter one or 4 differences between the prediction and
ground truth, exact match will regard them as 0. Therefore, we also adopt other
metrics. BLEU is an automatic evaluation metric widely used in machine translation
studies. It calculates the similarity of machine-generated translations and human-
created reference translations (i.e., ground truth). BLEU is defined as the product of
n-gram precision and brevity penalty. As most content descriptions for image-based
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buttons are short, we measure BLEU value by setting n as 1, 2, 3, 4, represented as
BLEU@1, BLEU@2, BLEU@3, BLEU@4.

METEOR [147] (Metric for Evaluation of Translation with Explicit ORdering) is
another metric used for machine translation evaluation. It is proposed to fix some
disadvantages of BLEU which ignores the existence of synonyms and recall ratio.
ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [148] is a set of metric
based on recall rate, and we use ROUGE-L, which calculates the similarity between
predicted sentence and reference based on the longest common subsequence (short
for LCS). CIDEr (Consensus-Based Image Description Evaluation) [149] uses term
frequency inverse document frequency (tf-idf) [150] to calculate the weights in refer-
ence sentence sij for different n-gram wk because it is intuitive to believe that a rare
n-grams would contain more information than a common one. We use CIDEr-D,
which additionally implements a length-based gaussian penalty and is more robust
to gaming. We then divide CIDEr-D by 10 to normalize the score into the range
between 0 and 1. We still refer CIDEr-D/10 to CIDEr for brevity.

All of these metrics give a real value with range [0,1] and are usually expressed
as a percentage. The higher the metric score, the more similar the machine-generated
content description is to the ground truth. If the predicted results exactly match the
ground truth, the score of these metrics is 1 (100%). We compute these metrics using
coco-caption code [151].

5.5.2 Baselines

We set up two state-of-the-art methods which are widely used for image captioning
as the baselines to compare with our content description generation method. The
first baseline is to adopt the CNN model to encode the visual features as the encoder
and adopt a LSTM (long-short term memory unit) as the decoder for generating the
content description [140; 152]. The second baseline also adopt the encoder-decoder
framework. Although it adopts the CNN model as the encoder, but uses another
CNN model for generating the output [153] as the decoder. The output projec-
tion layer in the last CNN decoder performs a linear transformation and softmax,
mapping the output vector to the dimension of vocabulary size and getting word
probabilities. Both methods take the same CNN encoder as ours, and also the same
datasets for training, validation and testing. We denote two baselines as CNN+LSTM,
CNN+CNN for brevity.

5.5.3 Results

5.5.3.1 Overall Performance

Table 5.3 shows the overall performance of all methods. The performance of two
baselines are very similar and they achieve 58.4% and 57.4% exactly match rate
respectively. But CNN+LSTM model is slightly higher in other metrics. In con-
trast with baselines, the generated labels from our LabelDroid for 60.7% image-
based buttons exactly match the ground truth. And the average BLEU@1, BLEU@2,
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Table 5.3: Results of accuracy evaluation
Method Exact match BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr
CNN+LSTM 58.4% 0.621 0.600 0.498 0.434 0.380 0.624 0.287
CNN+CNN 57.4% 0.618 0.596 0.506 0.473 0.374 0.617 0.284
LabelDroid 60.7% 0.651 0.626 0.523 0.464 0.399 0.654 0.302

Table 5.4: Examples of wrong predictions in baselines
ID E1 E2 E3 E4 E5 E6 E7

Button

CNN+LSTM start play < unk > cycle shuffle modecycle repeat mode color swatch <unk>

CNN+CNN next previous track call cycle repeat mode next open drawer <unk> trip check

LabelDroid back previous track
exchange origin and

destination points
cycle shuffle modecycle repeat modeopen in google maps watch

BLEU@3, BLEU@4, METEOR, ROUGE-L and CIDEr of our method are 0.651, 0.626,
0.523, 0.464, 0.399, 0.654, 0.302. Compared with the two state-of-the-art baselines, our
LabelDroid outperforms in all metrics and gains about 2% to 11.3% increase. We
conduct the Mann–Whitney U test [154] between these three models among all test-
ing metrics. Since we have three inferential statistical tests, we apply the Benjamini
& Hochberg (BH) method [155] to correct p-values. Results show the improvement
of our model is significant in all comparisons (p-value<0.01)5.

To show the generalization of our model, we also calculate the performance of our
model in different app categories as seen in Figure 5.7. We find that our model is not
sensitive to the app category i.e., steady performance across different app categories.
In addition, Figure 5.7 also demonstrates the generalization of our model. Even if
there are very few apps in some categories (e.g., medical, personalization, libraries
and demo) for training, the performance of our model is not significantly degraded
in these categories.

5.5.3.2 Qualitative Performance with Baselines

To further explore why our model behaves better than other baselines, we analyze the
image-buttons which are correctly predicted by our model, but wrongly predicted by
baselines. Some representative examples can be seen in Table 5.4 as the qualitative
observation of all methods’ performance. In general, our method shows the capacity
to generate different lengths of labels while CNN+LSTM prefers medium length
labels and CNN+CNN tends to generate short labels.

Our model captures the fine-grained information inside the given image-based
button. For example, the CNN+CNN model wrongly predict “next” for the “back”
button (E1), as the difference between “back” and “next” buttons is the arrow direc-
tion. It also predicts “next” for the “cycle repeat model” button (E5), as there is one
right-direction arrow. Similar reasons also lead to mistakes in E2.

5The detailed p-values are listed in https://github.com/chenjshnn/LabelDroid

https://github.com/chenjshnn/LabelDroid
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Figure 5.7: Performance distribution of different app category

Our model is good at generating long-sequence labels due to the self-attention
and cross-attention mechanisms. Such mechanism can find the relationship between
the patch of input image and the token of output label. For example, our model
can predict the correct labels such as “exchange origin and destination points” (E3),
“open in google maps” (E6). Although CNN+LSTM can generate correct labels for
E4, E5, it does not work well for E3 and E6.

In addition, our model is more robust to the noise than the baselines. For ex-
ample, although there is “noisy” background in E7, our model can still successfully
recognize the “watch” label for it. In contrast, the CNN+LSTM and CNN+CNN are
distracted by the colorful background information with “<unk>” as the output.

5.5.3.3 Common Causes for Generation Errors

We randomly sample 5% of the wrongly generated labels for the image-based but-
tons. We manually study the differences between these generated labels and their
ground truth. Our qualitative analysis identifies three common causes of the gener-
ation errors.

(1) Our model makes mistakes due to the characteristics of the input. Some
image-based buttons are very special and it is totally different from the training
data. For example, the E1 in Table 5.5 is rather different from the normal social-
media sharing button. It aggregates the icons of whatsapp, twitter, facebook and
message with some rotation and overlap. Some buttons are visually similar to others
but with totally different labels. The “route” button (E2) in Table 5.5 includes a right
arrow which also frequently appears in “next” button. (2) Our prediction is an alter-
native to the ground truth for certain image-based buttons. For example, the label
of E3 is the “menu”, but our model predicts “open navigation drawer”. Although
the prediction is totally different from the ground truth in term of the words, they
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Table 5.5: Common causes for generation failure.
ID E1 E2 E3 E4

Cause Special case Model error Alternative Wrong ground truth

Button

LabelDroid < unk > next open navigation drawer download

Ground truth share note route menu story content image

convey the same meaning which can be understood by the blind users. (3) A small
amount of ground truth is not the right ground truth. For example, some develop-
ers annotate the E4 as “story content image” although it is a “download” button.
Although our prediction is different from the ground truth, we believe that our gen-
erated label is more suitable for it. This observation also indicates the potential of
our model in identifying wrong/uninformative content description for image-based
buttons. We manually allocate the 5% (98) failure cases of our model into these three
reasons. 54 cases account for model errors especially for special cases, 41 cases are
alternatives labels to ground truth, and the last three cases are right but with a wrong
groundtruth. It shows that the accuracy of our model is highly underestimated.

5.6 Generalization and Usefulness Evaluation

To further confirm the generalization and usefulness of our model, we randomly
select 12 apps in which there are missing labels of image-based buttons. Therefore,
all data of these apps do not appear in our training/testing data. We would like to
see the labeling quality from both our LabelDroid and human developers.

5.6.1 Procedures

To ensure the representativeness of test data, 12 apps that we select have at least 1M
installations (popular apps often influence more users), with at least 15 screenshots.
These 12 apps belong to 10 categories. We then crop elements from UI screenshots
and filter out duplicates by comparing the raw pixels with all previous cropped
elements. Finally, we collect 156 missing-label image-based buttons, i.e., 13 buttons
in average for each app.

All buttons are fed to our model for predicting their labels (denoted as M). To
compare the quality of labels from our LabelDroid and human annotators, we re-
cruit three PhD students and research staffs (denoted as A1, A2, A3) from our school
to create the content descriptions for all image-based buttons. All of them have at
least one-year experience in Android app development, so they can be regarded as
junior app developers. Before the experiment, they are required to read the accessi-
bility guidelines [58; 156] and we demo them the example labels for some randomly
selected image-based buttons (not in our dataset). During the experiment, they are
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Table 5.6: The acceptability score (AS) and the standard deviation for 12 completely
unseen apps. * denotes p < 0.05.

ID Package name Category #Installation #Image-based button AS-M AS-A1 AS-A2 AS-A3
1 com.handmark.sportcaster sports 5M - 10M 8 4.63(0.48) 3.13(0.78) 3.75(1.20) 4.38(0.99)
2 com.hola.launcher personalization 100M - 500M 10 4.40(0.92) 3.20(1.08) 3.50(1.75) 3.40(1.56)
3 com.realbyteapps.moneymanagerfree finance 1M - 5M 24 4.29(1.10) 3.42(1.29) 3.75(1.45) 3.83(1.55)
4 com.jiubang.browser communication 5M - 10M 11 4.18(1.34) 3.27(1.21) 3.73(1.54) 3.91(1.38)
5 audio.mp3.music.player media_and_video 5M - 10M 26 4.08(1.24) 2.85(1.06) 2.81(1.62) 3.50(1.62)
6 audio.mp3.mp3player music_and_audio 1M - 5M 16 4.00(1.27) 2.75(1.15) 3.31(1.53) 3.25(1.39)
7 com.locon.housing lifestyle 1M - 5M 10 4.00(0.77) 3.50(1.12) 3.60(1.28) 4.40(0.80)
8 com.gau.go.launcherex.gowidget.weatherwidget weather 50M - 100M 12 3.42(1.66) 2.92(1.38) 3.00(1.78) 3.42(1.80)
9 com.appxy.tinyscanner business 1M - 5M 13 3.85(1.23) 3.31(1.20) 3.08(1.59) 3.38(1.44)
10 com.jobkorea.app business 1M - 5M 15 3.60(1.67) 3.27(1.57) 3.13(1.67) 3.60(1.54)
11 browser4g.fast.internetwebexplorer communication 1M - 5M 4 3.25(1.79) 2.00(0.71) 2.50(1.12) 2.50(1.66)
12 com.rcplus social 1M - 5M 7 3.14(1.55) 2.00(1.20) 2.71(1.58) 3.57(1.29)

AVERAGE 13 3.97*(1.33) 3.06(1.26) 3.27(1.60) 3.62(1.52)

Figure 5.8: Distribution of app acceptability scores by human annotators (A1, A2,
A3) and the model (M).

shown the target image-based buttons highlighted in the whole UI (similar to Fig-
ure 5.1), and also the meta data about the app including the app name, app category,
etc. All participants carried out experiments independently without any discussions
with each other.

As there is no ground truth for these buttons, we recruit one professional devel-
oper (evaluator) with prior experience in accessibility service during app develop-
ment to manually check how good are the annotators’ comments. Instead of telling
if the result is right or not, we specify a new evaluation metric for human evaluators
called acceptability score according to the acceptability criterion [157]. Given one
predicted content description for the button, the human evaluator will assign 5-point
Likert scale [158; 159]) with 1 being least satisfied and 5 being most satisfied. Each
result from LabelDroid and human annotators will be evaluated by the evaluator,
and the final acceptability score for each app is the average score of all its image-
based buttons. Note that we do not tell the human evaluator which label is from
developers or our model to avoid potential bias. To guarantee if the human evalua-
tors are capable and careful during the evaluation, we manually insert 4 cases which
contain 2 intentional wrong labels and 2 suitable content description (not in 156 test-
ing set) which are carefully created by all authors together. After the experiment, we
ask them to give some informal comments about the experiment, and we also briefly
introduce LabelDroid to developers and the evaluator and get some feedback from
them.
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Table 5.7: Examples of generalization.
ID E1 E2 E3 E4 E5

Button

M next song add to favorites open ad previous song clear query

A1 change to the next song in playlist add the mp3 as favorite show more details about SVIP paly the former one clean content

A2 play the next song like check play the last song close

A3 next like enter last close

5.6.2 Results

Table 5.66 summarizes the information of the selected 12 apps and the acceptability
scores of the generated labels. The average acceptability scores for three developers
vary much from 3.06 (A1) to 3.62 (A3). But our model achieves 3.97 acceptability
score which significantly outperforms three developers by 30.0%, 21.6%, 9.7%. The
evaluator rates 51.3% of labels generated from LabelDroid as highly acceptable (5
point), as opposed to 18.59%, 33.33%, 44.23% from three developers. Figure 5.8 shows
that our model behaves betters in most apps compared with three human annotators.
These results show that the quality of content description from our model is higher
than that from junior Android app developers. Note that the evaluator is reliable as
both 2 intentional inserted wrong labels and 2 good labels get 1 and 5 acceptability
score as expected.

To understand the significance of the differences between four kinds of content
description, we carry out the Wilcoxon signed-rank test [160] between the scores of
our model and each annotator and between the scores of any two annotators. It is the
non-parametric version of the paired T-test and widely used to evaluate the difference
between two related paired sample from the same probability distribution. The test
results suggest that the generated labels from our model are significantly better than
that of developers (p-value < 0.01 for A1, A2, and < 0.05 for A3)7.

For some buttons, the evaluator gives very low acceptability score to the labels
from developers. According to our observation, we summarise four reasons account-
ing for those bad cases and give some examples in Table 5.7. (1) Some developers are
prone to write long labels for image-based buttons like the developer A1. Although
the long label can fully describe the button (E1, E2), it is too verbose for blind users
especially when there are many image-based buttons within one page. (2) Some de-
velopers give too short labels which may not be informative enough for users. For
example, A2 and A3 annotate the “add to favorite” button as “like” (E2). Since this
button will trigger an additional action (add this song to favorite list), “like” could
not express this meaning. The same reason applies to A2/A3’s labels for E2 and such
short labels do not contain enough information. (3) Some manual labels may be am-
biguous which may confuse users. For example, A2 and A3 annotate “play the last
song” or “last” to “previous song” button (E4) which may mislead users that click-
ing this button will come to the final song in the playlist. (4) Developers may make

6Detailed results are at https://github.com/chenjshnn/LabelDroid
7The p-values are adjusted by Benjamin & Hochberg method [155]. All detailed p-values are listed

in https://github.com/chenjshnn/LabelDroid

https://github.com/chenjshnn/LabelDroid
https://github.com/chenjshnn/LabelDroid
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mistakes especially when they are adding content descriptions to many buttons. For
example, A2/A3 use “close” to label a “clear query” buttons (E5). We further manu-
ally check 135 low-quality (acceptability score = 1) labels from annotators into these
four categories. 18 cases are verbose labels, 21 of them are uninformative, six cases
are ambiguous which would confuse users, and the majority, 90 cases are wrong.

We also receive some informal feedback from the developers and the evaluator.
Some developers mention that one image-based button may have different labels in
different context, but they are not very sure if the created labels from them are suit-
able or not. Most of them never consider adding the labels to UI components during
their app development and curious how the screen reader works for the app. All
of them are interested in our LabelDroid and tell that the automatic generation of
content descriptions for icons will definitely improve the user experience in using the
screen reader. All of these feedbacks indicate their unawareness of app accessibility
and also confirm the value of our tool.

5.7 Threats to Validity

We discuss two types of threats, i.e., internal validity and external validity.

5.7.1 Internal Validity

Threats to internal validity indicate the potential casual factors that may affect the
results. First, our automatic empirical study enables us to understand the current
accessibility issues in Android platform. However, the collected apps may be biased
and the collected UIs may not be comprehensive due to the limited time of explo-
ration and failure to access certain UIs. To mitigate this potential bias, we collected
a large-scale dataset comprising of 391,489 UIs from 10,408 apps among 25 app cat-
egories. We tried to collect as many apps as possible to mitigate the bias. We also
evaluated the results in different dimensions qualitatively and quantitatively to spot
and understand any anomalies. By checking the statistics and the exact data, we
found our results can be well-explained and reasonable, which gives us the confi-
dence to report them.

Second, to evaluate the generalisability and usefulness of our proposed tech-
niques, we randomly selected 12 apps as our experimental data, recruited three stu-
dents to create labels and one to evaluate the created/generated labels from par-
ticipants and our LabelDroid. The selection of the target apps may lead to biased
conclusion as this dataset is small-scale. To alleviate this, we sampled apps of di-
verse app categories and only considered apps with at least 1M installations. The
quantitative and qualitative results also align well with the results in our accuracy
evaluation, which demonstrates the soundness of the conclusion. In addition, while
we only recruited one evaluator, their view may introduce some personal biases. To
mitigate this, the evaluator we picked has prior experience in accessibility service.
We also deliberately inserted some wrong and good labels into the labels to check
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the quality of the evaluator. They passed all the tests. Moreover, we additionally ex-
amined the reasons that they rated higher or lower to see if there are any mis-ratings.
All ratings are reasonable and truth-worthy based on our observation, which mitigate
the potential bias brought by only one evaluator.

5.7.2 External Validity

Threats to external validity focus on the generalisation of the results. We conducted
our empirical study in a large-scale UI dataset on the Android platform. While our
approach is generic, the dataset may limit the ability to generalize to other plat-
forms, such as desktop apps and websites. However, existing websites and desktop
apps also tend to use the simplified icons (i.e., image-based buttons) to provide a
minimalist design style, and the website versions and mobile app versions of the
same service/app share a same set of icons. For example, people can easily find that
YouTube has thumb-up and thumb-down icons that are the same as icons in their
mobile apps. While we do not conduct experience on this kind of dataset, we believe
our tool can be generalized to these simplified icons. However, we also note that
as desktop apps and websites have a larger space compared to a small smartphone,
designers may use complicated or compound icons to demonstrate a complicated
meaning. For example, the designer may adopt a complicated camera icon with
many fine details to mimic the real texture of a camera. Our model may fail in such
cases as these kinds of complicated icons may have a different distribution from the
icons in our dataset. More experiments can be conducted to evaluate the general-
isability of our proposed techniques. In comparison, we believe that while we only
experiment on the Android platform, our model should be easily applied to iOS mo-
bile apps as these two platforms show many common icon usages. But this will need
to be further explored and confirmed. We release all our code, trained models and
dataset to assist in following studies on this.

5.8 Conclusion and Future Work

Engaging the minority especially the disability into the world is a kind of social good.
Although millions of apps in the smart phone provide such a chance, the serious
accessibility issues in mobile apps hinders the usage. In this chapter, we find that
more than 77% apps have at least one image-based button without natural-language
label which can be read for users with vision impairment. Considering that most app
designers and developers are of no vision issues, they may not understand how to
write suitable labels. To overcome this problem, we propose a deep learning model
based on CNN and transformer encoder-decoder for learning to predict the label
of given image-based buttons. The evaluation demonstrates its accuracy compared
with baselines, and also generalization and usefulness by the user study.

We hope that this work can invoke community attention in app accessibility. In
the future, we will first improve our model for achieving better quality by taking the
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app metadata into the consideration. Second, we will also try to test the quality of
existing labels by checking if the description is concise and informative.



70 Predicting Natural Language Labels for Mobile GUI elements



Chapter 6

Object Detection for Graphical
User Interface

6.1 Introduction

While Chapter 4 and Chapter 5 propose two methods to help the UI design prototyp-
ing and UI design implementation process, they have a key limitation, i.e., these two
methods assume that we can obtain the view hierarchy information of UI designs.
In this chapter, I will first discuss the limitation of the assumption and propose a
fundamental technique that can fill this gap.

GUI allows users to interact with software applications through graphical el-
ements such as widgets, images and text. Recognizing GUI elements in a GUI
is the foundation of many software engineering tasks, such as GUI automation
and testing [26; 27; 28; 29], supporting advanced GUI interactions [30; 31], GUI
search [32; 17], and code generation [33; 34; 8]. Recognizing GUI elements can
be achieved by instrumentation-based or pixel-based methods. Instrumentation-
based methods [161; 162; 163] are intrusive and requires the support of accessibility
APIs [164; 165] or runtime infrastructures [166; 167] that expose information about
GUI elements within a GUI. In contrast, pixel-based methods directly analyze the
image of a GUI, and thus are non-intrusive and generic. Due to the cross-platform
characteristics of pixel-based methods, they can be widely used for novel applica-
tions such as robotic testing of touch-screen applications [27], linting of GUI visual
effects [53] in both Android and IOS.

Pixel-based recognition of GUI elements in a GUI image can be regarded as a
domain-specific object detection task. Object detection is a computer-vision tech-
nology that detects instances of semantic objects of a certain class (such as human,
building, or car) in digital images and videos. It involves two sub-tasks: region detec-
tion or proposal - locate the bounding box (bbox for short) (i.e., the smallest rectangle
region) that contains an object, and region classification - determine the class of the
object in the bounding box. Existing object-detection techniques adopt a bottom-up
strategy: starts with primitive shapes and regions (e.g., edges or contours) and ag-
gregate them progressively into objects. Old-fashioned techniques [33; 34; 168] relies
on image features and aggregation heuristics generated by expert knowledge, while
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deep learning techniques [84; 85; 86] use neural networks to learn to extract features
and their aggregation rules from large image data.

GUI elements can be broadly divided into text elements and non-text elements
(see Figure 6.1 for the examples of Android GUI elements). Both old-fashioned
techniques and deep learning models have been applied for GUI element detec-
tion [33; 80; 34; 28; 51]. As detailed in Section 6.2.1, considering the image char-
acteristics of GUIs and GUI elements, the high accuracy requirement of GUI-element
region detection, and the design rationale of existing object detection methods, we
raise a set of research questions regarding the effectiveness features and models orig-
inally designed for generic object detection on GUI elements, the region detection
accuracy of statistical machine learning models, the impact of model architectures,
hyperparameter settings and training data, and the appropriate ways of detecting
text and non-text elements.

These research questions have not been systematically studied. First, existing
studies [33; 34; 28] evaluate the accuracy of GUI element detection by only a very
small number (dozens to hundreds) of GUIs. The only large-scale evaluation is GUI
component design gallery [51], but it tests only the default anchor-box setting (i.e.
a predefined set of bboxes) of Faster RCNN [84] (a two-stage model). Second, none
of existing studies (including [51]) have investigated the impact of training data size
and anchor-box setting on the performance of deep learning object detection models.
Furthermore, the latest development of anchor-free object detection has never been
attempted. Third, no studies have compared the performance of different methods,
for example old fashioned versus deep learning, or different styles of deep learning
(e.g., two stage versus one stage, anchor box or free). Fourth, GUI text is simply
treated by Optical Character Recognition (OCR) techniques, despite the significant
difference between GUI text and document text that OCR is designed for.

To answer the raised research questions, we conduct the first large-scale, compre-
hensive empirical study of GUI element detection methods, involving a dataset of
50,524 GUI screenshots extracted from 8,018 Android mobile applications (see Sec-
tion 6.3.2.1), and two representative old-fashioned methods (REMAUI [33] and Xi-
anyu [80]) and three deep learning models (Faster RCNN [84], YOLOv3 [85] and Cen-
terNet [86]) that cover all major method styles (see Section 6.3.2.2). Old-fashioned de-
tection methods perform poorly (REMAUI F1=0.201 and Xianyu F1=0.154 at IoU>0.9)
for non-text GUI element detection, which indicates that edge/contour features de-
signed for physical-world objects are not effective for GUI elements. IoU is the inter-
section area over union area of the detected bounding box and the ground-truth box.
Deep learning methods perform much better than old-fashioned methods, and the
two-stage anchor-box based Faster RCNN performs the best (F1=0.438 at IoU>0.9),
and demands less training data. However, even Faster RCNN cannot achieve a good
balance of the coverage of the GUI elements and the accuracy of the detected bound-
ing boxes. Compared with other deep learning methods (one stage anchor-box based
YOLO and anchor-free CenterNet), Faster RCNN demands less training data.

It is surprising that anchor-box based models are robust to the anchor-box set-
tings, and merging the detection results by different anchor-box settings can improve
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the final performance. Our study shows that detecting text and non-text GUI ele-
ments by a single model performs much worse than by a dedicated text and non-text
model respectively. GUI text should be treated as scene text rather than document
text, and the state-of-the-art deep learning scene text model EAST [169] (pretrained
without fine tuning) can accurately detect GUI text.

Inspired by these findings, we design a novel approach for GUI element detec-
tion, i.e., detect text and non-text elements separately. For non-text GUI element
detection, we adopt the simple two-stage architecture: perform region detection
and region classification in a pipeline. For non-text region detection, we prefer
the simplicity and the bounding-box accuracy of old-fashioned methods, because
it does not require training and parameter optimization. By taking into account
the unique boundary, shape, texture and layout characteristics of GUI elements, we
design a novel old-fashioned method with a top-down coarse-to-fine detection strat-
egy, rather than the current bottom-up edge/contour aggregation strategy in existing
methods [33; 80]. Our experiments show that our new old-fashioned non-text region
detection outperform the best performing model Faster RCNN, with much higher
bounding-box accuracy and GUI element coverage. For non-text region classification
and GUI text detection, we adopt the mature, easy-to-deploy ResNet50 image clas-
sifier [138] and the EAST scene text detector [169], respectively. By a synergy of our
novel old-fashioned methods and existing mature deep learning models, our new
method achieves 0.573 in F1 for all GUI elements, 0.523 in F1 for non-text GUI ele-
ments, and 0.516 in F1 for text elements in a large-scale evaluation with 25,000 GUI
images, which significantly outperform existing old-fashioned methods, and outper-
form the best deep learning model by 19.4% increase in F1 for non-text elements and
47.7% increase in F1 for all GUI elements.

This chapter contains the following contributions:

• We perform the first systematic analysis of the problem scope and solution space
of GUI element detection, and identify the key challenges to be addressed, the
limitations of existing solutions, and a set of unanswered research questions.

• We conduct the first large-scale empirical study of seven representative GUI ele-
ment detection methods, which systematically answers the unanswered questions.
We identify the pros and cons of existing methods which informs the design of
new methods for GUI element detection.

• We develop a novel approach that effectively incorporates the advantages of dif-
ferent methods and achieves the state-of-the-art performance in GUI element de-
tection.

6.2 Problem Scope and Solution Space

In this section, we identify the unique characteristics of GUIs and GUI elements,
which have been largely overlooked when designing or choosing GUI element de-
tection methods (Section 6.2.1). We also summarize representative methods for GUI
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Table 6.1: Existing solutions for non-text GUI element detection and their limitations
- Old fashioned techniques

Method Edge/contour
aggregation [33; 80; 34]

Template matching [81; 27; 26;
30]

Region
Detection

• Detect primitive edges
and/or regions, and merge
them into larger regions (win-
dows or objects)
• Merge with text regions
recognized by OCR
• Ineffective for artificial GUI
elements (e.g., images)

• Depend on manual feature
engineering (either sample
images or abstract prototypes)
• Match samples/prototypes to
detect object bounding box and
class at the same time
• Only applicable to simple and
standard GUI elements (e.g.,
button, checkbox)
• Hard to apply to GUI
elements with large variance of
visual features

Region
Classification

Heuristically distinguish im-
age, text, list, container [33; 80].
Can be enhanced by a CNN
classification like in [34]

Table 6.2: Existing solutions for non-text GUI element detection and their limitations
- Deep learning techniques

Method Anchor-box,
two stage [84; 51]

Anchor-box,
one stage [85; 28]

Anchor free [86]

Region
Detection

• Must define an-
chor boxes
• Pipeline region
detection and re-
gion classification
• Gallery D.C. [51]
is the only work
that tests the Faster
RCNN on large-
scale real GUIs,
but it uses default
settings

• YOLOv2 [87] and
YOLOv3 [85] uses
k-means to
determine anchor
boxes (k is
user-defined)
• Simultaneously
region detection
and region
classification
• [28] uses
YOLOv2; trains and
tests on artificial
desktop GUIs; only
tests on 250 real
GUIs

Never applied

Region
Classification

A CNN classifier
for region classi-
fication, trained
jointly with region
proposal network
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Figure 6.1: Characteristics of GUI elements: large in-class variance and high cross-
class similarity

element detection and point out the challenges that the unique characteristics of GUIs
and GUI elements pose to these methods (Section 6.2.2).

6.2.1 Problem Scope

Figure 6.1 and Figure 6.6 shows examples of GUI elements and GUIs in our dataset.
We observe two element-level characteristics: large in-class variance and high cross-
class similarity, and two GUI-level characteristics: packed scene and close-by ele-
ments, and mix of heterogeneous objects. In face of these characteristics, GUI element
detection must achieve high accuracy on region detection.

Large in-class variance: GUI elements are artificially designed, and their proper-
ties (e.g., height, width, aspect ratio and textures) depend on the content to display,
the interaction to support and the overall GUI designs. For example, the width of
Button or EditText depends on the length of displayed texts. ProgressBar may have
different styles (vertical, horizontal or circle). ImageView can display images with
any objects or contents. Furthermore, different designers may use different texts, col-
ors, backgrounds and look-and-feel, even for the same GUI functionality. In contrast,
physical-world objects, such as human, car or building, share many shape, appear-
ance and physical constraints in common within one class. Large in-class variance of
GUI elements pose main challenge of accurate region detection of GUI elements.

High cross-class similarity: GUI elements of different classes often have similar
size, shape and visual features. For example, Button, Spinner and Chronometer all
have rectangle shape with some text in the middle. Both SeekBar and horizontal Pro-
gressBar show a bar with two different portions. The visual differences to distinguish
different classes of GUI elements can be subtle. For example, the difference between
Button and Spinner lies in a small triangle at the right side of Spinner, while a thin
underline distinguishes EditText from TextView. Small widgets are differentiated by
small visual cues. Existing object detection tasks usually deal with physical objects
with distinct features across classes, for example, horses, trucks, persons and birds
in the popular COCO2015 dataset [170]. High cross-class similarity affects not only
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region classification but also region detection by deep learning models, as these two
subtasks are jointly trained.

Mix of heterogeneous objects: GUIs display widgets, images and texts. Widgets
are artificially rendered objects. As discussed above, they have large in-class variance
and high cross-class similarity. ImageView has simple rectangle shape but can display
any contents and objects. For the GUI element detection task, we want to detect the
ImageViews themselves, but not any objects in the images. However, the use of
visual features designed for physical objects (e.g., canny edge [82], contour map [83])
contradicts this goal. In Figure 6.6 and Figure 6.4, we can observe a key difference
between GUI texts and general document texts. That is, GUI texts are often highly
cluttered with the background and close to other GUI elements, which pose main
challenge of accurate text detection. These heterogeneous properties of GUI elements
must be taken into account when designing GUI element detection methods.

Packed scene and close-by elements: As seen in Figure 6.6, GUIs, especially
those of mobile applications, are often packed with many GUI elements, covering
almost all the screen space. In our dataset (see Section 6.3.2.1), 77% of GUIs contain
more than seven GUI elements. Furthermore, GUI elements are often placed close
side by side and separated by only small padding in between. In contrast, there
are only an average of seven objects placed sparsely in an image in the popular
COCO(2015) object detection challenge [170]. GUI images can be regarded as packed
scenes. Detecting objects in packed scenes is still a challenging task, because close-by
objects interfere the accurate detection of each object’s bounding box.

High accuracy of region detection For generic object detection, a typical correct
detection is defined loosely, e.g., by an IoU> 0.5 between the detected bounding box
and its ground truth (e.g., the PASCAL VOC Challenge standard [171]), since people
can recognize an object easily from major part of it. In contrast, GUI element detec-
tion has a much stricter requirement on the accuracy of region detection. Inaccurate
region detection may not only result in inaccurate region classification, but more
importantly it also significantly affects the downstream applications, for example,
resulting in incorrect layout of generated GUI code, or clicking on the background in
vain during GUI testing. However, the above GUI characteristics make the accurate
region detection a challenging task. Note that accurate region classification is also
important, but the difficulty level of region classification relies largely on the down-
stream applications. It can be as simple as predicting if a region is tapable or editable
for GUI testing, or if a region is a widget, image or text in order to wireframe a GUI,
or which of dozens of GUI framework component(s) can be used to implement the
region.

6.2.2 Solution Space

We summarize representative methods for GUI element detection, and raise ques-
tions that have not been systematically answered.
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6.2.2.1 Non-Text Element Detection

Table 6.2 and Table 6.1 summarize existing methods for non-text GUI element de-
tection. By contrasting these methods and the GUI characteristics in Section 6.2.1,
we raise a series questions for designing effective GUI element detection methods.
We focus our discussion on region detection, which aims to distinguish GUI ele-
ment regions from the background. Region classification can be well supported by a
CNN-based image classifier [34].

The effectiveness of physical-world visual features. Old-fashioned methods for
non-text GUI element detection rely on either edge/contour aggregation [33; 80; 34]
or template matching [81; 27; 26; 30]. Canny edge [82] and contour map [83] are
primitive visual features of physical-world objects, which are designed to capture
fine-grained texture details of objects. However, they do not intuitively correspond
to the shape and composition of GUI elements. It is error-prone to aggregate these
fine-grained regions into GUI elements, especially when GUIs contain images with
physical-world objects. Template matching methods improve over edge/contour ag-
gregation by guiding the region detection and aggregation with high-quality sample
images or abstract prototypes of GUI elements. But this improvement comes with the
high cost of manual feature engineering. As such, it is only applicable to simple and
standard GUI widgets (e.g., button and checkbox of desktop applications). It is hard
to apply template-matching method to GUI elements of mobile applications which
have large variance of visual features. Deep learning models [84; 51; 85; 28; 86] re-
move the need of manual feature engineering by learning GUI element features and
their composition from large numbers of GUIs. How effective can deep learning models
learn GUI element features and their composition in face of the unique characteristics of GUIs
and GUI elements?

The accuracy of bounding box regression. Deep learning based object detection
learns a statistical regression model to predict the bounding box of an object. This
regression model makes the prediction in the feature map of a high layer of the CNN,
where one pixel stands for a pixel block in the original image. Can such statistical
regression satisfy the high-accuracy requirement of region detection, in face of large in-class
variance of GUI element and packed or close-by GUI elements?

The impact of model architectures, hyperparameters and training data. Faster
RCNN [84] and YOLOv2 [85]) have been applied to GUI element detection. These
two models rely on a set of pre-defined anchor boxes. The number of anchor boxes
and their height, width and aspect ratio are all the model hyperparameters, which
are either determined heuristically [84] or by clustering the training images using
k-means and then using the metrics of the centroid images [85] Considering large
in-class variance of GUI elements, how sensitive are these anchor-box based models to the
definition of anchor boxes, when they are applied to GUI element detection? Furthermore,
the recently proposed anchor-free model (e.g., CenterNet [86]) removes the need
of pre-defined anchor-boxes, but has never been applied to GUI element detection.
Can anchor-free model better deal with large in-class variance of GUI elements? Last but
not least, the performance of deep learning models heavily depends on sufficient
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training data. How well these models perform with different amount of training data?

6.2.2.2 Text Element Detection

Existing methods either do not detect GUI texts or detect GUI texts separately from
non-text GUI element detection. They simply use off-the-shelf OCR tools (e.g., Tesser-
act [172]) for GUI text detection. OCR tools are designed for recognizing texts in
document images, but GUI texts are very different from document texts. Is OCR re-
ally appropriate for detecting GUI texts? Considering the cluttered background of GUI texts,
would it better to consider GUI text as scene text? Can the deep learning scene text model
effectively detect GUI texts? Finally, considering the heterogeneity of GUI widgets,
images and texts, can a single model effectively detect text and non-text elements?

6.3 Empirical Study of Existing Object Detection Models

To answer the above unanswered questions, we conduct the first large-scale em-
pirical study of using both old-fashioned and deep learning methods for GUI el-
ement detection. Our study is done on a dataset of 50,524 GUI screenshots from
the Rico dataset [32], which were extracted from 8,018 Android mobile applications
from 27 application categories. Our study involves a systematic comparison of two
old-fashioned methods, including the representative method REMAUI [33] in the lit-
erature and the method Xianyu [80] recently developed by the industry, and three
popular deep learning methods that cover all major model design styles, includ-
ing two anchor-box based methods - Faster RCNN [84] (two stage style) and YOLO
V3 [85] (one stage style) and one one-stage anchor-free model CenterNet [86]. For
GUI text detection, we compare OCR tool Tesseract [172] and scene text detector
EAST [169], and compare separate and unified detection of text and non-text GUI
elements.

6.3.1 Research Questions

As region classification can be well supported by a CNN-based image classifier [34],
the study focuses on three research questions (RQs) on region detection in GUI ele-
ment detection task:

• RQ1 Performance: How effective can different methods detect the region of non-
text GUI elements, in terms of the accuracy of predicted bounding boxes and the
coverage of GUI elements?

• RQ2 Sensitivity: How sensitive are deep learning techniques to anchor-box set-
tings and amount of training data?

• RQ3 Text detection: Does scene text recognition fit better for GUI text detection
than OCR technique? Which option, separated versus unified text and non-text
detection, is more appropriate?
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Figure 6.2: GUI elements distribution in our dataset

6.3.2 Experiment Setup

6.3.2.1 Dataset

We leverage Rico dataset [32] to construct our experimental dataset. In this study, we
consider 15 types of commonly used GUI elements in the Android Platform (see ex-
amples in Figure 6.1). The Rico dataset contains 66,261 GUIs, and we filter out 15,737
GUIs. Among them, 5,327 GUIs do not belong to the app itself, they are captured
outside the app, such as Android home screen, a redirection to the social media lo-
gin page (e.g. Facebook) or to a browser. We identify them by checking whether the
package name in the metadata for each GUI is different from the app’s true pack-
age name. 2,066 GUIs do not have useful metadata, which only contain elements
that describe the layout, or elements with invalid bounds, or do not have visible leaf
elements. 709 of them do not contain any of the 15 elements. The rest 7,635 GUIs
are removed because they only contain text elements or non-text elements. To avoid
potential noise/bias, we also remove them. As a result, we obtain 50,524 GUI screen-
shots that contain at least one of these 15 types of GUI elements. These GUIs are from
8,018 Android mobile applications of 27 categories. These GUIs contain 923,404 GUI
elements, among which 426,404 are non-text elements and 497,000 are text elements.
We remove the standard OS status and navigation bars from all GUI screenshots as
they are not part of application GUIs. We obtain the bounding-box and class of the
GUI elements from the corresponding GUI metadata. Figure 6.2 shows the distribu-
tion of GUIs per application and the number of GUI elements per GUI. Compared
with the number of objects per image in COCO2015, our GUI images are much more
packed. We split these 50,524 GUIs into train/validation/test dataset with a ratio of
8:1:1 (40K:5K:5k). All GUIs of an application will be in only one split to avoid the bias
of “seen samples” across training, validation and testing. Due to the GPU limitation
and the large number of experiments to run, we perform 5-fold cross-validation in
all the experiments.
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6.3.2.2 Baselines

The baseline methods used in this study include:
REMAUI [33] detects GUI elements with a bottom-up strategy, and detects text

and non-text elements separately. For text elements, it uses the OCR tool Tesser-
act [172], and filters out some false positive text regions based on some predefined
heuristics regarding width, height, area and the content. For non-text elements, it de-
tects the structural edge of GUI elements using Canny edge detection [82]. REMAUI
then performs edge merging, obtains the contours and the bounding box of the GUI
elements by merging partial overlapping regions. Finally, the text and non-text re-
gions are merged based on some predefined rules to obtain a set of GUI elements.
We use REMAUI tool [173] provided by its authors in our experiments.

Xianyu [80] is a tool developed by the Alibaba to generate code from GUI im-
ages. We only use the element detection part of this tool. Xianyu binarizes the image
and performs horizontal/vertical slicing, i.e., cutting the whole images horizontal-
ly/vertically in half, recursively to obtain the GUI elements. It uses Laplacian Edge
Detection to detect edges and contours in the binarized image and applies flood fill
algorithm [174] to identify the connected regions and remove noises from complex
background.

Faster RCNN [84] is a two-stage anchor-box-based deep learning technique for
object detection. It first generates a set of region proposals by a region proposal net-
work (RPN), also called as region of interests (RoIs), which likely contain objects. In
particular, it feeds the image into the convolutional neural network (CNN) to extract
the feature map, then uses the region proposal network (RPN) to generate the RoIs.
RPN uses a fixed set of user-defined boxes with different scales and aspect ratios
(called anchor boxes) and computes these anchor boxes in each point in the feature
map. For each box, RPN then computes an objectness score to determine whether
it contains an object or not, and regresses it to fit the actual bounding box of the
contained object. The second stage is a CNN-based image classifier that determines
the object class in the RoIs.

YOLOv3 [85] is an one-stage anchor-box-based object detection technique. Differ-
ent from the manually-defined anchor box of Faster-RCNN, YOLOv3 uses k-means
method to cluster the ground truth bounding boxes in the training dataset, and takes
the box scale and aspect ratio of the k centroids as the anchor boxes. It also extracts
image features using CNN, and for each grid of the feature map, it generates a set of
bounding boxes. For each box, it computes the objectness scores, regresses the box
coordinates and classifies the object in the bounding box.

CenterNet [86] is an one-stage anchor-free object detection technique. Instead
of generating bounding box based on the predefined anchor boxes, it predicts the
position of the top-left and bottom-right corners and the center of an object, and
then assembles them to get the bounding box of an object. It matches top-left corners
with bottom-right corners if their distance is less than a threshold, and only keep
pairs whose center point has a centerness score higher than a threshold.

Tesseract [172] is an OCR tool for document texts. It consists of two steps: text
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line detection and text recognition. Only the text line detection is relevant to our
study. The Tesseract’s text line detection is old-fashioned. It first converts the image
into binary map, and then performs a connected component analysis to find the out-
lines of the elements. These outlines are then grouped into blobs, which are further
merged together. Finally, it merges text lines that overlap at least half horizontally.

EAST [169] is a deep learning technique to detect text in natural scenes. An
input image is first fed into a feature pyramid network. EAST then computes six
values for each point based on the final feature map, namely, an objectness score,
top/left/bottom/right offsets and a rotation angle. For this baseline, we directly use
the pre-trained model to detect texts in GUIs without any fine-tuning.

6.3.2.3 Model Training

For Faster RCNN, YOLOv3 and CenterNet, we initialize their parameters using the
corresponding pretrained models of COCO object detection dataset and finetune all
parameters using our GUI training dataset. We train each model for 160 iterations
with a batch size of 8, and use Adam optimizer. Faster RCNN uses ResNet-101[138]
as the backbone. YOLOv3 uses Darknet-53[85] as the backbone. CenterNet uses
Hourglass-52[175] as the backbone. For Xianyu and REMAUI, we perform the pa-
rameter tuning and use the best setting in all our evaluation. We perform non-
maximum suppression (NMS) to remove highly-duplicated predictions in all experi-
ments. It keeps the prediction with the highest objectness in the results and removes
others that have a IoU with the selected one over a certain value. We find the best
object confidence threshold for each model using the validation dataset.1

6.3.2.4 Metrics

For region detection evaluation, we ignore the class prediction results and only eval-
uate the ability of different methods to detect the bounding box of GUI elements. We
use precision, recall and F1-score to measure the performance of region detection.
Precision is TP/(TP + FP) and recall is TP/(TP + FN). True positive (TP) refers
to a detected bounding box which matches a ground truth box. False positive (FP)
refers to a detected box which does not match any ground truth boxes. False negative
(FN) refers to a ground truth bounding box which is not matched by any detected
boxes. We compute F1-score as: F1 = (2 × Precision × Recall)/(Precision + Recall).
TP is determined based on the Intersection over Union (IoU) of the two boxes. IoU is
calculated by dividing the intersection area I of the two boxes A and B by the union
area of the two boxes, i.e., I/(A + B − I). A detected box is considered as a TP if
the highest IoU of this box with any ground-truth boxes in the input GUI image is
higher than a predefined IoU threshold. Each ground truth box can only be matched
at most once and NMS technique is used to determine the optimal matching results.
Considering the high accuracy requirement of GUI element detection, we take the
IoU threshold 0.9 in most of our experiments.

1All codes and models are released at our GitHub repository.

https://github.com/chenjshnn/Object-Detection-for-Graphical-User-Interface
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Figure 6.3: Performance at different IoU thresholds

6.3.3 Results - RQ1 Performance

This section reports the performance of five methods for detecting the regions of non-
text GUI elements in a GUI. In this RQ, Faster RCNN uses the customized anchor-box
setting and YOLOv3 uses k=9 (see Section 6.3.4.1).

6.3.3.1 Trade-off between Bounding-Box Accuracy and GUI-Element Coverage

Figure 6.3 shows the performance of five methods at different IoU thresholds. The F1-
score of all deep learning models drop significantly when the IoU threshold increases
from 0.5 to 0.9, with the 31%, 45% and 28% decrease for Faster-RCNN, YOLOv3 and
CenterNet respectively. The bounding box of a RoI is predicted by statistical re-
gression in the high-layer feature map of the CNN, where one pixel in this abstract
feature map corresponds to a pixel block in the original image. That is, a minor
change of the predicted coordinates in the abstract feature map will lead to a large
change in the exact position in the original image. Therefore, deep learning models
either detect more elements with loose bounding boxes or detect less elements with
accurate bounding boxes. In contrast, the F1-score of REMAUI and Xianyu does not
drop as significantly as that of deep learning models as the IoU threshold increases,
but their F1-scores are much lower than those of deep learning models. This sug-
gests that the detected element regions by these old-fashioned methods are mostly
noise, but when they do locate real elements, the detected bounding boxes are fairly
accurate.

6.3.3.2 Performance Comparison

We observe that if the detected bounding box has <0.9 IoU over the corresponding
GUI element, not only does the box miss some portions of this element, but it also
includes some portions of adjacent elements due to the packed characteristic of GUI
design. Therefore, we use IoU> 0.9 as an acceptable accuracy of bounding box
prediction. Table 6.3 shows the overall performance of the five methods at IoU>0.9
threshold for detecting non-text GUI elements.
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Table 6.3: Performance: non-text element detection (IoU>0.9)
Method #bbox Precision Recall F1
REMAUI 54,903 0.175 0.238 0.201
Xianyu 47,666 0.142 0.168 0.154
Faster-RCNN 39,995 0.440 0.437 0.438
YOLOv3 36,191 0.405 0.363 0.383
CenterNet 36,096 0.424 0.380 0.401

Xianyu performs the worst, with all metrics below 0.17. We observe that Xianyu
works fine for simple GUIs, containing some GUI elements on a clear or gradient
background (e.g., Xianyu-(c)/(d) in Figure 6.6). When the GUI elements are close-by
or placed on a complex background image, Xianyu’s slicing method and its back-
ground de-noising algorithms do not work well. For example, in Xianyu-(a)/(b) in
Figure 6.6, it misses most of GUI elements. Xianyu performs slicing by the horizontal
or vertical lines across the whole GUI. Such lines often do not exist in GUIs, espe-
cially when they have complex background images (Xianyu-(a)) or the GUI elements
are very close-by (Xianyu-(b)). This results in many under-segmentation of GUI im-
ages and the misses of many GUI elements. Furthermore, Xianyu sometimes may
over-segment the background image (Xianyu-(a)), resulting in many noise non-GUI-
element regions.

REMAUI performs better than Xianyu, but it is still much worse than deep learn-
ing models. It suffers from similar problems as Xianyu, including ineffective back-
ground de-noising and over-segmentation. It outperforms Xianyu because it merges
close-by edges to construct bounding boxes instead of the simple slicing method
by horizontal/vertical lines. However, for GUIs with image background, its edge
merging heuristics often fail due to the noisy edges of physical-world objects in the
images. As such, it often reports some non-GUI-element regions of the image as
element regions, or erroneously merges close-by elements, as shown in Figure 6.6.
Furthermore, REMAUI merges text and non-text region heuristically, which are not
very reliable either (see the text elements detected as non-text elements in REMAUI-
(b)/(c)/(d)).

Deep learning models perform much better than old fashioned methods. In Fig-
ure 6.6, we see that they all locate some GUI elements, even those overlaying on
the background picture. These models are trained with large-scale data, “see” many
sophisticated GUIs, and thus can locate GUI elements even in a noisy background.
However, we also observe that the detected bounding boxes by deep learning models
may not be very accurate, as they are estimated by a statistical regression model. The
two-stage model Faster RCNN outperforms the other two one-stage models YOLOv3
and CenterNet. As discussed in Section 6.2.1, GUI elements have large in-class vari-
ance and high cross-class similarity. Two stage models perform region detection
and region classification in a pipeline so that these two steps are less mutually in-
terfered,while one-stage models perform region detection and region classification
simultaneously.
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Table 6.4: Impact of anchor-box settings (IoU>0.9)
Setting Precision Recall F1
Faster RCNN Default 0.433 0.410 0.421
Faster RCNN Customized 0.440 0.437 0.438
Faster RCNN Union 0.394 0.469 0.428
Faster RCNN Intersection 0.452 0.460 0.456
YOLOv3 k=5 0.394 0.333 0.361
YOLOv3 k=9 0.405 0.363 0.383
YOLO Union 0.372 0.375 0.373
YOLO Intersection 0.430 0.424 0.427

Between the two one-stage models, anchor-free CenterNet outperforms anchor-
box-based YOLOv3 at IoU>0.9. However, YOLOv3 performs better than CenterNet
at lower IoU thresholds (see Figure 6.3). Anchor-free model is flexible to handle the
large in-class variance of GUI elements and GUI texts (see more experiments on GUI
text detection in Section 6.3.5). However, as shown in Figure 6.6, this flexibility is
a double-blade, which may lead to less accurate bounding boxes, or bound several
elements in one box (e.g., CenterNet-(a)/(d)). Because GUI elements are often close-
by or packed in a GUI, CenterNet very likely assembles the top-left and bottom-
right corners of different GUI elements together, which leads to the wrong bounding
boxes.

Deep learning models significantly outperform old-fashioned detection methods. Two-stage
anchor-box-based models perform the best in non-text GUI element detection task. But it
is challenging for the deep learning models to achieve a good balance between the accuracy
of the detected bounding boxes and the detected GUI elements, especially for anchor-free
models.

6.3.4 Results - RQ2 Sensitivity

This section reports the sensitivity analysis of the deep learning models for region
detection from two aspects: anchor-box settings and amount of training data.

6.3.4.1 Anchor-Box Settings

For Faster RCNN, we use two settings: the default setting (three anchor-box scales -
128, 256 and 512, and three aspect ratios - 1:1, 1:2 and 2:1); and the customized set-
ting (five anchor-box scales - 32, 64, 128, 256 and 512, and four aspect (width:height)
ratios - 1:1, 2:1, 4:1 and 8:1). This customized setting is drawn from the frequent
scales and aspect ratios of the GUI elements in our dataset. Considering the size of
GUI elements, we add two small scales 32 and 64. Furthermore, we add two more
aspect ratios to accommodate the large variance of GUI elements. For YOLOv3, we
use two k settings: 5 and 9, which are commonly used in the literature. YOLOv3 au-
tomatically derives anchor-box metrics from k clusters of GUI images in the dataset.
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Table 6.5: Impact of amount of training data (IoU>0.9)
Method Size Precision Recall F1

Faster-RCNN
2K 0.361 0.305 0.331
10K 0.403 0.393 0.398
40K 0.440 0.437 0.438

YOLOv3
2K 0.303 0.235 0.265
10K 0.337 0.293 0.313
40K 0.405 0.363 0.383

CenterNet
2K 0.319 0.313 0.316
10K 0.328 0.329 0.329
40K 0.424 0.380 0.401

Table 6.4 shows the model performance (at IoU>0.9) of these different anchor-
box settings. It is somehow surprising that there is only a small increase in F1 when
we use more anchor-box scales and aspect ratios. We further compare the TPs of dif-
ferent anchor-box settings. We find that 55% of TPs overlap between the two settings
for Faster RCNN, and 67% of TPs overlap between the two settings for YOLOv3.
As the scales and aspect ratios of GUI elements follow standard distributions, us-
ing a smaller number of anchor boxes can still cover a large portion of the element
distribution.

As different settings detect some different bounding boxes, we want to see if
the differences may complement each other. To that end, we adopt two strategies
to merge the detected boxes by the two settings: union strategy and intersection
strategy. For two overlapped boxes, we take the maximum objectness of them, and
then merge the two boxes by taking the union/intersection area for union/interaction
strategy. For the rest of the boxes, we directly keep them. We find the best object
confidence threshold for the combined results using the validation dataset. The union
strategy does not significantly affect the F1, which means that making the bounding
boxes larger is not very useful. In fact, for the boxes which are originally TPs by one
setting, the enlarged box could even become FPs. However, the intersection strategy
can boost the performance of both Faster RCNN and YOLOv3, achieving 0.456 and
0.427 in F1 respectively. It is reasonable because the intersection area is confirmed by
the two settings, and thus more accurate.

6.3.4.2 Amount of Training Data.

In this experiment, Faster RCNN uses the customized anchor-box setting and YOLOv3
uses k=9. We train the models with 2K, 10K, 40K training data separately, and test
the models on the same 5k GUI images. Each 2k- or 10k experiment uses randomly
selected 2k or 10k GUIs in the 40k training data. As shown in Table 6.5, the perfor-
mance of all models drops as the training data decreases. This is reasonable because
deep learning models cannot effectively learn the essential features of the GUI ele-
ments without sufficient training data. The relative performance of the three models
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Table 6.6: Impact of GUI-element location (2k data)
Method Location Precision Recall F1

Faster-RCNN
Top 0.505 0.453 0.477
Middle 0.324 0.268 0.293
Bottom 0.288 0.239 0.261

YOLOv3
Top 0.477 0.432 0.453
Middle 0.240 0.176 0.203
Bottom 0.247 0.189 0.210

CenterNet
Top 0.396 0.422 0.409
Middle 0.325 0.294 0.309
Bottom 0.227 0.334 0.270

is consistent at the three training data sizes, with YOLOv3 always being the worst.
This indicates the difficulty in training one-stage anchor-box model. Faster RCNN
with 2k (or 10k) training data achieves the comparable or higher F1 than that of
YOLOv3 and CenterNet with 10k (or 40k) training data. This result further con-
firms that two-stage model fits better for GUI element detection tasks than one-stage
model, and one-stage anchor-free model performs better than one-stage anchor-box
model.

6.3.4.3 Location of GUI Elements

An Android mobile application generally has a top app bar and the main content.We
also observe that the bottom area of the GUI sometimes has partial elements, which
are not fully shown in the current page. In this experiment, we want to see the
GUI elements from which parts of the GUIs are most difficult to detect. Based on
the observation of the height of the app bar and the bottom partial elements in
our dataset, we split a GUI into three parts top:middle:bottom by a height ratio of
15:70:15. A GUI element belongs to a part if its bottom line falls into that part. We
train and test the models using the same experiment settings as in Section 6.3.4.2. We
still train and test the model on the whole GUI images, but we examine the detection
accuracy of the GUI elements in the top, main and bottom parts separately.

Table 6.6 shows the model performance (trained with 2k data) for different parts
of GUIs. All the models perform the best for the top part of the GUIs. The top
part of the GUIs often contains GUI elements like back button, hamburger menu,
etc., which makes the top part similar across different applications. As such, with
as little as 2k training data, Faster RCNN, YOLOv3 and CenterNet achieve F1 0.477,
0.453 and 0.409 for the top part of GUIs, respectively. In contrast, the middle and
bottom portions of GUIs is much more diverse, and thus the models, especially
YOLOv3, cannot learn sufficient features to make accurate detection with just 2k
training data. The bottom part seems to be the most difficult part to learn due to
the presence of partially shown GUI elements. The much lower F1-scores (around
0.21) of YOLOv3 for the main and bottom parts further confirms the difficulty in
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effectively training one-stage anchor-box-based model. The results at 10k and 40k
training data are consistent with those presented for 2k data. Note that the top part
of GUIs usually contains only several GUI elements. Therefore, although the models
can make much more accurate detection for the GUI elements in the top part, this
does not not significantly boost the overall performance for the whole GUI.

Considering the fact that UIs often have similar items in the top side of the whole
UI (e.g, the back button at the top-right position), this feature may enable models
with a small training data to achieve relatively good results. To confirm this, we
split a UI into three parts from top to bottom in a height ratio of 15:70:15. As seen
in Table 6.6, Faster RCNN, YOLO-v3 and CenterNet perform well in the top part of
UIs, achieving 0.477, 0.453 and 0.409 in F1 score respectively, but fall short of making
a good prediction in the middle and bottom parts of UIs, where elements are of
various size, shape, content and style. A small amount of data could not provide
enough information for models to filter out noise and learn the essence of data.

Anchor-box settings do not significantly affect the performance of anchor-box-based models,
because a small number of anchor boxes can cover the majority of GUI elements. Two-stage
anchor-box-based model is the easiest to train, which requires one magnitude less training
data to achieve comparable performance as one-stage model. One stage anchor-box model is
the most difficult to train.

6.3.5 Results - RQ3 Text Detection

6.3.5.1 Separated versus Unified Text/Non-Text Element Detection

All existing works detect GUI text separately from non-text elements. This is intuitive
in that GUI text and non-text elements have very different visual features. However,
we were wondering if this is a must or text and non-text elements can be reliably
detected by a single model. To answer this, we train Faster RCNN, YOLOv3 and
CenterNet to detect both text and non-text GUI elements. Faster RCNN uses the
customized anchor-box setting and YOLOv3 uses k=9. The model is trained with
40k data and tested on 5k GUI images. In this RQ, both non-text and text elements
in GUIs are used for model training and testing.

Table 6.7 shows the results. When trained to detect text and non-text elements
together, Faster RCNN still performs the best in terms of detecting non-text elements.
But the performance of all three models for detecting non-text elements degrades,
compared with the models trained to detect non-text elements only. This indicates
that mixing the learning of text and non-text element detection together interfere
with the learning of detecting non-text elements. CenterNet performs much better
for detecting text elements than Faster RCNN and YOLOv3, which results in the
best overall performance for the mixed text and non-text detection. CenterNet is
anchor-free, which makes it flexible to handle large variance of text patterns. So
it has comparable performance for text and non-text elements. In contrast, anchor-
box-based Faster RCNN and YOLOv3 are too rigid to reliably detect text elements.
However, the performance of CenterNet in detecting text elements is still poor. Text
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Table 6.7: Text detection: separated versus unified processing
Method Element Precision Recall F1

Faster-RCNN

nontext-only 0.440 0.437 0.438

mix
nontext 0.379 0.436 0.405
text 0.275 0.250 0.262
both 0.351 0.359 0.355

YOLOv3

nontext-only 0.405 0.363 0.383

mix
non-text 0.325 0.347 0.335
text 0.319 0.263 0.288
both 0.355 0.332 0.343

CenterNet

nontext-only 0.424 0.380 0.401

mix
non-text 0.321 0.397 0.355
text 0.416 0.319 0.361
both 0.391 0.385 0.388

Table 6.8: Text detection: OCR versus scene text
Method Precision Recall F1
Tesseract 0.291 0.518 0.372
EAST 0.402 0.720 0.516
REMAUI 0.297 0.489 0.369
Xianyu 0.272 0.481 0.348

elements always have space between words and lines. Due to the presence of these
spaces, CenterNet often detects a partial text element or erroneously groups separate
text elements as one element when assembling object corners.

6.3.5.2 OCR versus Scene Test Recognition

Since it is not feasible to detect text and non-text GUI elements within a single model,
we want to investigate what is the most appropriate method for GUI text detection.
All existing works (e.g., REMAUI, Xianyu) simply use OCR tool like Tesseract. We
observe that GUI text is more similar to scene text than to document text. Therefore,
we adopt a deep learning scene text recognition model EAST for GUI text detection,
and compare it with Tesseract. We directly use the pre-trained EAST model without
any fine tuning on GUI text.

As shown in Table 6.8, EAST achieves 0.402 in precision, 0.720 in recall and 0.516
in F1, which is significantly higher than Tesseract (0.291 in precision, 0.518 in re-
call and 0.372 in F1). Both Xianyu and REMAUI perform some post-processing of
the Tesseract’s OCR results in order to filter out false positives. But it does not sig-
nificantly change the performance of GUI text detection. As EAST is specifically
designed for scene text recognition, its performance is significantly better than using
generic object detection models for GUI text detection (see Table 6.7). EAST detects
almost all texts in a GUI, including those on the GUI widgets (e.g., the button labels
in Figure 6.4(c)). However, those texts on GUI widgets are considered as part of
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Figure 6.4: Examples: OCR versus scene text

the widgets in our ground-truth data, rather than stand-alone texts. This affects the
precision of EAST against our ground-truth data, even though the detected texts are
accurate.

Figure 6.4 presents some detection results. Tesseract achieves the comparable
results as EAST only for the left side of Figure 6.4(d), where text is shown on a white
background just like in a document. From all other detection results, we can observe
the clear advantages of treating GUI text as scene text than as document text. First,
EAST can accurately detect text in background image (Figure 6.4(a)), while Tesseract
outputs many inaccurate boxes in such images. Second, EAST can detect text in
a low contrast background (Figure 6.4(b)), while Tesseract often misses such texts.
Third, EAST can ignore non-text elements (e.g., the bottom-right switch buttons in
Figure 6.4(b), and the icons on the left side of Figure 6.4(d)), while Tesseract often
erroneously detects such non-text elements as text elements.

GUI text and non-text elements should be detected separately. Neither OCR techniques
nor generic object detection models can reliably detect GUI texts. As GUI texts have the
characteristics of scene text, the deep learning scene text recognition model can be used (even
without fine-tuning) to accurately detect GUI texts.
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6.4 A Novel Approach

Based on the findings in our empirical study, we design a novel approach for GUI ele-
ment detection. Our approach combines the simplicity of old-fashioned computer vi-
sion methods for non-text-element region detection, and the mature, easy-to-deploy
deep learning models for region classification and GUI text detection (Section 6.4.1).
This synergy achieves the state-of-the-art performance for the GUI element detection
task (Section 6.4.2).

6.4.1 Approach Design

Our approach detects non-text GUI elements and GUI texts separately. For GUI text
detection, we simply use the pre-trained state-of-the-art scene text detector EAST [169].
For non-text GUI element detection, we adopt the two-stage design, i.e, perform re-
gion detection and region classification in a pipeline. For region detection, we de-
velop a novel old-fashioned method with a top-down coarse-to-fine strategy and a set
of GUI-specific image processing algorithms. For region classification, we fine-tune
the pre-trained ResNet50 image classifier [138] with GUI element images.

6.4.1.1 Region Detection for Non-Text GUI Elements

According to the performance and sensitivity experiments results, we do not want
to use generic deep learning object detection models [87; 84; 86]. First, they demand
sufficient training data, and different model designs require different scale of train-
ing data to achieve stable performance. Furthermore, the model performance is still
less optimal even with a large set of training data, and varies across different model
designs. Second, the nature of statistical regression based region detection cannot sat-
isfy the high accuracy requirement of GUI element detection. Unlike generic object
detection where a typical correct detection is defined loosely (e.g, IoU>0.5) [176]),
detecting GUI elements is a fine-grained recognition task which requires a correct
detection that covers the full region of the GUI elements as accurate as possible, but
the region of non-GUI elements and other close-by GUI elements as little as possi-
ble. Unfortunately, neither anchor-box based nor anchor-free models can achieve this
objective, because they are either too strict or too flexible in face of large in-class vari-
ance of element sizes and texture, high cross-class shape similarity, and the presence
of close-by GUI elements.

Unlike deep learning models, old-fashioned methods [33; 80] do not require any
training which makes them easy to deploy. Furthermore, when old fashioned meth-
ods locate some GUI elements, the detected bounding boxes are usually accurate,
which is desirable. Therefore, we adopt old-fashioned methods for non-text GUI-
element region detection. However, existing old-fashioned methods use a bottom-up
strategy which aggregates the fine details of the objects (e.g., edge or contour) into
objects. This bottom-up strategy performs poorly, especially affected by the complex
background or objects in the GUIs and GUI elements. As shown in Figure 6.5, our
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Figure 6.5: Our method for non-text GUI element detection

method adopts a completely different strategy: top-down coarse-to-fine. This de-
sign carefully considers the regularity of GUI layouts and GUI-element shapes and
boundaries, as well as the significant differences between the shapes and boundaries
of artificial GUI elements and those of physical-world objects.

Our region detection method first detects the layout blocks of a GUI. The intuition
is that GUIs organize GUI elements into distinct blocks, and these blocks generally
have rectangle shape. Xianyu also detects blocks, but it assumes the presence of clear
horizontal and vertical lines. Our method does not make this naive assumption.
Instead, it first uses the flood-filling algorithm [174] over the grey-scale map of the
input GUI to obtain the maximum regions with similar colors, and then uses the
shape recognition [177] to determine if a region is a rectangle. Each rectangle region
is considered as a block. Finally, it uses the Suzuki’s Contour tracing algorithm [83]
to compute the boundary of the block and produce a block map. In Figure 6.5, we
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show the detected block in different colors for the presentation clarity. Note that
blocks usually contain some GUI elements, but some blocks may correspond to a
particular GUI element.

Next, our method generates a binary map of the input GUI, and for each detected
block, it segments the corresponding region of the binary map. Binarization simpli-
fies the input image into a black-white image, on which the foreground GUI elements
can be separated from the background. Existing methods [33; 80] perform binariza-
tion through Canny edge detection [82] and Sobel edge detection [178], which are
designed to keep fine texture details in nature scene images. Unfortunately, this
detail-keeping capability contradicts the goal of GUI element detection, which is to
detect the shape of GUI elements, rather than their content and texture details. For
example, we want to detect an ImageView element no matter what objects are shown
in the image (see Figure 6.6). We develop a simple but effective binarization method
based on the gradient map [179] of the GUI images. A gradient map captures the
change of gradient magnitude between neighboring pixels. If a pixel has small gra-
dient with neighboring pixels, it becomes black on the binary map, otherwise white.
As shown in Figure 6.5, the GUI elements stand out from the background in the bi-
nary map, either as white region on the black background or black region with white
edge.

Our method uses the connected component labeling [180] to identify GUI element
regions in each binary block segment. It takes as input the binarized image and
performs two-pass scanning to label the connected pixels. For the first scanning, it
labels the foreground pixel according to the neighbor points from left to right and
from top to bottom. If the current pixel does not have labelled neighbors, it is labeled
as 1 and the next pixel with the same situation will be labeled as 2, increased by 1
gradually. If the current pixel have labelled neighbors, it is labeled as the minimum
value of the neighbors’. If labelled neighbors have different values, these values are
recorded to be in the same group. For the second scanning, the pixels with the label
from the same group are grouped together as a connected area. As GUI elements can
be any shape, it identifies a smallest rectangle box that covers the detected regions as
the bounding boxes. Although our binarization method does not keep many texture
details of non-GUI objects, the shape of non-GUI objects (e.g., those buildings in the
pictures) may still be present in the binary map. These noisy shapes interfere existing
bottom-up aggregation methods [82; 83] for GUI element detection, which results in
over-segmentation of GUI elements. In contrast, our top-down detection strategy
minimizes the influence of these non-GUI objects, because it uses relaxed grey-scale
map to detect large blocks and then uses strict binary map to detect GUI elements.
If a block is classified as an image, our method will not further detect GUI elements
in this block.

6.4.1.2 Region Classification for Non-Text GUI Elements

For each detected GUI element region in the input GUI, we use a ResNet50 image
classifier to predict its element type. In this work, we consider 15 element types
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Figure 6.6: Region detection results for non-text GUI element: our method versus
five baselines

as shown in Figure 6.1. The Resnet50 image classifier is pre-trained with the Ima-
geNet data. We fine-tune the pre-trained model with 90,000 GUI elements (6,000 per
element type) randomly selected from the 40k GUIs in our training dataset.

6.4.1.3 GUI Text Detection

Section 6.3.5 shows that GUI text should be treated as scene text and be processed
separately from non-text elements. Furthermore, scene text recognition model per-
forms much better than generic object detection models. Therefore, we use the state-
of-the-art deep-learning scene text detector EAST [169] to detect GUI text. As shown
in Figure 6.4(c), EAST may detect texts that are part of non-image GUI widgets (e.g.,
the text on the buttons). Therefore, if the detected GUI text is inside the region of a
non-image GUI widgets, we discard this text.

6.4.2 Evaluation

Table 6.9 shows the region-detection performance for non-text, text and both types
of elements. For non-text GUI elements, our approach performs better than the best
baseline Faster RCNN (0.523 versus 0.438 in F1). For text elements, our approach is
overall the same as EAST. It is better than EAST in precision, because our approach
discards some detected texts that are a part of GUI widgets. But this degrades the
recall. For text and non-text elements as a whole, our approach performs better than
the best baseline CenterNet (0.573 versus 0.388 in F1).
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Table 6.9: Detection performance of our approach (IoU>0.9)
Elements Precision Recall F1
non-text 0.503 0.545 0.523
text 0.589 0.547 0.516
both 0.539 0.612 0.573

Figure 6.6 shows the examples of the detection results by our approach and the
five baselines. Compared with REMAUI and Xianyu, our method detects much more
GUI elements and much less noisy non-GUI element regions, because of our robust
top-down coarse-to-fine strategy and GUI-specific image processing (e.g., connected
component labeling rather than canny edge and contour). Our method also detects
more GUI elements than the three deep learning models. Furthermore, it outputs
more accurate bounding boxes and less overlapping bounding boxes, because our
method performs accurate pixel analysis rather than statistical regression in the high-
layer of CNN. Note that deep learning models may detect objects in images as GUI
elements, because there are GUI elements of that size and with similar visual fea-
tures. In contrast, our method detects large blocks that are images and treats such
images as whole. As such, our method suffers less over-segmentation problem.

We conclude three main reasons when our model fails. First, same look and feel
UI regions may correspond to different types of widgets, such as text label versus
text button without border. This is similar to the widget tappability issue studied
in [76]. Second, the repetitive regions in a dense UI (e.g., Figure 6.6(b)) often have
inconsistent detection results. Third, it is sometimes hard to determine whether
a text region is a text label or part of a widget containing text, for example, the
spinner showing USA at the top of Figure 6.6(b). Note that these challenges affect all
methods. We leave them as our future work.

Table 6.10 shows the region classification results of our CNN classifier and the
three deep learning baselines. The results consider only true-positive bounding
boxes, i.e., the classification performance given the accurate element regions. As
text elements are outputted by EAST directly, we show the results for non-text el-
ements and all elements. We can see that our method outputs more true-positive
GUI element regions, and achieves higher classification accuracy (0.86 for non-text
elements and 0.91 for all elements, and the other three deep models achieves about
0.68 accuracy). Our classification accuracy is consistent with [34], which confirms
that the effectiveness of a pipeline design for GUI element detection.

Table 6.11 shows the overall object detection results, i.e., the true-positive bound-
ing box with the correct region classification over all detected element regions. Among
the three baseline models, Faster RCNN performs the best for non-text elements
(0.315 in F1), but CenterNet, due to this model flexibility to handle GUI texts, achieves
the best performance for all elements (0.282 in F1). Compared with these three base-
lines, our method achieves much better F1 for both non-text elements (0.449) and
all elements (0.524), due to its strong capability in both region detection and region
classification.
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Table 6.10: Region classification results for TP regions
Non-text elements All elements

Method #bbox Accuracy #bbox Accuracy
FasterRCNN 18,577 0.68 34,915 0.68
YOLOv3 15,428 0.64 32,225 0.65
Centernet 16,072 0.68 36,803 0.66
Our method 21,977 0.86 53,027 0.91

Table 6.11: Overall results of object detection (IoU > 0.9)
Non-text elements All elements

Method Precision Recall F1 Precision Recall F1
Faster-RCNN 0.316 0.313 0.315 0.269 0.274 0.271
YOLOv3 0.274 0.246 0.260 0.258 0.242 0.249
CenterNet 0.302 0.270 0.285 0.284 0.280 0.282
Xianyu 0.122 0.145 0.133 0.270 0.405 0.324
REMAUI 0.151 0.205 0.173 0.296 0.449 0.357
Our method 0.431 0.469 0.449 0.490 0.557 0.524

6.5 Threats to Validity

We discuss three types of threats, i.e., internal validity, construct validity and external
validity.

6.5.1 Internal Validity

Threats to internal validity concern the unexpected factors that may impact the re-
sults. One threat lies in the deep learning models as the performance of the models
may change as the training procedure includes some randomness. To mitigate this
problem, we performed 5-fold cross-validation in all our experiments and reported
the average results. We also release all the code and models.

6.5.2 Construct Validity

Threats to construct validity concern the operationalisation of the experimental ar-
tifacts. One potential threat is that we re-implemented the Xianyu tool [80] as they
do not provide an open-sourced code. However, they published articles detailing
the structure, techniques even the code used in their implementation. We carefully
read all their articles and followed what they said. While our implementation may
have some slight differences from their original implementation, our version could
still represent a typical method for old-fashioned techniques. We also open-source
our code in the GitHub repository for researchers to enhance the reproducibility and
transparency.
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6.5.3 External Validity

Threats to external validity are about generalisability. We trained and evaluated mod-
els and our tool using the Rico dataset, which was collected in 2017. This dataset may
be outdated as the design keeps changing and more fancy styles emerge. However,
no matter how the trend changes, the underlying design principles remain similar,
which guarantees the validity of the Rico dataset. We believe even though we tested
on the old dataset, our tool and conclusions can be easily generalised to future and
updated UIs. Another threat is the generalisability to other platforms. We only eval-
uated our dataset in Android UIs, without further evaluating the performance in
other platforms, like iOS UIs and website UIs. However, our summarised character-
istics should be easily generalised to other UIs on other platforms as all UIs share the
same basic elements like images and buttons. In addition, our proposed tool does
not need to be trained. Unlike the deep learning models, it is screen size agnostic.
We believe our tools can be applied to detect and locate UI elements in all platforms,
but further evaluation is needed to confirm this.

6.6 Conclusion

This chapter investigates the problem of GUI element detection. We identify four
unique characteristics of GUIs and GUI elements, including large in-class variance,
high cross-class similarity, packed or close-by elements and mix of heterogeneous
objects. These characteristics make it a challenging task for existing methods (no
matter old fashioned or deep learning) to accurately detect GUI elements in GUI
images. Our empirical study reveals the underperformance of existing methods bor-
rowed from computer vision domain and the underlying reasons, and identifies the
effective designs of GUI element detection methods. Informed by our study findings,
we design a new GUI element detection approach with both the effective designs of
existing methods and the GUI characteristics in mind. Our new method achieves the
state-of-the-art performance on the largest-ever evaluation of GUI element detection
methods.



Chapter 7

Discussions

In this section, we discuss the limitations of each work and potential future directions
to improve them. I also note that after I published these works, there are many
following works that mitigate the limitations of each work. I will discuss them in
this chapter.

7.1 UI Design Search

Existing research shows that explicitly providing information to models can achieve
better performance than implicit input [181]. Therefore, as we implicitly encode the
types and coordinates of elements and their relationship in a pure wireframe input,
adding explicit input can advance the performance of models. One direction is to
explicitly encode the position of each element and their structural relationship to
help models better learn the component concept, i.e., a group of elements that are
used together for a specific purpose. This improvement can help find designs where
the components are in different orders. In our work, WAE may recommend designs
that have all input fields on the top half of the screen as the input wireframe also
have these layout. Manandhar et al. [182] incorporate this information by using a
graph to represent UI designs. They encode the structural and semantic information
about the UI using a graph convolutional network, and decode using a CNN. They
consider a Siamese network to train the model. Their experiments demonstrate the
superior advantage of explicitly including the graph information.

Another line is to consider a multi-modal input to better learn the semantics of
each piece of information by separate models. Screen2vec [183], proposed by Li et
al., follows this direction. They fully leverage all information in the view hierarchy,
including text contents, types and positions of UI elements, and additional app de-
scriptions to learn the semantics of UI designs. They adopt sentence-Bert to encode
text features, an RNN model to learn the relationship between components, and an
auto-encoder to obtain the layout information. After that, a linear layer is used to
merge and integrate these features, and the final features are the concatenation with
a high-level app description. The inclusion of explicit features of all information
boosts the performance of the UI search engine and gives the engine the capability
of recommending UIs with different design styles but sharing the same goal as the
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query wireframe. Future directions could be including surrounding UIs in interac-
tion traces to better add the usage logic in recommendations. However, all the above
techniques require the view hierarchy information, but it is not often the case. Com-
bining the UI element detection tool we proposed [36] or from other works [35] can
extend the usage of these techniques. Another limitation is that these research could
not guarantee the recommended UI designs are of high quality. Integrating design
knowledge, such as Google Material Design, could provide a more intelligent design
search engine that acts like a professional designer guiding junior designers. More-
over, all these focus on UI design in Android mobile applications, generalisation to
other platforms, like iOS applications, and even desktop applications would be an
interesting topic.

Apart from these two directions that aim to improve UI design search, other re-
lated works also show the capability of improving the search engine. Wang et al. [184]
propose screen2words to generate UI descriptions for each UI given the screenshot,
view hierarchy information and app descriptions. Wu et al. [185] instead input the
UI elements and try to reconstruct the UI hierarchy. Additionally, UIBert [186] aims
to learn a general representation of UI designs and each of the UI elements to facil-
itate different downstream applications without the need to finetune the model. All
these models can learn some low-level and high-level semantics about the UI during
the training process, and the latent vectors have potential capabilities to enable UI
search. Further evaluations are needed to confirm the capabilities.

7.2 Accessibility Enhancement

As the first work that tries to automatically fix the accessibility issues, our Label-
Droid also has many spaces to improve. One direction is to incorporate the semantic
information including the full screen, and the surrounding elements, to assist the la-
bel generation. Mehralian et al.[187] leverage app-level, activity-level, and icon-level
information to empower the label generation model. Another line is to utilize the
large-scale icon dataset in the wild to serve as a knowledge base to guide the label
generation process. For example, Noun Project 1 contains many icons uploaded by
designers. Each of the icons is well-annotated with different labels to depict all po-
tential meanings, which has the potential to guide the accessibility icon generation
process. One thing worthies to notice is that some labels in the training dataset may
be wrong. In our work and Mehralian et al.’s work, we did not consider this issue.
Future work could include a justification on the icon quality to better enhance the
model’s performance or correct the wrong one.

Apart from the accessibility issues of missing accessibility labels, other issues are
also worth investigating. Liu et al. [78] spot the UI display issues in truncated texts
which are caused by setting a larger font size, to improve usability. Latte [188] auto-
matically detects the element unreachable problems for screen readers by simulating
the usage of blind users, which adds a new tool for examining and enhancing the

1https://thenounproject.com/
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accessibility of mobile applications. Chen et al. [189] extract the action sequence in
the recorded usage video to try to guide the mobile application usage for people
who are not familiar with mobile apps. All these works are important to improve the
accessibility and usability of mobile apps.

7.3 UI Element Detection

GUI element detection plays an essential role in many downstream applications.
Our work conducted the first systematically analysis of the unique characteristics of
GUI and GUI elements and proposed the state-of-the-art GUI element detection tool
(UIED) that leverages the strength of old-fashioned techniques and deep learning
techniques. However, while our outperforms the best existing technique by 19.4% in-
crease in F1 for non-text elements and 47.7% increase in F1 for all GUI elements, there
are still many rooms to improve. One problem with our approach is that UIs with
image background will bring some noise to our detected techniques. One potential
mitigation method is to combine the noisy-resistance property of deep learning tech-
niques with our techniques. For example, one could use deep learning techniques
to provide initial localisation and further refine the detections using our technique.
Another potential solution is to denoise the background like background removal
tasks in photo editing. In addition, we found that the repetitive regions in a dense UI
often have inconsistent detection results. Incorporating the surrounding information
and understanding the relationship between components may have the potential to
mitigate this issue. Some techniques like image inpainting may share similar ideas
in recovering missing elements.
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Chapter 8

Conclusions and Future Research

In this chapter, I summarize the research work that I have conducted in this thesis
and discuss some future work.

8.1 Summary of Completed Work

With the advance of deep learning techniques and the availability of large-scale
datasets, research and application have been accelerated in many sectors. DL tech-
niques have demonstrated the ability to automatically learn the features from mas-
sive data, and thus reduce the need for manual feature engineering and rule-based
methods. Although deep learning has made significant progress in the technology
consumer domains, it has been much less explored from the technology producer
perspective, i.e., those who develop the technology, for example, product designers
and software developers.

In this thesis, I investigate deep learning techniques for software engineering do-
main, especially for enhancing the efficiency of mobile user interfaces development.
I propose two tools and one fundamental work to assist UI designers and developers
by leveraging UI-related big data with deep learning techniques.

First, to enhance the efficiency of the UI design prototyping process, I propose a
wireframe-based UI design search engine to help designers and developers to under-
stand the design space and software features by exposing them to a large-scale UI
design dataset collected from real-world Android applications. I first collect a large-
scale UI design dataset and then use a CNN-based image autoencoder to learn the
latent vector of the UI design wireframe. I also develop a web-based search engine to
implement the proposed method. This tool enables them to find design-wise similar
UIs and quickly refine their designs. While I target the novice designers in this work,
it can actually benefit designers with different levels of expertise [183; 190; 191].

Second, to assist the developers to implement some important yet easy-to-be-
ignored accessibility features of user interfaces. I first conduct a motivational mining
study to understand the severity of current accessibility issues of missing labels for
screen readers. I then propose an efficient and useful tool, LabelDroid, based on
the state-of-art image captioning technique to automatically generate labels for the
image-based buttons. This method successfully invokes the community attention
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in maintaining the accessibility of mobile apps, many following research are pub-
lished [35; 188; 78; 187].

Third, I systematically characterize the unique properties of UI elements and UIs,
conduct the first large-scale empirical study on evaluating seven object detection
models, and then propose our hybrid element detection method. Such methods
can be integral in many applications, including the two techniques I propose in this
thesis. In addition, this work can also enhance many other downstream applications,
like UI code generation [73; 34; 185] and UI testing [77; 192].

The limitation and potential solutions of each work are dicussed in detail in Chap-
ter 7

8.2 Future Work

The goal of my future research is to further provide more tools to assist developers
from different aspects. Apart from improving my work to achieve better perfor-
mance, there are still many applications that can be further investigated, such as
multiple UI design search and generation, Accessibility Linting and Code Genera-
tion.

• Multiple UI Design Search and Generation: While there is many research
on single UI design search, understanding the relationship among multiple
UI designs is also important. Nowadays, mobile applications are comprised
of many UIs and provide many functionalities, and it requires end-users to
visit several UIs and perform multiple interactions to complete some tasks. If
the path to the target function is hard to find, it will definitely bring a bad
user experience to end-users, especially for end-users that have difficulty in
using the mobile applications. Therefore, designing a set of UIs that have a
straightforward connection and expose a clear path to the target function is
important and necessary. Such task-level UI design understanding can also
help the app testing process. For example, instead of randomly clicking the
interacted UI elements on UIs to find a low-level bug, task-oriented UI testing
is more practical and useful.

• Simplifying User Interface: Mobile applications are becoming more and more
complex. For example, social media apps nowadays have not only the function
of connecting with friends, but also enable users to do online shopping, find
jobs, and play games. With so many features, UIs are becoming more sophis-
ticated and this situation increases the cognitive burdens. A customized user
interface is needed to suit one’s preference as people will not use most of the
features provided by apps. Moreover, the overwhelming features will also dis-
tract users’ attention and users will easily forget what they want to do when
some new stimulus appears. Automatically synthesizing a customized user in-
terface based on the preference of the user will be beneficial for a better user
experience.
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• Code Generation from UI screenshots: As the development process of user
interfaces will undergo several revisions, the developers need to re-implement
user interfaces many times. For example, when UI testing teams find some us-
ability or function-related issues, the designers may need to re-design some UIs
and thus the developers need to revise the code according to the revisions. In
addition, new features will gradually appear and old features will be replaced
or removed as time goes. Automatically generating UI screenshots will defi-
nitely accelerate the development process as the repetitive and laborious work
can be done automatically. There are already some attempts about generating
the code from UI design [33; 34]. However, existing techniques mainly focus
on single UI design code generation, without considering the connections be-
tween multiple UIs. For example, the developers will consider first creating
some templates for a small part of UIs and then re-using these templates in
multiple UIs. Extracting the templates will definitely reduce the workload of
maintaining and revising the user interface.
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