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Abstract
Sensitivity analysis (SA), in particular global sensitivity analysis (GSA), is now re-
garded as a discipline coming of age, primarily for understanding and quantifying
how model results and associated inferences depend on its parameters and assump-
tions. Indeed, GSA is seen as a key part of good modelling practice. However,
inappropriate SA, such as insufficient convergence of sensitivity metrics, can lead to
untrustworthy results and associated inferences.

Good practice SA should also consider the robustness of results and inferences to
choices in methods and assumptions relating to the procedure. Moreover, computa-
tionally expensive models are common in various fields including environmental
domains, where model runtimes are long due to the nature of the model itself, and/or
software platform and legacy issues. To extract using GSA the most accurate inform-
ation from a computationally expensive model, there may be a need for increased
computational efficiency. Primary considerations here are sampling methods that
provide efficient but adequate coverage of parameter space and estimation algorithms
for sensitivity indices that are computationally efficient. An essential aspect in the
procedure is adopting methods that monitor and assess the convergence of sensitivity
metrics.

The thesis reviews the different categories of GSA methods, and then it lays out
the various factors and choices therein that can impact the robustness of a GSA
exercise. It argues that the overall level of assurance, or practical trustworthiness, of
results obtained is engendered from consideration of robustness with respect to the
individual choices made for each impact factor. Such consideration would minimally
involve transparent justification of individual choices made in the GSA exercise
but, wherever feasible, include assessment of the impacts on results of plausible
alternative choices. Satisfactory convergence plays a key role in contributing to the
level of assurance, and hence the ultimate effectiveness of the GSA can be enhanced
if choices are made to achieve that convergence. The thesis examines several of
these impact factors, primary ones being the GSA method/estimator, the sampling
method, and the convergence monitoring method, the latter being essential for
ensuring robustness.

The motivation of the thesis is to gain a further understanding and quantitative ap-
preciation of elements that shape and guide the results and computational efficiency
of a GSA exercise. This is undertaken through comparative analysis of estimators of
GSA sensitivity measures, sampling methods and error estimation of sensitivity met-
rics in various settings using well-established test functions. Although quasi-Monte
Carlo Sobol’ sampling can be a good choice computationally, it has error spike issues
which are addressed here through a new Column Shift resampling method. We also
explore an Active Subspace based GSA method, which is demonstrated to be more
informative and computationally efficient than those based on the variance-based
Sobol’ method. Given that GSA can be computationally demanding, the thesis aims
to explore ways that GSA can be more computationally efficient by: addressing how
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convergence can be monitored and assessed; analysing and improving sampling
methods that provide a high convergence rate with low error in sensitivity measures;
and analysing and comparing GSA methods, including their algorithm settings.
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Chapter 1

An Overview of Sensitivity Analysis

1.1 Introduction

Good modelling practice is a crucial endeavour in helping to avoid inopportune
use and improve the replicability and credibility of the model in question. As one
of the many tools serving good modelling practice, sensitivity analysis (SA) is now
established as a fundamental procedure in the process of model development and
evaluation (Razavi, Jakeman et al., 2021). SA is an analysis procedure that studies the
relationship between the information flowing into and out of the model (Saltelli, Chan
et al., 2000). Its results tend to be quantified as some form of sensitivity indices that
relate change in a model output to change in input or parameter, often collectively
called factors. It can provide valuable information regarding the model behaviour
and characteristics, guide future model calibration and advances in model structure,
and ultimately act as a diagnostic tool.

In playing such a leading role, the robustness of SA to assumptions made in the
analysis procedure also needs to be checked and/or justified to ensure that inferences
made from the results are trustworthy or at least transparent. If one considers the
workflow in an SA procedure (e.g., Pianosi, Beven et al. (2016)), it can be seen that
there are many aspects to the robustness of SA, and researchers should be aware
of the limitations and assumptions bearing on robustness. Indeed, an assurance of
the robustness aspects of an SA exercise should mean at least making transparent
how the choices made in an SA exercise impinge on robustness of results, thus
entailing justification of choices made in the procedure, and wherever possible
evaluating the influence of plausible alternative choices on results. Depending on
specific aspects of robustness, researchers can prioritise their purposes and resources
ahead of time, which is considered part of good modelling practice. In the field of
environmental modelling, computationally expensive models with long runtimes are
common due to the nature of the model itself, algorithm, software and coding issues,
and the hardware infrastructure available. Often in practice, these issues cannot be
easily resolved, especially when legacy models designed on a specific platform are
mandated. In this sense, it is crucial then to maximise the effectiveness of SA by
seeking sufficient computational efficiency, of sampling and associated model runs
in particular, that leads to desired convergence of results as sample size increases.

Sensitivity Analysis has two general classifications: local sensitivity analysis (LSA)
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and global sensitivity analysis (GSA) (Saltelli, Ratto et al., 2007). LSA usually estim-
ates the influence of model factors around a nominal point of an output and involves
straightforward perturbations of factors or numerical estimation of the derivatives of
specific model outputs with respect to factors. On the other hand, GSA provides a
global view of how different model factors singly or through interactions between
factors affect specific model outputs across the entire parameter space. Under each
classification, there are many categories of SA methods based on different funda-
mental principles, such as derivative-based, variance-based, regression-based and
distribution-based. Each of the categories is briefly introduced in the following
section.

All of the SA methods are designed to address one or more purposes, these being
Factor Fixing (or Screening), Factor Prioritisation (or Ranking), Variance Cutting, and
Factor Mapping (Saltelli, Ratto et al., 2007). In short, factor fixing uses a set threshold
for the chosen sensitivity index, separating sensitive and non-sensitive model para-
meters, allowing fixing of the non-sensitive ones if necessary. Factor prioritisation
gives a set of orders for the model parameters in terms of sensitivities, whereas
variance cutting describes the amount of variance reduction achieved by fixing a set
of model parameters, and factor mapping connects a set of model parameters to the
corresponding responsive region of the parameter space. Based on the ability to fulfil
a particular purpose, the SA methods differ between qualitative and quantitative
measures. The SA methods that only support the purpose of screening or ranking
tend to be qualitative, as they can rank the parameters or set a threshold in order of
importance but cannot answer how important one parameter is compared to the oth-
ers (Saltelli, Tarantola, Campolongo et al., 2004). On the other hand, the quantitative
SA methods can quantify the sensitivity estimates. In addition, the qualitative SA
methods are essentially cheaper than the quantitative SA methods, and the choice
of using which methods usually depend on the available computational resources
(Saltelli, Tarantola and Chan, 1999; Saltelli, Tarantola, Campolongo et al., 2004).

Awareness of available choices and appropriate application in the SA procedure is of
utmost importance to ensure the robustness and transparency of SA and meeting the
expectations of directing good modelling practice. This thesis focuses on GSA, and it
explores and investigates in its later chapters many of the aspects of robustness in un-
dertaking an SA exercise. Convincing modellers to adopt the strategies put forward
in this thesis are challenging. An example is Iwanaga et al. (2021), who demonstrate
that One-At-a-Time SA, while it has been heavily criticised in the literature, does
have the potential to complement more sophisticated methods.

Section 2 of this chapter gives an introductory review of the main categories of SA
methods, each based on different principles. Section 3 summarises the impact factors
influencing robustness that should be considered in performing a GSA exercise and
summarily describes how each influence affects the level of assurance or technical
trustworthiness of GSA. Lastly, Section 4 provides an outline of the thesis.
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1.2 The categories of SA methods

1.2.1 Derivative-based SA

The concept of derivative-based SA methods is to use the partial derivative of the
model output at a nominal point with respect to each of the model parameters
as the sensitivity indicator. A broader view of the derivative is the perturbation-
based SA method. Different perturbation-based SA methods rely on perturbing
factors at different nominal points under various distributional assumptions or
perturbation size. Additionally, these perturbation- or derivative-based SA methods
are LSA methods and are often applied in a One-At-A-Time (OAT) approach, where
only one factor is varied at a time to estimate the impact on output. Neumann
(2012) normalised the partial derivative with standard deviation and called the
method relative-relative sensitivity functions to scale the derivatives with associated
uncertainties.

LSA methods can be expanded to possess a global perspective (i.e., becoming GSA)
by considering multiple starting points. There are several multiple-start perturbation-
based SA methods, for example, the Morris method and Distributed Evaluation of
Local Sensitivity Analysis (DELSA). The Morris method measures the estimated
mean and standard deviation of the elementary effect (Morris, 1991), whereas DELSA
obtains the parameter sensitivity distributions using derivative-based ‘local’ methods
(Rakovec et al., 2014). Derivative-based global sensitivity measures (DGSM), which
average local derivatives of model outputs, have proven to be as efficient as the
Morris method for ranking purposes (Touzani and Busby, 2014). Moreover, there are
now several enhancements of the Morris method by implementing modifications to
the original sampling scheme, including Latin Hypercube sampling (LH) (Griensven
et al., 2006; Nossent, 2012) and radial-based sampling (Campolongo et al., 2011).
There are also many other derivative-based methods, such as the Global Sensitivity
Matrix (GSM) method (Gupta and Razavi, 2018) designed for Dynamical Earth
System Models.

1.2.2 Variance-based SA

Variance-based SA methods rely on variance decomposition of the model output,
measuring the model input sensitivity effect by identifying the expected reduction
in the model output variance. The first type of variance-based method proposed
was the Fourier Amplitude Sensitivity Test (FAST) by Cukier et al. (Cukier, Fortuin
et al., 1973; Cukier, Schaibly et al., 1975), and it provides a “main effect” by using
a particular search curve in the parameter space. The “main effect”, which is also
called “importance measure” or “correlation ratio” (Saltelli, Tarantola and Chan,
1999), indicates the contribution of each model input to the model output variance.
Sobol’ was later inspired by Cukier et al. to develop the “first-order” version of
the variance-based Sobol’ method (Sobol, 1993) using Monte Carlo approximation
and high-dimensional model representation (HDMR). To include interactions, the
“total-effect” of the variance-based Sobol’ method was obtained by using the analysis
of variance-HDMR decomposition (ANOVA-HDMR). The interaction component is
that part of the effect of two model inputs that cannot be explained by the sum of
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the separate effects of these two model inputs. Saltelli et al. (Saltelli, Tarantola and
Chan, 1999) later proposed the extended FAST method to improve the search curve
and include the “total-effect” in addition to the “main effect” of the original FAST.
Other variance-based SA methods are ANOVA using the iterated fractional factorial
design sampling (Tang et al., 2007), W-indices using the state dependent parameter
emulator (Wei et al., 2013), and importance measurement (IM) using replicated Latin
Hypercube sampling (Mckay, 1995; Zhan and Zhang, 2013).

1.2.3 Regression-based SA

Regression-based SA harnesses sensitivity information from the coefficients of linear
regression by fitting model outputs from independent-variable factor space, such as
by Standardised Regression Coefficients (SRC) (Saltelli, Ratto et al., 2007) or absolute
SRC (Yang, 2011). In addition, SRC provides the coefficient of determination based
on the portion of total variance explained by the regression. The different regression
methods are largely based on the different ways of sampling factors (Confalonieri
et al., 2010). Regression-based SA is simple, cheap and easy to implement, but the
linearity of the model input-output relationship is key to ensuring the adequacy
of linear regression. Recently, as mentioned in Razavi, Jakeman et al. (2021), a
new generation of regression-based SA methods has received much attention in the
machine learning community.

1.2.4 Distribution-based SA

Distribution-based SA is also called moment-independent or density-based as, in
contrast to other methods, it focuses on the distributional properties of the model
outputs. Rather than considering a single moment of the model output, distribution-
based SA methods evaluate the whole probability distribution. The concept of
distribution-based SA methods is to measure the distance between the unconditional
and conditional probability density function of model output, where the conditional
probability density function varies all model inputs but the one of interest. PAWN,
which is named after the inventors Francesca Pianosi and Thorsten Wagener, is
an often-used distribution-based SA method that identifies the unconditional and
conditional distribution of model output using the Kolmogorov-Smirnov statistic
applied to the cumulative probability density function (CDF) rather than using the
probability density function (PDF) (Pianosi and Wagener, 2015). In addition, PAWN
is more suitable than variance-based SA methods when the distribution of model
output is highly skewed or multi-modal. Regional SA (RSA) (Spear and Hornberger,
1980), also called Monte Carlo filtering or the Hornberger-Spear-Young method, is
another distribution-based method but acts differently to PAWN. RSA splits model
inputs into “behavioural” and “non-behavioural” groups and compares the empirical
CDF of the output of each group using the Kolmogorov-Smirnov test. However, it has
been shown that RSA fails to identify correlation structure (Saltelli, Chan et al., 2000).
Entropy-based SA, such as Kullback-Leibler entropy (KL-entropy) (Kullback and
Leibler, 1951), also belongs to the family of distribution-based methods, which seek
the divergence between probability distributions either over the whole or selected
regions.
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1.2.5 SA based on other principles

Other than the previous four categories, there are other methods based on unique
principles. The Active Subspace method is derivative-based as it uses the derivative
of the model output with respect to the inputs, but uses eigenvalue decomposition of
the outer product of the Jacobian to determine the important directions of the model
output in the parameter space (Constantine, 2015). Razavi and Gupta (2016a,b)
have proposed a variogram-based analysis of response surfaces (VARS) method
that bridges derivative- and variance-based methods to provide complementary
information. Sheikholeslami and Razavi (2020) extended VARS with a data-driven
estimator called D-VARS. Other unique principle-based methods are multivariate
global sensitivity indices based on wavelet analysis (Xiao et al., 2018), information
theory-based methods, or emulation-based methods such as the State-Dependent
Parameter (SDP) (Ratto et al., 2007), or graphical sensitivity analysis techniques
(scatter-plots or SA repeatability test) (Frey and Patil, 2002; Nossent, 2012).

1.3 The factors impacting results of GSA methods

Figure 1.1: Factors that Impact the Effectiveness of Global Sensitivity Analysis

Based on our review and synthesis of GSA literature and practices as expanded
upon in Chapter 2, seven general factors (Figure 1.1) can be concluded to impact the
results of a GSA exercise and its outcomes. These factors are further categorised in
Chapter 2 into five classes. Changes in any of the considerations can significantly
affect the performance of GSA and hence the inferences made from it. In particular,
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choices of methods and assumptions made in the GSA workflow exercise can alter
the computational cost in reaching the desired convergence of sensitivity measures. A
detailed workflow for applying SA has been proposed by Pianosi, Beven et al. (2016),
and this thesis will focus on certain major or primary elements of the workflow, not
just on the computational efficiency of a GSA exercise but how each of the elements
contributes individually to its robustness, and hence together to the overall level
of assurance or technical trustworthiness. In this section, however, only a concise
summary of each consideration in the workflow is provided.

The exercise or experiment setup is crucial as researchers need to define the purpose
of their SA application, and the appropriate parameter ranges and distributions to be
sampled. In the workflow of Pianosi, Beven et al. (2016), choosing model parameters,
fixing other model parameters, and defining appropriate scalar model output(s)
are also listed as part of the experiment setup. Being already well-explained, these
considerations will not be discussed in detail here, except to point out that the choice
of parameter distributions and/or their ranges can significantly affect sensitivities
estimated (Shin et al., 2013). Indeed, several authors have attempted to test SA
under different ranges of parameters and identified the consequences. Many of them
have reported that the parameter variation range strongly impacts the values of
sensitivity measures, mainly when poor parameter sets are used (Herman et al., 2013;
Wang et al., 2013). Further studies have shown that sensitivity patterns are relatively
the same if all model parameter ranges vary simultaneously while maintaining the
same relative range (Chen et al., 2018; Wang et al., 2013). The actual distribution
of model parameters is another factor that potentially affects the outcomes of an
SA exercise. Paleari and Confalonieri (2016) warned that the distribution of model
parameters should be chosen with care, and the generated samples should preserve
the intended distributional properties (Sheikholeslami and Razavi, 2017). In practice,
most studies assume a uniform distribution of parameters due to a lack of evidence
(Sun, Zhu et al., 2015). Finally, the purpose of a GSA exercise needs to be settled
before continuing to later steps, as it will determine the range of choices, such as
selecting GSA methods, that is algorithms that estimate sensitivity contributions, or
the convergence assessment methods.

The various GSA methods are based on distinct fundamental principles as summar-
ised in Section 2, and the seemingly dazzling array of methods available presents a
significant challenge in selecting an appropriate one for an application. The purpose
determined in the experiment setup step acts as the first filter to shrink the selection
pool of the GSA methods, and suggested mapping tables between the GSA methods
and purposes are given in several studies (Neumann, 2012; Pianosi, Beven et al.,
2016). Next, the available resources (computational and other), GSA libraries, model
characteristics, and advantages and limitations of each GSA method can guide mak-
ing the appropriate selection. Once a particular GSA method is decided through
the previous steps, that method will have numerous algorithm settings, such as the
specific estimator (formula) of the variance-based Sobol’ method or the grid level of
the Morris method. Chapters 3 and 4 address the impact of algorithm settings and
benchmark different GSA methods with commonly-used test functions of known
sensitivity.

The sampling method used in SA can be crucial in adequately covering the parameter
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space, and doing so efficiently, so that satisfactory convergence of sensitivity indices
is attained given the computational budget. Sampling methods required may also be
different for different GSA methods, a prime example being the difference between
the sampling style for the Morris versus Sobol’ methods. Therefore, the sampling
method has an inestimable weight in ensuring the accurate convergence of a GSA
procedure. Chapters 5 and 6 of the thesis highlight the underlying inner-determinism
issue of the commonly-used Sobol’ low-discrepancy sequence that can lead to ab-
normal large sensitivity indices using the variance-based Sobol’ method, and a new
method is proposed to address this issue.

The sample size required for a GSA exercise highly relates to the algorithm settings
of the selected GSA method(s) and the sampling method, and indeed the number
of model evaluations is directly proportional to it. A sufficient number of samples
should be the least amount needed to reach what are deemed reasonably accurate and
sufficiently converged sensitivity measures. Another factor is the importance of the
analysis period (Shin et al., 2013). The results of GSA should always be conditional on
or dependent on the period of analysis, and this highlights the value of considering
different spatial (Koo et al., 2020) and/or temporal forcings over time such as by using
approaches like that of DYNIA in Wagener et al. (2003). Chapters 3 to 6 examine and
discuss the effect of sample size on sensitivity indices corresponding to the targeted
GSA methods and test functions.

Convergence is an essential component of achieving effective GSA outcomes. But
the methods of convergence assessment depend on the purpose determined during
the experiment setup and the sensitivity measures needed to reach convergence
under the monitoring of the convergence assessment. An encompassing definition
of convergence, the evaluation of convergence rate, and the choice of convergence
assessment methods all need to be addressed with care. Chapter 2 elaborates on
these three aspects of convergence along with providing a comprehensive literature
review.

Visualisation is the last key decision choice and supporting piece in the workflow
of a GSA exercise. A good visualisation tool should present and communicate
the information gained from GSA results, but it can also be used to identify any
unusual patterns or behaviours. For a model with hundreds or thousands of model
parameters, visualisation can help to condense information more concisely and
helpfully. Pianosi, Beven et al. (2016) provide a valuable illustration of a variety of
visualisation tools for GSA. As a new development, Chapter 4 in the thesis illustrates,
for a range of well-known test functions, the convergence of GSA results in regard to
factor prioritisation (or ranking) by way of a heat map that annotates rankings with
estimated sensitivities against sample size, sampling method and estimation method.
In Chapters 3, 5, and 6, visualisation is also seen as a useful aid in understanding and
investigating underlying GSA exercise objectives.

1.4 Thesis Outline

In Chapter 2, we argue that a predominant research focus in the literature on the
convergence of GSA metrics should be shifted from a priori judging the optimal
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sample size for computing metrics to that of considering the proper convergence rate
based on the acceptable tolerance of errors in the metric(s) of sensitivity. Identifying
the purpose of a GSA exercise, suitable choice of the sampling method, estimation
method and appropriate settings for the estimation method’s algorithm potentially
can substantially increase the convergence rate. These items should be viewed as
holistic considerations in the process of attaining satisfactory convergence. Moreover,
applying an appropriate convergence assessment method is also critical. In the
spirit of advancing good practice, we put forward a flowchart to guide researchers
in evaluating convergence. We also raise attention to apposite future directions,
such as the overall mismatch between the development and application of GSA in
terms of algorithm setting selections, and the lack of software libraries supporting
convergence assessment. This chapter is intended to be submitted as a paper to
Environmental Modelling and Software.

Chapter 3 explores how different choices affect the convergence rate of a particular
GSA method. The commonly used reference method, the variance-based Sobol’
method, is chosen, along with the Sobol’ G-function, also called the V-function,
which is employed to serve a broad spectrum of test cases with different complexity
levels. Relative error of a sensitivity measure is applied to make the visualisation
of the comparison results clearer and more credible. On choice of the sampling
method to improve convergence rate, the Sobol’ sequence is shown to perform
better than Latin Hypercube or Monte Carlo sampling under all circumstances. In
comparing two total-effect estimators of the Sobol’ method, the Jansen1999 version
achieves a higher convergence rate than Sobol’2007. The application illustrates that
the appropriate options, including method, sampling method and error measure,
can significantly increase the convergence rate of a GSA exercise. This chapter is
published as a refereed conference paper in the Proceedings of the 22nd International
Congress on Modelling and Simulation (Sun, Roberts et al., 2017).

Invoking several established test functions from the literature, Chapter 4 benchmarks
the performance of a recently-emerged GSA method based on the concept of Active
Subspaces, called here activity scoring (AS), against the variance-based Sobol’ method
and the Morris method, the latter two having been often used as two reference GSA
methods. Informative heat maps display both actual sensitivity indices and numerical
rankings of factors. It is found that the choice of an accurate gradient approximation
method is important as the approximation highly impacts the Active Subspaces
approach. But AS gives better performance under certain situations than the two
reference methods. Four established factor ranking measures for convergence are also
compared. The influence of different sampling methods for the AS and the two ways
of assessing the errors in metrics, bootstrap and replication, are also investigated
and discussed. To conclude, for Active Subspaces, the quasi-Monte Carlo Sobol’
sequence, which was already proven to be efficient for the variance-based Sobol’
method, provides higher convergence rates than Monte Carlo sampling. Despite
being more expensive, replication offers more accurate estimation of confidence
intervals than bootstrapping. This chapter is published in Environmental Modelling
and Software (Sun, Croke, Jakeman et al., 2022).

Through our previous experiments, the quasi-Monte Carlo Sobol’ sequence was
shown to be an appropriate sampling method for applying GSA methods. However,
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large error spikes would occasionally be observed when using a Sobol’ sequence
for the subsequent variance-based Sobol’ method application using the Jansen1999
estimator and Saltelli formula (b) for first-order and total-effect sensitivity indices
correspondingly (Tarantola et al., 2012). Such large error spikes are apparent in the
case of model parameters with similar sensitivities and would be difficult to identify
in real-world cases. In Chapter 5, we recreate instances of error spiking with a simple
test function and analyse the underlying reasons that cause the Sobol’ sequence to
give the occasionally large error spikes. Upon close inspection, the Sobol’ sequence is
constructed using a recurrence relation with values from a pre-determined direction
number matrix. This correlated structure is shown to carry over into the sensitivity
measures produced by the Sobol’ method. This chapter is published as a paper in the
ANZIAM journal (Sun, Croke, Roberts et al., 2021b).

Randomising the Sobol’ sequence diminishes the impact of its correlated inner struc-
ture and resolves the error spike issues. By studying and comparing existing ran-
domisation methods for the Sobol’ sequence, both the random shift and the scramble
method are shown to have limitations for generating replicates with smaller errors.
Thus, in Chapter 6, we propose a new Column Shift method to randomise Sobol’
sequences at a low cost. Upon testing through various cases, the column-shifted
Sobol’ sequence gives a higher convergence rate and lower relative error than existing
randomisation methods in general. This chapter is published as a paper in Reliability
Engineering and System Safety (Sun, Croke, Roberts et al., 2021a).

Chapter 7 contains the conclusions listing the contributions of the thesis, and it
discusses opportunities for future work and how the results of the thesis could be
utilised. Lastly, the supplementary files of Chapters 4 and 6 are attached at the end
of the thesis as appendices.
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Figure 1.2: The links of the published papers to the chapters of the thesis. Note that the
papers in grey are not included in the thesis, though I am a co-author on those papers.
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Chapter 2

Assessing Convergence in Global
Sensitivity Analysis: a review of
procedural choices influencing
trustworthiness of results

As an essential influence on effectiveness, the topic of convergence assessment and
monitoring of GSA measures in a GSA procedure is addressed in Chapter 2. Fol-
lowing an intensive literature review of factors impacting the results and inferences
from a GSA exercise, we characterised the factors into five categories, and within
each there can be several decision choices to be made. Ideally, a GSA exercise should
canvas all the plausible decision options associated with each impact factor so that
the robustness of the results can be assessed with respect to those options. Outcomes
of any robustness assessments are deemed to contribute to the level of assurance
or technical trustworthiness of the GSA results. Convergence and assessment of
sensitivity measures is a crucial factor in the GSA procedure and is influenced by
choices made with respect to most other impact factors.

We depict the importance of each step on how it impacts the level of assurance in
achieving a high convergence rate with the help of a flowchart. Additionally, future
directions in the convergence for GSA are recommended. Chapter 2 sets the stage for
the following chapters since any investigation of, or improvement in, specific steps of
a GSA application contribute to the convergence attained, and thus its effectiveness.

This paper is intended to be submitted as a review and synthesis article to En-
vironmental Modelling and Software. The author acknowledges the support of
a scholarship provided by the Mathematical Sciences Institute of the Australian
National University.

Sun, X., Croke, B., Jakeman, A., & Roberts, S. (2022). ‘Assessing Convergence in
Global Sensitivity Analysis: a review of procedural choices influencing trust-
worthiness of results’. Intend to submit to Environmental Modelling & Software.
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Abstract 

In the field of environmental and socio-environmental modeling and in other domains where uncertainty 

is rife, global sensitivity analysis (GSA) is now established as a mainstream procedure in model 

development and evaluation. Although convergence analysis of metrics or measures used in GSA is a 

major key to ensuring a level of technical trustworthiness or assurance of sensitivity measures obtained, 

there is a need for more holistic guidance on appropriate considerations and choices to undertake in the 

GSA procedure that affect the robustness of results and hence the level of assurance. Satisfactory 

convergence plays a key role in contributing to the level of assurance, and hence the effectiveness of 

GSA can be enhanced if choices can be made to achieve that convergence. In this paper, we review the 

literature and summarize the impact factors influencing the effectiveness of a GSA exercise, its results, 

and the associated convergence. The impact factors that we concentrate on are the definition of assurance 

and convergence, sampling methods, the algorithmic settings of popularly-used GSA methods, and 

convergence assessment. An aim is to encourage transparency in documenting, justifying and, wherever 

possible, comparing methodological choices so that the level of robustness to those choices is clear. 

Another is to indicate choices that will facilitate faster convergence for models with prohibitively long 

runtimes. Finally, we list several directions that warrant more attention in the future study and 

assessment of convergence in the global sensitivity analysis procedure. 

1 Introduction 

Good modeling practice is essential for the development, evaluation and ultimate utility of 

environmental models [100], and sensitivity analysis is an indispensable tool [190,207] for 

understanding model behavior and diagnosing problems such as non-identifiability, parameter 

interactions and implausible input-output relationships [78]. A classical definition of sensitivity analysis 

is a pertinent foundation here and is provided by Saltelli et al. [206] as: “sensitivity analysis (SA) is the 

study of how variations in the output of a model (numerical or otherwise) can be apportioned, 

qualitatively or quantitatively, to different sources of variations, and of how the given model depends 

upon the information fed into it”. 



SA has a comprehensive and diverse literature across many domains and has been fertile ground for the 

development of new methods, principally for global sensitivity analysis (GSA) whose convergence this 

paper is concerned with. In the environmental modeling literature, the broad range of uses of GSA has 

made it a subject of increasing attention, such as in [32,62,164,185,202,289]. This attention is partly 

because it is usually unrealistic to consider analytical methods to study sensitivity and, similarly, the 

uncertainty of environmental models due to their complexity and non-linear nature [279], and because 

any method devised has its own purposes, strengths and weaknesses depending on the model and its 

problem context. Therefore, computational GSA methods have become a popular means of investigating 

the influences of model parameters and inputs (both often referred to as factors) on model responses 

[119]. In the hydrological domain alone, for example, GSA has already been applied widely to well-

known models like MODFLOW, VIC, Noah-MP and SWAT [140]. In terms of software for 

computational GSA methods, there is now much available. Douglas-Smith et al. [59] has summarized 

the recent nature and trend of mainstream software tools and techniques that have been developed. 

There are several ways of categorizing the use of GSA, which is a fundamental consideration in selecting 

a GSA approach and assessing the convergence of its results. The commonly applied one separates 

sensitivity analysis into four categories: screening (or factor fixing), ranking (or factor prioritization), 

variance cutting, and factor mapping [208,216]. Depending on the purpose of using GSA for one’s 

model of interest, researchers should choose methods applicable to the appropriate category. 

Furthermore, by assessing convergence, we mean a practice that involves monitoring/measuring 

convergence, indicating stability of model factors and confidence against sample size, and reporting on 

and justifying assumptions/choices that were made in the process. 

In any GSA exercise, there are several methodological steps that must be undertaken, and these 

constitute a workflow as enunciated by Pianosi et al. [176]. Most fundamentally, repeated samples must 

be taken from the model parameter space and, along with a given set of model inputs or forcings, the 

model run forward for each sample to generate a response surface of the model. In the environmental 

domain, inputs will typically be defined temporally and often spatially as well. Metrics or indices must 

be chosen to calculate quantities of interest of the model response, which can involve either some 

function of the model outputs alone or some error measure of the outputs with respect to observations 

[228]. However, there are studies attempt to avoid using metrics. For example, Berezowski et al. [19] 

utilize spatial distribution rather than metrics to show how WetSpa model is sensitive to spatial input 

data. A fundamental consideration is to decide when adequate sampling of parameter space has been 

achieved that indicates sufficient or acceptable confidence in the metrics calculated [119]. The central 

importance of assessing convergence has been articulated by 28 authors in their Position Paper on the 

future of sensitivity analysis [190]. They argue that the literature is replete with studies that indicate 

convergence for a particular model or function but that these offer only limited guidance, leading to 

many users choosing the computational budget (i.e., the number of model runs) for SA on an ad-hoc 



basis, rather than on convergence considerations.  

Researchers have tried to identify and, to some extent, control the impact factors that may affect the 

results of an SA. The number of samples is the most obvious one to impact the performance of SA, and 

there are many papers that tend to suggest ranges of sample size for the various SA methods in the hope 

that future researchers will achieve trustworthy SA results. But the impact factors are much more 

complex than mere sample size. Thus, Crosetto et al. [48] concluded that there are different sources of 

uncertainties affecting the model input data, such as measurement errors, uncertainties from inadequate 

definition and excessively coarse scale of data, and insufficient samples. Wang et al. [281] reviewed 

several convergence studies of SA and concluded that the sample size, the natural properties of the 

parameters, and the model complexity should all be considered for the reliability of ranking results. 

Song et al. [243] and Yang et al. [289] both argued that the selection of appropriate GSA methods, 

monitoring of convergence, and estimation of the uncertainty in SA measures are crucial. In addition, 

Yang et al. [290] further stated that the results of an SA exercise are “always dependent on the model 

used, forcing input, boundary conditions, parameters chosen, prior distributions, and defined objective 

function(s)”. Similarly, Devak et al. [54] have suggested that key factors to be considered in SA include 

the objective(s) of the SA and associated definition of them, computational budget, selection of an 

appropriate method of SA for the desired model, ranges of the parameters, number of samples, and 

correlation between input parameters. Qian and Mahdi [183] listed similar quantities to these.  

Therefore, many considerations potentially affect the results, and ultimately the convergence, of a global 

sensitivity analysis. These are largely recognized in Pianosi et al. [176] in their proposed complete 

workflow on the application of sensitivity analysis methods. They characterized the performance of a 

GSA exercise as being impacted by eight factors: experimental set-up, the GSA method, the input/factor 

variability space, the sampling strategy, the sample size, the robustness and convergence assessment, 

visualization of results, and assessment of credibility with respect to the SA results in the sense of 

matching underlying assumptions. They also mention observational errors in the forcing and model 

response data, the potential for model emulation, and dealing with unsatisfactory model behavior. The 

authors extended the workflow depiction to provide a systematic review of SA methods and linked SA 

with other fields including uncertainty analysis, model calibration, model diagnostic evaluation, 

dominant controls analysis, decision-making, and model emulation. 

This paper aims to summarize and integrate the contributions from previous convergence studies of 

GSA and suggest some prime choices to consider when undertaking a convergence analysis, both for its 

assessment and for improving its rate. Of course, increasing the rate or computational efficiency of 

achieving convergence can be desirable when model runtimes are necessarily long. The structure of the 

paper is as follows. Section 2 begins with consideration of what are the elements of assurance of the 

results of a GSA exercise, elicits the contributions of prominent review papers related to convergence, 

and provides a working definition. In relation to sampling strategy, one of the prime impact factors on 



convergence, Section 3 outlines the range of sampling methods developed in the literature and their 

various characteristics, strengths, and weaknesses. Section 4 discusses the importance of selecting an 

effective sample size, illustrates the futility of finding a relationship between sample size and model 

complexity, and argues for a sequential approach that monitors convergence of sensitivity measures. 

Section 5 examines the relevant algorithm choices for specific GSA methods and the alternative settings 

within them. Both the Morris [156] and Sobol’ methods [239] are covered as these are the most applied 

methods and, indeed, are the algorithms where most of the attention on different settings has been 

concentrated. Section 6 describes available assessment approaches for quantifying convergence, along 

with a discussion of their pros and cons. And Section 7 presents the conclusions and some potentially 

fruitful directions for enhancing convergence and its practice. 

2 A definition of convergence and the notions of assurance, 

trustworthiness, robustness, reliability, and credibility 

2.1 Assurance, trustworthiness, robustness, reliability, and credibility 

Given the brief literature review in Section 1, we can begin to posit the range of factors, and the choices 

made therein, that affect the level of quality assurance [260] or technical trustworthiness considered in 

regard to the procedure and results of a GSA exercise. Of course, assurance and trustworthiness are 

relative, not absolute, notions when modeling uncertainty is involved, and so it is in the realm of the 

users or clients to decide the level of assurance or trustworthiness that is acceptable in the circumstances. 

The crucial point is that the impact factors be acknowledged and considered, some of which require 

justification or, wherever pertinent, there be a comparative evaluation of alternative choices. 

Achievement of a desired convergence of sensitivity measures plays a key role in enhancing the level 

of assurance and hence the effectiveness of a GSA exercise. Not only then is convergence assessment 

an essential factor but there can be choices that increase the convergence rate when the computational 

budget is restrictive. 

Note also that here assurance and trustworthiness are being considered in the context of the technical 

GSA procedure. However, these terms can also have an important and complementary social context 

not covered here. Indeed, there is considerable social science literature on trust such as in Schilke et al. 

[218]. Thus, there is much attention now in the artificial intelligence and machine learning literature 

emphasizing transparency and inclusiveness as essential elements of a trustworthy exercise 

(encompassing the lifecycle of design, development, and deployment), leading to assessment 

frameworks such as FEAS, an acronym for Fairness, Explainability, Auditability and Safety [264]. 

Those technical impact factors, for which there can in the main be user choices, would seem to be as 

follows.  

1. The purpose or objectives and associated target functions or measures, computational budget 



and the level of accuracy required 

2. Boundary choices including: the temporal period and spatial extent of analysis; the 

characteristics of the forcing-response data, especially its error properties and whether these 

were taken into account; parameter ranges or prior distributions 

3. Algorithm choice(s) and settings therein, particularly their suitability and robustness to relevant 

choices 

4. Sampling strategy that is sufficiently efficient in a computational sense ensures adequate 

coverage of parameter space and facilitates assessment of cross-sample influences on results 

5. Convergence assessment method including monitoring of convergence to achieve acceptable 

accuracy in line with the objectives and computational budget, and especially considering if 

either sub-period sampling, bootstrapping by resampling or replication with independent 

samples was used 

Assurance or technical trustworthiness of results can then be examined qualitatively or categorically in 

terms of the choices made with respect to each of the above factors. However, an alternative notion of 

reliability has tended to have been referred to loosely in the GSA literature, but in the main, it seems to 

have been defined in relation to how well the GSA procedure attributes the contribution of the different 

parameters to output variation. One exception to this is in Razavi and Gupta [187], who proposed a 

measure they termed reliability for assessing the ranking of sensitivities. Their reliability indicated the 

number of resamples in bootstrapping required to provide the same rank as the original sample set. But 

in Razavi et al. [191], this was later termed robustness. 

The notion of robustness can be interpreted narrowly in terms of the ability to handle data outliers, but 

in Pianosi et al. [176], it is considered as results being independent of the specific input-output sample. 

One could extend this further and regard robustness here to reflect all the decision choices (and main 

alternatives) that one makes, especially with respect to items 2 and 3. Therefore, a robust approach 

would ideally consider how results change with respect to different impact factor choices one can make 

in the whole GSA procedure. In that way, assurance or trustworthiness can be considered as an outcome 

of assessing robustness, and the level of assurance found serves as an indicator of the effectiveness of 

the GSA procedure implemented. 

Overlapping with assurance is the notion of credibility. It has been defined in Pianosi et al. [176] as 

checking that the underlying assumptions of a method are satisfied, comparing results by using different 

methods, and judging if any results obtained challenge expectations.  

Having set the above background on the five influences on GSA results above, we now turn to a brief 

literature review of convergence assessment and our attempt at defining a working definition of 

convergence. 



2.2 Defining convergence 

There have been several review papers attempting to address convergence assessment for a GSA 

exercise. But note that convergence is not a universal term across the GSA literature. Some authors use 

the term “stable” or “stability” to indicate their results have converged, and these studies have largely 

not been included in our discussion in this section. Yang [289] listed several studies that provided a 

comparison of various SA methods, and investigated the use of the Central Limit Theorem and 

bootstrapping for monitoring convergence applied to the HYMOD model for the Leaf River watershed 

as a case study. Similarly, Vanrolleghem et al. [270] reviewed studies that compared different SA 

methods (Standardized regression coefficients, the Morris method, and extended-FAST (EFAST)) and 

suggested a certain number of model runs to reach convergence. More generally, Sarrazin et al. [216] 

pointed out that a gap still exists in the practice of GSA convergence. They made three observations 

based on past GSA studies: that the definition of convergence lacks uniformity, the convergence 

criterion and threshold were not defined clearly, and the number of samples for different models may 

be different for the same GSA method. Perhaps most importantly, Pianosi et al. [176] suggested that 

convergence assessment be standard practice.  

In an overview of recent papers that used GSA to study high dimensional models (> 40 parameters), 

Sheikholeslami et al. [225] reviewed existing grouping strategies for GSA and made three observations: 

that only a small number of factors are dominant in a sensitivity sense, a threshold is commonly set to 

group factors, and the relative positions of factors with different importance are quite similar between 

different GSA methods. Wagener and Pianosi [274] also made similar observations on the number of 

dominant parameters and commented on how sample size affects GSA results. Shin et al. [228] raised 

ten questions that should be addressed when undertaking SA, stressing several impact factors on results 

including: parameter range sampled, length and characteristics of model forcing period, and the target 

or objective used to measure parameter sensitivities. 

It is important, however, to first understand what convergence in sensitivity analysis means, and in each 

circumstance, a proper definition is necessary. Some examples from the literature are helpful here. For 

the purpose of screening, Gan et al. [65] argued as their condition for convergence that the sample size 

is large enough for there to be no significant change in identification of the non-influential input factors 

to occur as summarized in Peng et al. [174]. With respect to the Morris method, Garcia et al. [66] defined 

convergence as having been achieved when increasing the number of trajectories does not change the 

set of most important input factors. Likhachev [135] also attempted to describe convergence in terms of 

the Morris method and split it into three types: the convergence of the sensitivity measure, parameter 

sensitivity ranking, and screening. Hsieh et al. [92] believed that converged results should be similar 

across resamples under the same sample size using bootstrapping. In general terms, convergence has 

been considered as reached when the obtained index values do not change or only change within a 

certain tolerance by increasing the number of samples (or model runs). On the other hand, another way 



of viewing convergence can be based on the difference in sensitivity indices obtained by completely 

new sets of independent samples but with the same amount of model runs in each set [140]. Obviously, 

the number of samples is a major factor affecting the status of convergence since the number of samples 

is closely related to the number of model runs, and thus the computational budget; however, this basis 

for a definition of convergence is not sufficient nor complete [216].  

First, the sampling procedure used can also have varying coverage of parameter space. Second, as 

pointed out in Sarrazin et al. [216], the definition of convergence and indicators should be based on the 

purpose of GSA. Moreover, convergence assessment can also be computationally expensive. Thus, 

limited budget and practical considerations have often forced modelers to report SA results that have 

not converged [140]. Furthermore, the requirements regarding convergence may change due to changes 

in the modeling procedure, not just the number of samples; for example, the switching of GSA methods, 

the change of sampling strategy, or the use of different convergence indicators. 

Therefore, we propose a definition of convergence for a GSA exercise, taking into account observations 

and statements from previous studies, as: “Based on the purpose of the GSA exercise, results are 

considered to be converged when the quantities of interest (e.g. indices, ranking, or parameters in 

screened groups) do not change within a certain tolerance under different sets of independent samples 

as identified by reliable convergence monitoring methods, albeit under the same configurations (e.g. 

experiment setup, sampling method, and algorithm settings.) specified and stipulated for other 

controllable factors.” 

 

Figure 1 The step-by-step flowchart for assessing the convergence of a GSA exercise 

In reviewing the literature, we found that many convergence-related studies have focused on suggesting 

the optimal sample size for achieving convergence, based on either expert opinion or previous studies 

(e.g., [95,176]). Such a strategy is likely to be a guide only as previous knowledge will tend to have a 

different context (and hence sensitivities), including potentially the actual model being investigated but 

invariably its forcing and response data characteristics. On the other hand, many of the more recent 

convergence assessment methods, as we shall see in Section 7, are based on measures attempting to 

capture convergence in a single statistic that somewhat obscures actual convergence behavior. Moreover, 



those methods seem to have not yet been subject to wide-ranging testing. We view obtaining converged 

sensitivity results as a comprehensive process to be considered throughout the whole GSA application. 

There has also been only modest attention paid in the literature on improving the convergence rate, a 

strategy that can be crucial in cases where model runs are computationally problematic in relation to the 

budget available.  

In Figure 1, we propose a step-by-step flowchart that aims to guide researchers in seeking converged 

sensitivity results. By close inspection, we believe that the whole GSA application process can be split 

into two parts, which constitute the process of improving the convergence rate and the actual 

convergence rate assessment process. There are two ways of explaining the term “convergence rate”: 1. 

How quickly the estimated sensitivity measures approach the theoretical or true sensitivity measures; 2. 

The magnitude of the slope of the convergence plot produced from the sensitivity measures or errors 

versus sample size or number of model runs. In this paper, “convergence rate” largely refers to the first 

description; thus, convergence rate improvement refers to how the choices at certain steps can either be 

more or less efficient in pushing the estimated sensitivity measures towards the theoretical sensitivity 

measures, whereas convergence rate assessment refers to how each specific method or tool monitors the 

difference (or within a certain tolerance) between the estimated and the theoretical sensitivity measures. 

However, the ongoing convergence rate as a value has the potential to be a helpful guide to get a better 

understanding of the errors and how far they are away from the desired accuracy. To avoid confusion, 

this paper will use the term “rate of convergence” to represent the second description of “convergence 

rate”.       

Many papers, such as in Pianosi et al. [176], have rich information on the Setup step before the 

application of GSA, which includes choosing the input factors and defining the parameter space and the 

model output. This step will not be covered in detail in this paper. A key step, however, before applying 

the GSA procedure to a problem is to determine the purpose. In general, the purpose of a GSA exercise 

can be classified into four items: factor fixing, factor prioritization, variance cutting, and factor mapping 

[208], and in the sense of application, these classifications of purpose are known as screening, ranking, 

and mapping [176]; however, screening, ranking, and the precise sensitivity index value (such as the 

analytical sensitivity of first-order sensitivity index) are commonly sought by the researchers during the 

GSA exercise. The purpose helps to define the actual form of the quantity of interest, the associated 

sensitivity measures, the method of assessing convergence, and the tolerance of convergence. The 

computational cost is closely related to the purpose selected and should be achievable within the 

available resources. As well, the GSA estimation method should be chosen to match the desired purpose 

to avoid untrustworthy results or a surcharge in computational efforts. With the selection of the GSA 

method and purpose, the associated sensitivity measures will be presented in various forms. Lastly, the 

way of monitoring convergence and the tolerance of convergence are highly dependent on the purpose, 

as the threshold and indicator would be different across the GSA exercises for different purposes. An 



indication of how the choice of SA method depends on purpose is given in Figure 3 of Pianosi et al. 

[176]. 

The process of convergence rate improvement starts after the determination of the purpose and the 

corresponding GSA estimation method. By choosing the appropriate sampling method and a specific 

method’s algorithm settings, one can either greatly increase or decrease the rate on how the sensitivity 

measures approach the convergence. For example, the quasi-Monte Carlo sampling methods was proved 

to be more computationally efficient in reaching convergence of the variance-based Sobol’ method 

compared to the random sampling method, and the details can be found in Section 3.  

The analysis period in GSA is crucial yet easily overlooked in the GSA application. In addressing ten 

questions about conceptual rainfall-runoff models, Shin et al. [228] showed that the change in the 

analysis period can impact the number of insensitive model parameters. In fact, several studies have 

investigated the impact of spatial or temporal model input forcings on GSA and have found that the 

sensitivity of model parameters can change dramatically [1,62,89,130,157,261,274,281,295], or even 

with different climate forcing input conditions [248,295]. Therefore, the analysis period is an aspect of 

robustness that needs to be considered in a GSA exercise as it potentially changes the sensitivity 

measures, and so any convergence assessed needs to be explicit about the period analyzed and its spatio-

temporal forcings. 

Emulation is an alternative approach to obtaining model sensitivity results. It is generally used to reduce 

the cost of running complex models by building a metamodel, or surrogate model, based on 

approximating the desired response surface of the original model. Sensitivity indices, such as those of 

Sobol’, with respect to parameters can then be obtained directly using the surrogate [286]. Surrogates 

will often require significantly fewer samples to build than are required for sample-based GSA methods. 

Caveats depend on the method used and the properties of the function being approximated. As a rule of 

thumb, surrogate methods will work better for smooth functions with 10 or fewer parameters. Higher 

numbers of variables require methods like sparse grids that can adapt to important dimensions [175]. If 

a model response function is not smooth, for example, it has discontinuities or is only piecewise 

continuous, surrogate methods will not work very well [149]. Thus, emulation can potentially play an 

important role in improving the convergence rate of sensitivity measures. Many studies have reported 

the emulation integrated into their GSA application to be highly computationally efficient, such as the 

substitution of a model by its polynomial chaos approximation [20,37], sparse polynomial chaos [280], 

Bayesian approaches [165], stochastic collocation [94], multi-index stochastic collocation [101], state-

dependent parameter [184], or sparse grid collocation [52]. To date, the majority of emulation-based 

approaches have been coupled with the variance-based Sobol’ method.  

After obtaining the first set of sensitivity measures for a minimum sample size that is within budget, the 

convergence assessment process follows. In the literature, there are various ways to check the 



convergence status of the obtained sensitivity measures. One way compares the sensitivity measures 

between multiple GSA methods or uses one GSA method as the reference method. Another practice is 

to compare the results achieved with previous studies. If the results obtained and the reference results 

have a larger difference than the desired tolerance, the initial sample size may be increased, and further 

simulations run. This simple practice of increasing the sample size is later generalized into what we term 

a “sequential” approach, and the difference from the reference results gained at each step can be viewed 

as an indicator of the convergence rate. Advancing on this, various studies have proposed quantitative 

formulas or methods to assess the convergence rate, though the inventors may not have used the term 

convergence rate. Finally, with the help of visualization and a sequential approach, the values given by 

different convergence assessment methods can be inspected visually. Each of these convergence 

assessment methods will be discussed in detail in later sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 Sampling method 

Table 1 A list of the different sampling methods and where they have been published (Note *: in the 

field of stochastic optimization rather than SA; **: tested on the variance-based Sobol' method.) 

SAMPLING METHODS References 

Reviews of common sampling methods [236] [61,220]* 

Latin Hypercube sampling (LHS) method [147] 

Sobol' (SOBOL) sequence sampling 

⚫ Direction Numbers 

[231,232] 

[5,23,24,108–110,254] 

Randomization Methods   

⚫ Review papers [162] 

⚫ Random shift method [267] 

⚫ Scramble method 

⚫ Simplified scramble method 

[166] 

[145]  
⚫ Replicated LHS [148] 

⚫ Column Shift method [253] 

Latin Hypercube Hammersley sampling [282] 

LHS-SOBOL [56] 

Local search-based genetic algorithm [220] 

Progressive Latin Hypercube sampling [223] 

Methods specific to the Morris estimation method   

⚫ Winding stairs method [104] 

⚫ Radial design [30] [203]** 

⚫ Optimized Trajectories (OT) 

⚫ Combined LHS and OAT sampling 

⚫ Simplex based sampling 

⚫ Cell based trajectory sampling 

⚫ Modified OT (MOT) 

⚫ Constellation based sampling 

[28] 

[75] 

[180] 

[205] 

[199] 

[214] 

⚫ Quasi-OT [67] 

⚫ LHS with central composite design [292] 

⚫ Mixed EE with "handcuffed prisoners"  

and "cycle equitable graphs" sample strategies 

⚫ Sampling for Uniformity 

⚫ Radial Morris/Quasi-Random 

⚫ Review papers 

[8] 

 

[118] 

[288] 

[35,118] 

 

Sampling methods for SA can mostly be characterized in five ways. The first and simplest is Monte 

Carlo sampling, often termed random but more correctly as pseudo-random sampling. A second type is 

stratified sampling as exemplified by the Latin hypercube that, in order to ensure coverage, breaks up 

an interval or space into non-overlapping subintervals, each of which is (pseudo) randomly sampled. A 

third type is quasi-random sampling as exemplified by Sobol’ sequencing where the samples are 

deterministically generated by a primitive polynomial and a group of direction numbers, which are all 

pre-determined. The fourth type involves randomization of the Sobol’ sequence; for example, random 



shift, scramble, and column shift methods are all applied to the Sobol' sequence, whereas replicated LHS 

is randomized Latin Hypercube sampling. A fifth type is the collection of hybrid methods, largely using 

the stratified property of Latin Hypercube sampling to generate samples in various non-overlapping 

subintervals, and the properties of the Sobol’ sequence are then used to generate points with rank to pair 

the samples generated by LHS in each subinterval. Therefore, LHS-Sobol’ utilizes both the stratified 

property keeping the one-dimensional uniformity and the quasi property keeping the multi-dimensional 

uniformity. In addition to these categories, there are also methods associated specifically with the Morris 

method of estimating GSA measures. 

A condensation of the literature on sampling methods in SA is produced in Table 1, along with the 

relevant references. A discussion of those contributions, diverse methods as applied to various models, 

and study-specific findings follow in subsequent paragraphs of this section.  

We begin, however, by noting that Andres [3] has argued the significant role played by different 

sampling methods in sensitivity analysis as the right sampling method can increase the efficiency of 

detecting and investigating parameter influences. Many studies also report the differences in 

convergence rate caused by various sampling methods. It is clear that a better sampling method (in 

consort with convergence assessment) will provide better coverage of the parameter space [4,105], since 

the performance of sampling methods and the quality of samples created directly control the efficiency 

and robustness (with respect to sampling variability and randomness) of any associated sampling-based 

analysis [223]. 

There are quite a few lessons regarding sampling from the investigation of environmental models. Thus, 

Tang et al. [257] observed that the choice of sampling scheme heavily affects the convergence of Monte 

Carlo integration in the variance-based Sobol’ method applied to the lumped Sacramento soil moisture 

accounting model (SAC-SMA) coupled with SNOW-17. Reusser et al. [193] compared three variance-

based sensitivity methods (FAST, EFAST, and Sobol’ method) on the hydrological model TOPMODEL 

and concluded that sampling schemes caused substantial differences in the convergence rate and in the 

sensitivities for less important parameters. Under a non-correlated factor setting, the different 

convergence performances of the Sobol’ method and Importance Measure methods for sensitivity 

indices have also been observed, and this is believed to be due to different sampling strategies [294].  

There is a rich literature on developing and improving different sampling methods, as listed by 

Sheikholeslami et al. [223]. Other than Monte Carlo (MC) sampling, Latin Hypercube (stratified) 

sampling and Sobol’ sequences (quasi-random), other sampling methods are rarely seen in the field of 

sensitivity analysis, at least in the case of environmental modeling. In fact, a lot of sensitivity analysis 

studies performed in the environmental field, such as fugacity modelling study [284], still rely heavily 

on MC sampling, and this can hinder efficient convergence of sensitivity analysis metrics. Moreover, 

MC sampling can generate clusters and leave certain areas of parameter space empty [183]. Thus, non-



sampled or under-sampled areas will introduce errors in the results of sensitivity analyses [171]. While 

MC sampling has the slowest convergence, it has the advantage that subsamples are easily created, as 

are extensions of the sample size. This means from an initial guess of the number of samples needed, a 

measure of convergence can be obtained by creating non-overlapping subsamples for a range of 

subsample sizes. This will give a measure of the convergence rate without a need for further model runs 

though it must be noted that the estimate for each subsample size will not be independent of the other 

subsample sizes as they are all based on the same original sample set. Further, any bias in the result 

obtained by using the original sample set due to inadequate sampling of parameter space will not be 

identified by this method. This has the potential to make MC sampling more attractive for convergence 

studies based on replicate samples, but, as always, care is needed. 

In 1995, Sobol’ and Shukhman [236] pointed out that none of the sampling methods is superior to the 

others in the sense that the convergence rate is problem-dependent, but a quasi-random sequence, 

wherein the sequence is deterministic and generated by a primitive polynomial and a direction number 

matrix, is potentially better for improving convergence characteristics. Compared to random sampling, 

quasi-random sequences provide faster convergence and more stable estimation of metrics 

[72,161,202,231,237], hence requiring considerably fewer model runs to reach a given accuracy in the 

estimates [128,238]. For certain sensitivity analysis methods that have specific sampling designs, such 

as the Morris method, choosing trajectories with different sampling methods also impacts performance. 

A trajectory-based scheme for the Morris method was proposed back in 2007 [28], a winding stairs 

method in Jansen et al. [104] and a radial design in Campolongo et al. [30]. Among those, radial design 

was found by Saltelli et al. [203] to be better than trajectory-based schemes, but this was for the variance-

based Sobol’ method rather than the Morris method. However, more detail on the choice of sampling 

methods for the Morris method will be covered in a later section. 

Ideally, SA users should assess convergence rates as the sample size increases based on intermediate 

results. But a typical hindrance is that many sampling strategies, such as Latin Hypercube sampling, 

involve one-stage sampling that generates the entire set of sample points at once, requiring the user to 

specify the sample size a priori [223]. This is a disadvantage as it is unlikely for users to know a priori 

the optimal sample size that enables the algorithm to generate the desired convergence. Therefore, there 

is a need for sequential or multi-stage sampling strategies, such as are available for Sobol’ sequences 

[231,232]. Sobol’ sequence is constructed by a primitive polynomial and a direction number matrix, 

which are all pre-determined to ensure the uniformity of generated samples. Without changing the 

number of dimensions, the Sobol’ sequence is a single recursive sequence with its seed acting as the 

index of specific samples. There are ongoing studies on the appropriate direction number choices 

[5,23,24,108–110,254] to address the poor two-dimensional projections issue and extend the dimensions 

of Sobol’ sequence from the original 40 to 21201.  

More recently, a new sampling method called Progressive Latin Hypercube sampling (PLHS) has been 



developed [223], which was initially used to replace the LHS in the GSA method called STAR-VARS 

to generate star centers. PLHS has the advantage of keeping the structure of LHS even when extra points 

are later added, whereas the traditional LHS needs to be generated from the beginning each time the 

required number of samples changes. In Sheikholeslami and Razavi [223], PLHS and other sampling 

strategies are compared for several analytical functions (with 2, 5, 100 parameters) and the 5-parameter 

HYMOD model, and PLHS was claimed to have the best performance. PLHS has been indicated in 

several studies [60,107,190,197]. However, Khan and Gunpinar [115] proved the space-filling 

characteristic of PLHS may place a lot of points around the boundaries rather than at the interior of the 

parameter space. 

In a non-SA context, in the field of stochastic optimization, Eryoldsa and Durmusoglu [61] compared 

the Sobol’ sequence and seven different LHS schemes. The combination of Latin hypercube and Sobol’ 

sequence, called Latin Hypercube Hammersley sampling (LHHS), proposed by Wang et al. [282] gave 

the best performance over the individual LHS and Sobol’ in terms of efficiency. In addition, Dige and 

Diwekar [56] combined Latin hypercube and Sobol’ sequence methods, named LHS-SOBOL. It 

performed well in comparison to Sobol’, LHS and LHHS for high-dimensional functions. Shang et al. 

[220] compared several algorithms for Latin Hypercube design though not PLHS. They found that the 

existing LHS designs lack good space-filling quality and proposed a local search-based genetic 

algorithm (LSGA) to address the construction issue in Latin hypercube design. 

Although various randomization methods for the quasi-Monte Carlo sequence have been applied in 

several studies of SA, convergence analysis of their efficiency is quite limited. Niederreiter [162] 

reviewed randomization methods and pinpointed the issues of quasi-Monte Carlo methods, these being 

pessimistic error bounds, problematic optimization of net constructions, and questions on if certain 

deterministic constructions exist to support the randomized sequence to perform better. In Chapter 5, 

Sun et al. [254] found that the Sobol’ sequence has the problematic issue of inner-determinism, 

producing correlated samples resulting in under-estimated Sobol’ indices. To overcome the inner-

determinism issue, randomization methods of the Sobol’ sequence have been recommended, notably a 

random shift method [267], a scramble method [166,167], a simplified scramble method [145], a 

replicated Latin Hypercube [53,148], and a recently-developed column shift method [253]. 

To summarize, different sampling strategies provide distinct coverages of the parameter space, and 

quasi-Monte Carlo sequences deliver higher convergence rates and more uniform coverage compared 

to Monte Carlo sequences. The proper choice of sampling methods can greatly decrease the necessary 

number of model runs to reach the desired convergence of quantities of interest. In addition, methods 

that allow sequential sampling have the advantage of adding samples (and doing associated model runs) 

until convergence is attained or computational budget is reached. Moreover, there are many newly 

proposed and efficient sampling methods that have never been invoked in sensitivity analysis, such as 

LHHS or LHS-SOBOL, and the various randomization methods have rarely been applied compared to 



non-randomized sampling methods. So, there is much scope to compare and investigate these sampling 

methods for applications in sensitivity analysis where model run time may be prohibitive. 

4 Sample Size 

Table 2 The collection of references related to the subject of sample size issues 

SAMPLE SIZE ISSUES References 

Disadvantage of insufficient samples [48,54,69,77,84,140,172,183,216,263]  

Adequate sample size is not clear pre-experiment [17,142,221,223,242] 

Screening & Ranking take less samples to converge 

compared to precise indices 

[15,142,216,225,226,281] 

Sensitive parameters converge faster than insensitive 

parameters 

Sensitive parameters converge slower than insensitive 

parameters 

[119,164] 

 

[281] 

The complexity of a model, such as the number of parameters, degree of non-linearity and parameter 

interactions that combine to influence model outputs, highly relates to the number of samples needed 

for a GSA application. The importance of using adequate samples to reach convergence for sensitivity 

analysis has been pointed out through multiple papers in the literature. The calculation of sensitivity 

analysis indices is subject to uncertainty due to a too-limited sample [172], as small or inadequate 

samples may fail to capture full coverage of the parameter space [77,183,216]. Insufficient sampling 

highly impacts the performance and reliability of a sensitivity analysis [48,69,263] since sampling-based 

techniques need to explore the entirety of space, including specific low probability regions [84], to 

generate unbiased estimates of GSA indices such as mean and variance [54]. In addition, the results of 

sensitivity analysis under inadequate sampling may be non-repeatable and change each time such a 

group of inadequate samples is used to run the model forward [140]. Therefore, the relationship of 

sample size and coverage to the convergence of sensitivity analysis is of utmost importance [281].  

Sensitivity analysis results tend to converge with increasing number of samples [120,174,227], and the 

uncertainty in the sensitivity analysis measures can be quite large for small sample sizes, which can lead 

to temporary divergence in the value. Still, the inverse relationship between efficiency and depth of 

quantification [279] often leads to a trade-off between the computational cost and the information gained 

from sensitivity analysis [26,106,258], and a compromise is usually considered that sacrifices the 

accuracy of sensitivity analysis [174]. High complexity and dimensions may cause the proper sample 

size to be tremendous [37], and it has been believed by many authors that it is rather difficult to run a 

convergence analysis [17].  

An adequate sample size is not typically known a priori [223], and no definite rule of thumb or general-

purpose method for estimating the required sample size to reach convergence has been presented so far 

[17,142,221,242]. Moreover, it can defeat the purpose when evaluation of the stability and convergence 



of sensitivity analysis comes after the computational budget has been fixed [226]. Still, there have been 

efforts to discover a simple linear relationship between the number of parameters and the number of 

samples or the number of model runs. Benedetti et al. [16] reviewed previous suggestions on the 

multiplier between the number of model simulations and parameters to reach convergence, suggesting 

this be 50 times. Later, Benedetti et al. [17] claimed that this multiplier should be between 40 and 150 

to reach convergence based on two convergence criteria (model output variability and stability in 

parameter selection). Unfortunately, these suggested “factors” have not been comprehensively tested as 

all these papers were based on One-at-A-Time (OAT) SA. In 2019, Huo et al. [95] summarized several 

publications, which employed both OAT and various GSA methods, and stated that a factor of 10 to 20 

is typically sufficient to identify the most important parameters in a model. It should be noted that the 

number of samples needed will depend on the purpose of the GSA exercise, making the determination 

of a multiplying factor difficult.  

From the literature, it is obvious that the number of samples should be chosen wisely according to the 

purpose of using GSA and the differences between each specific GSA method. Thus, if the convergence 

of ranking results is the targeted interest, only a small sample size (relative to that for the convergence 

of sensitivity indices, for example) is necessary [142,281]. Many experiments have found that 

trustworthy screening and ranking results require much fewer samples than actual sensitivity indices to 

reach convergence [15,216,225,226]. For example, in the case of the variance-based Sobol’ method 

applied to a 26-parameter SWAT model for the Kleine Nete, the total-effect sensitivity indices gave a 

reliable ranking with only 2000 samples compared to 12000 samples for the converged first-order 

sensitivity indices [164]. However, it is rather hard to conclude whether screening or ranking takes fewer 

samples to converge. For example, the Morris method took 500 samples for ranking to converge in 

applying to a 13-parameter HBV model compared to 40 samples for screening in Sarrazin et al. [216]; 

however, in the same study, the Morris method took 90 samples for ranking to converge in applying to 

a 50-parameter SWAT model compared to 100 samples for screening. In addition, several studies have 

stated that parameters with the highest sensitivities can attain final ranking results much more quickly, 

even at limited samples, as less sensitive parameters still introduce fluctuations to and shift their rankings 

even with small changes [119,164]. On the other hand, Wang et al. [281] believed from a study of 

extended-FAST on a 47-parameter WOFOST model that the sensitivity measures can converge quickly 

for insensitive parameters.   

The discussion of the optimal number of trajectories (as indicated above, this relates to the number of 

samples) r for the Morris method has been a hot topic in the literature. In 1997, Campolongo et al. [29,31] 

used r = 10 and p = 4 to screen the 10 most important parameters for a 32-parameter GMSK model. In 

2004, Saltelli et al. [208,211] stated that the optimal r is normally considered to be between 4 and 10, 

and the recommended value of r was expanded to 10 to 50 by Campolongo et al. [28] (both used p = 4). 

However, several studies show that a value of r greater than 20 is actually needed to reach converged 



ranking results [65,198,247]. Among them, Gan et al. [65] recommended 20 trajectories with p = 16 or 

32 to reach screening convergence for a 13-parameter SAC-SMA model. In contrast, Ruano et al. 

[198,199] suggested the optimal number of r to be between 60 and 70, and the value of r below 40 does 

not provide a suitable estimation of the sensitivity measures for a 17-parameter control system model of 

wastewater treatment plant. The range of a sufficient number of r was later extended to 10 to 100 by 

Pianosi et al. [176] in the context of multiple-starts derivatives. In fact, it seems that the majority of 

papers have used less than 100 trajectories, excepting a few studies like Garcia et al. [66], who used r = 

300 for the 133-parameter FLBEIA bio-economic fisheries simulation model and in which case the 

number of trajectories was just enough to achieve stable ranking results for all the parameters. As 

pointed out by Sreedevi and Eldho [247], the number of runs required to obtain the optimal number of 

trajectories can vary depending upon the model used and the site considered. Ruano et al. [198] also 

emphasized that one needs to identify the optimal r to avoid Type I and II errors, but this is difficult to 

do for all kinds of model characteristics. In terms of sensitivity analysis, Type I error refers to identify 

non-influential parameter as important (false positive), and Type II error refers to identify influential 

parameter as non-important (false negative) [198]. In general, the number of trajectories recommended 

in studies is generally lower than the number of trajectories used to reach stable ranking results. An 

example indicating the need for a very large number of trajectories is in Wang et al. [283], who, for a 

31-parameter C-RIVE biogeochemical model, found that 1000 trajectories were required, resulting in 

32000 model runs, to obtain a stable result. Even more, Wang and Solomatine [279] showed that 10000 

model runs are needed for the Morris method to converge (95% CI) for the 4-parameter hydrological 

model GR4J, and this is equivalent to 2000 trajectories which is much higher than the previous 1000 

trajectories. 

The literature on the FAST method also contains various observations and discussions around sample 

size.  Interestingly, it is rather rare to find anyone testing the recommended frequency (ωi) versus the 

number of curves (Nr) ratio (ωi / Nr) of Saltelli et al. [212] from 1999 in the field of environmental 

modelling, so most studies just choose to use the base sample size rather than configure either the 

number of curves (Nr) or the frequency (ωi) by themselves for extended-FAST. Cukier et al. [50,193] 

stated that  

“... higher order provides smaller error of the numerical approximation for the FAST method; 

in addition, independence of frequencies is assured by increasing the number of model runs with 

higher number of parameters. Therefore, the selected frequencies ω and the required sampling 

size are dependent on the number of parameters”.  

In 2005, Saltelli et al. [209] posited that 500 to 1000 number of samples are normally required for the 

Sobol’ method and the extended-FAST. Yet Pianosi et al. [176] claimed that approximately 100000 

model runs are required to reach convergence of the sensitivity index when the number of parameters is 

near 50, and this translates into 2000 model runs per model parameter. Guse et al. [80] state that 315 



model runs were chosen based on the suggestion of robust sensitivity patterns from Reusser for the 9-

parameter SWAT model using FAST, but the papers from Reusser et al. [193,194] do not have the 

suggestion of 315 model runs. Li and Ren [134] used Saltelli et al. [212] as the reference to state that 65 

samples (M = 4, Nr = 1, ωi = 8) are recommended for low sample size, but this is not exactly what Saltelli 

said. Indeed, a sample size of 65 is just an example mentioned by Saltelli et al., and the recommendation 

is that the ratio of ωi / Nr should be kept within 16 and 64 as an optimal region. Moreover, Nr has to be 

an integer, which means that ωi has to be greater than or equal to 16. This setting of EFAST was still 

used until recently [121]. A sample size of 65 for a 47-parameter WOFOST crop growth model was 

tested by Wang et al. [281], and was found to be not enough to obtain stable convergence since the 

sensitivity indices still showed strong variations. 

In regard to recommendations on sample size for the variance-based Sobol’ method, Saltelli et al. [210] 

suggested 1024 samples per model parameter and, later on, Bennett et al. [18] found the estimators 

required on the order of 100000 model runs per parameters to guarantee convergence of the estimators 

for a 46-parameter Variable Infiltration Capacity hydrologic model. In comparison, Helton et al. [86] 

found that the computational cost of the first-order index alone is 2 times the number of sample size, 

and the different sample sizes suggest that “first-order and total-effect are close to being converged with 

10000 samples”, or 50000 model runs, for a 3-parameter Ishigami-Homma function. 

Vezzaro and Mikkelsen [272] applied the Sobol’ method to a 9-parameter expansion of the lumped 

conceptual model SEWSYS and observed that while 10000 samples are “not sufficient to obtain a 

complete overview of the likelihood variance” as some parameters have negative index values, while 

they believed that 10000 samples were sufficient due to the fact that the magnitude of these negative 

indices is negligible. An 11-parameter PRZM dynamic compartment model was used in Hong and 

Purucker [89], and the Sobol’ method took 15000 samples, or 195000 model runs, but this still resulted 

in negative sensitivity index values for insensitive parameters due to numerical errors. Hong’s 

convergence studies showed that additional further sampling and setting negative values to zero did not 

alter the sensitivity index probability distributions and the relative ranking of parameters, thus they 

propose that during post-processing, indices with negative values should be set to zero. Faggianelli et 

al. [63] stated that 834 samples are not sufficient for convergence of the first-order Sobol’ index for a 

10-parameter office building model.  



 

Figure 2 Assessing convergence rate based on the results from low sample size. The error of estimated 

sensitivity measures can be the difference between the estimated sensitivity measures and the 

theoretical sensitivity measures, or the error is in the form of an indicator provided by certain 

convergence assessment. Ideally, the error will be extremely close to zero with large enough samples. 

(Note: the error may not start from 10 in log scale but just serves as an example) 

Ultimately, the ideal of defining a priori the optimal sample size for convergence is not practical, along 

with the aspiration of identifying a well-defined relationship between sample size and number of 

parameters. Many studies have now shown how unreliable previous suggested sample sizes are, and this 

suggests that we should shift the focus away from a perfect sample size. To reach converged sensitivity 

results, the utilization of the rate of convergence may provide some insights into how many samples are 

needed to reach the desired threshold. Consider the case as captured in Figure 2, where the sample size 

sufficient to reach convergence is denoted by NC, and the usual approach will be either suggesting NC 

for future studies or undertaking a sequential approach to additional sampling until NC is found. However, 

if one can estimate the rate of convergence using the sensitivity measures obtained from low sample 

sizes, namely N1,2,3, the rate of convergence can help researchers to extrapolate information on how 

many samples NC would be. If NC is too expensive, the desired threshold could be changed or the error 

at that stage reported. It should be noted that convergence is not smooth when considering single sets at 

each sample size. This is due to each sample set being independent of the others and the noise in the 

approximation of the error. This can be improved by the use of replicates, though at the cost of greater 

computational load.   

Lastly, the convergence rate does depend on several features for each specific GSA method. In 



contemplating the convergence rate improvement process, the specific configurations of the chosen 

GSA method should be carefully considered. In the following subsection, we will discuss the settings 

for the commonly-used GSA methods. 

5 GSA algorithm estimators and settings 

In this section, we specifically focus on the algorithm choices and the settings within them that are used 

for the Morris and Sobol’ methods as these are two of the most applied methods, and indeed are the 

algorithms where most of the attention on different settings has been concentrated. The two tables in 

this section are a summary of the discussion therein and indicate the relevant references in the literature. 

Table 3 References related to algorithm settings for the Morris method 

GSA ALGORITHM ESTIMATORS AND 

SETTINGS 

 – Morris Method 

 References 

Suggestions for the grid level [28,39,65,106,156,233,247,271,276,289] 

Information utilized   

⚫ μ* versus σ plot [40,58,291,293,99,158,159,247,248,269,271,283] 

⚫ μ versus σ plot   [51] 

⚫ Only μ* [87,174,242] 

⚫ Only μ  [249] 

⚫ SEM line [156] 

⚫ μ* = σ criteria  [117] 

⚫ Combined index value  [135] 

⚫ Euclidean distance μ* - σ  [246] 

Including non-parametric approach [68] 

Enhanced version for approximating Sobol' method [64] 

5.1 Morris Method 

The algorithm settings of the Morris method focus on the grid level (or number of partitions) p, the form 

of the elementary effects, and the way of utilizing the information obtained from the method. In addition, 

the specification of the Morris method for monitoring convergence depends on its purpose in 

applications, whether it would be screening, ranking, or precise value of the elementary effects (in view 

of qualitative results). Even though only the number of trajectories and number of parameters are needed 

to calculate the number of model runs for the Morris method, the integer number of the grid level p is 

also a factor that affects the number of model runs to reach convergence of results, as tested in many 

papers. Campolongo et al. [28] used 4 grid levels for the Morris method; however, Yang [289] pointed 

out that 40 grid levels are needed for the parameter rankings to be more distinguishable at 100 samples 

than fewer grid levels. Furthermore, Sreedevi and Eldho [247] discovered that stable sensitivity results 

are not guaranteed with a different number of grid levels under the same number of trajectories. 

According to Wainwright et al. [276], “the number of partitions has a small impact on the convergence 



of both mean and standard deviation of elementary effect (in this case)”. The number of grid 

level/partitions p determines the number of parameter combinations [156]. Wainwright et al. found that 

“increasing p does not change the mean and standard deviation significantly but changes the converged 

values due to nonlinearity”. Therefore, “the number of partitions in the Morris method should be small 

as long as the discrete points capture the variability of the system response. A small set of Monte Carlo 

simulations would be helpful to determine the minimum number of partitions” [276]. In 2009, Sobol’ 

and Kucherenko [233] pointed out that the Morris method can produce inaccurate measures for non-

monotonic functions when their characteristic length of variation is much smaller than the step size used 

for building the trajectories exploring the input space. Later in 2014, Peng et al. [174] stated that “the p-

level (number of partitions) does not affect the sample sizes but determines the sample ranges”. Gan et 

al. [65] tested different combinations of the number of partitions and sample sizes, and found the results 

were not stable across these combinations. 

In the literature, authors have chosen varying values of grid level, from p = 4 [158,159], 5 [45], 8 [199], 

10 [293], 16 [174], 25 [283] and up to 32 [247,248]. Ciric et al. [36] believed that p = 10 is “a good 

compromise between avoiding the discordances observed with low values of p and avoiding too little 

variation within the parameter space”. Among them, Wang et al. and Sreedevi et al. [247,248,283] 

claimed that stable results were obtained, whereas Cosenza et al. [45] did not get stable results with the 

recommended settings from the literature. Ruano et al. [199] chose r = 70 and p = 8 for seeking 

significant stability of the top-ranking parameters as well as low position factor value, but this could 

mean that complete, stable ranking results were not yet reached. In terms of testing the number of the 

grid level on the matter of affecting convergence, Sreedevi and Eldho [247] tested 8, 16, and 32 grid 

levels, and they found that the ranks of parameters are more distinguishable with higher grid level, and 

this agrees with the observation of Yang [289]; on the other hand, Confalonieri et al. [39] found no 

difference by using p = 4, 6, and 8 in their studies on a 11-parameter water accounting rice model. 

Among all the studies with the Morris method, only one study [146] pointed out that they used an 

extension of the Morris method [47], which was initially proposed by Campolongo and Braddock [27]. 

This extension of the Morris method is able to estimate first and second-order effects, and Matthews et 

al. [146] tested the convergence of this extension of the Morris method by changing the number of runs 

and resolution for a 6-parameter Soil Erosion and Deposition System model and a 9-parameter daily 

hydrologic water balance model GURUH. Matthews et al. made several observations including: “the 

presence of a standard deviation is an indication of high-order effects” and “more error is evident when 

estimating first-order effects than second-order effects when higher-order effects are present”. However, 

Matthews et al. [146] found that “the metric of Cropp and Braddock [47] gives poor convergence rate; 

thus, a Euclidean weight factor was included in the calculation of average mean relative error to improve 

the convergence”. This extension of the Morris method is based on graph theory and is not a commonly 

used version, at least in studies here. Except for Matthews et al., the majority of the studies have used 



the revised Morris method with improved sampling strategies [28] rather than the original Morris 

method [156].  

Moreover, Ruano et al. [199] tested random sampling and an improved sampling strategy [28] based on 

maximizing the distances between the final trajectories obtained for a 17-parameter fuzzy logic-based 

control system and concluded that a random sampling strategy provides non-optimal coverage of the 

sampling space, but improved sampling strategy is more reliable and realistic under the same settings. 

The above improved sampling strategy was proposed by Campolongo et al. [28] and is called the 

Optimized Trajectories (OT); however, this demands a high computational effort, and Ge and Menendez 

[67,68] proposed the quasi-Optimized Trajectories (quasi-OT) which is found to be more efficient, 

provide wilder coverage of the parameter space, give more precise important parameters, and address 

the combinatorial optimization problem compared to OT. Yuan et al. [292] proposed another improved 

sampling strategy for the Morris method, which combines the LHS and Central composite design. This 

enhanced Morris method was shown to perform better compared with the original Morris method and 

the Campolongo version, albeit on two test functions and a compressor shell model.  

Awad et al. [8] tested the mixed elementary effect (MEE) of the Morris method with the so-called 

“handcuffed prisoners” and “cycle equitable graphs” sampling strategies, investigating the median of 

MEE along with the regular mean of MEE. It appears that the median of MEE requires fewer trajectories 

for convergence with the handcuffed prisoners strategy, and that the cycle equitable graphs strategy is 

not suitable for complex models as it provides contradictory results. Khare et al. [118] reviewed the past 

seven different sampling strategies (up to 2012) for the Morris method and proposed a new sampling 

strategy called Sampling for Uniformity (SU). In their study, they tested SU against the original Morris 

method, OT, and modified OT with five different test functions. The sampling efficiency was compared 

with analytical results from a variance-based GSA method. The results showed that SU provides the 

best uniformity, acceptable computational cost and spread, and good screening efficiency. Chitale et al. 

[35] reviewed the past 12 different sampling strategies (up to 2016), and this also included the SU. 

Additionally, they proposed an enhanced SU sampling strategy called eSU with better sample 

uniformity, parameter spread, sampling time, and screening efficiency than the original SU.  

Two studies have shown that the most important parameters may be identified early on in sensitivity 

experiments rather than waiting till all parameters have stabilized. Confalonieri et al. [39] stated in their 

study that 5 trajectories are enough to identify the 5 most relevant parameters yet 8 trajectories are 

needed to reach stable ranking results for all of the parameters for a 11-parameter water accounting rice 

model. The 3196-parameter catchment hydrological Nitrate (mHM-Nitrate) model required 255760 

model runs to ensure stability of the sensitivity results, yet the top 50 sensitive parameters converged 

mostly within the range < 0.01 after 150000 model runs [291].  

In addition, different authors appear to have different ways of utilizing the information provided by the 



revised Morris method. The majority of the studies have used a μ* (absolute mean of the elementary 

effect) versus 𝜎 (standard deviation of the elementary effect) plot to indicate the ranking results and 

linearity of parameters [40,58,291,293,99,158,159,247,248,269,271,283], and there are other studies 

that have used 𝜇 versus 𝜎 plot [51] or only used μ* [87,174,242]. For all the studies that used the μ* 

versus 𝜎 plot, there are variations in the format of the plots. Confalonieri et al. [40] drew the μ* = 𝜎 line 

on top of the μ* versus 𝜎 plot, Naves et al. [158] used 𝜎/μ* = 1, 0.5, 0.1 lines to indicate different levels 

of parameter interactions in the plot, Vanuytrecht et al. [271] and Upreti et al. [269] both added errors 

bar to the plot for indicating the measures’ variability, and Wang et al. [283] plotted the dashed lines as 

the thresholds for μ* and 𝜎 determined by the results of Sobol’ method. For visualization, Zhan et al. 

[293] and Jabloun et al. [99] labeled the first few sensitive parameters with the parameters’ name, Dobler 

and Pappenberger [58] denoted the six most sensitive parameters with different symbols, Yang et al. 

[291] made the plot into log-scale, and Sreedevi et al. [247,248] used the index number rather than 

symbols on the plot. On the other hand, Cosenza et al. [45] plotted μ* versus r (number of trajectories) 

and 𝜎 versus r.  

One of the studies [249] found that μ* and 𝜇 (mean of the elementary effect) make no difference to their 

results since 𝜇  values in the study are mostly either all positive or negative. Sarrazin et al. [216] 

calculated a normalized μ* which served as the index value for the Morris method for comparison 

purposes with other sensitivity analysis methods. Also for comparison purposes, Confalonieri et al. [39] 

directly calculated the top-down concordance coefficient (TDCC) of μ* across different seeds to find 

the impact of seeds for generating trajectories. In Ruano et al. [199], they create μ versus 𝜎 plot in order 

to check the linearity or additivity rather than using a μ* versus 𝜎 plot. 

In the original Morris method, the line 𝑆𝐸𝑀𝑖 = ±2
𝜎

√𝑟
  for μ (where SEM is the standard error of the 

mean) was used to represent the standard error of the mean, and it provides information about the factor 

effect on model output. “Factors which lie below this line have a linear effect on the model outputs 

whereas factors above this line have a non-linear effect or are involved in interactions” [156]. Khare et 

al. [117] reviewed the several experiences on the μ* - σ plot and SEM criteria for identifying interactions, 

and they proposed a μ* = σ criteria for checking interaction, where strong interaction is involved if the 

parameter is above the line μ* = σ and vice versa. They concluded that the μ* = σ criterion classifies 

interaction effects more accurately than the SEM criterion. It is worth noting that Campolongo et al. [28] 

did not mention the 𝑆𝐸𝑀𝑖 line in their paper for the revised Morris method, but this line was still used 

as an indicator for μ* in many papers later on. For example, Khare et al. [117] used both μ versus 𝜎 plot 

with SEM line and the μ* versus 𝜎 plot with μ* = 𝜎 line in their studies. 

Other than the choices for the regular Morris method, Likhachev [135] suggested using the ratio σ/μ* 

and a combined index value di = (sqrt(σ^2 + μ*^2)), and pointed out that the step size could influence 

the sensitivity results. This combined index value was also used in the study of Faggianelli et al. [63] to 



rank parameter importance based on the concept in Spitz et al. [246], and this distance index is further 

normalized between 0 and 1 for better visualization. Ge and Menendez [68] extended the classic Morris 

method to include a non-parametric approach, which enables the screening of dependent model inputs. 

This extended Morris method obtained consistent rankings with fewer model runs compared to the 

variance-based GSA on three test functions. Feng et al. [64] proposed an enhanced Morris method based 

on a link between the derivative-based importance criteria and the total-effect sensitivity index [233] to 

better approximate the total-effect of the variance-based Sobol’ method compared to the original Morris 

method with similar computational cost in evaluating the Ishigami-Homma function, B function, G 

function, and a composite beam model. 

 

  



Table 4 References related to the variance-based Sobol’ method for different index estimators and 

algorithm settings (Note *:proposed first- and second-order Sobol’ indices) 

GSA ALGORITHM SETTINGS 

 – Variance-based Sobol’ Method 

 References 

Estimators   

⚫ How choice of estimators impacts convergence rate 

⚫ Formula (b) and Jansen1999 suggested by Saltelli et al. 

[140,163,183] 

[203] 

⚫ First-order  

◆ Sobol’1993 

◆ Sobol’-Kucherenko (S-K) Formula 

◆ Owen2013 

◆ Oracle 

◆ Double loop reordering approach (DLR) 

◆ Random Sampling High Dimensional Model 

Representation (RS-HDMR) 

⚫ Total-Effect 

◆ Jansen1999 

◆ Homma1996 

◆ Monod2006 

◆ Saltelli2007 

◆ Razavi2016 

⚫ Both First-order and Total-effect 

◆ Various estimators (such as B3) 

◆ Tissot's new approach 

◆ Innovative Algorithm 

⚫ Review and comparison of different estimators 

Total-effect converges faster compared to First-order 

Total-effect converges slower compared to First-order 

Impact of distributions 

One-dimensional fitting 

The upper bound of Total-effect 

⚫ obtained from derivative-based measures 

⚫ obtained from activity score 

Combined variance- and distributed based strategy 

Random Balance Designs 

Extended Sobol' method xSSA 

Effective Algorithm for Computing Global Sensitivity Indices (EASI)  

 

[239] 

[126] 

[168] 

[235] 

[127] 

[298] 

 

 

[103] 

[88] 

[102,153] 

[208] 

[187,188] 

 

[72] 

[262]* 

[9–11] 

[10,53,72,127,181,203,255] 

[15,242,294] 

[164] 

[81,82] 

[276] 

  

[129,233,234,240] 

[55] 

[13] 

[141] 

[139] 

[179] 

 

5.2 Variance-based Sobol’ method 

For the algorithm settings of the variance-based Sobol’ method, we concentrate on the estimators for 

first-order (Si) and total-effect (ST) sensitivity indices, the estimated upper bound of the total-effect 

sensitivity index, and ways of improving the calculation of Sobol’ indices. 

Unlike the Morris method or EFAST, there are various approaches known for approximating the 

sensitivity index for Sobol’ method [103,203,208]. By choosing different forms, the convergence of the 

Sobol’ sensitivity index can be affected [163], and there are various papers addressing the efficiency of 



different sensitivity index estimators [183]. “Some converge faster for input variables with small (close 

to zero) sensitivities; others are more suitable for input variables with a large sensitivity” [140]. Of all 

of the Sobol’ method related studies investigated here, approximately 10 studies state that they used 

Jansen estimators [103] for estimating the total-effect index or followed the recommendations of Saltelli 

et al. [203], whilst others mostly followed Sobol’ [239] or did not state which estimator they used. 

Among them, the study of Sharifi et al. [221] used the Sobol’-Jansen estimator, and indicated that 10000 

samples (resulting in 60000 model runs) were adequate for the 4-parameter GEP model but with the 

first-order of one parameter of negative value, implying insufficient samples were taken, and this 

contradicts with the adequate sample statement. Wainwright et al. [277] used the sensitivity index 

algorithm from Saltelli et al. [210] and modified by Glen and Isaacs [72], where Glen and Isaacs tested 

the reliability of most Sobol’ sensitivity index estimators. Even though it is claimed in Wainwright et al. 

[277] that the sensitivity indices begin to be stable from 200 to 250 samples for the 15-parameter 

reservoir-scale CO2 migration model, a lot of small fluctuations can be seen in the plots, indicating that 

convergence is not reached. Ibanez et al. [96] used B3 estimators according to Glen and Isaacs [72] as 

well, and 4000 samples, resulting in 288000 model runs, are able to achieve satisfactory convergence 

for a 70-parameter multidisciplinary integrated model, yet the detail of this convergence assessment was 

not shown in the paper. 

There are a few studies that have considered or mentioned the convergence for first-order and total-

effect indices separately. Zhan and Zhang [294] applied the Sobol’ method for coupled sub-models of 

the Pesticide Use Risk Evaluation (PURE) indicator and found that calculation of the total-effect always 

takes fewer samples to reach stable results compared to the first-order index from a sub-model with 3 

parameters up to 16 parameters, even though the convergence of the indices seems to be judged from 

figures rather than exact value indicators. Baroni et al. [15] used the width of error bars from 

bootstrapping to conclude that the total-effect index appears to reach stability sooner than the first-order 

index for a 5-parameter SWAP model. Wang et al. [283] stated that 20000 samples, resulting in 380000 

model runs, are suitable to ensure the convergence of sensitivity index values for both first-order and 

total-effect for a 17- parameter C-RIVE biogeochemical model. Song et al. [242] also observed that the 

total-effect index oscillated less than the first-order index and stabilized more quickly for a 20-parameter 

forest growth 3-PG2 model. According to these studies, it is clear that the total-effect index has the 

potential to converge faster than first-order index in many cases. Nossent et al. [164], on the other hand, 

found for a 26-parameter SWAT model that most parameters can attain stable first-order sensitivity with 

less than 5000 samples, yet 9000 samples were required for the total-effect sensitivity indices. On the 

opposite, total-effect obtains converged ranking results for most influential parameters quicker than 

first-order in Nossent et al. [164]. However, the majority of studies still consider the convergence of 

first-order and total-effect at the same time rather than separately, thereby not taking into account that 

these indices may converge at different speeds.  



In the literature, authors have largely followed either the estimators proposed by Sobol’ [239] or the 

Formula (b) first-order estimator and Jansen1999 total-effect estimator [103] recommended by Saltelli 

[203]. However, there are quite a few estimators that have been developed but rarely seen applied in 

convergence studies. Kucherenko and Song [127] compared five different first-order Sobol’ sensitivity 

index estimators (Sobol’, S-K, Owen, Oracle, and double loop reordering (DLR)) on six test functions 

with both the random sampling method and Sobol’ sequence. They concluded that the double loop 

reordering approach is superior, especially for non-small index values, but this estimator does not come 

with the feature of computing second or higher order index values. In addition, the DLR estimator 

requires a pre-defined number of partitions, and this partition number may impact the estimator’s 

performance.  

Tissot and Prieur [262] proposed a new approach based on replicated Latin hypercube sampling (RLHS) 

[148] to estimate both first-order and total-effect with only two input vectors, and this new approach is 

found to outperform the Saltelli design [201] using the Sobol’ G-function and Ishigami-Homma function 

for estimating first-order and second-order indices. Follow-up to the RLHS work of Tissot and Prieur, 

Damblin and Ghione [53] tested Oracle 1 and 2 first-order estimators for the Sobol’ method using the 

modified Sobol’ G-function and sampling with RLHS, called replicated Latin Hypercube Designs 

(rLHDs) instead, for a 14-parameter computer model from the nuclear field. Oracle 1 provided higher 

accuracy than Oracle 2 for small and moderate indices. Recently, Azzini et al. [11] proposed a new 

estimator for first-order Sobol’ index called the Innovative Algorithm (IA). For five benchmarking test 

functions, they compared IA with previous estimators (Sobol1993 [239], Formula (b) [203], Owen2013 

[168], and random balance design based EFAST [259]) with both Monte-Carlo and quasi-Monte Carlo 

sampling. IA was found to be much more stable and produced a higher convergence rate. Azzini et al. 

[10] pointed out that the common Sobol’-Saltelli first-order estimator and Sobol’-Jansen total-effect 

estimator do not ensure ST ≥ Si, so their proposed IA estimator ensures ST ≥ Si in all conditions, and 

this new estimator performed better for first-order index estimation in terms of convergence. Puy et al. 

[181] compared eight different total-effect Sobol’ sensitivity index estimators (Jansen, Razavi and Gupta, 

Janon/Monod, Azzini and Rosati, Glen and Isaacs, Homma and Saltelli, Saltelli, pseudo-Owen). They 

concluded that Jansen, Janon/Monod, and Azzini and Rosati estimators are capable of ranking and 

estimating the “true” total-effect Sobol’ sensitivity indices, and that the Razavi and Gupta estimator is 

good for ranking. However, Puy et al. did not include the Sobol’2007 estimator, and this total-effect 

estimator is deemed inefficient [203,255]. 

Hart and Gremaud [81,82] presented a framework to assess how the “robustness” of Sobol’ indices is 

impacted by the input variables distribution. In addition, Wainwright et al. suggested an alternative 

approach for the Sobol’ method though it does not provide estimation of the total-effect index. This 

approach is a one-dimensional fitting which is not directly dependent on the number of parameters, and 

minor parameters have much less effect on the convergence [276]. Again, this alternative approach is 



also rarely seen in the field of convergence studies for environmental modelling. 

There are many links between the variance-based Sobol’ method and other sensitivity analysis methods. 

Sobol’ and Kucherenko [233] showed the links between the total-effect Sobol’ index value and 

derivative-based measures, but they warned that derivative-based measures may give false rankings for 

the important parameters of highly nonlinear functions [234]. Lamboni et al. [129] provided an upper 

bound for total-effect Sobol’ index by using derivative-based global sensitivity measures (DGSM), and 

they believe that this bound is suitable for screening purposes; however, they did not study the 

convergence of the estimators. Song et al. [240] also proposed an upper bound for the total-effect Sobol’ 

index value through a derivative-based measure, and they showed that this upper bound performs better 

than one based on the Poincare inequality. Baroni and Francke [13] invented a combined variance- and 

distributed-based (CVD) strategy to estimate both the first-order Sobol’ index and interaction effect. 

This CVD strategy was compared with the Saltelli/Jansen estimator and the PAWN index on four 

benchmarking test functions and the SAC-SMA model. They concluded that the CVD strategy 

outperforms the Saltelli/Jansen estimator for all test functions in the sense of reaching convergence and 

capturing interaction terms. In Chapter 4, Sun et al. [252] compared the Activity Score of Constantine 

and Diaz [43] against the variance-based Sobol’ method and the Morris method for eight test functions. 

They found that the performance of the Activity Score is related to the accuracy of the gradient 

approximation method employed, but activity Scoring can be more computationally efficient than the 

two compared GSA methods, at least in terms of ranking. The activity score of Active Subspaces also 

provides an upper bound of the Sobol’ total-effect [55]. 

Mailier et al. [141] developed the method of Random Balance Designs to compute first-order sensitivity 

indices but with an aim of faster convergence and at a lower computational cost compared to Saltelli 

[201], although it may also give negative values when true sensitivities are small due to an insufficient 

number of samples. Mai et al. [139] proposed an extended Sobol’ method xSSA to work on grouped 

parameters rather than individual parameters. In addition, the xSSA method was compared with an 

existing discrete value method (DVM) to two benchmark functions based on the Ishigami-Homma 

function and a hydrological modeling framework Raven, showing that the xSSA method provides less 

error and a faster convergence rate. 

5.3 Other GSA methods 

There are many SA methods other than the above two that seem to be the most reported regarding 

convergence. For example, VARS and PAWN have started to attract more attention recently and an 

even more recent approach known as Active Subspaces warrants more consideration.  

VARS, developed by Razavi and Gupta [187,188], utilizes information from sample pairs rather than 

individual points based on an analogy to variogram analysis. It can simultaneously provide the total-

effect of the variance-based Sobol’ method and the elementary effect of the Morris method as by-



products. Additionally, Razavi and Gupta [187,188] compared VARS with the total-effect sensitivity 

index of the Sobol’ method and the mean squared elementary effect of the Morris method in a 5-

parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrological model, 

and the ranking results show that VARS is much more efficient for these two case studies.  

There have been several developments of the original VARS. Meles et al. [152] employed STAR-VARS 

with IVARS50 on a physically-based distributed hydrologic model KINEROS2. Sheikholeslami and 

Razavi [224] proposed a data driven VARS called D-VARS to work with any given set of model inputs-

outputs, and showed that D-VARS easily handles correlated inputs with small sample sizes. To test the 

efficiency of D-VARS, Sheikholeslami et al. obtained the “true” sensitivity measures through STAR-

VARS using approximately 70000 model runs, and the D-VARS takes 200 samples to converge to the 

“true” ranking for parameters with the moderate importance for a 12-parameter HBV-SASK model. In 

seeking improvement to the sampling technique of VARS, Do and Razavi [57] used a new generalized 

star sampling technique called the method gSTAR-VARS, which was tested on an 11-parameter model 

HBV-SASK, and the sensitivity measures converge with 50 cross-sectional samples and more than 500 

star centers. However, even the above studies provided their own convergence studies, they lack the 

comparison with either the original VARS or other GSA methods within the same experiments; thus, it 

is hard to conclude that these VARS related studies are truly more computationally efficient. 

The PAWN method, proposed by Pianosi and Wagener [177], has also been applied in several studies. 

It calculates the derivative-based sensitivity indices based on characterizing the output distributions by 

their cumulative distribution functions rather than probability distribution functions [177]. Later Pianosi 

and Wagener [178] proposed an alternative approximation procedure for PAWN which addresses the 

sampling strategy and lowers the number of tuning parameters, though there does not seem to be a 

comprehensive convergence assessment of the new PAWN method compared to the old one. Moreover, 

Puy et al. [182] used four test functions with skewed model output to assess the algorithm settings of 

PAWN, namely the number of model runs, number of conditioning intervals, randomness in the 

sampling of unconditional model output and summary statistic. They compared results with the 

sensitivity indices of the Sobol’ method using Saltelli2010 and Jansen1999 estimators for the first-order 

and total-effect, respectively. They found that the different algorithm settings would result in PAWN 

producing quite different sensitivity measures, and that PAWN has trouble differentiating between 

influential and non-influential parameters when the impact of parameters are purely on interactions, 

which matches the observation by Mora et al. [154] of bias in ranking results. In addition, Puy et al. 

concluded that PAWN underperforms especially for high-dimensional cases by yielding biased results.  

Among other methods, Wang et al. [278] proposed a metric Direction Index (DI) that is derived from 

the derivatives of the first-order term of the High-Dimensional Model Representation (HDMR) 

decomposition with respect to each input, and first-order Sobol’ index. DI can be approximated at the 

same time but with extra effort. Li et al. [133] proposed a derivative-oriented parametric sensitivity 



index coupled with copula theory to address the multidimensional correlation problem. Similarly, 

Sheikholeslami et al. [222] proposed a data-driven method VISCOUS - coupled variance-based SA with 

copulas, and they stated that VISCOUS gives similar first-order sensitivity indices to the regular Sobol’ 

method for the HBV and VIC hydrological models. A more recent method based on the concept of 

Active Subspaces, called activity score (AS) by Constantine et al. [42,43] seems to show much promise 

for providing ranking results. Active Subspace utilizes the eigenpairs to identify the important directions 

in the parameter space through the combination of inputs, and the activity score transfers the obtained 

eigenpairs into comparable sensitivity measures. In Chapter 4, Sun et al. [252] compared several activity 

scores with the Morris and Sobol’ methods using a large range of well-known test functions. They found 

that the activity score matches the ranking results of μ* and the Sobol’ total-effect sensitivity index in 

the majority of test function cases. It was argued that the activity score can be enhanced by using better 

approximations of the gradient of the response surface. Moreover, the activity score can be more 

computationally efficient in specific cases.   

6 Assessing convergence rate 

This section collects the developed methods for assessing the convergence of GSA methods in the 

literature, and a full list of convergence assessment methods mentioned in Section 6 can be found in 

Table 5. Whilst the selection of a threshold for convergence reached can be a somewhat arbitrary factor 

or depend on computational budget, it should still be selected based on thoughtful and careful 

considerations. The threshold selected affects not only the final sample size attained but also the 

convergence rate. According to our definition of convergence for sensitivity analysis in Section 2 and 

those from various authors, convergence is reached when the results for sensitivity measures of interest 

do not change within a certain tolerance by adding more model runs. Depending on the purpose of the 

sensitivity analysis study, the actual measurement of convergence may differ. Sarrazin et al. [216] and 

Awad et al. [8] have both argued that the convergence of sensitivity quantities should be measured 

differently based on the required precision for indices, ranking, or screening. In this section, we review 

and comment on the existing methods for monitoring the convergence of GSA results. Figure 3 expands 

the convergence assessment box of Figure 1 to include detailed assessment methods classified according 

to their corresponding purposes 



 

Figure 3 The Flowchart of the Convergence Assessment 

 

  



Table 5 References related to methods for assessing convergence rates (Note *: unclear as to who 

proposed the method first; **: the paper that proposed the method first; ***: the paper that applied the 

method but not the one which proposed the method) 

ASSESSMENT OF CONVERGENCE RATE References 

Precision of convergence based on purpose [8,216] 

Care re the impact of insensitive parameters [81,83,141,266,295] 

Sheikholeslami grouping strategy [225]** [95,116,222,226]  

Dummy parameter* [119,136,173,174,252,269]  

⚫ Discussion on dummy parameter [32,119,140,143] 

Confidence Interval (CI)   

⚫ Bootstrap 

◆ Suggestions on CI threshold 

[6,98] 

[14,69,87,294,295] 

⚫ Central Limit Theorem* [289] 

⚫ Replication* [252,253,258] 

⚫ Model Variable Augmentation (MVA) [140] 

"True" Sensitivity Measures* [52,140,222,223,280] 

Agreement between multiple GSA methods   

⚫ Set reference method [155,216,244,268,293] 

⚫ Two-step SA procedure [63,155,241,245] 

⚫ Small group of parameters dominant [208,211,268,274] 

⚫ Asymmetric pattern of sensitivity [211] 

⚫ Agreement on dominant parameters [39] 

⚫ No agreement on nondominant parameters [45,227,242] 

⚫ Contradicting results between multiple GSA [38,111,189,193,204,257] 

⚫ Comparison of GSA methods [36,39,79,125,150,170,227,252] 

Sarrazin et al. Convergence Formula [216] 

⚫ Similar concept [69,71,132,192] 

Variability [270] 

"Reliability" [187] 

⚫ Extended "Reliability" [225] 

Position Factor [199] 

⚫ Suggested threshold [22,135] 

⚫ Cosenza version [45] 

⚫ Robles version [195,196] 

⚫ Liu version [137] 

Top-down Coefficient of Concordance (TDCC) [97] 

⚫ Quantification of Plasticity L [41]** [169,186,230,265]  

⚫ Other comparable methods   

◆ Calibrated visual criterion [66] 

◆ Savage score [70]*** 

◆ Kendall's coefficient of concordance  [160]*** 

◆ Vigna correlation index [273] 

◆ Other rank coefficient of concordance [21,44] 

Visualization   

⚫ Heat maps [14,87,134,252,275,287] 

⚫ Adapting wavelet-analysis type plot [144] 

⚫ 3D plot [141,146,281] 

⚫ Modified plots with extra information [135,266] 

⚫ Review of different visualization tools [114,176,183] 

 



6.1 Arbitrary Threshold and Grouping 

In defining a threshold for convergence of a measure, one should be careful to recognize potential risks. 

Overall, it is still quite common for researchers to set an arbitrary threshold for identifying sensitive or 

insensitive parameters.   

It is risky to seek convergence by removing non-sensitive parameters from the model due to possible 

correlations between sensitive parameters [141], and this may also result in model variations that are 

not explained in the lower dimensional space [81]. Moreover, the sum of small sensitivity index values 

of certain parameters may constitute a significant proportion of the output variance [266] to be 

considered. One example in Zhang et al. [295] is that 10% of the total-order effect (combination of the 

first-order and total-effect) was set as the threshold for sensitivity, but the sum of index values of 

insensitive parameters was actually higher than 10% in a few cases. In the study proposed by Hartmann 

et al. [83], 0.3 was chosen to be the threshold for neglecting parameters, but those parameters in fact 

had larger sensitivities in total than the sensitive ones. 

For screening, invoking an assumed threshold seems to be the most prevalent approach in the literature. 

Some examples here bear testimony. Neumann [159] used a value for the first-order index greater than 

0.1 as sensitive and 0.05 for the total-effect. Whereas 0.05 was also used as the threshold for μ* in the 

Morris method in the same study. A threshold of 0.15 for µ* of the Morris method can be found in 

Sreedevi and Eldho [247]. A first-order index value greater than 0.01 has been commonly used as a 

sensitivity threshold for EFAST [46,174,270], and for the total-effect index, a value of less than 0.1 has 

been used to define non-influential parameters in Cosenza et al. [46].  

Zhan and Zhang [294] used 0.05 to separate sensitive parameters, whereas sensitive parameters slightly 

larger than 0.05 were set as a separate group deemed slightly sensitive for both the Sobol’ method and 

IM. Tang et al. [257] used 1% of variance as the threshold for sensitive parameters, and also set a highly 

sensitive group where parameters each contributed more than 10% of the variance. In addition, various 

ways have been taken to group parameters into three or more categories. For example, Zhao et al. [297] 

partitioned sensitivity of parameters into low (0.05 to 0.1), medium (0.1 to 0.2) and high (> 0.2) groups 

for the extended-FAST method. In general, 0.1 and 0.05 are the most common choices if one wants to 

choose a threshold for screening/grouping purposes, a behavior to mimic the 90% or 95% confidence 

interval. However, the choice of arbitrary threshold(s) is not recommended, as it is unlikely to avoid 

Type I or II error from the classifications, as no existing data or statistics is usually provided to support 

the selection of an arbitrary threshold.  

In advancing the use of grouping, Sheikholeslami et al. [225] reviewed existing grouping strategies for 

GSA methods and proposed a new factor grouping strategy with a detailed flowchart, intended 

especially for high-dimensional models. This newly developed factor grouping strategy utilizes both 

bootstrap and agglomerative hierarchal clustering to group factors, and it also uses two different 



strategies (an elbow method or a minimum robustness-based method) to find the optimal number of 

groups. This grouping method has been tested on the Sobol’ G-function and a highly-parameterized 

MESH model to achieve a noticeable reduction in computational effort. 

Although many studies have mentioned the latter grouping method [13,57,79,113,122,200], only four 

studies other than the original Sheikholeslami et al. one seem to have implemented this grouping method 

for actual applications. Thus, Huo et al. [95] used it and found it required less parameter sampling. To 

test the performance of the data-driven VISCOUS method, Sheikholeslami et al. [222] implemented the 

grouping method to identify crucial processes. In Sheikholeslami et al. [226], this grouping method was 

also applied to the study of the STAR-VARS and Sobol’ methods on the HBV-SASK rainfall-runoff 

model and the MESH land surface-hydrology model. It was also applied to a 104-parameter computer-

aided ship design based on Free-From Deformation by Khan and Kaklis [116].  

6.2 Dummy Parameter 

Dummy parameters are also very often used to assess convergence for some GSA exercises. The 

approach consists of adding a dummy parameter in the calculation of sensitivities without modifying 

the actual model. The sensitivity of the dummy parameter is directly estimated through the fundamental 

principle of GSA using different independent sample sets. By design, the variability of dummy 

parameters does not influence the model outputs nor the sensitivity estimates for the other parameters. 

The calculation of the sensitivity measures for the dummy parameters does not increase the intended 

number of model runs, and the sensitivity of a dummy parameter provides a potential threshold for 

approximation of the error for the sensitivity analysis [119]. Several attempts have been made to utilize 

the dummy parameter approach in GSA: as the influential threshold [119,269], approximation of random 

noise [173], judgement of whether the sensitivity indexes of certain parameters are significantly 

different from zero [136], the accuracy of activity scores based on different gradient approximation 

methods [252], and validation of the effectiveness of selected screening thresholds [174].  

It has to be noted that the effectiveness of the dummy parameter strategy is seriously impacted by the 

sample size as large errors in dummy parameter sensitivity can be observed at low sample size [32]. In 

addition, Castaings et al. [32] found for density-based sensitivity analysis applied to the Ishigami-

Homma function that the error in sensitivity of the dummy parameter significantly reduces when the 

number of replicates grows toward the number of base samples. Zadeh et al. [119] stated that, in theory, 

the index value of dummy parameters should ultimately converge to zero with a large enough number 

of samples. However, Mai and Tolson [140] obtained a non-zero index value for their dummy parameter 

even with sufficiently large number of samples. Marino et al. [143] also pointed out that the index value 

of dummy parameters would be small but non-zero due to aliasing and interference effects. Thus, the 

non-zero approximation error yielded by dummy parameters makes it unrealistic to obtain an extremely 

precise index value for sample-based sensitivity analysis methods for complex models with a limited 



computational budget. 

The dummy parameter approach does not function for certain GSA methods, such as the Morris method 

and the variance-based Sobol’ method with specific estimators. The reason is that dummy parameters 

can only be used when the sampling method allows. If only 1 parameter is being varied at a time, then 

dummy parameters are not effective. The Morris method aggregates elementary effects by permuting a 

single model parameter each time to provide a global view of sensitivity, and this renders the dummy 

parameter to always be zero. In regard to the variance-based Sobol’ method, Zadeh et al. [119] used the 

Sobol’ 1993 estimator [239] for the first-order sensitivity index and the Homma 1996 estimator [88] for 

the total-effect sensitivity index. These two estimators require the evaluation of the expected value of 

the model output 𝑓0, but 𝑓0 is the only term where the approximation errors of the dummy parameter 

derive. With the use of other estimators for the first-order and total-effect indices, the expected value 𝑓0 

is not needed, and the dummy parameter will always be of zero sensitivity. Furthermore, it has been 

argued that the Sobol’ 1993 and Homma 1996 estimators not be recommended anymore because these 

two estimators are inefficient compared to other estimators, such as the Formula (b) and Jansen1999 

[203]. 

6.3 Sequential Approach  

The sequential approach, or multi-stage sampling [223], involves increasing the number of samples 

required for a sensitivity analysis study step by step, allowing the stability of index values to be 

examined, often visually [270], till the difference between two consecutive steps is within a certain 

tolerance [17,46]. It can be used alone or coupled with other convergence monitoring methods such as 

the bootstrap. To inspect the convergence of estimated indices, Zhan and Zhang [294], for example, 

gradually increased the base sample size in their study by 100 uniform steps. Tang et al. [257] also 

examined statistical convergence as a function of increasing sample size to find the sufficient sample 

size for LHS in Regional SA in evaluating the lumped Sacramento soil moisture account model, which 

is in contrast to directly following the sample factor suggested by Sieber and Uhlenbrook [229]. Hart 

Gremaud [81] coupled the sequential approach with repetitions of Sobol’ indices to understand the 

sampling variability in the Sobol’ G-function. However, in GSA studies that do not set the sample size 

a priori, there is reasonably widespread usage of the sequential approach since the plots involved can 

easily display whether or not the trend in the sensitivity measure has converged to a specific value. 

6.4 Confidence Interval 

A common way of monitoring convergence in sensitivity analysis and quantifying the confidence 

interval (CI) of measures is by using bootstrapping. There are many different settings for the bootstrap 

used in the SA literature, such as 95% CI, 95% CI with 100, 1000 or 2000 resamples, 95% CI along 

with 25th and 75th percentiles for 500 resamples, and 300 resamples without indicating the percentage of 

CI required. Even with so many different choices of the number of resamples for bootstrapping, 95% 



seems to have been the most universal choice of CI width. Of course, the choice of width of a confidence 

interval can be arbitrary and should reflect the purpose and context of a study. Thus, it is a question of 

whether a 95% CI is either too small or too large for certain model studies. For example, Baroni et al. 

[14] set convergence as being reached by increasing the sample size of the Sobol’ method until the upper 

bound of the 95% CI is less than the threshold of 0.1. The 95% CI has also been chosen in many other 

studies [69,294,295], whilst Herman et al. [87] stated that ”convergence was considered acceptable if 

the 95% confidence interval represented less than 10% of the sensitivity index value for the most 

sensitive parameters”.  

Despite the common use of bootstrapping, it has limitations and is not suitable for every case. Archer et 

al. [6] pointed out that reliable percentiles need a large number of samples, and a skewed bootstrap 

distribution can also impact the performance. In 2008, Isaksson et al. [98] found that bootstrapping 

behaves badly with limited samples in the application of SA for computationally intensive models. In 

other words, the performance and reliability of bootstrapping are significantly impacted by the number 

of samples. Furthermore, the bootstrapping with replacement [164,289] and without replacement [171] 

would significantly impact the confidence interval. As stated in the supplementary file of Zadeh et al. 

[119], bootstrapping with replacement could produce a biased and overestimated confidence interval 

due to “small vertical jumps in the empirical distribution” caused by the multiple presences of the same 

samples, and this is resolved by using bootstrapping without replacement. 

Other than bootstrapping, there have been other choices for calculating the confidence interval. The 

Central limit theorem (CLT) with 95% CI was tested by Yang [289] along with the bootstrap; however, 

Yang found that CLT performs poorly for complicated models and requires more model runs than 

bootstrapping for a 5-parameter model. The use of replications, where independent sets of samples are 

taken and the model output re-evaluated with each new sample set, is also applied in several studies 

[252,253,258]. Thus, the standard errors of all the replications can be used to estimate the chosen 

confidence interval. The choice between bootstrap and replication depends on computational budget, 

but replication has a better chance of exploring previously missed parameter space, whilst bootstrap can 

only extract information from a set group of sampled parameter values.  

Recently, Mai and Tolson [140] proposed a new method to compete with bootstrapping called Model 

Variable Augmentation (MVA), which is able to operate at low sample sizes where bootstrapping is 

known to be unreliable; however, the implementation of MVA for measuring confidence intervals has 

to be decided a priori. Furthermore, MVA uses the concept of the dummy parameter, which may render 

this method inappropriate under certain circumstances (see Section 5.2). Unfortunately, there has been 

no further testing or application of MVA, even among the 8 documents that cited the work in Mai and 

Tolson [140]. 



6.5 “True” Sensitivity Measures 

Even though many models, especially environmental models, can be complex, computationally heavy 

and not amenable to analytic calculations of exact sensitivity indices, “true” sensitivity indices have 

been calculated by taking a huge number of samples and, accordingly, model runs. For example, Wang 

et al. [280] used 106 Monte Carlo simulations to calculate the “true” Sobol’ sensitivity indices for the 

10-dimensional HBV-SASK hydrological model. Dai and Ye [52] obtained the so-called reference 

values of indices from 2 × 106 quasi-Monte Carlo samples and associated model simulations (8 × 106 

of model runs) for calculating the errors. Sheikholeslami et al. [223]  took 5 × 105 LHS parameter sets 

to generate the “true” CDF of model responses. In Mai and Tolson [140], “the true rankings of the inputs 

were assigned based on the rankings from a 105  model run SA”. Sheikholeslami et al. [222] used 

approximately 1 million model runs to obtain the “true” sensitivity indices of the Sobol’ method for the 

HBV and VIC hydrological models. This calculation of “true” sensitivity indices is a good way of 

confirming the sensitivity results at relatively low sample size but may not be practical for environmental 

model studies that are constrained by the computational budget. 

6.6 Agreement Between Multiple SA methods 

Assessing the agreement between different sensitivity analysis methods is also used to check the 

robustness of a sensitivity analysis and, of course, such assessment can be used in conjunction with 

convergence analysis. Due to fundamental differences in the basis of GSA methods from various 

categories, it can be reassuring if the importance of a set of parameters or inferences, in general, are 

confirmed across the methods. A simple approach is to set one method as the reference method and 

check if other methods agree with this it.  

Many studies [155,216,244,293] have used the Morris method “to verify the convergence and validation 

of GSA methods” on hydrologic models as stated by Uliana et al. [268]. They also argued that “the 

Morris method should be used as a preliminary analysis of the use of the Sobol’ method, as it 

considerably reduces the number of parameters of the SAC-SMA model”.  

In fact, there are several papers that have used the Morris method first to reduce the number of 

parameters and then hand the reduced model to another GSA method (usually variance-based SA 

methods) for further analysis. Such a strategy has been called a two-step sensitivity analysis procedure. 

Faggianelli et al. [63], for example, used the Morris method to screen a 112-parameter office building 

model first, then applied the Sobol’ method to the 10 most important parameters identified by the Morris 

method. Specka et al. [245] also used the two-step SA, with the Morris method first then EFAST, applied 

to a 200-parameter Agro-ecosystem MONICA model. Song et al. [241] applied the Morris method first 

then EFAST on a forest growth model 3-PG. Similarly, Moreau et al. [155] used Morris to screen first, 

leaving the 6 most important parameters for the analysis of variance (ANOVA) with fractional factorial 

design involved. 



Many studies have shown that only a small group of parameters are dominant in regard to sensitivity no 

matter how complex the model is [208,211,268,274], which indicates an asymmetric pattern in the 

distribution of sensitivity for model parameters [211]. Additionally, for a Water Accounting Rice Model, 

Confalonieri et al. [39] found agreement between GSA methods in terms of the similar importance of 

parameters. For insensitive parameters, however, this agreement may not exist [45,227,242]. This 

phenomenon explains the intention of using different GSA methods for the same study for the purpose 

of comparison in terms of efficiency, computational cost and, of course, the sensitivity results. Among 

them, Tang et al. and Yang [257,289] both pointed out the superiority of the Sobol’ method for nonlinear 

models with strong interactions, though Herman et al. [87] questioned the efficiency of the Sobol’ 

method in a spatially-distributed hydrological case.  

It has been shown that EFAST  performs better and converges earlier than the Sobol’ method [296], and 

other studies have made a similar observation [74,279]. However, Wang and Solomatine [279] used 

negative sensitivity index values in supporting this argument, which means that the sampling was 

insufficient. Later on, Upreti et al. [269] stated that PAWN is more computationally efficient compared 

to EFAST. On the other hand, KC et al. [112] compared the Morris, Sobol’, EFAST and PAWN methods 

for estimating sensitivity measures for empirical fire spread models, and they concluded that PAWN 

converged fastest with EFAST being the slowest. Still, Zadeh et al. [119] found no difference in terms 

of convergence rate between the Sobol’ method and PAWN. Of course, the above results are an 

indication that no GSA method is ideal in all circumstances, including in regard to convergence rate 

[243] but rather depends on the purpose of the SA exercise, the quantitative and qualitative aspect of the 

SA method, and characteristics of the model in question. 

There are various methods to measure the agreement between multiple GSA methods. Spearman’s rank 

correlation has been used for comparing the ranking of Morris and Sobol’ sensitivity results in several 

studies [45,87,242]. Additionally, Cosenza et al. [45] listed many methods comparing the agreement of 

multiple GSA methods such as relevance, number of simulations, visual comparisons of scatter plots of 

sensitivity indices, and Venn diagrams to visualize classification into important or non-influential 

parameters. However, neither Spearman’s rank correlation nor Venn diagrams have seen much 

discussion but rather purely employment. Position Factor and Top-down coefficient of concordance 

(TDCC) are also used for comparing the agreement between GSA methods, and they will be introduced 

in the following subsections. 

Nevertheless, various studies [38,257] have reported that different GSA methods can yield contradictory 

sensitivity results for the same model application. To explain these observations, Razavi and Gupta [189] 

argued that the differences in the fundamental principles and philosophies of the different GSA 

approaches cause the variations in behavior. Reusser et al. [193] reasoned four possible sources of this, 

being a response surface that is rough [111], interference errors [204], sampling methods used, and 

algorithms computing the partial variance. There are many other studies [36,39,79,125,150,170,227,252] 



that have compared multiple SA methods, but their results will not be applicable in all contexts. Future 

studies should carefully consider variations in choices among their own experimental set-ups and other 

possible influences on results so that conclusions are more conditional and transparent by stipulating the 

assumptions and context relevant to the study. 

6.7 Sarrazin et al. Convergence Formulas 

In work that has been cited over 140 times, Sarrazin et al. [216] developed three convergence criteria 

illustrated through empirical studies (a 5-parameter HyMod model, a 13-parameter HBV model, and a 

50-parameter SWAT model). One criterion is the adjusted and weighted rank correlation coefficient 

coupled with the bootstrap for ranking, whereas the other two criteria assess the convergence of the 

Morris and Sobol’ methods by keeping the maximum difference of the upper bound and lower bound of 

sensitivity results in a certain range for screening and indices correspondingly. These convergence 

criteria are also employed in subsequent application to a vegetation-recharge model [215]. For assessing 

the convergence of a sensitivity index value, they proposed a criterion called 𝑠𝑡𝑎𝑡𝑖𝑛𝑑𝑖𝑐𝑒𝑠 which uses the 

width of the 95% confidence interval obtained by bootstrapping and found 0.05 to be a reasonable 

threshold for the criterion to indicate convergence. For ranking of sensitivities, Sarrazin et al. [216] 

modified and weighted a rank correlation coefficient as the criterion called 𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔 , and 

convergence is considered to be reached when it is below 1. The authors also proposed a similar measure 

𝑠𝑡𝑎𝑡𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 for screening , and it requires a pre-defined threshold T to be set in order to form a subset 

of less sensitive model parameters; the convergence of the screening result is considered to be reached 

when 𝑠𝑡𝑎𝑡𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 is below 0.05. 

To date, there have been around 20 studies that have cited and applied or adopted the idea of these 

criteria for assessing convergence, whilst other studies [7,33,151] have invoked some of their arguments 

about convergence or have taken their advice on suggested sample size for a direct application. Among 

them, Wate et al. [285] adopted the Sarrazin indices and convergence criteria in using the variance-

based Sobol’ method for a stochastic building performance simulator (S-BPS) and found them useful 

for assessing error in estimating indices with a sequential approach. Gschwend et al. [76] applied the 

Morris method to investigate different liquid fuels through a thermodynamic engine model, assessing 

convergence of the absolute elementary effect using the Sarrazin indices. In the context of a 

physiologically-based pharmacokinetic model, Hsieh et al. [92] utilized the Sarrazin et al. convergence 

criteria by checking the range of the 95% confidence interval for both Sobol’ indices and Morris indices 

but with a threshold of 0.1 rather than 0.05. Later, Hsieh et al. [93] coded an R package pkensi to include 

the 𝑠𝑡𝑎𝑡𝑖𝑛𝑑𝑖𝑐𝑒𝑠 criterion. For a hydrogen predictive model, Seo et al. [219] used the Sarrazin indices 

convergence criteria with the Sobol’ method, although they obtained negative index values for certain 

parameters even when the criteria indicated convergence. KC et al. [112] compared four GSA methods 

for empirical fire spread models (Dry Eucalypt and Rothermel), but they interpreted the index criteria 



of Sarrazin as checking if the maximum difference between consecutive index values is less than 0.05. 

Similarly, use of the maximum difference in indices of two consecutive runs as a stopping criterion for 

estimating the Sobol’ index can also be seen in other studies [71,132], though the threshold can be 

different. Reinhart et al. [192] used the width of the confidence interval to monitor the convergence of 

Sobol’ indices for a drainage water recycling model, but they visually evaluated the convergence of 

ranking rather than applying the ranking criteria of Sarrazin et al. [216]. Ghasemizade et al. [69] 

considered a width of the confidence interval below 0.14 rather than the default 0.05 as acceptable using 

the Sobol’ method for the HydroGeoSphere model. 

A few studies [34,49,91] have claimed or implied that their results satisfied the convergence criteria of 

Sarrazin et al. [216] but did not show any results related to the criteria. KC et al. [113] stated that they 

followed the three criteria from Sarrazin et al. to wildfire models with the Morris, Sobol’ and EFAST 

methods, but did not show much detail in terms of results from the criteria. Awad et al. [8] compared 

the Morris extension method and Sobol’ method on a bilinear theoretical model and a civil engineering 

non-linear model with the use of three criteria. 

In terms of criticisms, Garcia et al. [67], in the context of the Morris method followed by the Sobol’ 

method in a two-step SA, argued that the convergence criteria in Sarrazin et al. [216] could lead to a 

computational surcharge when the goal is only to ensure convergence of the most important parameters. 

Gokarakonda et al. [73] pointed out that Nguyen and Reiter [160] did not obtain satisfactory results by 

using the rank correlation coefficients recommended in Sarrazin et al. [216], but in fact those authors 

used Kendall’s coefficient of concordance rather than the Sarrazin et al. criteria. 

6.8 Variability 

To identify if convergence is reached, Vanrolleghem et al. [270] set a cut-off threshold (CT) for a 

normalized sum of the sensitivity indices, and the Variability of this normalized sum was examined 

through increasing model runs. 

Of the 50 plus documents that have cited the Variability work of Vanrolleghem et al. so far, only three 

papers seem to have applied Variability for monitoring convergence. Likhachev [135] applied the 

Morris method to the titanium nitride (TiN) B-spline dispersion model and assessed the convergence of 

μ* using Variability with a threshold of 3% by increasing trajectories. Kroll et al. [125] used Variability 

to monitor the convergence for the Morris method and EFAST methods applied to a wastewater 

treatment plant model (WWTP). Finally, Salviano et al. [213] employed Variability to check the 

convergence of the smoothing spline ANOVA method of GSA. 

6.9 “Reliability” 

In order to utilize the information provided by bootstrap resamples, Razavi and Gupta [187] proposed a 

measure they termed Reliability for assessing ranking. The “Reliability” indicates the number of 



resamples in bootstrapping required to provide the same rank as the original sample set. 

This “Reliability” measure was also called a “Robustness” measure in Razavi et al. [191]. Of the 60 plus 

documents that have cited Razavi and Gupta [187], only five studies seem to have used “Reliability” for 

the assessment of convergence, whereas a few studies [2,189] have mentioned the “Reliability” measure 

but did not employ it. Using VARS-50 for a hydrological model, Bajracharya et al. [12] compared 

different model evaluation metrics based on “Reliability”. While the error in the slope of the flow 

duration curve (SFDC) was found to have low reliability, it was still recommended as SFDC can identify 

the sensitivity of parameters overlooked by conventional error metrics. For the Noah-MP land surface 

model, Huo et al. [95] measured the “robustness” of multivariate adaptive regression splines (MARS), 

though this measure is basically the originally-termed Reliability measure. To complement a grouping 

method, Sheikholeslami et al. [225] extended use of the Reliability measure. Additionally, 

Sheikholeslami et al. [227] assessed the ranking of the Regional SA (RSA) [90] and VARS methods 

using Reliability for the 10-parameter RIVICE model.  

6.10 Position Factor 

A measure called Position Factor (PF) has been used in some studies to “evaluate the convergence of 

ranking (stability in ranking) numerically”, where “parameter ranking is considered to be stable when 

the value of the position factor is low” [199]. Although 66 documents have cited Ruano et al. [199], 

only a limited number of studies have actually employed the Position Factor. On the other hand, the 

Position Factor concept has received a lot of development in the process, as indicated below.  

The original Position Factor is defined as 
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Likhachev [135] used the Position Factor to measure the difference in ranking obtained with different 

numbers of trajectories, considering the threshold of reliable ranking to be when PF < 2. Branger et al. 

[22] used the Position Factor to monitor the ranking by the Morris method for an energy-economy model 

Res-IRF. Similarly, they also considered PF = 2 as the threshold, which was claimed to be robust to an 

increase in samples. In addition, they considered the convergence of PF over a range of sample sizes 

with low values rather than stopping at the first low PF value. Sreedevi et al. [248] applied the Position 

Factor for the SHETRAN model to measure the differences in ranking by the Morris method obtained 

with different trajectories; however, the threshold invoked for the Position Factor is not stated, and the 

final PF was larger than 2. 



A modified position factor 𝑃𝐹𝑎𝑏𝑠 was proposed by Cosenza et al. [45] to use the absolute value of the 

ranked difference of parameters between resamples. Later, Robles et al. [195,196] normalized 𝑃𝐹𝑎𝑏𝑠 by 

dividing by the maximum of the Position Factor. Furthermore, it was considered that the convergence 

criteria are to obtain two consecutive PF values of less than 0.3. Liu et al. [137] modified the Position 

Factor by changing the numerator to a varied weight based on the sensitivity measures, and this new 

Position Factor was also compared with the original Position Factor:  
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Along with previous studies [67,293], Liu et al. argued that the significance of a specific parameter 

depends on the magnitude of the sensitivity measure (say μ*) rather than the rank. Moreover, a change 

in rank does not reflect a great change in the sensitivity measure. Thus, it was suggested that the 

judgement of the original Position Factor purely based on rankings is not wise and that an unnecessarily 

large number of trajectories would be required to reach convergence. 

6.11 Top-down coefficient of concordance with Savage score 

The Top-down coefficient of concordance (TDCC) [97] measures the correlation between parameter 

ranks and weights the top-ranking parameters more. It is usually coupled with the Savage score [217], 

which is the expected value of the order statistic using a sample from a set distribution to form an 

increasing sequence, to quantify the agreement between multiple sensitivity measures obtained from 

different sample sets or configurations, especially for the purpose of ranking. Studies [36,39,40,143,170] 

have implemented the TDCC with Savage score for measuring several items: the ranking between 

Multiple SA methods; the adequacy of sample size [25,123,124,131]; for different combinations of 

inputs [99]; for different simulation days [245]; for different parameter variation ranges [256]; or for the 

difference between pairs of species [138]. For a specific crop model, Confalonieri et al. [41] proposed 

the quantification measure of L (of plasticity) that combined TDCC with the standard deviation of a 

normalized agrometeorological indicator (SAM), and this indicator has been mentioned or used in 

several studies [169,186,230,265]. 

There have been attempts to use the Savage score as a standalone convergence measurement. Gilardelli 

et al. [70] used the Savage score to compare the ranking obtained by the Morris and EFAST methods, 

whilst Campolongo et al. [28] used it to identify the least sensitive parameters by ordering the sum of 

scores from each parameter for a revised Morris method. However, Garcia et al. [66] pointed out that 

Savage score assigns low score to parameters that are only important to one model output in favor of 

parameters important to multiple model outputs. 

TDCC is not the only measure for assessing a coefficient of concordance. Kendall’s coefficient of 

concordance (KCC) was also used in several studies for the purpose of ranking [160]. However, KCC 



gives equal weight to all of the parameters regardless of their ranking, and Helton et al. [85,138] deemed 

KCC inappropriate for finding important parameters because KCC serves as a bad indicator when 

insignificant parameters are the majority of the model parameters. Although TDCC has been widely 

adopted in many SA studies, there are other correlation indices warranting consideration in the future. 

The correlation index proposed by Vigna [273] considers if there is a tie between the measurements, as 

ties are not dealt with in the current setting of TDCC. If a model has multiple parameters with the same 

sensitivity analytically, a correlation index, such as TDCC, is unable to provide a correct ranking 

indicator, as TDCC gives a much higher value than the threshold even if the sample size is adequate for 

other ranking measurements. In addition, there are several new weighted rank coefficient of concordance 

[21,44] measures that could also be considered and tested in future ranking studies.  

6.12 Visualization 

The visualization of convergence analysis not only supports the interpretation of the GSA results [164] 

but also helps in identifying certain patterns and small details not captured in a single or small number 

of measures. Qian and Mahdi [183] illustrate several common graphical methods, including the boxplot, 

confidence plot and convergence plot. Among them, the slope of the convergence plot is used as an 

indicator to check the status of convergence in many studies, but it depends on the context, how plots 

are configured, and the overlap of multiple lines should be carefully adjusted to increase visibility.  

Common graphical methods have been tailored to provide extra information that greatly improves the 

reading experience. For example, Touzani and Busby [266] added circles to indicate the different groups 

of inputs (non-influential, having linear effects, having non-linear effects) for the mean versus standard 

deviation plot for the Morris method, while Sheikholeslami et al. [227] used an extra enlarged bar plot 

for insensitive parameters. Other than the above three graphical methods, different forms of heat map 

[14,87,134,275,287] also serve to analyze the convergence and results of GSA methods; note, however, 

heat maps may be less informative if only in black and white [194,250]. Massmann et al. [144] proposed 

time-varying sensitivity analysis plots by adapting wavelet-analysis type plots. Zadeh et al. [119] used 

probability density function plots of error measures (NSE and ME) as convergence criteria, wherein 

complete convergence is achieved when the slope of the plot is considered flat. Pianosi et al. [176] 

summarized 13 examples of useful visualization tools for exhibiting GSA results in their appendix, and 

they included the most commonly seen plots for the convergence purpose, such as the convergence plot 

and the pattern plots. 

Others [141,146,281] have used 3D plots to connect data from three different dimensions, which can be 

advantageous for including spatial or temporal aspects, but one downside of 3D plots is that readers 

cannot rotate them; thus, some information can be hidden by the pre-determined angle set. Likhachev 

[135] used 3D plots to show changes in the Morris method’s sensitivity measure μ* with respect to the 

changes in the number of trajectories and parameters, but they also showed the cross-sections as 2D 



plots on the side to exhibit the more hidden part. 

In order to summarize useful suggestions for avoiding common mistakes and enhancing the usefulness 

of visualization, Kelleher and Wagener [114] proposed ten guidelines for scientific visualization. These 

ten guidelines list comprehensive recommendations including: the data selection, graphic encoding and 

attributes, the purpose of plotting, axis ranges and aspect ratio, solving overlapping of points in scatter 

plots, using line connection smartly, aggregate datasets, to the selection of color schemes. Additionally, 

they emphasize the importance of scientific visualization and give examples of visualization to illustrate 

their guidelines. 

6.13  Other convergence approaches 

Other less common convergence approaches include that of Touzani and Busby [266], who presented 

an error criterion to assess the convergence for derivative-based global sensitivity measures (DGSM) 

and emphasized the impact of influential parameters. The criterion uses a Euclidean norm of DGSM 

indices instead of individual indices. The stopping threshold of this criterion is set as 0.05, but the DGSM 

indices still show a large fluctuation in the convergence plots past the threshold. Thus, this error criterion 

may need a much lower threshold or consider some modifications to be more informative. 

Garcia et al. [66] proposed a calibrated visual criterion in the R platform to mimic the process of 

selecting important parameters by the Morris method in preparing for a two-step SA. In addition, the 

convergence of the calibrated visual criterion was assessed by using bootstrap resamples, similar to the 

concept of “Reliability”. It was tested on the FLBEIA bio-economic fisheries simulation model and 

found to be cheaper than the  𝑠𝑡𝑎𝑡𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔, which is based on the width of confidence interval [216]. 

6.14 Discussion 

As has been argued here and elsewhere, there are many impact factors influencing the results of a GSA 

exercise. Thus, the practice of adopting recommendations from previous studies to select a sample size 

for GSA a priori or finding simple relations between the number of model parameters and sample size 

is largely fraught with uncertainty, especially in terms of realizing trustworthy convergence of SA results. 

In the best case, this may be warranted if the new study is about the same model and GSA (sampling 

and estimation) methods. But even then, if the data are different, for example from another case or 

location, or with different forcing period or error characteristics, then findings on sample size from 

previous studies will be indicative only.  

Of course, if the model being investigated is not the one in a previous study and so has dissimilar 

response characteristics, then the sample size required for convergence can be very different, even if the 

GSA sampling method and sensitivity estimation algorithm are the same. If the GSA estimation 

algorithm selected for the new study is different, then that on its own calls very much into question 

indications of sample size from previous studies. Therefore, there are many reasons for the embracing 



of a sequential approach to assessing convergence, almost whatever the context of the new study, as the 

basis in employing convergence analysis whereby convergence is monitored with increasing sample 

size. 

For the purpose of screening, setting an arbitrary threshold for sensitivity is not recommended as it may 

cause errors of Type I (i.e., sensitive parameters classified as insensitive) or II (i.e., insensitive 

parameters classified as sensitive), and it may also underestimate the impact of the sum of less sensitive 

parameters [266]. The Dummy parameter approach [119] constitutes use of a more advanced threshold, 

but it may not be suitable for specific GSA methods such as those of Morris (due to the sampling used) 

or Sobol’ (for select estimators) methods. However, it can still be implemented with other methods, such 

as Active Subspaces [252], but one should take care implementing it with small sample sizes [32]. Many 

methods, such as the Kendall rank correlation [160], do not seem to have been implemented much, so 

there needs to be more investigation of these methods. The grouping method of Sheikholeslami et al. 

[225] can be a suitable choice for multi-group screening, but it still requires more dedicated tests. 

Similarly, the screening criteria of Sarrazin et al. [216] is easy and straightforward to use, but it also 

requires more comprehensive testing against other methods. 

For the purpose of ranking, the Position Factor approach has seen several modifications in form, and the 

modified Position Factor with weighting is a valuable change as it considers the magnitude of the 

sensitivity measures in evaluating the ranking. In terms of weighting, the ranking criterion of Sarrazin 

et al. [216] uses bootstrap resamples additionally, and this is more stringent than the original Position 

Factor for detecting convergence. In Chapter 4, Sun et al. [252] employed 8 test functions to compare 

the ranking of Activity Scoring (based on the Active Subspace concept) with the variance-based Sobol’ 

method and the Morris method. They used four ranking convergence measurements (Position Factor, 

𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔, “Reliability”, and TDCC). They found that the different approaches to convergence reflect 

different perspectives. The notion of “Reliability” seeks to inspect the convergence status of each 

individual model parameter, and this gives a different perspective than the Sarrazin et al. ranking 

criterion 𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔  which provide the convergence status in a general view. “Reliability” and 

𝑠𝑡𝑎𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔  act complimentarily, whereas the original Position Factor does not provide additional 

information compared to visually identifying the ranking except if the number of model parameters is 

huge and visual inspection is not practical. The TDCC measure with Savage score is less informative in 

providing an indicator of convergence status than the other three ranking measurements because it may 

require more model evaluations than other ranking measurements. However, a common limitation of 

these convergence analysis methods is the inability to ranking parameters with very similar sensitives 

[252]. Still, all these ranking convergence measurements should be applied and compared under 

different circumstances with various model characteristics and GSA methods. Often such 

comprehensive comparisons can be achieved by post-processing results from the same sampling and 

model runs. 



The Confidence Interval is the most obvious option to assess convergence, especially for ranking or 

estimating sensitivity indices. Among the choices for calculating confidence intervals, bootstrapping 

does not require extra model runs compared to replication-based CI, but it also comes with the limitation 

of being biased under certain circumstances. Model Variable Augmentation (MVA) has not been tested 

much, other than Mai and Tolson [140], and it utilizes the dummy parameter concept, which would have 

the same drawbacks as that of the dummy parameter alone. Variability is quite straightforward in that 

its formula is simple to implement, but it cannot identify changes in each individual model parameter 

when the sum of sensitivity measures does not change. The “true” sensitivity measure is recommended 

if it does not require an enormous computational budget and can be used in a sequential mode. Last but 

not least, the indices criteria of Sarrazin et al. [216], as mentioned earlier, cannot directly be used for 

ensuring the convergence of individual model parameters, and it also relies on the quality of bootstrap 

resamples.  

7 Conclusions 

In this paper, we refined the definition of convergence for GSA and proposed a workflow of choice 

considerations in assessing and monitoring convergence. We investigated the choices of sampling 

methods, discussed the settings of various GSA algorithms, and listed and commented on the available 

convergence assessment methods, with major attention to progress and applications in the field of 

environmental modelling. To improve efficiency of sampling and coverage of parameter space, there is 

much scope for more testing of the existing sampling methods. Among those, the newly developed 

PLHS or randomization methods are recommended, as they show promise and lack serious testing in 

the field of convergence assessment of environmental modelling. Additionally, hybrid sampling 

methods such as SOBOL-LHS show promising results in the stochastic optimization field and warrant 

testing in GSA settings for further comparison. For specific SA methods, like the Morris method, that 

uses their own kind of sampling, more experiments are recommended to explore the potential of 

alternative sampling methods. 

If the purpose of a GSA exercise is somewhat flexible and the computational budget is limiting, then 

screening/ranking can take fewer samples to converge than estimating precise indices. Furthermore, in 

investigating the robustness of results and their convergence rates to choices made in a GSA exercise, 

other settings of each of the GSA methods should be given more attention and transparency as well. For 

example, the results may be impacted by the grid level of the Morris method and the way parameter 

interactions are characterized using its two sensitivity measures. The formulas used in estimators for 

approximating first-order or total-effect sensitivity indices of the Sobol’ method highly affect the 

magnitude of indices and the convergence rate, and the estimated upper bound of the total-effect through 

other means or by extended Sobol’ methods may provide new solutions in reducing the computational 

cost of the Sobol’ method.    



The application of GSA to models lags the development of methods. Most applications still use older, 

often inferior, versions of methods, such as the earlier estimators using the Sobol’ method. Various 

studies have proposed new estimators for the variance-based Sobol’ method, but most studies still adopt 

Sobol’1993/Homma1996 or do not state the estimators employed. More advanced estimators are 

available and warrant more testing. Among them, the Jansen estimator appears both durable and efficient. 

Furthermore, first-order and total-effect indices may be considered separately in terms of convergence, 

but with the nature of existing Sobol’ method libraries, it may take extra time to calculate first-order and 

total-effect separately. On the other hand, extended-FAST is becoming one of the most used GSA 

methods in environmental modelling, but it has received little updating of its choices for the algorithm 

settings in the past few years compared to the Morris method and the variance-based Sobol’ method. 

Due to the heavy computational cost of the Sobol’ method, and hence for examining convergence, there 

has been effort to link the Sobol’ method with other cheap GSA methods to create an upper bound for 

screening purposes. Other than extended-FAST, the Morris method, and the Sobol’ methods, there is 

scope for more advancement in convergence assessment of other GSA methods such as VARS, PAWN, 

and Active Subspaces. 

We discussed the available convergence analysis methods and their applications. For assessing 

convergence, a sequential approach, with incremental increases in sample size and visualization of 

convergence rates, should be easy and worthwhile to adopt. There is a lack of studies carefully testing 

the various convergence analysis methods together, although, in Chapter 4, Sun et al. [252] have tested 

many for a wide range of test functions and three convergence assessment methods but have not 

extended the comparison to environmental models. Hence, it is not practical to give a definitive answer 

on which convergence analysis method is superior. For the current situation, the grouping method of 

Sheikholeslami et al. and the screening criteria of Sarrazin et al. is recommended for screening purposes, 

the indices criteria of Sarrazin et al. are recommended for indices purposes, whereas all the ranking 

measures such as “Reliability” and the ranking criteria of Sarrazin et al. are recommended for the 

ranking purpose depending on the circumstances.  

In addition, further study on the rate of convergence is severely neglected. Future directions could be 

based on the rate of convergence estimated from multiple steps of convergence indicators.  

As an overall comment, all the convergence assessment methods still require substantial testing, 

investigation, and analysis to help decisions on choices that make one more assured of GSA results. 

There is still a long way to go for finding the optimal way of doing convergence analysis for GSA. In 

regards to development of software packages or libraries, Hsieh et al. [93] developed pksensi package 

in R to include the convergence assessment method for indices from Sarrazin et al. [216]. Razavi et al. 

[191] built a software toolbox VARS-TOOL that includes VARS, PLHS, convergence testing to give 

the “Reliability”, and the grouping method of Sheikholeslami et al. Furthermore, Sun [251] implemented 



several convergence assessment methods for ranking from the literature in a GitHub library 

SAConvergenceAnalysis with open access. The inclusion of convergence analysis in the development 

of software libraries and packages is warranted to secure trustworthy results, as most studies rely on 

mature GSA libraries.  

There are many opportunities available for future studies of convergence around sensitivity analysis that 

are absent from the current literature. Future studies of GSA should acknowledge all potential choices 

that impact the inferences from a GSA exercise and, in the interests of transparency, note the 

assumptions made and hence the conditional nature of the outcomes, including with respect to the 

convergence attained. Secondly, multi-step GSA approaches could receive more attention around the 

possible combinations of GSA methods at each step, as the current studies have largely been limited to 

the Morris method followed by one variance-based GSA method.  

If the response surface of the model in question is smooth, emulation has much potential to be more 

computationally efficient than a direct GSA method, as it can simplify and reduce the dimension of 

models through the development of model response surfaces, reduce sampling and associated model 

runs, and yield sensitivities as a by-product. However, the choice of appropriate technique from all 

existing emulation techniques, the conditions required for building accurate response surfaces within a 

certain tolerance, and the impact of emulation on the convergence of GSA exercises are all worth 

investigating. 

Finally, a template for listing the context, assumptions, and choices in a GSA exercise and its 

convergence is advocated here as a way forward for summarizing and listing choices made, their 

justification and comparison among alternatives. Such a template could also provide guidance on each 

step of the GSA application and support the transparency of the process and its learnings more widely 

for future convergence studies. Additionally, this template can be refined iteratively through future GSA 

applications in shaping an optimal pathway for achieving the convergence of GSA applications within 

the available resources.  
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Chapter 3

A Comparison of Global Sensitivity
Techniques and Sampling Methods

Chapter 3 considers the impact of two primary factors, different algorithm settings
and sampling methods, used in GSA to investigate their associated computational
efficiency. The commonly-used benchmarking Sobol’ G-function provides a wide
spectrum of complexity in behaviour by altering its coefficient values and is well-
suited for testing the variance-based Sobol’ method. Moreover, its total-effect indices
can be found analytically as a basis for comparing the accuracy of our different
choices. Three sampling methods and two total-effect estimators are compared
to illustrate the corresponding change in convergence rate using relative error as
the indicator, and this investigation supports the observations of Chapter 2. The
investigation here showed that, at least for the cases of the Sobol’ G-function, the
Sobol’ sequence and Latin Hypercube sampling methods provide more accurate
Sobol’ indices compared to random sampling under the same computational cost,
and that the “Jansen 1999” total-effect estimator is more efficient than the “Sobol’
2007” estimator in terms of reaching accurate total-effect indices.
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Abstract: Inspired by Tarantola et al. (2012), we extend their analysis to include the Latin hypercube and
Random sampling methods. In their paper, they compared Sobol’ quasi-Monte Carlo and Latin supercube
sampling methods by using a V-function and variance-based sensitivity analysis. In our case we compare the
convergence rate and average error between Sobol’, Latin hypercube, and Random sampling methods from the
Chaospy library, keeping everything else the same as in their paper. We added the Random sampling method
to test if the other two sampling methods are indeed superior. The results from our code confirm the results
of their paper, where Sobol’ has better performance than Latin hypercube sampling in most cases, whilst they
both have higher efficiency than is achieved with Random sampling.

In addition we compared the explicit forms of ‘Jansen 1999’ total effects estimator used in Tarantola et al.
(2012) with the ‘Sobol’ 2007’ estimator, again keeping sample sizes and the test function the same. Results
confirm that the ‘Jansen 1999’ estimator is more efficient than ‘Sobol’ 2007’. The presentation will also
include the Morris sampling method and other test functions to further test efficiency among all the sampling
methods on different cases.

Figure 1. Comparison of rMAES value for Sobol’ and Latin Hypercube. Top left is for type A1-1, top right
is for type A2, bottom left is for type B, and bottom right is for type C.

Keywords: Sobol’, Latin hypercube, Random sampling, global sensitivity analysis, variance based, total 
effects estimator
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1 INTRODUCTION

The goal of sensitivity analysis is to study how the uncertainty of model output can be attributed to the un-
certainty of input as well as the interaction between inputs. Nowadays, many models are very complex and
expensive to run, so it is extremely useful to identify any important or unimportant inputs through various
sensitivity analysis techniques before actually running the models. After we choose the desired technique, we
want to know how big the sample size should be enough to get relatively small statistical error. Due to this
concern, we need to choose the sampling method with best efficiency or least time-consuming, and the choices
are based on the need of end users. In Tarantola et al. (2012), they used variance-based sensitivity analysis on
V-function to compare the efficiency of randomised Sobol’ QMC design and Latin Supercube method based
on C++ library. Inspired by their paper, we want to extend their experiment to Python and compare three
different sampling methods: Sobol’, Latin Hypercube, and Python Random methods. In addition to the three
sampling methods, Saltelli et al. (2010) summarised different forms for first order and total order effects, and
they claimed that ‘Jansen 1999’ is better compared to ‘Sobol’ 2007’ on total order effects sensitivity indices
estimator. We will also test this result in our Python code environment. The outline of this paper is as fol-
lows: in Section 2, we will give a brief introduction of variance based sensitivity analysis; in Sections 3 and
4, we will summarise the sampling methods that we choose to use, and we will introduce the basic idea of
original paper’s sampling strategies, test function, and test cases; in Section 5, we will show the results on the
comparison of different sampling methods and of two different total effect sensitivity indices estimators.

2 VARIANCE-BASED SENSITIVITY ANALYSIS

Sobol’ first mentioned the expansion into summands of different dimensions in Sobol’ (1969). Later, Sobol’
generalised the expansion theorem, and then he proceed to bring up the concept of “freezing unessential
variables” in Sobol’ (1993). Homma and Saltelli (1996) called this “freezing” concept as “Sobol’ sensitivity
indices of the first order” and further improved it into “the total effect index”. As most models are extremely
complex, it is impossible to get the exact values for the indices for such models, since these indices are obtained
through numerical means and will always have a finite confidence interval. Because of this reason, there are
many discussions based how we should estimate those indices, and readers can get more information about
various approaches to approximate indices from Sobol’ (1993), Homma and Saltelli (1996), Saltelli et al.
(2010), Jansen (1999), and Sobol’ (2007). In our paper, we will use the estimators based on Tarantola et al.
(2012). For readers’ convenience, we will briefly summarise the idea of first and total effect sensitivity indices
here. The variance-based sensitivity analysis starts with the variance decomposition methods.
We define a function f(X) as

f(X) = f(X1, X2, . . . , Xn),

where the domain is a n-dimensional unit cube Ω = {X|0 ≤ xi ≤ 1|i = 1 . . . n}. Then we can write the
decomposition of function f as:

f = f0 +

n∑

i=1

fi +
∑∑

1≤i≤j≤n

fij + · · ·+ f12...n,

where fi = fi(Xi), fij = fij(Xi, Xj), and j represents the same index as i. Next, we write the decomposition
form of variance of f(X), V (f), as

V (f) =

n∑

i=1

Vi +
∑∑

1≤i≤j≤n

Vij + · · ·+ V12...n. (1)

Divide V (f) on both sides of above equation (1), we get

1 =

n∑

i=1

Si +
∑∑

1≤i≤j≤n

Sij + · · ·+ S12...n.

We call the Si term as the Sobol’ sensitivity indices of the first order, and it is defined as

Si =
Vi
V (f)

=
VXi

(EX∼i
(f |Xi))

V (f)
.
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The notationX∼i means that allX variables except the ith variable. The approximation of Si’s numerator and
denominator are known as

VXi
(EX∼i

(f |Xi)) ≈
1

N

N∑

j=1

f(B)j(f(A
(i)
B )j − f(A)j),

and

V (f) ≈ 1

N

N∑

j=1

f2(A)j −
1

N

N∑

j=1

f(A)jf(B)j .

Similarly, the total effects’ STi is defined as

STi =
EX∼i

(VXi
(f |X∼i))

V (f)
,

where

EX∼i(VXi(f |X∼i)) ≈
1

2N

N∑

j=1

(f(A)j − f(A
(i)
B )j)

2. (2)

Matrices A and B are two N × k sampling matrices generated by sampling methods, and A(i)
B is a matrix

where the ith column comes from B and the rest is from A. Moreover, (A)j denotes the jth row of matrix
A. We follow the same idea of sampling design in Section 3.2 of Tarantola et al. (2012) but with different
sampling methods. The proof of the approximation forms of Si and STi are fairly easy, since it only uses the
definition of expected value, variance, and Monte Carlo approximation. More detailed proofs of Si and STi

are in Homma and Saltelli (1996) and Saltelli et al. (2010).

According to Saltelli et al. (2010), the formula of total effect sensitivity indices (2) is an improved version by
Jansen (1999), and its efficiency is claimed to be much better than that defined in Sobol’ (2007). We will test
again the efficiency of both estimators in the later section and confirm this result.

3 TEST FUNCTION AND CASES

We still use the famous benchmark test function for sensitivity analysis V-function as our test function:

Y = V (X1, X2, . . . , Xk, a1, . . . , ak) =
k∏

i=1

vi

with,

vi =
|4Xi − 2|+ ai

1 + ai
.

The sampling points are Xi, i = 1 . . . k, and we get them through the sampling designs from previous section.
In addition, we use coefficients, ai, i = 1 . . . k, to control whether the corresponding input is a dominated
input or not. We also follow the same five types of coefficients, and we briefly summarise them as below:

• A1-1 : a1 = a2 = 0, ai>2 = 6.52

• A1-2 : ak−1 = ak = 0, ai<k−1 = 6.52

• A2 : a1 = · · · = a5 = 0, ai>5 = 6.52

• B : ai = 6.52, i = 1, . . . , k

• C : ai = 0, i = 1, . . . , k.

Since we know the exact results of first-order effects for all the types, we can calculate how strong the inter-
action is for each type manually. We use the exact results of 10 dimensions as an example for here. Type
B has the weakest interaction among all the types, where the interaction accounts for approximately 3% of
the output variance. Type A1-1 and A1-2 both have the same amount of interaction which is 17.32%, while
type A2 has 49.21%. Type C has the strongest interaction which is approximately 80%. As we increase the
dimensions, the interaction will become slightly stronger. Please refer to Sobol’ (1993) for more details about
the test function and Kucherenko et al. (2011) for the classification of types of coefficients. The exact results
of test function are used by this paper can be found in Appendix A of Tarantola et al. (2012).
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4 SIMULATION RESULTS

We use the same sample size N as in Tarantola et al. (2012): 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,
8192; however, as we mentioned in the previous section, the Sobol’ quasi-Monte Carlo sample generator in
Chaospy library can only generates up to 40 dimensions, so we limited the dimension to 10 and 19 because of
the sampling design. We replicate each experiment 100 times and then calculate the average. In their paper,
they used four indicators AES, AEST, MAES, and MAEST to represent the error of the sensitivity estimates.
The indicators AES and AEST are called the mean absolute error of each Si and each STi, and the indicators
MAES and MAEST are the corresponding average of AES and AEST. AES is defined as

AESi =
1

R

R∑

r=1

|S(r)
i − S̄i|,

and MAES has the form of

MAES =
1

R

1

K

k∑

i=1

R∑

r=1

|S(r)
i − S̄i|,

where S̄i is the exact solution and S(r)
i is the estimated solution. In these formulas, i still represents the index,

and R is the total number of replicates. The r means which replicate that we are currently using. AEST and
MAEST have exactly the same forms as AES and AEST but with STi instead of Si.

In our experiment, we also calculate the mean relatively error of each Si and STi and corresponding averages
as well. The relative AES (rAES) is written as

rAESi =
1

R

R∑

r=1

|S(r)
i − S̄i|
|S̄i|

,

and the relative MAES (rMAES) is

rMAES =
1

R

1

K

k∑

i=1

R∑

r=1

|S(r)
i − S̄i|
|S̄i|

.

Through the experiments, we confirmed that Sobol’ is more superior than Latin Hypercube in most cases, and
they both have better performance than Python Random in average. Since we do not have enough pages to
show all the figures and discuss about the similar results, so we will only talk about rMAES and rMAEST
which are not included in Tarantola et al. (2012). If readers wish to see the figures of rAES and rAEST, please
refer to our github page for more information. We will look at two sets of figures for each type: the first set
is the comparison bar plots of rMAES of Sobol’ vs. Latin Hypercube in Figure 1. The y-axis of these figures
is the subtraction of log(rMAES of Sampling Method 2) from log(rMAES of Sampling Method 1), and the
x-axis is the number of model runs N . If the bar is above zero, it means that sampling method 2 has advantage
over sampling method 1, and vice versa. For our case, Sobol’s has more advantage if the bar is below zero,
and Latin Hypercube has more advantage if the bar is higher than zero. Since we can put the results from two
cases with different dimensions (k = 10, 19) into one figure, it is easily to see how the difference of relative
error changes with the change of dimensions. The second set of figures are log-log scaled plots of rMAEST
vs. N for k = 10 in Figure 2 and k = 19 in Figure 3. The smaller the rMAES or rMAEST is, the smaller the
statistical error is.

Type A1. Through the experiments on type A1-1 and type A1-2, we see that the results of rMAES and
rMAEST of both types are quite similar, since both types have equally strong interaction. For here, we will
only show the figures from type A1-1. From top left of Figure 1, we can see that Sobol’ starts to show more
advantages as we increase the number of model runs from N = 128 compared to Latin Hypercube, and this is
the same for rMAEST plot. As we increase the dimensions, the performance of Sobol’ is still the best at larger
sample sizes, while the difference is smaller at k = 19 than at the case of k = 10 at very large sample size.
for example N = 8192. According to the top left of Figure 2 and 3, Latin Hypercube is better than Random,
but the difference is about the same across all sample sizes. As we expected, Random is the worst among all
number of model runs and dimensions, but Latin Hypercube keeps the same rate of convergence as Random.
At k = 19, Latin Hypercube’s advantage over Random is decreasing at N = 8192, but much larger sample
sizes are required to further confirm this result.
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Figure 2. Comparison of rMAEST values for increasing N with log-log scale at k = 10. Top left is for type
A1-1, top right is for type A2, bottom left is for type B, and bottom right is for type C.

Type A2. A1 has 2 important input variables, but for A2, we assign the first 5 input variables to be relatively
important. Examining the rMAES plot of top right of Figure 1, we can tell that there are some random
error spikes due to very small sample size for first-order sensitivity indices. With larger sample size, Sobol’
provides less error for both first-order and total-effects, but the difference between Sobol’ and Latin Hypercube
becomes much smaller compared to type A1. On the other hand, Latin Hypercube has similar performance
with Random started from N = 128, and we can observe this relation from top right of Figure 2 and 3. As
we know that type A2 has stronger interaction between inputs than type A1, so the interaction may be one of
the factors that affects the performance of sampling method, at least for Latin Hypercube in this type. We will
further explore this assumption in the other types.

Type B. Type B has the weakest interaction between its inputs, since its coefficients are all zeros. According
to rMAES plots of Figure 1, Latin Hypercube clearly has more advantage over Sobol’ before N = 128 at 10
dimensions, and this advantage lasts till N = 2048 for 19 dimensions. Observing Figure 2 and 3, it is easily
to get statistical error spikes before N = 128 for Sobol’ and Random with 100 experiment runs; however,
Latin Hypercube is surprisingly more stable than the other two sampling methods at even 19 dimensions on
total-effects. Due to the error spikes, we increased the replicate to 400 for N ≤ 128, and we got relatively
reasonable result without error spikes. According to rMAEST plots, Latin Hypercube is way more superior
than Random compared to the results in type A. With relatively weak interaction between inputs, Sobol’ and
Latin Hypercube has better performance than in type A, and Latin Hypercube is the best choice at sample size
that is less than 64 for 10 dimensions or 128 for 19 dimensions among all three sampling methods.

Type C. Type C is to simulate a case where output variance is mostly attributed to the interaction between
inputs. Through either rMAES or rMAEST plots, it is still hard to say which sampling method does best
over a certain period of time. All three sampling methods have relatively large errors compared to previous
types for either first-order or total-effects sensitivity indices. For 10 dimensions, Sobol’ is slightly better than
the other two sampling methods for small sample sizes; while for 19 dimensions, it is even harder to tell.
With strong interaction, the influence on first-order and total-effects sensitivity indices of different sampling
methods reduces. This result is more obvious at very large sample sizes where the relatively errors for three
sampling methods are about the same.

‘Jansen 1999’ vs. ‘Sobol’ 2007’. As we mentioned in the section of variance-based sensitivity analysis,
there are multiple attempts to approximate Si and STi in the history. In this section, we mainly talk about the
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Figure 3. Comparison of rMAEST values for increasting N with log-log scale at k = 19. Top left is for type
A1-1, top right is for type A2, bottom left is for type B, and bottom right is for type C.

estimators for STi. Homma and Saltelli tried to estimate STi first in 1996 Homma and Saltelli (1996)

EX∼i
(VXi

(f |X∼i)) = V (f)− 1

N

N∑

j=1

f(A)jf(A
(i)
B )j + f20 ,

and this is called ‘Homma 1996’. Later in Sobol’s paper, he derived and rewrote ‘Homma 1996’ into a new
form ‘Sobol’ 2007’

EX∼i
(VXi

(f |X∼i)) =
1

N

N∑

j=1

f(A)j(f(A)j − f(A
(i)
B )j).

Figure 4. Comparison of ‘Jansen 1999’ and ‘Sobol’ 2007’ by using type B and Sobol’ sampling method.
Left one is the AEST value at N = 8192, and the right one is log-log scale of MAEST value at increasing N.

Among all the STi estimators, the most efficient one was proved to be ‘Jansen 1999’, which is the function
(2) that we used in the previous section. Since ‘Sobol’ 2007’ equivalents to ‘Homma 1996’, it was showed
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that ‘Jansen 1999’ is also better than ‘Sobol’ 2007’. The proof can be found in Sobol’ (2001). With the code
we used above, we can use experiments to compare the efficiency between ‘Sobol’ 2007’ and ‘Jansen 1999’.
For both estimators, We use Sobol’ sampling method and Type B coefficients at 10 dimensions for relatively
weak interaction, and we keep the test function the same. We compare the results of rAEST at N = 8192 and
rMAEST plots to see how the different estimator affects the statistical errors. From Figure 4, we can clearly
see that ‘Jansen 1999’ has far less statistical errors compared to ‘Sobol’ 2007’. In the log-log scaled rMAEST
plot, ‘Sobol’ 2007’ has a little difference with ‘Jansen 1999’ at small sampling size, but from N = 64 to
N = 8192, the difference on error starts to increase dramatically. We also tested the difference of ‘Sobol’
2007’ and ‘Jansen 1999’ on other type of coefficients and sampling methods, and we got similar results. It is
worth to notice that ‘Sobol’ 2007’ has a relatively flat period from N = 128, and we will investigate further
about the reason behind this result. Through these experiments, we confirmed that ‘Jansen 1999’ definitely
performs better and has higher efficiency than ‘Sobol’ 2007’.

5 CONCLUSIONS

We extend the experiment of Tarantola et al. (2012), and we further compared the average of relative mean
absolute error of each Si and STi between three sampling methods – Sobol’, Latin Hypercube, and Random.
We confirmed that Sobol’ performs better than Latin Hypercube for very large sample sizes started from around
N = 256 for most cases, but Latin Hypercube has some surprisingly good results at very small sample sizes
compared to Sobol’ and Random. We can see that Sobol’ and Latin Hypercube are superior than Random
for most cases. It is also reasonable to say that the interaction is a strong factor for the influence of different
sampling method. The advantages of different sampling methods start to diminish when more than 50% of
output variance are due to interaction, and it is viable to choose the method with fastest calculation speed under
this situation. After the comparison between three sampling methods, we also confirmed that ‘Jansen 1999’ is
more efficient than ‘Sobol’ 2007’ through the same experiment environment.

We aim to bring Morris method into this comparison experiment as well, and we will compare the relative
errors between all four methods. Since Tarantola et al. (2012) is based on global sensitivity analysis, we can
also test the sampling methods for local sensitivity analysis. We used variance-based sensitivity analysis in
this paper, but there are still many other sensitivity analysis methods that we can explore. We wish to use
hydrology models as test functions, and our goal is to to find the most or relatively appropriate sensitivity
analysis method/sampling method for different hydrology models.
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Chapter 4

Benchmarking Active Subspace
Methods of Global Sensitivity Analysis
Against Variance-Based Sobol’ and
Morris Methods with Established Test
Functions

Chapter 4 builds upon Chapters 2 and 3 to propose a comprehensive benchmarking
process for a newly emerging method, based on the concept of Active Subspaces,
which produces sensitivity-related indices called activity scores. In this chapter,
the activity scoring is compared with the popular Morris and variance-based Sobol’
methods, using several test functions possessing a wide range of characteristics
and having known analytic sensitivities and hence rankings. Choices in regard to
algorithm settings, sampling methods, sample size, and their effects on convergence
and visualisation are all considered to evaluate the effectiveness of activity scoring in
terms of ranking.

Four ranking measurements (Sarrazin ranking measure, Position Factor, Top-down
coefficient of concordance, and “Reliability") for assessing convergence are employed
to match the purpose of factor prioritisation (or ranking). An annotated heat map
serves as an enhanced visualisation tool for exhibiting and interpreting the sensitivity
measures for the choices noted above.

The results show that activity scoring is more computationally efficient than the
other two global sensitivity analysis methods in many cases, and illustrate that it
provides different, somewhat complementary, information due to the differences in
fundamental principles among the three methods. Moreover, the performance of the
activity scoring is highly impacted by the accuracy of the method approximating
the gradient of the model function, so there is opportunity to improve the method
by introducing better gradient approximations. It is also seen that, for ranking, the
Sobol’ sequence clearly outperforms random sampling in evaluating activity scoring.
Furthermore, we conclude that across the model functions the Sarrazin ranking
measure provides a general assessment of convergence status, while “Reliability”
focuses on the convergence status of each specific model parameter. These two
ranking measures are complementary to each other and provide more information
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than the other two ranking measures considered in revealing more details additional
to visualisation.

This paper is published as a research article in Environmental Modelling and Soft-
ware. The author acknowledges the support of a scholarship provided by the Math-
ematical Sciences Institute of the Australian National University. Furthermore, this
paper introduces a software library named SAConvergenceAnalysis available on Git-
Hub with open access. In the published paper below, reference is made to “exact AS".
This would be better expressed as “analytical AS" and in future this term will be used

Sun, X., Croke, B., Jakeman, A., & Roberts, S. (2022). ‘Benchmarking Active Subspace
methods of global sensitivity analysis against variance-based Sobol’ and
Morris methods with established test functions’. Environmental Modelling &
Software, 149, 105310. https://doi.org/10.1016/j.envsoft.2022.105310
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A B S T R A C T   

Active Subspaces is a recently developed concept that identifies essential directions of the response surface of a 
model, providing sensitivity metrics known as activity scores. We compare activity scoring with the Sobol’ and 
the Morris global methods using a series of well-known benchmark test functions with exactly computable 
sensitivities. In the ranking context, we analyse the accuracy, efficiency, impact of sampling method, conver-
gence rate, and confidence interval estimation through both bootstrapping and replication. Heat maps that show 
both numerical rankings and underlying sensitivities with increasing sample size are introduced as a key visu-
alization tool for such analysis. Convergence is also assessed through four previous measures. Activity scores 
match the total-effect sensitivity index of Sobol’ and the absolute mean of elementary effect of Morris in most test 
cases. Activity scoring can be more computationally efficient. Its potential can be enhanced by expanding 
methods for approximating the gradient of the model function.   

1. Introduction 

Global sensitivity analysis (GSA) has quickly gained attention in the 
past few years as a discipline coming of age for aiding model develop-
ment and evaluation, especially through its ability to identify and 
apportion relative sources of model factor influence on model outputs 
(Razavi et al., 2021; Saltelli et al., 2021). This has led to development of 
a number of global sensitivity analysis methods (Constantine, 2015; 
Morris, 1991; Pianosi and Wagener, 2015; Rakovec et al., 2014; Razavi 
and Gupta, 2016a; Saltelli et al., 1999; Sobol, 1993) and associated 
software tools as covered in Douglas-Smith et al. (2020). The various 
methods tend to make different assumptions and/or are based on 
different metrics for sensitivity, leading to calls for the use of multiple 
methods in practice to inform conclusions about model sensitivity 
(Wagener and Pianosi, 2019). 

The Active Subspace concept (Constantine, 2015) affords a recent 
global sensitivity analysis method that identifies the critical directions, 
or the combination of model inputs, in the parameter space with the help 
of eigenpairs. In addition, it can be utilized to help in constructing 
surrogate models (e.g. (Cortesi et al., 2020; Vohra et al., 2020)). How-
ever, due to its novelty, Active Subspace methods of GSA have not been 

much applied. Indeed there is a limited number of papers that use them 
for ranking purposes (e.g. (Diaz et al., 2018; Diaz, 2016; Leon et al., 
2019; Vohra et al., 2019)). Among all the studies of Active Subspace 
methods for GSA, even fewer papers have investigated the efficiency and 
accuracy of the ranking provided by the Active Subspace method. To 
render Active Subspace metrics somewhat comparable with other 
sensitivity metrics, Constantine et al. (Constantine and Diaz, 2017) have 
transferred the results from the Active Subspace method into a sensi-
tivity metric called the activity score (AS), which mathematically relates 
to the Sobol’ total-effect sensitivity index. The activity score has certain 
limitations regarding the requirement of a sufficiently distinct gap be-
tween eigenvalues for identifying the Active Subspace. However, it 
provides insight into sensitivity of model parameters, and as will be seen 
it can efficiently provide a ranking of the parameters. 

Ranking in GSA aims to order the relative importance/sensitivity of 
the model parameters in relation to their impact on the model output 
(Sarrazin et al., 2016). This helps to identify significant parameters and 
reveal interactions (Saltelli et al., 2008; Sreedevi et al., 2019; Van 
Werkhoven et al., 2008), prioritise computational cost and efforts (Sin 
et al., 2011) to obtain better estimates in the subsequent numerical or 
experimental process (Saltelli et al., 2008) and support model 
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development (Hartmann et al., 2013). Razavi and Gupta (2016b) have 
pointed out that model development relies heavily on robust and reli-
able ranking results, and incorrect ranking results can lead to a poor 
representation of the subsequent reduced-order model (Nossent and 
Bauwens, 2012). Therefore, ranking is the main objective of GSA 
considered in this paper, and we compare how efficient the ranking 
provided by activity scoring compares to two other benchmark sensi-
tivity analysis methods. However, we also introduce heat maps as a 
visualization tool that not only shows numerical rankings of parameters 
but that also portrays underlying sensitivities with increasing sample 
size as additional information. 

In our study, the popular quasi-Monte Carlo Sobol’ sequence 
(Antonov and Saleev, 1979; Sobol’, 1967) is implemented to investigate 
the performance of the Active Subspace method and its activity score 
and that of the Sobol’ metrics. Although Guy et al. (2020) used Monte 
Carlo sampling to generate activity scores, they argued that quasi-Monte 
Carlo sampling might be more computationally efficient. The majority of 
Active Subspace studies reported either use Monte Carlo sampling (Abdo 
and Abdel-Khalik, 2016; Cortesi et al., 2020; Loudon and Pankavich, 
2017; Ryken et al., 2020; Su et al., 2021; Vohra and Mahadevan, 2019) 
or largely make no mention of the sampling method used at all (Bittner 
et al., 2020; Bridges et al., 2019; Gilbert et al., 2016; Jefferson et al., 
2016; Leon et al., 2019; Mola et al., 2019), though there are a few studies 
that implement Latin Hypercube sampling. Comparison of the Active 
Subspace approach with others has rarely been reported, although 
Vohra et al. (Vohra and Mahadevan, 2019) and Godel et al. (Gödel et al., 
2020) have compared the activity score with the total-effect sensitivity 
index from the variance-based Sobol’ method (Sobol, 1993) for a typical 
bottleneck scenario in crowd simulation with the Optimal Steps Model, 
concluding that these two sensitivity metrics coincide and confirm each 
other. 

To investigate the performance of activity scoring more compre-
hensively, we implement several test functions and compare the ranking 
obtained from Active Subspace sensitivity measures with the ones from 
the variance-based Sobol’ method and the Morris method. Awad et al. 
(2019) describe the Morris method and Sobol’ total-effect sensitivity 
index as efficient in ranking parameters as they provide complementary 
information. Razavi and Gupta (2016a) have also pointed out that 
Sobol’ and Morris methods provide the most up-to-date rigorous ap-
proaches for global sensitivity analysis, and hence these two methods 
should be used as benchmarks to demonstrate the performance of newly 
developed techniques. On that account, for the study of global sensi-
tivity analysis, the variance-based Sobol’ method and Morris method are 
viewed here as the reference methods to demonstrate how the method in 
question compares with these two reference methods. 

As emphasized by Mai and Tolson (2019), newly developed sensi-
tivity analysis methods should be tested against analytical estimates of 
sensitivity measures from test functions. Accordingly, we have chosen 
eight frequently-used test functions from the literature to serve as 
benchmarking, representing a useful range of possible model structures 
encountered in real-life models. Moreover, our work is inspired by the 
comparison study undertaken in Mora et al. (2019), where the PAWN 
and Sobol’ methods were compared with several test functions using a 
convergence analysis. 

This paper is structured as follows: Section 2 provides the details of 
sensitivity analysis methods used for comparison; Section 3 presents the 
formulas of the test functions used; Section 4 introduces four previous 
measures to assess the convergence of ranking with sample size; Section 
5 provides testing results using heat maps that visualize both sensitivity 
metrics and the numerical rankings of parameters for increasing sample 
size; Section 6 contains the discussion which includes confidence in-
terval estimation of metrics by both bootstrapping and replicate sam-
pling; and Section 7 gives the conclusions based on the testing results. 

2. Sensitivity analysis methods 

As mentioned in the Introduction, we chose the variance-based 
Sobol’ method and the Morris method as the reference sensitivity 
analysis methods to monitor the performance of activity scoring. In this 
section, we briefly introduce the three sensitivity analysis methods used 
in this paper. 

2.1. Variance-based Sobol’ method 

Assume that f(x) is a square integrable function defined in a unit 
hypercube [0,1]k, the decomposition of f(x) can be written as 

f (x) = f0 +
∑k

i=1
fi(xi) +

∑k

i=1

∑k

j>i
fij(xi, xj) + ⋯ + f12…k(x1…xk), (1)  

where k is the number of parameters, and f0 is scalar defined as 

f0 =

∫

[0,1]k
f (x) dx. (2) 

This decomposition of f(x) follows the analysis of variance (ANOVA) 
if 
∫

[0,1]
fi1…is (xi1 ,…, xis ) dxiq = 0 for 1 ≤ i1 < i2 < … < is ≤ k, (3)  

where xiq ∈ {xi1 ,…,xis}, and all the terms are mutually orthogonal with 
respect to the integration. By taking the variance of Eq (1), the decom-
position becomes 

V(f (x)) = 0 +
∑k

i=1
V(fi(xi)) +

∑k

i=1

∑k

j>i
V(fij(xi, xj)) + ⋯

+ V(f12…k(x1…xk)). (4) 

Dividing both sides of Eq (4) by the variance of function V(f), we 
obtain 

1 =
∑k

i=1
V(fi)

V(f )
+
∑k

i=1

∑k

j>i

V(fij)

V(f )
+ ⋯ +

V(f12…k(x1…xk))

V(f )

=
∑k

i=1 Si +
∑k

i=1

∑k

j>i
Sij + ⋯ + S12…k.

(5) 

The term Si is known as the first-order sensitivity index of the ith 
model parameter, and it is defined as 

Si =
Vxi (Ex∼i (f |xi))

V(f )
, (6)  

where E(x) is the expectation, and x~i refers to all model parameters 
except the ith parameter. In addition to the first-order sensitivity index, 
the total-effect sensitivity index STi, which measures the combination of 
the individual contribution of, and the interactions with, the ith model 
parameter, is defined as 

STi =
Ex∼i (Vxi (f |x∼i))

V(f )
, (7)  

where 

Ex∼i (Vxi (f |x∼i)) ≈
1

2N

∑N

j=1
(f (A)j − f (A(i)

B )j)
2

(8)  

is called the Jansen1999 estimator (Jansen, 1999; Saltelli et al., 2010), 
and f(A)j is the function value of the jth row of matrix A. The variance V 
(f) is also approximated through the mean of N quasi-Monte Carlo 
samples as 

V(f ) ≈
1
N

∑N

j=1
(f (A)j)

2
−

(
1
N

∑N

j=1
f (A)j

)2

, (9)  

where A, B and A(i)
B are the sample matrices generated based on the 
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Saltelli method (Saltelli, 2002), and matrix A(i)
B is a sample matrix where 

matrix A replaces the ith column with the ith column of matrix B. The 
implementation of the variance-based Sobol’ method uses the version 
from the SALib Python library (Herman and Usher, 2017). For conve-
nience, we will use the notation STi and ST to represent total-effect 
sensitivity index in the following text and figures correspondingly. 

2.2. Morris method 

The basis of this method was proposed by Morris (1991), and it 
measures the estimated mean of elementary effects of each model 
parameter through the parameter space. By giving a baseline f(x) for a 
model parameter of interest xi, this specific parameter is altered with a 
predefined perturbation Δ, and the elementary effect of this particular 
model parameter is defined as 

EEi =
f (x1…xi + Δi…xk) − f (x)

Δi
. (10) 

The value that Δ takes is p
2(p− 1), where p is the number of the grid 

level. The grid level number is reported to be 4 to 10 (Morris, 1991; 
Saltelli, 1999), and p is set to 4 in several studies (Campolongo and 
Saltelli, 1997; Campolongo et al., 1999; Naves et al., 2020). However, 
there is still an ongoing debate on the grid level number (Campolongo 
et al., 2007; Gan et al., 2014; Jaxa-Rozen and Kwakkel, 2018; Sreedevi 
and Eldho, 2019; Yang, 2011), but this is out of the scope for this paper. 
Throughout the tests in this paper, we keep the number of grid levels p as 
4. 

With multiple baselines across the parameter space, the estimated 
mean of the elementary effect, μ, can be calculated; however, the 
elementary effect may have opposite signs due to non-monotonic model 
characteristics. To avoid this compensation of opposite sign, it has been 
proposed that the absolute mean of the estimated elementary effect be 
used instead (Campolongo et al., 2007), which is given by 

μ*
i =

1
N
∑N

j=1
|EEj

i|. (11) 

Moreover, it was shown in Campolongo et al. (2007) that the 
elementary effects could be compared with what the STi of Sobol’ pro-
vides, and in Saltelli et al. (2008) that the μ* is suitable for ranking. For a 
better indication of the results of using μ*, we normalised μ* with 

μ*
norm,i =

|μ*
i |

(∑k
i=1μ*2

i

)1/2 (12) 

The implementation of the Morris method also uses the SALib Python 
library (Herman and Usher, 2017). Similar to the total-effect sensitivity 
index, we will use the notation μ* and Mu Star to represent normalised 
absolute elementary effect μ*

norm,i in the following text and figures 
correspondingly. 

2.3. Active Subspace method 

The Active Subspace method defines a k by k symmetric, positive 
semi-definite matrix C, in which 

C =

∫

∇f (x)∇f (x)T ρ(x) dx = WΛWT , (13)  

where W = [w1 … wk] is the orthogonal matrix of eigenvectors, and Λ =
diag(λ1 … λk) is the diagonal matrix of eigenvalues in decreasing order. 
The eigenpairs satisfy the condition in which 

λi = wT
i Cwi =

∫

(∇f (x)T wi)
2ρ(x) dx, (14)  

and λi is zero if f(x) is constant along the direction of wi. If a gap between 
eigenvalues can be identified, such that λn ≫ λn+1 for some n < k, an n- 

dimensional Active Subspace can be constructed with 

Λ =

[
Λ1

Λ2

]

and W = [W1W2], where Λ1 are the first n eigenvalues and W1 is the k by 
n eigenvector matrix. This Active Subspace is a column span of the 
eigenvector matrix W1. 

For application of Active Subspace analysis to computational models, 
it can be rather difficult to obtain the exact form of the gradient of the 
model function ∇f(x), thus the Monte Carlo method and various 
gradient approximation methods provide a way to estimate the matrix C 
as 

C ≈
1
N
∑N

i=1
∇̂f (xi)∇̂f (xi)

T
, (15)  

where xi is drawn independently according to ρ(x) for i = 1 … N. 
In order to be comparable with other sensitivity analysis methods, 

the activity score utilizes the obtained eigenvalues and eigenvectors, 
and the activity score for the ith model parameter is defined as 

αi =
∑n

j=1
λjw2

i,jfor i = 1…k. (16) 

For better visualization, Constantine et al. (Constantine and Diaz, 
2017) normalise the activity score to have a norm of 1 with 

αnorm,i =
|αi|

(∑k
i=1α2

i

)1/2. (17) 

Moreover, it has been proven in Constantine and Diaz (2017) that the 
activity score gives an upper bound of the STi 

STi ≤
1

4π2V(f )
(αi + λn+1). (18) 

For the sake of simplicity, we will use αi to represent αnorm,i in the 
remainder of the paper. 

Constantine et al. provide a Python library for Active Subspace 
analysis along with multiple methods to provide approximated gradients 
∇̂f(xi). To investigate the performance of each method of approximating 
the gradient, we applied all three library methods in the experiments. 
These approximation methods are the global linear model (OLS), global 
quadratic model (QPHD) and local linear model (OPG), and for consis-
tency we retain the same abbreviation of each model as defined by 
Constantine. The global linear model, which is referred to as AS-OLS in 
later sections, estimates a one-dimensional subspace to approximate the 
gradient ∇̂f(xi). The global quadratic model, which is referred to as AS- 
OPHD, has a similar concept as the approach used for generating prin-
cipal Hessian directions based on a global quadratic model (Li, 1992). 
However, the implemented version here uses the average outer product 
of the gradient of the quadratic model (Constantine et al., 2016). The 
local linear model, which is referred to as AS-OPG, is known as the outer 
product of the gradient method (Hristache et al., 2001), and it builds a 
local linear model for a subset of neighbouring points of each pair of 
model input/output. More details of these approximation models can be 
found in Constantine’s code and book (Constantine et al., 2016; Con-
stantine, 2015). For all test functions implemented below except the 
modified Sobol’ G-function, their gradients can be obtained analytically. 
Thus, the analytical activity score will also be provided along with the 
results from each gradient approximation model. 

To further investigate the performance of activity scoring, we 
implemented a so-called dummy parameter as an adjunct to all of the 
test function parameters, just for the Active Subspace method. Several 
studies (Castaings et al., 2012; Khorashadi Zadeh et al., 2017) have 
implemented the dummy parameter approach to obtain the threshold of 
the approximation error for identifying if one model parameter is truly 
insensitive or not, and Godel et al. (Gödel et al., 2020) also used a 
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dummy parameter (referred to there as a ”control parameter”) to test the 
detection of an absence of an impact. 

3. Test functions 

Test functions have been purposely designed in sensitivity studies to 
simulate specific model characteristics that researchers could face when 
studying real-world problems, linearity or monotonicity being simple 
examples. Thus, many studies have involved widely-used test functions 
to show the efficiency and capability of particular sensitivity analysis 
methods. We have assembled eight popular test functions from the 
literature, most having several settings and configurations to modify the 
function structure and influence of parameters. Active Subspace analysis 
requires the model parameters to be normalised to the range [ − 1, 1], so 
we will only focus on test functions using uniform parameter distribu-
tions with a known range. For each of the test functions the model 
parameter vector x = [x1, x2,…, xk]

T consists of k model parameters, 
where xi is the ith model parameter. Each test function is introduced in 
the following subsections, specifying its form and ranges of model 
parameters. 

3.1. Test function 1: Ishigami-Homma function 

Ishigami and Homma introduced this function (Ishigami and 
Homma, 1990). Due to its analytical tractability and non-additive 
properties (Jaxa-Rozen and Kwakkel, 2018), it has been one of the 
most-used test functions for the comparison of sensitivity analysis 
methods (Cuntz et al., 2015; Jaxa-Rozen and Kwakkel, 2018; Mora et al., 
2019; Razavi and Gupta, 2019; Wang et al., 2020; Wei et al., 2013; Ziehn 
and Tomlin, 2009). Its benchmark nonlinear and non-monotonic fea-
tures with the presence of interaction effects (Do and Razavi, 2020) also 
make it attractive for testing. The function is defined as 

f (x) = sin(x1) + Asin2(x2) + Bx4
3sin(x1), (19)  

where xi is uniformly distributed within [ − π, π], A = 7, and B = 0.1. 

3.2. Test function 2: Sobol’ G-Function 

Davis and Rabinowitz (1984) introduced the G-function initially 
with coefficients ai = 0, and later it was used with nonzero coefficients in 
the study of Saltelli and Sobol’ (Archer et al., 1997; Saltelli and Sobol’, 
1995). Thus, the nonzero coefficient version is henceforth called the 
Sobol’ G-function. It has been used for testing sensitivity analysis 
methods in many studies (Glen and Isaacs, 2012; Horiguchi et al., 2021; 
Mora et al., 2019; Razavi and Gupta, 2019; Sun et al., 2021; Wang et al., 
2020; Ziehn and Tomlin, 2009). Its popularity is based at least partly on 
it being a product of univariate functions that encompass a broad 
spectrum of complexity (Cuntz et al., 2015). The value of the coefficient 
ai determines the sensitivity of its corresponding model parameters, the 
more sensitive model parameters having a lower value of ai. The func-
tion is defined as 

f (x) =
∏k

i=1

|4xi − 2| + ai

1 + ai
, (20)  

where xi is uniformly distributed within [0, 1], k is the number of model 
parameters, a = [0, 1, 4.5, 9, 99, 99, 99], and ai is the ith value of a. 

3.3. Test function 3: Modified Sobol’ G-Function 

Saltelli also created the Modified Sobol’ G-function to involve an 
extra layer of complexity using a so-called floor function (Saltelli et al., 
2010). This Modified Sobol’ G-function has been used in several papers 
for benchmarking different sensitivity analysis methods (Cuntz et al., 
2015; Mai and Tolson, 2019; Mora et al., 2019). The function is defined 
as 

f (x) =
∏k

i=1

(1 + αi)⋅|2(xi + δi − ⌊xi + δi⌋) − 1|αi + ai

1 + ai
, (21)  

where ⌊⋅⌋ is the floor function, xi is uniformly distributed within [0, 1], α 
and δ are the curvature and shift parameters, respectively, ai are co-
efficients, and k is the number of model parameters. The shift parameter 
δ is randomly chosen as it does not affect the propagation of un-
certainties (Mora et al., 2019). The floor function takes the integer part 
of the value inside the floor function brackets. The inclusion of this floor 
function makes the Modified Sobol’ G-function discontinuous, and this 
prevents calculation of the analytical gradient along with the analytical 
activity score. For the coefficients, we follow Saltelli et al. (2010) and 
use the six sets of coefficients there with some modifications to the 
number of parameters:  

● G1: α = 1, a = (0, 0, 9, 9, 9, 9, 9)  
● G2: α = 1, a = (0, 0.1, 0.2, 0.3, 0.4, 0.8, 1)  
● G3: α = 0.5, a = (0, 0, 9, 9, 9, 9, 9)  
● G4: α = 0.5, a = (0, 0.1, 0.2, 0.3, 0.4, 0.8, 1)  
● G5: α = 2, a = (0, 0, 9, 9, 9, 9, 9)  
● G6: α = 2, a = (0, 0.1, 0.2, 0.3, 0.4, 0.8, 1) 

3.4. Test function 4: Bratley function 

The Bratley function, also called the K function, was introduced by 
Bratley et al. (1992), and is designed to have a higher degree of inter-
action with increasing index i of the model parameters (Horiguchi et al., 
2021). This function spans a range of parameter sensitivities in a convex 
manner, which mimics real problems quite well (Cuntz et al., 2015); 
thus, it has been utilized in several studies (Cuntz et al., 2015; Mora 
et al., 2019). The function is defined as 

f (x) =
∑k

i=1
(− 1)i

∏i

j=1
xj, (22)  

where xj is uniformly distributed within [0, 1], and k is the number of 
model parameters. 

3.5. Test function 5: Morris function 

This function was presented by Morris (1991) in 1991, and it has 
been used for testing in various studies (Cuntz et al., 2015; Sudret and 
Mai, 2015). Later in 2006, Morris et al. modified the function (Morris 
et al., 2006), and this modified version, also used in Horiguchi et al. 
(2021), will be used in the paper. The function is defined as 

f (x) = α
∑k

i=1
xi + β

∑k− 1

i=1

[

xi

∑k

j=i+1
xj

]

, (23)  

where xi and xj are uniformly distributed within [0, 1], α =
̅̅̅̅̅̅
12

√
−

6
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.1(k − 1)

√
, β = 12̅̅̅̅̅̅̅̅̅̅̅̅̅

10(k− 1)
√ , and k is the number of model parameters. 

3.6. Test function 6: Friedman function 

The Friedman function combines parameter interaction and non- 
linearity (Horiguchi et al., 2021), and thus poses a challenging prob-
lem to the testing of sensitivity analysis. The function is defined as 

f (x) = 10sin(πx1x2) + 20(x3 − 0.5)2
+ 10x4 + 5x5 + x6 + 0.1x7, (24)  

where the xi are uniformly distributed within [0, 1]. 

3.7. Test function 7: linear function 

This linear function was introduced by Saltelli et al. (2000) to pro-
vide basic testing. It is defined as 
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f (x) =
∑k

i=1
xi, (25)  

where x is uniformly distributed within [x̂i − σi, x̂i + σi], and k is the 
number of model parameters. The x̂i and σi are defined as 

x̂i = 3i− 1, σi = 0.5x̂i.

3.8. Test function 8: Sobol’ & Levitan function 

The Sobol’ and Levitan function was introduced in Sobol’ and Lev-
itan (1999). Similar to the Sobol’ G-function, the magnitude of the co-
efficient impacts the sensitivity of the corresponding model parameters. 
This test function is also presented in Saltelli et al. (2000), and is defined 
as 

f (x) = exp

(
∑k

i=1
biXi

)

− Ik, (26)  

where x is uniformly distributed within [0, 1], bi is the coefficient, and Ik 
is defined as 

Ik =
∏k

i=i

exp(bi) − 1
bi

. (27) 

Two bi vector configurations for this function are considered:  

● k = 7 and b1 = 1.5, b2 = ⋯ = b7 = 0.9  
● k = 15 and 

bi =

{
0.6, for 1 ≤ i ≤ 10
0.4, for 11 ≤ i ≤ 15  

4. Ranking measures 

In order to provide indicators regarding convergence aspects of the 
ranking results for these test functions, we implemented four ranking 
measures from the literature. It is worth noting that these four ranking 
measures have been applied only rarely in sensitivity analysis studies, 
other than in the papers that first introduced them. In searching through 
available Python libraries, implementation of the ranking measures was 
seen to be currently lacking, and so we coded a Python version of these 
measures, which is available through Github (https://github.com/ 
Xifus/SAConvergenceAnalysis). We also test the efficiency and accu-
racy of each ranking measurement for our test functions. In this paper, 
the ranking is in decreasing order, with rank 1 being the most sensitive 
parameter. 

4.1. The ranking measure from Sarrazin et al 

In order to address critical choices and gaps in convergence studies of 
sensitivity analysis, Sarrazin et al. (2016) proposed criteria to quantify 
the convergence of ranking results from sensitivity analysis methods. 
Their ranking statistic modifies the Spearman’s rank correlation coeffi-
cient (Spearman, 1904) to include a better-weighted version than the 
one by Dancelli et al. (2013), and it can be written as follows: 

ρS,j,m =
∑k

i=1
|Pj

i − Pm
i |

max
j,m

(Sj
i, Sm

i )
2

∑k
i=1 max

j,m
(Sj

i, S
m
i )

2, (28)  

where Pj
i and Pm

i are the positions/ranks of the ith model parameter using 
jth and mth bootstrap/replicate resamples, and Sj

i and Sm
i are the sensi-

tivity measures respectively. Sarrazin et al. calculate the ρ of every 
possible pair of resamples and summarize the statistics into an indicator 
statranking = Q0.95(ρS,j,m) to quantify the convergence of ranking results. 
The ranking result is considered to be converged when statranking < 1. If 
statranking = 1, the difference in the resamples for the most sensitive 

parameters is less than or equal to one position on average. In this paper, 
we will use the term ”Sarrazin ranking statranking” or simply ”statranking” 
for convenience. 

4.2. Position Factor 

The concept of Position Factor was first introduced by Ruano et al. 
(2012), and was later modified by Cosenza et al. (2013) to take the 
absolute value of the difference in the ranks. The modified version is 
defined as 

Position Factor =
∑k

i=1

|Pj
i − Pm

i |

μPj
iP

m
i

, (29)  

where Pj
i and Pm

i are the positions/ranks of the ith model parameter 
obtained by using samples j and samples m, μPj

iP
m
i 

is the average of Pj
i and 

Pm
i , and k is the number of model parameters. If the value of the Position 

Factor is zero, the ranks provided by the two different samples are the 
same. 

4.3. Top-down coefficient of concordance 

The top-down coefficient of concordance (TDCC) measures the level 
of agreement among multiple rankings derived either by different 
sensitivity analysis methods or different resamples within each model 
run (Iman and Conover, 1987). It emphasizes the agreement on the most 
important model parameters whilst de-emphasizing less important 
model parameters (Helton et al., 2005; Yang, 2011). Iman and Conover 
(1987) employed TDCC with a so-called savage score, which is used in 
this paper, and is given by 

TDCC =

∑k
i=1

[
∑R

j=1 ss(Sm
i )

]2

− R2⋅k

R2

[

k −
∑k

i=1
1
i

] . (30) 

The savage score ss(⋅) is defined as 

ss(Sm
i ) =

∑k

i=Pm
i

1
i
, (31)  

where Sm
i is the sensitivity measure of the ith model parameter obtained 

by the mth bootstrap/replicate resample, Pm
i is the corresponding rank, R 

is the number of bootstrap/replicate resamples, and k is the number of 
model parameters. 

The experiment has a high Reproducibility if TDCC is close to 1; 
otherwise, this experiment is unlikely to obtain similar results under the 
same settings if TDCC decreases away from 1. Another interpretation is 
that a high TDCC score represents a high agreement on the ranking of 
important parameters (Yang, 2011). In the results and discussion sec-
tions we will consider Reproducibility in terms of rankings derived by 
different resamples. 

4.4. Reliability 

Incorporating a bootstrap method, Razavi and Gupta (2016b) 
generated estimates of the reliability of the inferred input rankings for 
each of the model parameters. This reliability provides a percentage of 
how many resamples give the same rank for one specific model 
parameter as the original sample. In extending this measurement so as to 
work for factor groupings, Sheikholeslami et al. (2019) pointed out that 
this estimation measure should be considered as a check on robustness 
rather than reliability. Here we keep the nomenclature of ”Reliability” for 
this measure so as to be consistent with Razavi and Gupta (2016b). 

The Reliability of the factor ranking for the ith model parameter is 
given by 
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Reli =

∑NB
j=1 Ψ

(
Pi,Pj

i
)

NB
, (32)  

where NB is the number of bootstrap resamples, and Pi and Pj
i are the 

positions/ranks of the ith model parameter obtained by the original 
sample and the jth bootstrap resample, respectively. The function Ψ(⋅, ⋅) 
is defined as 

Ψ(a, b) =
{

0 a ∕= b
1 a = b .

The ith model parameter is fully reliable with respect to the sample 
variability when Reli = 100%. 

5. Results 

In order to assess the performance of activity scoring in ranking, we 
adopt the sequential approach of gradually increasing sample size and 
observe how the sensitivity measures change with differing numbers of 
model evaluations. According to Owen (2020), the proper convergence 
rate of a quasi-Monte Carlo sequence (specifically a Sobol’ sequence) 
may not be maintained if the sample size is not a power of 2, and 
similarly the number of samples that are skipped should be a power of 2. 
For a fair comparison in terms of computational effort between the 
sensitivity analysis methods, we keep the number of model evaluations 
the same across all methods, where the number of model evaluations M 
= [256, 1024, 4096, 16 384, 65 536]. The activity score implemented 
here takes the same number of samples N as model evaluations with M 
= N, since the three implemented gradients are calculated externally 
with existing model outputs without needing to access the model again. 
However, the STi and the μ* take the number of model evaluations to be 
M = N(k + 1), where N is the number of samples/trajectories and k is the 
number of parameters. Therefore, we modified the number of model 
parameters for most of the test functions so that the number of model 
evaluations M and the number of samples N can both be a power of 2, 
and this retains the proper convergence rate of the quasi-Monte Carlo 
sequence. 

In the following, the ranking results for the two methods generating 
STi, μ*, and for activity scores with the three different gradient 
approximation models (OLS, QPHD, OPG) are shown and discussed for 
each test function through the form of heat maps that are grouped by the 
five methods. However, the Supplementary material contains results in 
the form of tables from applying the four ranking measures presented in 
Section 4, also for each test function. It contains additional results of 
computing confidence intervals for those measures, and their conver-
gence with sample size, on the basis of bootstrapping and replication. 
The presentation in this section is therefore quite detailed and some 
readers may prefer to skip to the discussion section for a distillation of 
the main points and then return to this section for specifics. 

The heat maps in the main text indicate both sensitivity and nu-
merical ranking according to the sensitivity indices (as opposed to the 
four ranking measures). The last column of each heat map shows the 
analytical sensitivity measures for STi, μ* and the activity score (AS). 
Thus the analytical STi and AS measures are manually calculated by 
definition, while the analytical μ* is obtained through a large M (≈ 107 

model runs). The heat maps have several other features: the horizontal 
x-axis is labeled with each of the sensitivity analysis methods; each 
method has a grouping of six results where the first five columns are the 
computational results against increasing sample size and the sixth col-
umn shows the exact result; each row of the vertical y-axis corresponds 
to a model parameter with x1 from the bottom to the dummy parameter 
at the very top; the top x-axis annotates each column with the number of 
model evaluations (M), and a specific column indicates the parameter 
ranking result obtained for that M. Thus each of the model parameters in 
each cell is annotated with a number from 1 to k, showing the rank in 
terms of sensitivity/importance for this model parameter, where rank 1 

is the most important or most sensitive parameter. The colour of each 
cell in the heat maps represents the magnitude of the sensitivity mea-
sures (index value or the value of activity score), and this is explained by 
the colour bar at the right of each heat map, where black-ish colour, for 
instance, shows the sensitivity measure to be of value 0.8 or higher, and 
yellow-ish colour shows the sensitivity measure to be near 0. To better 
present the results of μ* in the heat maps, we normalised the values of μ* 
to have a maximum value of 1. For STi and μ*, the rank of the dummy 
parameter is shown as a dash ‘-’ rather than a number, as the dummy 
parameter is not applicable for these methods. 

Calculation of the Sarrazin ranking statranking, TDCC with the savage 
score, and Reliability is made possible with 1000 bootstrap resamples, 
and full tables of results from the ranking measures can be found in 
Sections 4 - 7 of the Supplementary file. Due to the length of this paper, 
we will describe some key values from the different ranking measures in 
words rather than showing the full table here. Furthermore, generation 
of the samples uses the Sobol’ sequence generator implemented in the 
SALib Python library (Herman and Usher, 2017) for both the 
variance-based Sobol’ method and Active Subspaces. The Morris method 
uses a specific sampling strategy, so it uses its own sample generator, 
which is also implemented in the SALib Python library. 

This section is split into several subsections to exhibit the different 
sensitivity results obtained for each test function. 

5.1. Test function 1: Ishigami-Homma function 

For the Ishigami-Homma function, the STi measure gives correct 
ranking results that are stable from 256 model evaluations onwards 
(Fig. 1). The slight change of colours indicates change in the index value, 
but this does not affect the ranking results. In the Supplementary Ma-
terials, both the Sarrazin ranking statranking and Position Factor ranking 
measures show agreement in the ranking between resamples for the STi 
from 256 model evaluations onwards. The statranking is 0.959, and Posi-
tion Factor indicates that the ranking did not change from 256 to 1024 
model runs. The TDCC scores are 0.748 and 0.777 for 256 and 1024 
model runs correspondingly, and this indicates a better than average 
(> 0.5) Reproducibility. With 4096 model evaluations, TDCC has a 
score of 0.993, which suggests a high Reproducibility, and these match 
Fig. 1 where the colour stabilizes from 4096 model evaluations. The 
Reliability of all three model parameters is above 80% from 256 model 
evaluations. 

The μ* of the Morris method does not achieve a stable and correct 
ranking result until reaching 1024 model evaluations. The un-converged 
ranking result at 256 model evaluations is also identified by the ranking 
measures with the Sarrazin ranking statranking at 1.369 and Position Factor 
at 1.333, and these values indicate a disagreement in the ranking be-
tween resamples. The value of the Reproducibility for the Morris method 
is at around 0.5 until 16 384 model evaluations, but the ranking has 
already stabilized at 1024 model evaluations with the confirmation of 
the Sarrazin ranking statranking and Position Factor. The Reliability of x1 
and x2 is slightly lower than 60% at 256 model evaluations but increases 
right after, and this matches the observation of the Sarrazin ranking 
statranking. However, μ* ranks x2 to be more important than x1, different 
from that provided by the STi. 

As seen from Fig. 1, the activity score calculated from the global 
linear model (AS-OLS) ranks x1 to be the most critical parameter, and 
other model parameters are all close to zero with yellow-ish colour. This 
activity score ranks the dummy parameter as the second most important 
parameter, but this is likely due to the approximation error within ac-
tivity scores as the sensitivity measures for x2 and x3 are too small. 
Judging from Fig. 1, the ranking results do not change with increase in 
the M; however, the Sarrazin ranking statranking picks up the disagree-
ment between resamples with a value of 1.448 for 256 model evalua-
tions, and the statranking value drops to 0.195 at 1024 model evaluations. 
Similarly, for the Reliability, x1 has less than 80% Reliability at 256 model 
evaluations, but the percentage rises to 100% with increasing model 
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runs. On the other hand, Position Factor does not find a difference be-
tween the ranking results for 256 versus 1024 model evaluations, as also 
indicated by the heat map. TDCC gives a value larger than 0.5 Repro-
ducibility at 256 model evaluations and improves quickly as the number 
of evaluations increases. The global linear model identifies a one- 
dimensional Active Subspace for the Ishigami-Homma function. The 
first eigenvalue indicates that the most important direction in the 
parameter space is orthogonal to both x2 and x3, which returns a near- 
zero activity score for these two parameters. 

Similarly, the activity score calculated from the global quadratic 
model (QPHD) ranks x1 as the most important parameter. The difference 
is that the Active Subspace with a global quadratic model identifies a 
two-dimensional Active Subspace, and this ranks an extra model 
parameter as more important than other parameters. With low model 
evaluations, 256 and 1026 specifically, AS-QPHD ranks the dummy 
parameter as the second most sensitive parameter, indicating insuffi-
cient samples have been taken. From 4096 model evaluations onwards, 
this activity score starts to provide converged ranking results with x1 >

x2 > other model parameters. On the other hand, the Sarrazin ranking 
statranking is 0.628 for this activity score, and this indicates converged 
ranking results. It is obvious that this is false confidence, as the dummy 
parameter should not be ranked more important than the actual model 
parameters. With an increase of model evaluations, Sarrazin ranking 
statranking gives a value of more than 1 from 1024 to 65 536 model 
evaluations, and this shows a strong disagreement between resamples 
even with large M. Moreover, the Reliability of all the model parameters 
is larger than 80% only at 65 536 model runs. The Position Factor only 
picks up the different ranking between 1024 model evaluations and 
4096 model evaluations. In terms of Reproducibility, AS-QPHD has the 
highest value of 0.784 at 256 model evaluations and the lowest value of 
0.496 at 4096 model evaluations. 

The activity score AS-OPG ranks the dummy parameter as the most 
crucial parameter at 256 model evaluations, and x2 is ranked first with a 
higher sample size by approximating the gradients with the local linear 
model. At 65 536 model evaluations, x3 and x1 are higher with more 
extensive sensitivity measures than previous results. This ranking result 
is different from that of either AS-OLS or AS-QPHD, but the most critical 
parameter is the same as the Morris method. Despite the shifting of the 
ranks, statranking indicates converged ranking results for any number of 
our model evaluations; the most prominent statranking is 0.944 at 65 536 
model evaluations, and this is still less than 1. On the other hand, Po-
sition Factor has a high value from 256 to 1024 model evaluations and 
from 16 384 to 65 536 model evaluations. At all numbers of model 
evaluations, TDCC gives values above 0.85, and thus shows a high 
Reproducibility. The Reliability of x2 is near 100% from 1024 model 
runs, and this value is higher than other model parameters. 

For the analytical/exact activity scores, the model parameter x2 is 
the most important parameter, and the activity scores for the other two 
model parameters are zero. 

5.2. Test function 2: Sobol’ G-Function 

For this test function, Fig. 2 shows that the STi measure is able to 
provide stable and correct ranking results for parameters with high 
sensitivity at 256 model evaluations with x1 > x2 > x3 > x4. Moreover, 
the index values for x5 to x7 are close to zero, and the small fluctuations 
due to the approximation error cause the ranks of x5 to x7 to change at 
different numbers of model evaluations. Even with the small fluctua-
tions, the Sarrazin ranking statranking is zero at 256 model evaluations. 
This statranking is zero consistently with increase of sample size, thus 
showing agreement between resamples, similarly to the Position Factor. 
The Reproducibility is also extremely high, with a value of >0.985 from 
TDCC. 

As with the STi, the μ* from the Morris method also correctly ranks x1 
> x2 > x3 > x4 from 256 model evaluations onwards. This ranking result 
is consistent with the coefficients of the Sobol’ G-Function, where a 
small coefficient indicates a larger influence on the model output. The 
Sarrazin ranking and Position Factor also demonstrate a converged 
ranking at any M with high Reproducibility. 

The activity score with the global linear model (AS-OLS) acts inter-
estingly for the Sobol’ G-Function, as it ranks x7 as the most important 
parameter for all model evaluation numbers except M = 16 384. 
Moreover, the colour, which shows the magnitude of the activity score, 
is inconsistent with change in the M; thus, it is hard to discern the status 
of the convergence of the ranking from Fig. 2. The statranking has a value 
of nearly 5.2 across all model evaluations, portraying a strong 
disagreement in the ranking between resamples. The Position Factor also 
indicates divisions between different numbers of model evaluations, and 
the Reproducibility metric is near 0, indicating an extremely low 
Reproducibility for any M. 

Activity scoring with either the QPHD or OPG setting ranks x1 as the 
most important model parameter, and this is the same ranking obtained 
for both the STi and μ*. The ranks, however, constantly shift for model 
parameters other than x1, and the magnitudes of the activity scores are 
close to zero. The shift in rankings is due to the slight fluctuations of the 
approximation errors. The Sarrazin ranking statranking values are near 
zero for both AS-QPHD and AS-OPG, and this represents a stable ranking 
between the resamples at each M. However, the Position Factor is highly 
impacted by these small fluctuations, with a value greater than 2.5 in 
most cases. The Reproducibility is also only slightly larger than 0.5 for 
AS-QPHD and AS-OPG. Activity scoring with the local linear model 
identifies x2 as the second most important parameter, with the activity 
score being slightly higher than x3 for the dummy parameter. All of the 
model parameters of AS-OLS have a Reliability around 20%, and this 
explains the high Sarrazin ranking statranking. For other methods, the 
Reliability of x1 to x4 for STi and μ* is 100% from 256 model runs on-
wards, and this is the same for x1 of AS-QPHD and AS-OPG. 

The analytical activity score is similar to the previous two activity 
scores, where x1 is ranked as most important, whilst other model pa-
rameters have activity scores of zero. 

Fig. 1. The ranking heat map for the Ishigami- 
Homma function, where the y-axis represents the 
model parameters, the bottom x-axis the correspond-
ing sensitivity analysis methods, and the top x-axis the 
number of model evaluations for the ranking result of 
each column. The rightmost columns provide the 
analytical sensitivity measures from each method. The 
annotated number in each cell indicates the rank of 
this model parameter in its column. The colour of 
each cell indicates the magnitude of the correspond-
ing sensitivity measures, whose value can be checked 
with the colour bar on the right.   
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5.3. Test function 3: Modified Sobol’ G-Function 

The modified Sobol’ G-Function has six different coefficient settings 
controlled by the value of α and δ. Observing the ranking results pro-
vided by each of our sensitivity analysis methods, G1, G3 and G5 can be 
classified into the same group, and G2, G4 and G6 into another group. 
For results presented in this subsection, only G5 and G6 are chosen to act 
as representative ones, whereas figures from other coefficient settings 
are included in Section 1 of the Supplementary file. This test function 
has a floor function component, resulting in the test function being 
discontinuous, and so the gradient cannot be obtained analytically for 
determining the exact activity score. 

The ranking results for the modified Sobol’ G-Function with the G5 
coefficient setting are shown in Fig. 3. As with G1 and G3, x1 and x2 are 
the two most important model parameters, with other model parameters 
much less sensitive. The STi, μ*, and the activity score using the global 
quadratic model (AS-QPHD) successfully pinpoint x1 and x2 to be the 
essential model parameters from 256 model evaluations onwards. The 
activity scores with a global linear model (AS-OLS) and local linear 
model (AS-OPG) also identify x1 and x2 as the most important param-
eters at 256 model evaluations. However, the ranks change as model 
evaluations increase to 1024, indicating a fortuitous result for these two 
activity scores at 256 model evaluations. 

There is a constant 10% difference between x1 and x2 in their STi up 
until 16 384 model evaluations, whereas x1 and x2 should have the same 
sensitivity. For the Morris method, μ* does not show the first two model 
parameters to be at a similar sensitivity until 65 536 model evaluations 
is reached. At 4096 model evaluations, μ* assesses these two model 

parameters to be close in importance, but the difference is enlarged at 
16 384 model evaluations. Activity scoring with the global quadratic 
model (AS-QPHD) assesses the same importance for x1 and x2 at 1024 
model evaluations with only a 0.1% difference in terms of activity score, 
and this difference shrinks as M increases. 

In regard to the least sensitive parameters, AS-QPHD recognizes 
these with near-zero sensitivity, where their activity scores are less than 
or equal to 0.001 from 1024 model evaluations onwards, whilst total 
effect sensitivity indices are approximately 0.01 for these parameters at 
the same M. As the sensitivity measures are small, the ranks of the least 
sensitive parameters are quickly impacted by the approximation errors, 
and this is reflected in the heat map of Fig. 3. 

The Sarrazin rankings statranking for STi, μ* and AS-QPHD are 
approximately equal to but not less than 1 at all numbers of model 
evaluations, except μ* at 16 384 model evaluations where the statranking 
is 0.025. This phenomenon is likely due to the rank shifting of x1 and x2 
between the resamples. For AS-OLS and AS-OPG, the statranking is almost 
1 at 65 536 model evaluations and 4096 model evaluations respectively, 
but the statranking does not drop below a value of 1. This behaviour of 
statranking can also be explained by the Reliability measure, as the sta-
tranking is close to 1 when the Reliability of the two most important pa-
rameters, x1 and x2, is equal to or greater than 60%. For the Position 
Factor, AS-QPHD has a score of 0.667 at 16 384 model evaluations, but 
in every other case has a value larger than 1. With respect to Repro-
ducibility, AS-OLS and AS-OPG have low Reproducibility at specific 
model evaluations, but every other sensitivity analysis method has a 
Reproducibility higher than 0.75. 

The sensitivity properties of the modified Sobol’ G-Function change 

Fig. 2. The ranking heat map for the Sobol’ G-func-
tion, where the y-axis represents the model parame-
ters, the bottom x-axis the corresponding sensitivity 
analysis methods, and the top x-axis the number of 
model evaluations for the ranking result of each col-
umn. The rightmost columns provide the analytical 
sensitivity measures from each method. The anno-
tated number in each cell indicates the rank of this 
model parameter in its column. The colour of each cell 
indicates the magnitude of the corresponding sensi-
tivity measures, whose value can be checked with the 
colour bar on the right.   

Fig. 3. The ranking heat map for the modified Sobol’ 
G-function with G5 coefficient, where the y-axis rep-
resents the model parameters, the bottom x-axis the 
corresponding sensitivity analysis methods, and the 
top x-axis the number of model evaluations for the 
ranking result of each column. The rightmost columns 
provide the analytical sensitivity measures from each 
method. The annotated number in each cell indicates 
the rank of this model parameter in its column. The 
colour of each cell indicates the magnitude of the 
corresponding sensitivity measures, whose value can 
be checked with the colour bar on the right.   
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accordingly with its coefficients. For G2, G4, and G6, the coefficients are 
set to have importance of model parameters in the order of x1 > x2 > x3 
> … > x7. We use the G6 setting as the representative here, and Fig. 4 
shows the ranking results when the G6 coefficient setting is applied to 
this test function. The STi index does not yield a converged ranking result 
even at 65 536 model evaluations. The ranking from STi is persistently 
changing with a different M. However, by comparing with the exact 
analytically-derived result, STi correctly recognizes that x1 to x3 are the 
most important model parameters from 1024 model evaluations on-
wards. For the Morris method, μ* gives the correct ranking at 65 536 
model evaluations. However, unlike STi, μ* does not pinpoint the first 
three model parameters as essential parameters early in the model runs. 
As with STi, AS-OLS and AS-QPHD identify the first three model pa-
rameters as more sensitive than others at 1024 model evaluations. 
Moreover, AS-OLS gives the correct ranking at 16 384 model evalua-
tions, whereas AS-QPHD gives a stable ranking result at the lower 
number of 1024 model evaluations. The activity score with the local 
linear model (AS-OPG), on the other hand, does not provide a sensible 
ranking, as it even identifies the dummy parameter as the most crucial 
parameter at 16 384 model evaluations. 

For the Sarrazin ranking statranking, only AS-OLS and AS-QPHD have 
scores lower than 1, at 16 384 model evaluations, but statranking is much 
higher than 1 before this point. The percentage of Reliability results also 
confirm the observations of statranking, with more than 80% for AS-OLS 
and AS-QPHD from 16 384 model runs onwards across all model pa-
rameters. With an increase to 65 536 model evaluations, statranking for μ* 
is less than 1, and AS-OLS and AS-QPHD have statrankings of 0, which 
indicates the agreement of ranking results between resamples. The 
Reliability of all model parameters using the μ* measure is only above 
80% at 65 536 model runs, which is the same as that provided by sta-
tranking. The Position Factor has a value of 0 for AS-QPHD only at 4096 
model evaluations, and the value is much higher than 1 for other 
sensitivity analysis methods. Also, AS-QPHD is the only method with a 
consistent high Reproducibility, scoring higher than 0.75 from 1024 
model evaluations. 

5.4. Test function 4 & 7: Bratley/K function and linear function 

For the Bratley function (Fig. 5), all of the ranking results from ac-
tivity scoring yield the same rank for the highly sensitive model pa-
rameters as STi and μ*, and the ranks stabilize from 256 model 
evaluations. These ranking results agrees with the analytical results for 
important parameters. From Fig. 5, STi, μ* and AS-OPG still exhibit 
change in values for some model parameters as shown by the change of 
colours, but this does not impact the ranking. For less sensitive model 
parameters x5 to x7, x5 stays as the 5th important parameter at all times, 
but x6 and x7 change ranks constantly for all of the sensitivity analysis 

methods other than the Sobol’ method. Both AS-OLS and AS-OPG rank 
the dummy parameter to be more important than either x6 or x7 early 
on, and this is likely due to the near-zero sensitivity for these two model 
parameters. Both statranking and the Position Factor indicate a converged 
ranking for all of the sensitivity analysis methods from 256 model 
evaluations with high Reproducibility (TDCC > 0.97). For the Reliability 
measure, it appears that there is a Reliability of above 60% for relatively 
important model parameters according to a converged value for the 
Sarrazin ranking measures statranking. 

For the Linear function (Fig. 6), similar to the Bratley function 
(Fig. 5), all of the sensitivity analysis methods rank the model parame-
ters the same from 256 model evaluations onwards. The activity scores 
with different gradient approximation methods yield the same ranking 
results as the analytical activity score. The Sarrazin ranking statranking 
and the Position Factor all are ideally zero, the Reproducibility is 1 for 
TDCC, and the Reliability is 100% for all methods and model parameters. 

5.5. Test function 5: Morris function 

Judging from Fig. 7, all of the sensitivity analysis methods show that 
the 7 model parameters have similar sensitivities, and the analytical 
results confirm this. The STi has clashing colours for some of the model 
parameters until 4096 model evaluations, and it is not until 65 536 
model evaluations is reached for μ* to have consistent colour for all of 
the model parameters. The activity score AS-OPG does not have 
consistent colours through all model parameters with the local linear 
model, even at 65 536 model evaluations. On the other hand, both AS- 
OLS and AS-QPHD already provide consistent colours for all model pa-
rameters at either 256 or 1024 model evaluations. In addition, all of the 
activity scores can identify the dummy parameter. Due to the frequent 
switching of the ranks between all of the model parameters, the Sarrazin 
ranking statranking and the Position Factor are unable to conclude there is 
convergence of the rankings for any of the sensitivity analysis methods. 
Also, the Reproducibility is relatively low for any of the sensitivity 
analysis methods as well. The Reliability of all model parameters is also 
bouncing around 20%. 

5.6. Test function 6: Friedman function 

The ranking results for the Friedman function can be seen from 
Fig. 8. In accord with the exact rankings, both STi and μ* rank x4 as the 
most important parameters with x2 and x3 second, and the remaining 
parameters are in the order of x3 > x5 > x6 > x7. The STi identifies x1 and 
x2 to be of similar sensitivity (cells with the same colour) from 1024 
model evaluations onwards, but μ* achieves this at 256 model evalua-
tions even though the ranking shifts for x1 and x2. For activity scoring, 
both the global linear model version (AS-OLS) and global quadratic 

Fig. 4. The ranking heat map for the Modified Sobol’ 
G-function with G6 coefficient, where the y-axis rep-
resents the model parameters, the bottom x-axis the 
corresponding sensitivity analysis methods, and the 
top x-axis the number of model evaluations for the 
ranking result of each column. The rightmost columns 
provide the analytical sensitivity measures from each 
method. The annotated number in each cell indicates 
the rank of this model parameter in its column. The 
colour of each cell indicates the magnitude of the 
corresponding sensitivity measures, whose value can 
be checked with the colour bar on the right.   

X. Sun et al.                                                                                                                                                                                                                                      



Environmental Modelling and Software 149 (2022) 105310

10

model (AS-QPHD) rank x4, x1, and x2 of the same importance as STi and 
μ*. However, AS-OLS and AS-QPHD rank x3 as the least important model 
parameter. Moreover, the dummy parameter appears to have a higher 
rank than x3, indicating a near-zero sensitivity for x3. For AS-QPHD, x1 
and x2 have disagreement in colour at 256 model evaluations. Using the 
local linear model, the activity score cannot provide a consistent ranking 
at any M. AS-OPG can identify that x1, x2, and x4 are the most important 
model parameters, but it cannot differentiate the exact ranking between 
these three model parameters. AS-OPG also ranks x3 as less sensitive. 
The analytical activity score ranks both x1 and x2 as the most important 
model parameters with x4 next, and this ranking result is different 
compared to any of the previous ranking results. Similarly, the analytical 
activity score classifies x3 as non-important. 

The Sarrazin ranking indicates that the STi reaches a converged 
ranking result from 4096 model evaluations onwards, and both μ* and 
AS-QPHD reach converged ranking results at 1024 model evaluations. 
As observed from Fig. 8, AS-OLS achieves convergence at 256 model 
evaluations, but AS-OPG has a statranking value higher than 1 even at 
65 536 model evaluations. In terms of Reliability using STi, x4 reaches 
80%, and x3 and x5 reach 60% at 1024 model runs. Also, for μ*, x1 and x2 
have Reliability more than 60%, and that of x3 is higher than 80% from 
1024 model runs, confirming the change in statranking. For the activity 
scores, it is hard to conclude anything from the Reliability of each model 
parameter. The Position Factor shows a disagreement for AS-OLS and AS- 
QPHD at 1024 to 4096 model evaluations and 4096 to 16 384 model 
evaluations respectively, due to the rank shifts between the two 

Fig. 5. The ranking heat map for the Bratley function, 
where the y-axis represents the model parameters, the 
bottom x-axis the corresponding sensitivity analysis 
methods, and the top x-axis the number of model 
evaluations for the ranking result of each column. The 
rightmost columns provide the analytical sensitivity 
measures from each method. The annotated number 
in each cell indicates the rank of this model parameter 
in its column. The colour of each cell indicates the 
magnitude of the corresponding sensitivity measures, 
whose value can be checked with the colour bar on 
the right.   

Fig. 6. The ranking heat map for the Linear function, 
where the y-axis represents the model parameters, the 
bottom x-axis the corresponding sensitivity analysis 
methods, and the top x-axis the number of model 
evaluations for the ranking result of each column. The 
rightmost columns provide the analytical sensitivity 
measures from each method. The annotated number 
in each cell indicates the rank of this model parameter 
in its column. The colour of each cell indicates the 
magnitude of the corresponding sensitivity measures, 
whose value can be checked with the colour bar on 
the right.   

Fig. 7. The ranking heat map for the Morris function, 
where the y-axis represents the model parameters, the 
bottom x-axis the corresponding sensitivity analysis 
methods, and the top x-axis the number of model 
evaluations for the ranking result of each column. The 
rightmost columns provide the analytical sensitivity 
measures from each method. The annotated number 
in each cell indicates the rank of this model parameter 
in its column. The colour of each cell indicates the 
magnitude of the corresponding sensitivity measures, 
whose value can be checked with the colour bar on 
the right.   

X. Sun et al.                                                                                                                                                                                                                                      



Environmental Modelling and Software 149 (2022) 105310

11

important model parameters x1 and x2. On the other hand, the Position 
Factor gives a value higher than 2 for AS-OPG from 4096 to 65 536 
model evaluations. Surprisingly, the Reproducibility is relatively high 
for the activity score approximated by the local linear model with a 
value more than 0.8, and the value is even higher than 0.9 for 1024 and 
65 536 model evaluations despite the fact that the ranking is unstable. 

5.7. Test function 8: Sobol’ & Levitan function 

The Sobol’ & Levitan function has two configurations which change 
the number of model parameters and the coefficients. The ranking re-
sults of the first configuration can be seen from Fig. 9, and the second 
configuration from Fig. 10. 

For the first configuration (Fig. 9), x1 has a coefficient value of 1.5, 
higher than the coefficient value 0.9 of other model parameters, and this 
makes x1 to be the most important parameter followed by other pa-
rameters with the same sensitivity. From Fig. 9, all of the sensitivity 
analysis methods can correctly rank x1 as the most important model 
parameter. For x2 to x7, total effect sensitivity analysis and the μ* of 
Morris yield similar sensitivity for these parameters, but not until 16 384 
model evaluations. The sensitivity indices of the Sobol’ method have the 
largest difference, of 60%, between x2 and x4 at 1024 model evaluations, 
and this difference drops to 17.5% at 4096 model evaluations, where the 
difference uses the smallest sensitivity index among x2 to x7 as the base. 
For μ*, the difference is 14.5% at 1024 model evaluations and 12.5% at 
4096 model evaluations between x7 and x5, and between x5 and x7 
correspondingly. Both AS-OLS and AS-QPHD provide similar sensitiv-
ities for model parameters x2 to x7 at 1024 model evaluations. The 

largest gap is for AS-OLS at 4.04% for 1024 model evaluations between 
x3 and x6, and it is 6.64% for AS-QPHD between x3 and x5 at the same M. 
The activity score with the local linear model is unable to provide a 
stable ranking for this test function as well, where x4 and x6 appear to 
have higher sensitivities than other model parameters, even at 65 536 
model evaluations. Activity scores other than AS-OPG match the ranking 
results with the analytical activity score. 

In terms of convergence, the Sarrazin ranking using statranking is un-
able to conclude convergence, which is similar to the Morris test func-
tion as the statranking is higher than 1 other than for AS-OPG at 65 536 
model evaluations. The Position Factor is also unable to show any sign of 
convergence with x2 to x7 being of similar sensitivity. For TDCC, 
Reproducibility is higher than average for any sensitivity analysis 
methods at any M. For the Reliability, activity scores have 100% Reli-
ability for x1 from 256 model evaluations onwards, yet STi and μ* require 
at least 1024 model evaluations to reach 100%. For other model pa-
rameters, their Reliability bounces between 20% and 40%, and this low 
Reliability matches the results of the Sarrazin ranking statranking. 

The first 10 model parameters have the same coefficient in the sec-
ond configuration (Fig. 10), whereas the other 5 model parameters have 
a different, though the same, value. The difference in coefficients makes 
the first 10 parameters more sensitive than the other 5 parameters. 
Judging from Fig. 10, both μ* and activity scores point out that x11 to x15 
are the least important parameters at 256 model evaluations, and the 
activity scores successfully discover the dummy parameter. The STi lo-
cates the least sensitive group from 1024 model evaluations onwards, as 
it ranks x12 to be more important than x3. However, some of the model 
parameters are still wrongly classified into the least sensitive group by 

Fig. 8. The ranking heat map for the Friedman 
function, where the y-axis represents the model pa-
rameters, the bottom x-axis the corresponding sensi-
tivity analysis methods, and the top x-axis the number 
of model evaluations for the ranking result of each 
column. The rightmost columns provide the analytical 
sensitivity measures from each method. The anno-
tated number in each cell indicates the rank of this 
model parameter in its column. The colour of each cell 
indicates the magnitude of the corresponding sensi-
tivity measures, whose value can be checked with the 
colour bar on the right.   

Fig. 9. The ranking heat map for the Sobol’ & Levitan 
function with the first configuration, where the y-axis 
represents the model parameters, the bottom x-axis 
the corresponding sensitivity analysis methods, and 
the top x-axis the number of model evaluations for the 
ranking result of each column. The rightmost columns 
provide the analytical sensitivity measures from each 
method. The annotated number in each cell indicates 
the rank of this model parameter in its column. The 
colour of each cell indicates the magnitude of the 
corresponding sensitivity measures, whose value can 
be checked with the colour bar on the right.   

X. Sun et al.                                                                                                                                                                                                                                      



Environmental Modelling and Software 149 (2022) 105310

12

some sensitivity analysis methods. For STi, the index value of x5 is 0.102, 
x2 is 0.068, and x12 is 0.038 at 1024 model evaluations. These indices 
give an impression of three different sensitive groups rather than two. At 
4096 model evaluations, the largest difference for the sensitive group is 
x2 and x3 with a value of 0.029, which is much better than the case at 
1024 model evaluations. Likewise, μ* provides a consistent sensitive 
grouping at 4096 model evaluations since x4 has a value of 0.229, x9 is 
0.308, and x11 is at 0.196 for 1024 model evaluations. For activity 
scoring with the global linear model, the AS of the sensitive group ranges 
from 0.282 to 0.313, whilst the insensitive group ranges from 0.122 to 
0.142 at 1024 model evaluations. For AS-QPHD, these ranges are 
0.287–0.314 and 0.123 to 0.151 respectively. Therefore, it suffices to 
say that AS-OLS and AS-QPHD behave better than STi and μ*. For the 
activity score with a local linear model, the sensitive group ranges from 
0.280 to 0.321. The less sensitive group ranges from 0.130 to 0.150, 
comparable with the results from other activity scores. The activity 
scores with three gradient approximation methods correctly pinpoint 
the dummy parameter, matching ranking results with the analytical 
activity score. 

Identically to the case of the first configuration, the Sarrazin ranking 
statranking shows a significant disagreement between resamples for all of 
the sensitivity analysis methods, and the Position Factor also fails to 
conclude anything due to the shifting of ranks between the different M. 
For the Reproducibility, it is slightly above 0.5 on average for all of the 
methods. The Reliability of all model parameters fluctuates between 10% 
and 60% but less than 60%, and this agrees with the high statranking. 

6. Discussion 

For the more novel GSA method of activity scoring, it is both intuitive 
and clear from the test function results that the method used for calcu-
lating the gradient can have a significant impact on rankings obtained. 
The Ishigami-Homma and Friedman functions are the two test functions 
where all the three estimated activity scores provide different ranking 
results on specific model parameters compared to the analytical/exact 
activity scores. The differences in the gradients calculated affect the 
matrix C and the eigenpairs, which ultimately causes the activity scores 
to be distinct. 

For the Ishigami-Homma function (Fig. 1), the difference in the 
ranking between the estimated activity scores and the analytical activity 
score is mainly caused by the term x4

3sin(x1). If this term is changed to 
either x3

3sin(x1) or x2
3sin(x1), the estimated activity scores and the 

analytical activity score would provide the same ranking. Thus, the 
global linear model and global quadratic model are not able to 
approximate such a high order response surface well. It is this limitation 
that causes the approximated activity scores to rank parameters 
differently. 

For the Friedman test function (Fig. 8), the main concern is the 
importance of x1, x2 and x4. This function is an additive one, for which 
we can split the two terms 10 sin(πx1x2) and 10x4 out as another single 
function, simplified as 

f (x) = sin(πx1x2) + x3, (33)  

where the xi are uniformly distributed within [0, 1]. For Eq (33), both 
AS-OLS and AS-QPHD would rank x3 > x1, x2, yet the analytical activity 
score would rank x1, x2 > x3, as in Fig. 8. There are two tipping points for 
this function to make the estimated activity scores and the analytical/ 
exact scores different in terms of ranking. One is the π inside the sine 
function; both the estimated and analytical activity scores provide the 
same ranking with x3 > x1, x2 if the constant π is changed to a smaller 
number, such as 1. With π, the sine function is sufficiently non-linear to 
cause the gradient approximation methods to fail in identifying the 
model structure. With smaller constant, the sine function is more linear 
for the gradient approximation methods to be sufficiently accurate. The 
other tipping point is the parameter range; as long as the parameter 
range exceeds [0.44, 0.89], the ranking from the estimated activity 
scores and the analytical score would remain different. If the parameter 
range of each model parameter shrinks from [0.44, 0.89] (for example, 
the lower bound is higher than 0.44 or the upper bound is lower than 
0.89), the ranking from both estimated and analytical activity scores 
would agree with each other. To be more specific, the ranking from the 
estimated activity score remains the same, but the analytical activity 
score changes the ranking with the change of parameter range. This 
change in parameter range causes the number of dimensions of the 
Active Subspace to be different, as the largest gap between the eigen-
values is between first and second eigenvalues in decreasing order, but 
the shrinkage in parameter range makes the largest gap between the 
eigenvalues to be between the second and third eigenvalues in 
decreasing order. With one less dimension in the Active Subspace, the 
calculation of the activity score is highly impacted. 

The Active Subspace method identifies the most important direction 
in the parameter space. The activity score shows how much each model 
parameter contributes to the direction defined by the first n eigenvec-
tors, where n is the dimension of the Active Subspace. For the Friedman 
function, activity scores consider x3 to be non-important, unlike STi or 
μ*, because the important direction identified by Active Subspaces is 
orthogonal to x3; thus, x3 is not considered as an active variable. From an 
integration point of view, the gradient of the x3 term is 40(x3 − 0.5), and 
the integral of the outer product of this term with others after the input 
normalisation is 0, so x3 has zero influence on any other directions in the 
parameter space. 

Similarly, the directions of every model parameter of the Sobol’ G- 
function are orthogonal to each other. With the setting of coefficients, x1 

Fig. 10. The ranking heat map for the Sobol’ & Lev-
itan function with the second configuration, where 
the y-axis represents the model parameters, the bot-
tom x-axis the corresponding sensitivity analysis 
methods, and the top x-axis the number of model 
evaluations for the ranking result of each column. The 
rightmost columns provide the analytical sensitivity 
measures from each method. The annotated number 
in each cell indicates the rank of this model parameter 
in its column. The colour of each cell indicates the 
magnitude of the corresponding sensitivity measures, 
whose value can be checked with the colour bar on 
the right.   
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is designed to be the most influential parameter, resulting in the largest 
eigenvalue gap being between x1 and x2. Moreover, the first eigenvector 
is in the form [100 … 0]T, and this induces the activity scores of model 
parameters x2 to x7 along with the dummy parameter to be zero. 

For the case of the Sobol’ G-Function, activity scoring using the 
global linear model identifies x7 as the most important parameter, and 
this is different from the other activity scoring methods, the reason being 
that the approximated matrix Ĉ by the global linear model has numbers 
with very small magnitude in the entries of its first column   

Nevertheless, the entries in the 7th row, which corresponds to x7, are 
slightly larger than other entries due to approximation error, and this 
causes the 7th entry of the first eigenvector to be the largest. Thus, x7 
becomes the most sensitive parameter. 

There are certain cases where the activity score with the local linear 
gradient approximation behaves wrongly, especially for the case of the 
Modified Sobol’ G-function with G6 coefficient; see Fig. 4. This behav-
iour is caused by the limitation of local approximation in exploring the 
parameter space when the response surface is too complex. As will be 
covered in Section 6.1, in a replication implementation, in other words, 
where more samples from different locations are taken, the ranking 
provided by the activity score with the local linear model is more 
reasonable. 

Being based on different fundamental principles than either the 
variance-based Sobol’ method or the Morris method, the Active Sub-
space approach can yield activity scores that do not provide the same 
ranking as that from STi or μ*. On the other hand, results for the 
Ishigami-Homma function (Fig. 1), Sobol’ G-function (Fig. 2), and 
Friedman function (Fig. 8) have characteristics that show Active Sub-
space methods yield a different perspective than other sensitivity anal-
ysis methods. But aside from these three test functions, activity scores 
compare well with what the STi and μ* provide. Indeed activity scoring 
can achieve this with a much smaller M. For the Modified Sobol’ G- 
function in the G6 (Fig. 4) coefficient settings, the activity scoring with 
the global quadratic model (QPHD) can reach a stable ranking with as 
few as 1024 model evaluations compared to more than 65 536 for Sobol 
and to 65 536 for Morris methods. Furthermore, AS-QPHD can identify 
important model parameters that have similar sensitivity earlier than 
other methods in the model runs, and this is shown from the results for 
the Morris function (Fig. 7) with 256 model runs and for the Sobol’ & 
Levitan function with two configurations (Figs. 9 and 10) with less than 
4096 model runs for AS-QPHD. For the Bratley and Linear functions, all 
activity scores perform as well as the benchmark methods in terms of 
achieving stable ranking at the same M. 

6.1. The performance of ranking measures 

In terms of the four ranking measures in the literature, several con-
clusions emanate from the test function results described in previous 
sections and given in the Supplementary files. First, the Sarrazin ranking 
statranking highly depends on the quality of bootstrap resamples, whereby 
poor quality of resamples may provide a false indicator of ranks. For 
example, AS-OPG yields statranking = 0.216 < 1 for the Ishigami-Homma 
function at 256 model evaluations, see Fig. 1; however, AS-OPG wrongly 
ranks the dummy parameter as the most important parameter. The 
Sarrazin ranking weights important model parameters more highly than 
less sensitive model parameters. For the Sobol’ G-function, the ranks 

constantly shift for x2 to x7 for the activity scores, but statranking yields 
values less than 0.02 at any M. However, the shifting in rank of 
important model parameters with similar sensitivity renders statranking to 
be useless, such as in the case of the Morris function or Sobol’ & Levitan 
function that have several important parameters with the same sensi-
tivity analytically. 

For the most important parameters, the threshold of Reliability for 
statranking to be less than 1 is about 60%, and this percentage can rise to 
80%. For most cases, the Sarrazin ranking statranking agrees with the re-
sults of Reliability. With a large number of model parameters in a single 

model, the Sarrazin ranking statranking can provide a general view of the 
agreement between resamples, and the Reliability provides the ability to 
analyse model parameters of interest more closely; thus, these two 
measures could be used in complementary fashion. 

The Position Factor measure, unlike the Sarrazin ranking statranking, 
weights the change of ranks for insensitive parameters and sensitive 
parameters equally important, and this can be observed from the results 
of any of the SA methods. For the Sobol’ G-function, AS-QPHD ranks x1 
as the most important parameter from 256 model evaluations onwards, 
but the insensitive parameters x2 and the dummy parameter still change 
ranks with increases in M due to near-zero activity scores and approxi-
mation error; however, the Position Factor gives values of more than 2.5, 
meaning ranking has not converged, given the shifting ranks of insen-
sitive parameters. In terms of information gain, the Position Factor 
measure does not provide additional information if one can visualize 
ranking results with something like the heat map design of this paper. 
Moreover, just as with the Sarrazin ranking statranking, the Position Factor 
is unable to provide any valuable information when sensitive parame-
ters have similar sensitivities. Furthermore, the Position Factor only 
compares how ranking changed from the previous M to the current one 
to a certain degree. However, if the number of model parameters/inputs 
is extremely large, Position Factor could be a simple solution to avoid 
drawing a huge figure for visual inspection of ranking changes. 

The TDCC measure with the savage score provides less information 
in terms of the meaning of Reproducibility compared with other ranking 
measures. For our cases, 0.8 or more seems to be the threshold to indi-
cate a stability in the ranking results, but a value of more than 0.85 may 
be sufficient for the other ranking measures to also give a signal of 
converged ranking results. Again, model parameters with similar sen-
sitives are also something that TDCC fails to identify. 

6.2. Confidence interval estimates of parameter sensitivity: bootstrap 
versus replication 

For the ranking measures in Section 4, all convergence calculations 
are based on bootstrap resampling with replacement 1000 times. This 
number of resampled sets has been employed or recommended in 
several studies (Baroni and Tarantola, 2014; Brunetti et al., 2016; Nos-
sent et al., 2011; Sheikholeslami et al., 2017). The Bootstrap technique 
(Efron, 1979) is widely used in the study of sensitivity analysis methods 
(Baroni et al., 2018; Khorashadi Zadeh et al., 2017; Wang and Solo-
matine, 2019), as it does not require additional model runs to provide an 
estimate of the confidence interval. Here, we discuss results from 
employing replication with our test functions to measure the compara-
tive efficiency and accuracy of parameter confidence intervals provided 
by the bootstrap technique. The replication technique is, however, a 
much more expensive way of generating confidence intervals for metrics 
of interest as it requires the experiment to be repeated with multiple sets 
of different samples, known as replicates. The usage of replication has 

Ĉ1 = [3.72e − 8, − 1.963e − 7, − 1.465e − 7, 2.63e − 8, 3.03e − 8, 2.97e − 8, 7.81e − 7, 5.6e − 9]T ,
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been discussed in several studies (Sun et al., 2021; Tarantola et al., 2012; 
Yang, 2011) though it appears to be much less popular than boot-
strapping due to high computational cost. 

Standard deviation can be used here as a concise indication of con-
fidence interval width. Under the assumption of a normal distribution, 
the 95% confidence bounds can be obtained by calculating them as 7.84 
times the standard deviation. We checked the relevant histograms from 
both 1000 bootstrap resamples and 100 replications to confirm they 
follow a normal distribution. Moreover, standard deviation is also a 
useful way to estimate confidence intervals when data are from a small 
population, as occurs for the 100 replicates in our case. 

We found for all test functions that standard deviations of parameter 
sensitivity from the bootstrap do not decrease as much as those from 
replication. As an example, Fig. 11 gives results for the Sobol’ & Levitan 
function with the G6 configuration. It shows the standard deviation 
across the parameter sensitivity measures obtained from both resam-
pling and replication for each model parameter, with every subplot on a 
log scale. The first row of subplots provides the results from the boot-
strap analysis, and the second row from replication 100 times. All the 
GSA methods rank x1 as the most important parameter for this test 
function, the other model parameters being of similar sensitivities 
excepting the dummy parameter for the activity scores. For STi and μ*, it 
appears that the standard deviation between resamples/replicates for 
the most important parameter is slightly larger than the other model 
parameters. It is less obvious to see the difference in standard deviation 
between bootstrap and replication for STi and μ*; however, the standard 
deviation from AS-OLS and AS-QPHD suggests that the bootstrap con-
verges with a rate of approximately 1̅ ̅̅

N
√ , while the replication converges 

with a rate of approximately 1
N. The bootstrap resamples do not use as 

much of the information provided by the Sobol’ sequence as replication 
does, as its convergence rate is less than expected. On the other hand, 
AS-OPG appears to behave disorderly, even at a large number of model 
runs. This behaviour is due to the local linear gradient approximation 
model not making efficient use of increases in the sample size N. 

Moreover, bootstrapping is less reliable as an assessment of standard 
deviation at small sample size. Notice, for example, the standard devi-
ation results for STi and μ* at 256 model runs. With increase in M, the 
line of standard deviation becomes smoother. Indeed, the bootstrap 
technique should be used with care, as it relies on the smoothness and 
symmetry of the bootstrap distribution (Efron, 1987), and the bootstrap 
resamples may hinder the convergence rate using the Sobol’ sequence, 
with the resamples no longer being a Sobol’ sequence. Whenever 
computational budget is available, researchers would ideally consider 

implementing replication to check the reliability of confidence intervals 
provided by the bootstrap technique. Similar plots to Fig. 11 for our 
other test functions can be found in Section 3 of the Supplementary file 
along with the heat map of ranking results from replication in Section 2 
of the Supplementary file. These figures accord generally with the 
conclusions above. 

6.3. The impact of sampling method on ranking by activity scoring: 
random sampling vs. Sobol’ sequence 

Among studies of the Active Subspace approach and activity scoring, 
Monte Carlo sampling, also called random sampling, has generally been 
used as was indicated in the Introduction. It has however been noted (e. 
g. Guy et al. (2020)) that quasi-Monte Carlo sampling might improve the 
performance of activity scoring over that of random sampling, and our 
results confirm this statement and quantify the performance benefit. For 
the Modified Sobol’ G-function with G6 coefficient test function, Fig. 12 
illustrates the ranking results from activity scoring with the three 
different gradient approximation methods obtained from random sam-
pling. These are to be compared to the results obtained from Sobol’ 
sequence sampling in Fig. 4. Clearly, activity scoring with the Sobol’ 
sequence can achieve correct and stable ranking results with much fewer 
model runs than random sampling does. It is not until reaching 16 384 
model evaluations and only for the AS-QPHD approximation that 
random sampling obtains the correct ranking. Yet, using quasi-Monte 
Carlo, AS-QPHD obtains the accurate ranking results at 1024 model 
runs and is stable from thereon with increasing sample size. The per-
formance of AS-OLS with random sampling is even worse, as it cannot 
rank the model parameters in the correct order with 65 536 model runs, 
yet AS-OLS achieves the correct ranking at 16 384 with Sobol’ sequence 
sampling. AS-OPG does poorly with either random sampling or Sobol’ 
sequence. 

The advantage of the quasi-Monte Carlo sampling method has been 
tested and approved for other sensitivity analysis methods in several 
studies (Niederreiter, 1978; Qian and Mahdi, 2020; Sobol’, 1967), and 
multiple researchers have emphasized the importance of the sampling 
method for producing sound sensitivity measures (Andres, 1997; Cas-
taings et al., 2012; Janssen, 2013). From our experiments, the impor-
tance of the sampling method also holds for activity scoring. The ranking 
results for other test functions obtained by activity scoring using the 
random sampling method can be found in Section 7 of the Supplemen-
tary file. In general they are consistent with the illustrative results for the 
Modified Sobol’ G-function, confirming and quantifying the benefit of 
quasi-Monte Carlo sampling at least for our test functions. 

Fig. 11. The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples from bootstrapping with increasing number of 
model runs, whereas the second row plots the standard deviation using 100 replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the 
bottom x-axis is labeled with the corresponding model parameters by number, and each column provides the results for one of the five SA methods. The 8th 
parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line with the corresponding colour. 
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The impact of the sampling method on the performance of both the 
variance-based Sobol’ method and the Morris method is also a signifi-
cant point of discussion in the literature, and there are several studies 
that provide substantially more detail on the differences and develop-
ment of sampling methods for either variance-based Sobol’ method or 
the Morris method (Campolongo et al., 2007, 2011; Qian and Mahdi, 
2020; Reusser et al., 2011; Sheikholeslami and Razavi, 2017; Zhan and 
Zhang, 2013). 

7. Conclusions 

The paper has investigated the performance of the novel method of 
Activity Scoring in comparison to two benchmark methods of Global 
Sensitivity Analysis using several well-known test functions that 
encompass overall a wide range of function behaviour. Heat maps that 
show both parameter sensitivities and numerical rankings with 
increasing sample size are introduced as a key visualization tool. 
Although the focus of the comparison is on ranking sensitivities, our heat 
maps also show parameter sensitivity in order to provide additional 
information to the numerical rankings. Through testing against analyt-
ical solutions, activity scores match the benchmark methods’ total-effect 
sensitivity index of Sobol’ and the absolute mean of elementary effect 
index of Morris in most, but not all, test cases. Moreover, activity scoring 
can be more computationally efficient than the benchmark methods in 
some instances. 

In the case of the Ishigami-Homma function, Sobol’ G-function and 
Friedman function, where the Activity Score relies highly on the 
important directions obtained from the corresponding eigenvector 
analysis, activity scoring does not provide as stable ranking results with 
increasing sample size as the total-effect sensitivity index STi or Morris 
μ*. In the other cases, activity scoring performs as well as STi and μ*, and 
it behaves even better with the more appropriate selection of gradient 
approximation methods. 

The performance of activity scoring depends on the accuracy of the 
gradient approximation model that is employed, as gradient quality 
affects the detection of the number of Active Subspace dimensions. For 
the Ishigami-Homma function and Friedman function, the activity score 
based on different gradient approximation models provide different 
rankings even in comparison to the analytical/exact activity score. The 
analytical activity scoring results can be viewed as results that would be 
obtained with the perfect gradient approximation method, thereby 
indicating the strong impact of better gradient approximation method 
for the performance of activity scoring. Of the three gradient approxi-
mation models employed in this paper, the global quadratic model (AS- 
QPHD) performs the best overall. Indeed, it is more efficient than both 
STi and μ* in some instances, such as for the Modified Sobol’ G-function, 
Morris function, and Sobol’ & Levitan function. Moreover, AS-QPHD has 

an advantage over other methods in determining the most important 
parameters with similar sensitivities, as is the case for the Morris func-
tion and Sobol’ & Levitan function. 

In regard to the convergence of the four ranking measures, both the 
Sarrazin ranking statranking and Reliability are to be preferred to the other 
two ranking measures, as these two provide the most accurate infor-
mation. In addition, statranking and Reliability utilize all of the bootstrap 
resamples to provide indicators comparable with the traditional confi-
dence interval of a given percentage (say 95%). This utility is not 
feasible for the current setting of the Position Factor or TDCC. The 
advantage of statranking is that it provides a scalar as an indicator of 
convergence, unlike Reliability that evaluates the model parameter 
individually. However, Reliability can explain certain changes in sta-
tranking with more detail. Nevertheless, it is to be noted that usage of the 
Sarrazin ranking statranking and Reliability requires access to resamples, 
and thereby is highly reliant on the quality of the resamples. In addition, 
the Sarrazin ranking statranking and Reliability perform poorly when 
multiple sensitive parameters have similar sensitivity, or when these 
parameters should have the same sensitivity analytically. A way of 
addressing the poor performance in such a situation is to rank with a 
chosen tolerance, whereby model parameters with differences in sensi-
tivity inside this tolerance are given the same rank. However, this 
tolerance should be chosen with care, as it could falsely classify model 
parameters with different sensitivity analytically the same due to 
approximation error. Whenever using any of these four ranking mea-
sures, it is still recommended that visualization of the ranking results is 
employed such as the heat mapping in this paper. More examples of 
useful visualization tools can be found in Pianosi et al. (2016). 

In approximating confidence intervals for ranking purposes, the 
bootstrap is naturally much cheaper than replication. But it may suffer a 
loss in the expected convergence rate when using a Sobol’ sequence, as 
the bootstrap resamples may not comply with the optimal structure of 
the original Sobol’ sequence. With respect to the sampling methods, the 
quasi-Monte Carlo Sobol’ sequence has a significant computational 
advantage in achieving ranking results compared to the results from 
random sampling, as the Sobol’ sequence requires much fewer model 
runs to achieve stability in ranking. 

There is much opportunity for improving the applicability of activity 
scoring by addressing additional ways for approximating the function 
gradient. One avenue is building surrogate models such as with sparse 
grid, polynomial chaos or Gaussian process emulation. For high- 
dimensional models with considerable non-linearity, a reliable and ac-
curate gradient approximation model is crucial to Active Subspace 
performance and its activity scoring on ranking. Several studies have 
proposed the Morris method as the first step of screening for important 
parameters and then implementing other sensitivity analysis methods 
on these selected important parameters. Activity scoring could serve as 

Fig. 12. The ranking heat map for the modified 
Sobol’ G-function with the G6 coefficient setting ob-
tained from MC random sampling method, where the 
y-axis represents the model parameters, the bottom x- 
axis the corresponding sensitivity analysis methods, 
and the top x-axis the number of model evaluations 
for the ranking result of each column. The annotated 
number in each cell indicates the rank of this model 
parameter in its column. The colour of each cell in-
dicates the magnitude of the corresponding sensitivity 
measures, whose value can be checked with the colour 
bar on the right.   
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one of the sensitivity analysis methods for the second step. The reuse of 
samples from the Morris method can also be considered and tested for 
efficiency. 

Lastly, the Active Subspace approach represents a different way of 
looking at sensitivity in contrast to the popular variance-based, deriva-
tive-based or variogram-based sensitivity analysis methods. Multiple 
perspectives and methods are invaluable to understand model behaviour 
and activity scoring has an obvious role to play in that arsenal. 
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Chapter 5

Investigation of Determinism-Related
Issues in the Sobol’ Low-Discrepancy
Sequence for Producing Sound Global
Sensitivity Analysis Indices

This chapter investigates the occasionally abnormal sensitivity measures obtained
using the Sobol’ sequence as a sampling method for the variance-based Sobol’ method.
In the process of pursuing convergence through the confidence intervals obtained
from replication, anomalies are observed as large relative error spikes. This abnormal
behaviour of the Sobol’ sequence would produce Type I or II errors when classifying
model parameters based on false sensitivity measures, thus leading to non-robust
consequences and a lower level of assurance.

The Sobol’ sequence is constructed using a pre-determined primitive polynomial and
direction number matrix through a recursive relation. We employ a simple multi-
linear function and show that the correlation structure inside the Sobol’ sequence
carries over into the calculation of Sobol’ indices. This correlation structure of the
Sobol’ sequence affects the Sobol’ indices produces similar results for particular
model parameters across replicates, and this causes the abnormally large error spikes.
Chapter 6 is a continuation of the investigation of this chapter and proposes a solution
to the anomaly.

This paper is published as a research article that was peer-reviewed by three an-
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Abstract

A computationally efficient and robust sampling scheme can support
a sensitivity analysis of models to discover their behaviour through
Quasi Monte Carlo approximation. This is especially useful for complex
models, as often occur in environmental domains when model runtime
can be prohibitive. The Sobol ′ sequence is one of the most used quasi-
random low-discrepancy sequences as it can explore the parameter
space significantly more evenly than pseudo-random sequences. The
built-in determinism of the Sobol ′ sequence assists in achieving this

doi:10.21914/anziamj.v62.16094, © Austral. Mathematical Soc. 2021. Published
2021-12-06, as part of the Proceedings of the 19th Biennial Computational Techniques and
Applications Conference. issn 1445-8810. (Print two pages per sheet of paper.) Copies of
this article must not be made otherwise available on the internet; instead link directly to
the doi for this article.



Contents C85

attractive property. However, the Sobol ′ sequence tends to deteriorate
in the sense that the estimated errors are distributed inconsistently
across model parameters as the dimensions of a model increase. By
testing multiple Sobol ′ sequence implementations, it is clear that the
deterministic nature of the Sobol ′ sequence occasionally introduces
relatively large errors in sensitivity indices produced by well-known
global sensitivity analysis methods, and that the errors do not diminish
by averaging through multiple replications. Problematic sensitivity
indices may mistakenly guide modellers to make type I and II errors in
trying to identify sensitive parameters, and this will potentially impact
model reduction attempts based on these sensitivity measurements.
This work investigates the cause of the Sobol ′ sequence’s determinism-
related issues.
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1 Introduction
With the development of computer power, modellers and researchers largely
rely on building models to mimic, understand and predict aspects of natural
phenomena and increasingly their links with human actions. But the models
have become much more complicated and difficult to interrogate and analyse.
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Global sensitivity analysis (gsa) methods have received significant attention
over recent years as they have the capability for reducing model complexity
and understanding model behaviour. However, gsa methods rely on the
selected strategy used to sample model factors (parameters and model inputs)
to generate the model response surface from which sensitivity indices are
calculated. As each sample of factors leads to a forward model simulation,
a sampling scheme may need to be efficient in line with the computational
budget, especially where model runtimes are prohibitive. But any efficient
sampling scheme must also provide sa measures with the desired properties,
such as acceptable convergence rates. It is common to study the impact
of sampling strategies by using benchmark testing functions, as is done by
Tarantola et al. [8].

Tarantola et al. [8] compared the Sobol ′ sequence and Latin Supercube
sampling methods under the Sobol ′ variance-based sensitivity analysis method,
and concluded that the Sobol ′ sequence is better and appropriate under most
circumstances. The Sobol ′ variance-based sensitivity analysis method and
the Sobol ′ sequence are discussed in more detail in Section 2. The results
shown by Tarantola et al. indicated that the Sobol ′ sequence may occasionally
experience large errors for one or multiple input index values [8, bottom right
of Figure 9], but they simply explained this error spike as a deterioration of
the Sobol ′ sequence under high dimensions. The error spike is recognised
as the index value of one or more factors having particularly large errors
compared to the index values of other factors. It is worth noting that this
error spike issue may not easily be identified for practical problems where
model inputs tend to have different sensitivities. For the case in Figure 1, the
error spike is observed because all input variables have the same expected
sensitivity; however, modellers or end users may find it difficult to identify
if certain inputs have incorrect index values for actual model applications.
Thus, it is of utmost importance to investigate the cause of this error spike.

Randomized Sobol ′ sequences such as the scramble method, random shift
method, and newly developed column shift method [7] effectively avoid
the determinism issues of the original Sobol ′ points. For this article, we
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Figure 1: The first-order sensitivity indices of the Sobol ′ sequence for a
multi-linear function, where the input 1 has much higher error than other
inputs.

focus on investigating the determinism-related issues of the original Sobol ′
sequences without the aid of randomization methods. By recreating the same
experiments in Tarantola et al. [8], we find the same error spikes even at
relatively low dimensions. In addition, we find that the error spikes do not
diminish by averaging the errors across multiple replications, and the inner
determinism of the Sobol ′ sequence may cause the error spike. To investigate
this error spike, we propose a simple multi-linear function to test and explore
its causes in more details in Section 3.

2 Experiment set-up

2.1 Sobol ′ variance-based method

In this subsection, we briefly overview the Sobol ′ variance-based method [11],
which is one of the most popular global sa methods due to its model in-
dependence, ease of use, and ability to evaluate how changes in factors
affect model output variance, both with and without interactions. Given a
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square-integrable function

Y = f(X) = f(X1, . . . , Xp) ,

where X = (X1, . . . , Xp) is a vector of p model parameters, Y is a scalar model
output and function f is defined over a p-dimensional unit hypercube

Ω = (X | 0 6 xi 6 1; i = 1, . . . , p) .
Assuming that the input variables X are all independent, the model output
variance V(Y) is decomposed as

V(Y) =

p∑

i=1

Vi +

(
p−1∑

i=1

p∑

j=i+1

Vij

)
+ · · ·+ V1,...,p ,

where Vi = V(fi(Xi)) and Vij = V(fij(Xi, Xj)) are the corresponding partial
variances, and similarly V1,...,p = V(f1,...,p(X1, . . . , Xp)) . The first-order sensi-
tivity index Si of an individual input is obtained by dividing the first term of
the decomposition Vi by the model output variance V(Y):

Si =
Vi

V(Y)
≈

1
N

∑N
j=1 f(B)j[f(A

(i)
B )j − f(A)j]

V(Y)
. (1)

where N is the number of samples. To estimate the sensitivity indices using
Monte Carlo integrals, an N × 2p sample matrix is generated through the
Sobol ′ sequence for each experiment giving sample matrices A and B; see
Figure 2. Matrices A and B are used in the approximations in equation (1),
and A(i)

B is a sample matrix created by replacing the ith column of matrix A
with the ith column of matrix B but keeping the rest of the matrix the same.

To evaluate the performance of selected sampling strategies, Tarantola et
al. [8] used the absolute error across R different replicates. The absolute error
for the first-order sensitivity index (aes) is:

aes =
1

R

R∑

r=1

|S
(r)
i − Ŝi| , (2)

where S(r)i is the estimated Si of the rth replicate, and Ŝi is the analytical Si.
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Figure 2: Generated N×2p sample matrix from the Sobol ′ sequence. Sample
matrix A is the left N×p matrix, and the sample matrix B is the right N×p
matrix.

2.2 Sobol ′ quasi-Monte Carlo sequence

The Sobol ′ low-discrepancy sequence was initially proposed by Sobol ′ [10],
and it is one of a number of quasi-Monte Carlo sampling strategies that
generate structured samples compared to the basic pseudo-random Monte
Carlo sequence. To generate the ith dimension of the jth Sobol ′ point xj,i,
the Sobol ′ sequence uses a group of direction numbers v1,i, v2,i, . . . , vdi,i and
a primitive polynomial of degree di in the field Z2:

xdi + a1,ix
di−1 + a2,ix

di−2 + · · ·+ adi−1,ix+ 1 ,
where the coefficients a1,i, . . . , adi−1,i = 0 or 1. These coefficients are used to
define a sequence of positive integers by the recurrence relation

ms = 2a1,ims−1,i ⊕ 22a2,ims−2,i ⊕ · · · ⊕ 2di−1adi−1,ims−di+1,i

⊕ 2dims−di,i ⊕ms−di,i ,

for s > di + 1 , and ⊕ is the bit-wise XOR operator. The values of ms,i for
s 6 di are freely chosen but with the restriction of being odd integers and less
than 2s. Assuming two integers where y > z , the mathematical equivalent of
the bit-wise XOR operator is

y⊕ z =
blog2(y)c∑

n=0

2n
[(⌊ y

2n

⌋
+
⌊ z
2n

⌋)
mod 2

]
. (3)

The group of direction numbers v1,i, v2,i, . . . , vdi,i is then defined as

vs,i =
ms,i

2s
.
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Then the Sobol ′ point of interest is defined as

xj,i = b1v1,i ⊕ b2v2,i ⊕ · · · ⊕ bhvh,i ,

where bl is the lth bit from the right of number j in binary, for example
(j)2 = bh · · ·b2b1 . Antonov and Saleev [1] proposed the use of grey code (j)2 =
gh · · ·g2g1 instead of binary code (bh · · ·b2b1) to increase the computational
efficiency. Grey code only changes one bit from one number in binary to
the next consecutive one in binary, and it does not affect the asymptotic
discrepancy of the original Sobol ′ sequence. This article uses the Sobol ′
sequence generator code and the 30× p direction number matrix V provided
by the Chaospy python library [3], where p < 40 is the number of dimensions
limited to the maximum size of arrays set provided by the direction number
matrix

V =




v1
v2
...
v30


 =




v1,1 · · · v1,i · · · v1,p
v2,1 · · · v2,p
...

...
v30,1 · · · v30,p


 . (4)

Bratley and Fox [2] and Joe and Kuo [5] give the above definitions for
generating the Sobol ′ sequence and further details, whilst the definition of
discrepancy is given by Tezuka [9].

2.3 Multi-linear function

We propose a simple multi-linear function with the same multi-linear charac-
teristic as the benchmark testing function employed by Tarantola et al. [8]:

Y = f(X) = X1 × X2 × · · · × Xp ,

where p is the number of dimensions. We choose p = 3 , and the function
Y is now defined over a three-dimensional unit hypercube Ω. In theory,
the sensitivity indices Si of model inputs for this multi-linear function are
identical. We generate the sample matrix with 2p dimensions and as indicated
in Figure 2, the size of the direction number matrix V is 30× 6 .
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Figure 3: The x-axis indicates which replicate is used, where each replicate
comprises the results obtained from an independent experiment, and the
y-axis shows the value of the first-order sensitivity index. The 200 magenta
and green dots indicate the index values of input 1 and input 2 corresponding
to 200 replicates, and the red horizontal line shows the exact analytical index
value.

3 Understanding the problem
Morokoff and Caflisch [6] proposed the idea of filling-in-holes to explain po-
tentially poor dimension pairing and correlation issues in the Sobol ′ sequence,
as 16 384 samples are needed to achieve almost perfect uniformity for the
two-dimensional projection plots of the Sobol ′ sequence. Following Morokoff
and Caflisch, and to largely explore the parameter space, we decided to use
16 384 samples, but with 200 different replicates for our experiments. The
results in terms of aes for the first-order sensitivity indices of the three-
dimensional multi-linear function at N = 16 384 samples, averaged through
200 replicates, is shown in Figure 1. The aes of input 1 produces observably
larger error than both inputs 2 and 3. We pulled out the first-order sensitivity
indices of inputs 1 and 2, which have the most distinct behaviour in their
relative absolute error, and compared them by drawing a scatter plot of
200 replicates in Figure 3.

It is interesting to see that the index values of input 2 in green are all scattered
quite close to the line of the exact Si, but the index values of input 1 in
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Figure 4: The x-axis indicates the number of samples from 4 096 to 16 384,
and the y-axis shows the value of the first-order sensitivity index. The red
horizontal line is the exact first-order Si for input 1 of the three-dimensional
multi-linear function. This plot consists of results from 200 replicates, and
eight different groups of replicates are plotted in different colours to indicate
distinct oscillation patterns.

magenta are all scattered a certain distance away from the exact Si line and
the green dots. Recall that the calculation of the absolute error in equation (2)
measures the average distance of each estimated index value to the analytical
value. In our test case, every estimated index value of input 1 is much further
away from the analytical value than those of input 2, thus the absolute
error of input 1 is much higher than input 2 and resolves the error spike. By
inspecting the error spikes of the total-effect sensitivity index, we made similar
observations. The use of absolute error, along with relative absolute error,
can be problematic under this case, and an alternative performance metric
should be considered to avoid the error spike issue; for example, averaging
the index values across replicates first then finding the difference from the
analytical value Ŝi. However, one may not be able to employ replication due
to a limited budget, and this would result in only a single or a small number
of model runs, which would then require investigation on the the unusual
structure of input 1 in order to avoid the error spike.

By inspecting the changes in Si with respect to the number of samples, we
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Figure 5: The x-axis indicates the number of samples from 4 096 to 16 384,
and the y-axis shows equation (6) for input 1, and this term is a component of
equation (1). This plot consists of results from one replicate from each group,
and the eight different replicates are colour coded the same as Figure 4.

conclude that the structure observed in Figure 3 is not stationary. In fact,
the behaviour of Si for input 1 follows a structured oscillation pattern, as
indicated in Figure 4, and the first-order index values for inputs 2 and 3 all
follow a similar oscillation pattern with the change in the number of samples.

Recall that equation (1) for approximating the first-order sensitivity index Si
consists of two different terms: f(B)f(A) represented as

N∑

j=1

f(B)jf(A)j
NV(Y)

; (5)

and f(B)f(AB) represented as

N∑

j=1

f(B)jf(A
(i)
B )j

NV(Y)
, (6)

for convenience. The values of the second term for input 1 with respect to
the number of samples is seen in Figure 5. The error spike of input 1 at
N = 16 384 is caused specifically by the noticeable separation of the higher
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pink group of replicates and the lower black group of replicates in Figure 5.
There are eight general patterns within the total 200 replicates, as indicated
by eight different colours in Figure 4, and Figure 5 shows one replicate from
each pattern group.

4 Discussion and conclusions
The generation of Sobol ′ points strictly follows the direction matrix V in
equation (4), and the first seven points of the Sobol ′ sequence are calculated
through

x1 = v0 , x2 = v0 ⊕ v1 , x3 = v1 , x4 = v1 ⊕ v2 ,
x5 = v0 ⊕ v1 ⊕ v2 , x6 = v0 ⊕ v2 , x7 = v2 .

Following this order, x8 is obtained through v2 ⊕ v3 , and x9 will be v0 ⊕
v2 ⊕ v3 . Therefore, there are 2k points obtained through the combination of
v0, v1, . . . , vk joined by the bit-wise XOR operator. These new 2k points are
constructed by joining the previous 2k−1 points in reverse order with vk, and
the last new point is just vk.

The second replicate (shown as a cyan colour line in Figure 5) consists
of the 16 384th to the 32 767th Sobol ′ point, and these 16 384 points are
obtained through v0, v1, . . . , v14 but with the Sobol ′ point (v14 ⊕ v15) instead
of (v13 ⊕ v14) . The third replicate (shown as a blue colour line in Figure 5)
consists of 16 384 Sobol ′ points constructed from a bit-wise XOR of every
single point in the second replicate with v15 except for the 32 768th point
(= v14⊕ v15). The six direction numbers v15,1, . . . , v15,6 in vector v15 can cause
very limited changes and still retain the strong correlation pattern as from
the second replicate, and this applies to the remaining replicates as well.

The correlation relationship in the direction number matrix V highly affects the
calculations of the variance-based sensitivity analysis, and this determinism is
amplified through the use of the absolute error performance metric. For future
study, we aim to mathematically formulate the exact upper bound and lower
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bound of the first-order sensitivity index Si for specific numbers of samples
with the provided direction number matrix V for a simple linear function.
Then, based on the results of the linear function, we intend to branch out
to more types of functions. In addition, a more advanced direction number
matrix has been developed, with up to 21 201 dimensions [4] rather than
40 dimensions. The change of direction number causing different sensitivity
index behaviour is also worth investigating. By controlling the correlation
impact of different direction numbers for models with certain characteristics,
one can greatly increase the efficiency of utilising the Sobol ′ sequence in
particular, and the reliability of variance-based sensitivity analysis in general.
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Chapter 6

Comparing Methods of Randomising
Sobol’ Sequences for Improving
Uncertainty of Metrics in
Variance-Based Global Sensitivity
Estimation

Chapter 5 highlights the potentially troublesome sensitivity measures caused by
the Sobol’ sequence when used for producing Sobol’ indices. Chapter 6 proposes
a randomisation method of the Sobol’ sequence, called the Column Shift method,
to efficiently address this abnormal behaviour, thereby ensuring a higher level of
robustness of results from the variance-based Sobol’ method. Using replication for
assessing the confidence interval, and associated relative error, of both first-order
and total effect sensitivity indices, the Column Shift method successfully diminishes
the error spike issue of the Sobol’ sequence and the ensuing error in the calculation
of the variance-based Sobol’ method’s indices. It delivers a higher convergence rate
among other existing randomisation methods of the Sobol’ sequence tested through
various coefficient settings of the Sobol’ G-function. The algorithm for the Column
Shift method is provided, and the implemented library, named ColumnShiftMethod, is
available on GitHub with open access.

This paper is published as a research article, peer-reviewed by three anonymous
reviewers in Reliability Engineering and System Safety. The author acknowledges
the support of a scholarship provided by the Mathematical Sciences Institute and the
Hilda John Bequest of the Australian National University.
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A B S T R A C T

This paper introduces an alternative way of randomizing Sobol′ sequences, called the Column Shift method,
for reconstructing replicates to improve estimation of the uncertainty in sensitivity indices. The Column Shift
method provides reliable results when applied to variance-based sensitivity analysis of the V-function, with
much higher accuracy than commonly used randomization methods in most circumstances. It also addresses
the error spikes caused by determinism within the Sobol′ sequence. The Column Shift method is compared
with other popular randomization methods for the Sobol′ sequence, and it is shown to be the most consistent
of those tested. In addition, the inclusion of standard error in the mean of sensitivity indices in an analysis
of replicates provides a good indication of underestimation of errors in simulation results. The relationship
between the number of samples and replicates is also discussed.

1. Introduction

Good modelling practice is crucial in the modelling process as
it affects the quality and relevance of a model’s outcome. Scoping,
problem framing and model formulation, analysis and assessment of
options, and communication of model findings are basic steps of the
modelling process [1]. Indeed, quality assurance in the modelling
process not only helps in determining a model’s accuracy, credibility
and transparency, but it also helps end-users with recommendations
for future model development and can support decision-making on
the problem in question. Building models for addressing complex is-
sues such as environmental problems needs to consider the resources
available including the budget for the modelling exercise, the precise
quantities of interest in the model, the limitations of the model, and
the uncertainties in the results. Many papers provide good reviews of
modelling practice, such as [1–3].

Sensitivity analysis is an important step in good modelling practice,
as it is a study on how the uncertainty of model outputs can be
attributed to the influences of various input factors (parameters and ex-
ogenous input variables), as well as the impacts of interaction between
inputs [4]. To serve this purpose well, a reliable sampling method that
provides a good convergence rate and coverage of parameter space
is needed, and the Sobol′ sequence is a popular and frequently used
Quasi-Monte Carlo sequence for such studies.

In this paper, we examine some basic issues in using the Sobol′
sequence and its current randomization methods for sensitivity analysis

∗ Corresponding author.
E-mail address: xifu.sun@anu.edu.au (X. Sun).

to provide some insights into its practical use. Tarantola et al. [5] used
variance-based sensitivity analysis applied to the so-called V-function to
compare the efficiency of randomized Sobol′ Quasi-Monte Carlo design
and Latin Supercube sampling methods. Sun et al. [6] gave an initial
comparison of the efficiency of the random, Latin hypercube and Sobol′
sampling methods applied to the variance-based sensitivity analysis
method with two different total-effect estimators (Sobol′ 2007 [7] and
Jansen 1999 [8]). It was confirmed that the Sobol′ sequence produces
fewer errors in most circumstances, but a common issue existed in all
the above studies as the determinism of the Sobol′ sequence structure
may lead to occasional large errors in sensitivity indices of input
factors.

Inspired by these studies, we will discuss the current existing ran-
domization methods for the Sobol′ sequence to attempt resolving the
error spike issue, leading to an alternative way of randomizing the
Sobol′ sequence to construct replicates for sensitivity analysis as rec-
ommended in this paper. Large amplitude errors will greatly impact the
performance of sensitivity analysis, as inconsistent values can induce
modellers or end-users to mistakenly identify insensitive inputs as sensi-
tive or vice versa. This alternative approach requires a modest increase
in computational cost to produce the replicates, but is consistent and
reliable in reducing the variance of errors (i.e. the scatter in the index
values derived from sampling for inputs that have identical analytical
values).

https://doi.org/10.1016/j.ress.2021.107499
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The outline of this paper is as follows: Section 2 will provide a
brief introduction to the variance-based sensitivity analysis method;
Section 3 will present an overview of the test function and error
indicators used; Section 4 will cover existing randomization methods
for the Sobol′ sequence and what the issues are for our experiments;
Section 5 compares results between the original Sobol′ sequence and
randomized Sobol′ sequences in different case scenarios, and motivates
the purpose of using replicating model runs; Section 6 contains the
conclusions from the results and suggests future ways forward.

2. Variance-based sensitivity analysis

There is much literature regarding how one should estimate
variance-based indices [7–11]. In our paper, we will use the estimators
described by Tarantola et al. [5]. Here, we will briefly summarize the
idea of first-order and total-effect sensitivity indices based on variance
decomposition methods. We define a function 𝑓 (𝑋) as

𝑓 (𝑋) = 𝑓 (𝑋1, 𝑋2,… , 𝑋𝑛), (1)

where the domain is a n-dimensional unit cube

𝛺 = {𝑋| 0 ≤ 𝑋𝑖 ≤ 1, 𝑖 = 1… 𝑛}. (2)

Then we can write the decomposition of function 𝑓 as:

𝑓 = 𝑓0 +
𝑛
∑

𝑖=1
𝑓𝑖 +

∑∑

1≤𝑖<𝑗≤𝑛
𝑓𝑖𝑗 +⋯ + 𝑓12…𝑛, (3)

where 𝑓𝑖 = 𝑓𝑖(𝑋𝑖), 𝑓𝑖𝑗 = 𝑓𝑖𝑗 (𝑋𝑖, 𝑋𝑗 ) with 𝑖 and 𝑗 as indices, and all the 𝑓
terms in the expansion are uncorrelated. Then the decomposition form
of variance of 𝑓 (𝑋), 𝑉 (𝑓 ), is

𝑉 (𝑓 ) =
𝑛
∑

𝑖=1
𝑉𝑖 +

∑∑

1≤𝑖<𝑗≤𝑛
𝑉𝑖𝑗 +⋯ + 𝑉12…𝑛. (4)

Dividing by 𝑉 (𝑓 ) on both sides of above Eq. (3) yields

1 =
𝑛
∑

𝑖=1
𝑆𝑖 +

∑∑

1≤𝑖<𝑗≤𝑛
𝑆𝑖𝑗 +⋯ + 𝑆12…𝑛. (5)

The 𝑆𝑖 terms on the right hand side are known as the Sobol′ sensitivity
indices of the first-order, and they are defined as

𝑆𝑖 =
𝑉𝑖

𝑉 (𝑓 )
=

𝑉𝑋𝑖
(𝐸𝑋∼𝑖

(𝑓 |𝑋𝑖))
𝑉 (𝑓 )

. (6)

The notation 𝑋∼𝑖 denotes all 𝑋 variables except the 𝑖th variable.
It is fairly straightforward to obtain approximate forms of 𝑆𝑖 and

𝑆𝑇 𝑖, since only the definition of expected value, variance, and Monte
Carlo approximation are required. Detailed proofs of 𝑆𝑖 and 𝑆𝑇 𝑖 formu-
lations can be found in Homma and Saltelli [10] and Saltelli et al. [11].
The terms in the numerator [12,13] and denominator can be approxi-
mated by

𝑉𝑋𝑖
(𝐸𝑋∼𝑖

(𝑓 |𝑋𝑖)) ≈
1
𝑁

𝑁
∑

𝑗=1
𝑓 (𝐵)𝑗 (𝑓 (𝐴

(𝑖)
𝐵 )𝑗 − 𝑓 (𝐴)𝑗 ), (7)

and

𝑉 (𝑓 ) ≈ 1
𝑁

𝑁
∑

𝑗=1
(𝑓 (𝐴)𝑗 )2 −

1
𝑁

(
𝑁
∑

𝑗=1
𝑓 (𝐴)𝑗 )2. (8)

Similarly, the total-effects 𝑆𝑇 𝑖 are given by

𝑆𝑇 𝑖 =
𝐸𝑋∼𝑖

(𝑉𝑋𝑖
(𝑓 |𝑋∼𝑖))

𝑉 (𝑓 )
, (9)

where

𝐸𝑋∼𝑖
(𝑉𝑋𝑖

(𝑓 |𝑋∼𝑖)) ≈
1
2𝑁

𝑁
∑

𝑗=1
(𝑓 (𝐴)𝑗 − 𝑓 (𝐴(𝑖)

𝐵 )𝑗 )2 (10)

is the Jansen 1999 estimator [8].

Matrices 𝐴 and 𝐵 are two 𝑁 ×𝑘 sampling matrices generated by the
applied sampling method. 𝐴(𝑖)

𝐵 is a matrix where the 𝑖th column comes
from 𝐵, and the remainder of the matrix comes from 𝐴. Moreover, (𝐴)𝑗
denotes the 𝑗th row of matrix 𝐴. We follow the same idea of sampling
design in Section 3.2 of Tarantola et al. [5] but with different sampling
methods.

3. Test function and error indicators

We invoke the benchmark V-function used previously by Tarantola
et al. [5] for sensitivity analysis as our test function:

𝑌 = 𝑉 (𝑋1, 𝑋2,… , 𝑋𝑘, 𝑎1,… , 𝑎𝑘) =
𝑘
∏

𝑖=1
𝑣𝑖(𝑋𝑖, 𝑎𝑖) (11)

where

𝑣𝑖(𝑋𝑖, 𝑎𝑖) =
|4𝑋𝑖 − 2| + 𝑎𝑖

1 + 𝑎𝑖
. (12)

The sampling points are 𝑋𝑖, 𝑖 = 1… 𝑘, and these are obtained through
the sampling designs indicated in the next section. In addition, we use
coefficients 𝑎𝑖, 𝑖 = 1… 𝑘 to control whether the corresponding input is
a dominated input or not.

The V-function is an attempt to combine non-smooth and smooth
models, as there exists discontinuity in its derivatives. The dimension-
ality 𝑘 and coefficients 𝑎𝑖 greatly affect the nature of the V-function.
The magnitude of 𝑎𝑖 has negative correlation with the dependence of
𝑌 on 𝑋𝑖, as the lower 𝑎𝑖 means higher dependence. These relationships
can be used to ‘‘generate a wide spectrum of test cases of different levels
of complexity‘‘ [5].

We also employ the same types of coefficients and notations, and
the analytical values for the first-order and total-effect for all the types
can be analytically calculated [5,11]. To better understand the different
types of coefficients, we first introduce the interaction between input
factors and effective dimensions. Interaction represents the part of total
variance due to various inputs that cannot be explained by the sum
of the effects of these inputs. As the dimensions are increased, the
interaction will become slightly stronger in our cases. Caflish et al. [14]
initially proposed the idea of effective dimension, and effective dimen-
sions describe the number of important parameters in the model; the
truncation sense identifies the number of parameters that explains the
majority of model variance, and the superposition sense identifies the
orders of interactions.

We briefly summarize these coefficient types [4] as:

• Type A1-1 ∶ 𝑎1 = 𝑎2 = 0, 𝑎𝑖>2 = 6.52; its interactions between
inputs accounting for approximately 17% of the output variance.

• Type A2 ∶ 𝑎1 = ⋯ = 𝑎5 = 0, 𝑎𝑖>5 = 6.52; it has input interactions
contributing 49%. In addition, type A is designed to have low
effective dimensions in both superposition and truncation sense.

• Type B ∶ 𝑎𝑖 = 6.52, 𝑖 = 1,… , 𝑘; it has the weakest interaction
among all the types with approximately 3%, and its effective
dimension is small in the superposition sense but similar to 𝑘 in
the truncation sense.

• Type C ∶ 𝑎𝑖 = 0, 𝑖 = 1,… , 𝑘; it has the strongest interac-
tion of 80%, and its effective dimension is roughly 𝑘 in both
superposition and truncation sense.

Readers are referred to Sobol′ [9] for more details about the V-test
function and to Kucherenko et al. [4] for the classification of types of
coefficients and effective dimension. In addition, the analytical values
for V-function with the above coefficient types can be found in Section
1 of the supplementary file.

We employ the same sample sizes 𝑁 as in Tarantola et al. [5];
namely 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16 384, and
32 768. The test cases considered here comprise 10 and 19 dimensions
(number of input variables for each test). Each experiment is repeated
or replicated 100 times to obtain the mean (with standard error). To
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measure the performance of each sampling method, we use the mean
absolute error [5] as well as the relative mean absolute error defined
below.

From Tarantola et al. [5], the indicators AES (Absolute Error of
Sobol′ first-order sensitivity index for each parameter) and AEST (Ab-
solute Error of Sobol′ Total-effect sensitivity index of each parameter)
are denoted as the mean absolute error of each 𝑆𝑖 and each 𝑆𝑇 𝑖, and the
indicators MAES (Mean Absolute Error of Sobol′ first-order sensitivity
index for each parameter) and MAEST are the corresponding mean of
AES and AEST. AES is defined as

AES𝑖 =
1
𝑅

𝑅
∑

𝑟=1
|𝑆(𝑟)

𝑖 − �̄�𝑖|, (13)

and MAES as

MAES = 1
𝑅

1
𝑘

𝑘
∑

𝑖=1

𝑅
∑

𝑟=1
|𝑆(𝑟)

𝑖 − �̄�𝑖|, (14)

where �̄�𝑖 is the analytical value and 𝑆(𝑟)
𝑖 is the estimated solution. In

these formulas, 𝑖 represents the index, and 𝑅 is the total number of
replicates. The superscript 𝑟 indicates the replicate being used. The
errors for total sensitivity, AEST and MAEST, have exactly the same
forms as AES and MAES but with 𝑆𝑇 𝑖 replacing 𝑆𝑖 in their formulas.

In our experiments, we calculate the relative mean absolute error
of each 𝑆𝑖 and 𝑆𝑇 𝑖 value over all replicates and the corresponding
averages as well. The relative error can provide a better measure of
the index behaviour compared to the absolute error, since the error is
normalized with respect to the value of the index. The relative AES is
defined as

rAES𝑖 =
1
𝑅

𝑅
∑

𝑟=1

|𝑆(𝑟)
𝑖 − �̄�𝑖|

|�̄�𝑖|
, (15)

while the relative MAES is

rMAES = 1
𝑅

1
𝑘

𝑘
∑

𝑖=1

𝑅
∑

𝑟=1

|𝑆(𝑟)
𝑖 − �̄�𝑖|

|�̄�𝑖|
. (16)

The measurements rAEST and rMAEST for 𝑆𝑇 𝑖 are similar to those of
𝑆𝑖 respectively.

Furthermore, Tarantola et al. [5] used the idea of replication to
analyse the results, but reported only the average of all replicates. It is
reasonable to use the average, but it also comes with a limitation. The
average value does not reflect all the information in the data obtained
from the tests. To give an indication of the confidence in the average
values, we use the standard error of the mean (standard deviation
divided by

√

𝑅) for the error bar. In this study, we use 100 replicates.
The use of the standard error allows for easier comparison of the scatter
in the results for inputs that have the same sensitivity to the width of
the distributions in the replicates, allowing evaluation of the reliability
of estimation of the uncertainty/confidence bounds.

4. Randomizing the Sobol′ sequence

There have been many attempts to randomize Quasi-Monte Carlo
sequences. Niederreiter et al. [15] have pointed out several issues with
Quasi-Monte Carlo sequences, and have summarized past attempts on
the randomization [16,17]. Cranley et al. [18] initiated the idea of a
random shift modulo 1 for the standard Lattice rule, then Tuffin [19]
adapted the random shift modulo 1 to low-discrepancy sequences.
Another popular randomization method is the Scramble method, first
proposed by Owen [20,21], and later simplified by Matousek [22].

Shu [23] discussed the integration errors of the Random Shift and
Scramble methods, and concluded that the errors are not consistent
even for simple functions. This conclusion also motivates us to compare
the efficiency of different randomization methods applied to estimating
the sensitivity indices for the V-function. We will not go into the
details of these randomization methods, but we will directly show

the simulation results obtained by using these methods in the next
section. The library for generating the Sobol′ sequence is provided by
Chaospy [24], and the code for the Owen’s Scramble method [25,26]
is provided by the UQToolbox python package [27].

4.1. Simulation results on existing randomization methods

According to a review of the literature, the most used randomization
methods for Quasi-Monte Carlo sequences are the Random Shift and
Scramble methods. Initial results applying a set of Sobol′ sequences
produced through sub-setting yielded occasional large error values
for the first order and total indices for inputs that have the same
analytic sensitivity index values. Tarantola et al. [5] also found large
error values when using the random shifted Sobol′ sequence. It seems
that Sobol′ sequences can occasionally have poor projections to lower
dimensions resulting in spikes in the sensitivity indices; however, more
study is needed to confirm this assumption in the future. In addition,
our investigation of the standard error in the mean of the replicates
shows that the large error values for both the Sobol′ and random
shifted Sobol′ sequences are consistent across replicates with standard
error much smaller than the magnitude of the large error values. This
indicates that the Random Shift method does not address the lack of
reliable error estimation in the Sobol′ sequence.

To investigate the issue of reliable error estimation, we compared
the results produced by replication experiments using two approaches
applied to the V-function. The first approach is to generate a single
Sobol′ sequence for sample size 𝑁 and the 𝑅 replicates are created us-
ing the randomization technique described above. The second approach
involves generating 𝑅 different Sobol′ sequences (each with sample
size 𝑁) which are then randomized. According to the test results, the
first approach provides significantly less error in most of the cases (by
testing with several different seeds); therefore, the subsequent analysis
uses that approach.

As we can see from Fig. 1, the results of the Scramble method
appear to be much worse than the other two, and the results of the
Random Shift method is comparable to the original Sobol′ sequence.
These two randomization methods do not appear to help in resolving
the existing issues associated with the Sobol′ sequence. On the one
hand, the Scramble method does provide low variance of errors, which
partially addresses the determinism within the Sobol′ sequence, but the
downside is that it yields much higher errors for most input factors.
On the other hand, the Random Shift method produces approximately
the same magnitude of errors, but it still does not address the issue of
error spikes. In terms of computational load, the Scramble method takes
a much longer time (405.6 s for 10 dimensions at 32 768 samples) to
generate one perturbed sequence, while the Random Shift method takes
less than a second.

In order to reduce computational load, address determinism be-
tween replicates, and yield relatively fewer/smaller errors, an alterna-
tive way of randomizing a Sobol′ sequence is developed. To reduce the
sampling time, a single Sobol′ sequence is generated for each sample
size and is used to produce new replicates by randomly reordering the
columns of the generating matrices, which we call the Column Shift
method. Before explaining the Column Shift method, we define the
permutation transformation as in [28]:

Definition 1. A permutation 𝜋 of k elements is a one-to-one and onto
function having the set {1, 2, . . . k} as its domain and codomain.

Simply speaking, a permutation is an invertible bijection transfor-
mation of a finite set into itself. With the definition of permutation, we
can define the Column Shift method as below.

Column Shift. Let 𝑋 = {𝑋𝑖}𝑁𝑖=1 be the point sets with the domain
𝑋𝑖 ∈ [0, 1]𝑘. We say 𝑋′ is a replicate of 𝑋 if 𝑋′ = {𝜋(𝑋𝑖)}𝑁𝑖=1, where
𝜋(𝑋𝑖) ≠ 𝑋𝑖.
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Fig. 1. Relative absolute error plots of comparing Scramble, Random Shift, and Sobol′ at 32 768 samples for Type A1-1 at 10 dimensions and 19 dimensions.

This approach can greatly alleviate the influence of the determinism
built into the Sobol′ sequence. In our case, we use 10 parameters and
19 parameters, and each case can produce up to 20! or 38! different
replicates, respectively, using the method described here; however,
duplication may exist depending on the type of estimator used for
sensitivity analysis, so it is also a good idea to check the availability
of the replicate. For the case of V-function, we made sure that none
of the pairs of replicates has the same sample matrices 𝐴 and 𝐵 for
considering the characteristics of Type B and C coefficients. The time
for shuffling the columns takes a few seconds, which is a considerable
improvement compared to the other ways of generating replicates,
especially the Scramble method, where time taken is doubled as the
sample size is doubled. By viewing the column shifted sequences in
terms of vectors, the column shift method only relabels the dimensions,
so the property of discrepancy [29] of the original sequence does not
change; thus, the column shifted sequences are also low-discrepancy
sequences and provide different model run results and, as a result,
different sequences. A simple pseudo-code to implement the Column
Shift algorithm can be seen from below:
Algorithm 1: Column Shift algorithm

Set number of samples 𝑁 , number of dimensions 𝑘;
Generate a Sobol′ sequence 𝑋 with size 𝑁 × 2𝑘;
𝐷 = {1, 2, 3,… , 2𝑘};
Stopping Criteria = False;
while Stopping Criteria = False do

𝐷′ = Permutation(𝐷);
𝑋′ = reorder each row of 𝑋 according to 𝐷′;
if 𝑋′ is available and 𝑋′ ≠ 𝑋 then

𝐴 = 𝑋′[:,1:𝑘] and 𝐵 = 𝑋′[:,𝑘+1:2𝑘];
𝑆𝑖, 𝑆𝑇 𝑖 = Variance-based Sobol′ method(𝐴, 𝐵, 𝑁 ,
coefficients 𝑎, function 𝑓 );
Stopping Criteria = True;

end
end

In this paper, three methods are considered to act as replicates:
Generating a set of Sobol′ sequences by sub-setting a long Sobol′
sequence (labelled Sobol′ in the subsequent text and plots), using the
Random Shift method, and the Column Shift method for generating the
replicates from a single Sobol′ sequence. Each method generates the
same number of samples. Therefore, the relative cost of the methods
depends only on generating the samples, not on the number of times
the model is run.

5. Simulation results

Here we have used the same set of coefficient values as in
Kucherenko et al. [4]. Type A is the case where the inputs can have
different analytical sensitivity index values (two groups corresponding

to 𝑎𝑖 = 0 or 6.52). Type B and C have only one analytical sensitivity
index value (either 𝑎𝑖 = 0 or 6.52), so the relative absolute error does
not constitute a significant difference for these cases. In this section,
we concentrate on the properties of the Column Shift method.

5.1. The comparison of different randomization methods

The results using the Column Shift method have been tested and
compared with the results from the other randomization methods.
According to the coefficient types and error indicators defined in the
earlier section, the analysis shown here is based on 16 different sets
of plots. For brevity, this subsection will only represent the best,
intermediate, and the worst-case results, these acting as representative.
The remaining results can be found in the supplementary document. As
demonstrated in the previous section, the Scramble method appears to
behave worst for this type of experiment, so it will not be included in
the comparison. In this subsection, we demonstrate how the Column
Shift method addresses the issue of error spikes and results in reduced
overall error and improved estimate of the uncertainty. By testing
sample sizes from 16 to 32 768, we confirmed that the sensitivity
measures vary significantly with sample size. Using the column shift
method as an example, the relative absolute error at 10 dimensions can
be reduced by approximately 6.5 times in going from 4096 samples to
32 768 samples, and it is approximately 3 times the difference in going
from 8192 samples to 32 768 samples. The difference in error is slightly
reduced as the dimensions are increased from 10 to 19, but there is
still a 4 times difference between 4096 and 32 768 samples. The results
for 4096 samples and 8192 samples can be seen from Figure 18 of the
supplementary file. To better illustrate the comparison results between
different methods, every figure is a relative absolute error plot at the
largest sample size of 32 768, with the average error for parameters that
have the same sensitivity shown by a line in the corresponding shade
of grey.

5.1.1. Best case scenario
The best-case scenario occurs in type B with 10 dimensions and C

with both 10 and 19 dimensions, and they can be seen in Fig. 2. Recall
in these cases, the sensitivity of inputs for either type B or C are all
equal, so the scatter in the values represents the uncertainty in the
estimated index values.

It is apparent that the Column Shift method (black circles and
solid line) provides the lowest error (shown by the line) for all input
variables, and it also yields the least variance in its errors (shown by the
error bars). As seen in Fig. 2, the Sobol′ method has significant error
spikes where the errors of some input variables are much larger than
the rest (even for the same sensitivity). The Random Shift method does
not resolve this issue, as we can see from looking at the input 10 in the
top right plot and inputs 7 and 12 in the bottom plot of Fig. 2. Even
though the Random Shift method does bring the average error across
all inputs slightly lower in the 10 dimension type B case, it still has
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Fig. 2. Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′ replicates with 32 768 samples. The top left plot is for Type B with rAES at 10
dimensions, the top right is for Type C with rAES at 10 dimensions, and the bottom plot is for Type C with rAES at 19 dimensions. The lines indicate the average error of
sensitivity indices of inputs.

Fig. 3. Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′ at 32 768 samples. The top left plot is for Type A1-1 with rAEST at 10 dimensions,
the top right is for Type A2 with rAES at 10 dimensions, and the bottom plot is for Type A1-1 with rAEST at 19 dimensions. The lines indicate the average error of sensitivity
indices of inputs with the same analytical values.
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Fig. 4. Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′ at 32 768 samples. The top plot is for Type A2 with rAEST at 19 dimensions, and the
bottom is for Type B with rAEST at 19 dimensions. The lines indicate the average error of sensitivity indices of inputs with the same analytical values.

the issue of error spikes for all cases seen in Fig. 2, and this introduces
uncertainty into the results.

For the Type B case, the Column Shift method reduces the average
error of Sobol′ from 0.0031 to 0.0017, but Random Shift only gets the
average error down to 0.0022. In addition, the highest error of Sobol′
is reduced from 0.0046 to 0.0020 (reduction of 56.5%) when using
the Column Shift method, and the variance of the errors is reduced
by 97.7%. For the two Type C cases, the Column Shift method lowers
the average error of Sobol′ by 0.05 (28.9%) for 10 dimensions and
0.54 (46.6%) for 19 dimensions, and thus represents a significant im-
provement in terms of accuracy. The variance of errors is also reduced
by 82.9% and 94.4%, respectively. The Column Shift method not only
produces much lower errors but also eliminates the concern of error
spikes in the above cases.

5.1.2. Intermediate case scenario
The cases shown in Figs. 3 and 4 are all error plots of the total-

effect sensitivity indices. The type A results show a clear difference in
the rAES values for inputs with different coefficient values, with a less
significant difference for the rAEST values. The results of both Sobol′
and Random Shift methods introduce several error spikes on different
input variables. The Column Shift method, however, does not have any
error spikes, and all of the errors are relatively close to its own average
line (when compared to the size of the error bars). As indicated in the
figures, the Random Shift method introduces higher errors on certain
input variables. For example, in the Type A1-1 with respect to rAEST
and the 10 dimensions case at the top left of Fig. 3, the highest error
of the Random Shift method is 0.0053, but the highest error of Sobol′
is only 0.0041.

In addition to eliminating error spikes, the Column Shift method
provides lower error than the Random Shift among all the cases, and
its average error is much closer to the error of Sobol′ than Random

Shift. The error bars are fairly conservative for the Sobol′ and Random
Shift methods, and they give unrealistically small estimated variance
for errors; however, the Column Shift method is much more consistent
in its variance of errors across all inputs. If we consider the variance
difference separately based on the analytical values, the Column Shift
method reduces the variance of errors by 82.7% as seen in the top left
case of Fig. 3. Such a major reduction can also be seen in the top right
case of Fig. 3, where the variance difference is at 72.1% for the first five
inputs and 98.5% for the rest. The variance of errors of inputs 3–19 is
reduced by 97.2% in the bottom case of Fig. 3 between the Column
Shift and Sobol′.

For the top case of Fig. 4, the Column Shift method improves the
variance of errors by 89.7% for the first five inputs and 97.1% for
the remaining inputs. On the other hand, the Random Shift method
increases the variance of errors by a large amount, especially in the
bottom case of Fig. 4, which is Type B with rAEST at 19 dimensions,
where the variance is increased by 100.4%; however, the Column Shift
method improves the variance by 85.2%.

It appears that the errors tend to be much less with the coefficient
at 0 compared to being at 6.52; see the first few inputs of Fig. 3.
This is due to the over-correcting induced by normalization when
implementing relative error for the first-order index. The error of the
sensitivity index for each input is scaled by its analytical sensitivity
index, which varies according to the value of its coefficient. Thus, the
same magnitude of error will appear differently for inputs with different
analytical sensitivity index.

5.1.3. Worst case scenario
Fig. 5 shows the worst case results for the Column Shift method from

all the experiments. These are significantly worse than results for the
Random Shift and Sobol′ methods. The three error plots depict rAES of
type A1-1 with 19 dimensions, rAEST of type A2 with 10 dimensions,
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Fig. 5. Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′ at 32 768 samples. The top one is Type A2 with rAEST at 10 dimensions, the middle
one is Type A1-1 with rAES at 19 dimensions, and the bottom one is Type C with rAEST at 19 dimensions. The lines indicate the average error of sensitivity indices of inputs
with the same analytical value.

and rAEST of type C with 19 dimensions. Out of 16 different experi-
ments, these are the only cases where the Column Shift method shows
any sign of error spikes or under-estimation of the uncertainty (error
bars). Consider the middle case in Fig. 5. The Column Shift method still
reduces the variance of errors from input 3 to input 19 by 16.5%, but
Random Shift increases it by 35.9%. The variances of errors for Sobol′
and Column Shift methods only have a 0.6% difference in the bottom
case of Fig. 5. The Random Shift is considered to be better than the
Column Shift method in the bottom two cases; however, the Column
Shift method still improves the variance of errors by 36.8% for the first
five inputs and 38.1% for the other five inputs in the top case of Fig. 5.

To address this rare issue of error spikes from the Column Shift
method, sigma clipping is a useful way to eliminate such outliers, where
the clipping here is applied to values where the difference from the
mean is three times larger than the standard deviation. Fig. 6 is the
result of applying sigma clipping on all three methods of the case,

as seen in the bottom of Fig. 5. It appears that sigma clipping can
complement the Column Shift method. Sigma clipping has limited effect
on the under-estimation of the uncertainty (small size of error bars), as
it only removes values that are considered as outliers. Therefore, sigma
clipping cannot directly solve the error spikes of Sobol′ or Random
Shift method, since none of the values that caused the spikes can be
considered as outliers according to their standard deviations.

The errors of the Column Shift method are still commensurate
with the Random Shift and original Sobol′ methods, especially for 19
dimensions. Compared to the other two methods, the Column Shift
method provides error bars that are comparable in size to the scatter
in the values for inputs with identical sensitivity. From all of the
experiments, it is apparent that the Column Shift method has much
better performance for the first-order sensitivity index calculations
than for the total-effect index, as all of the best case scenarios and a
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Fig. 6. Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′ at 32 768 samples. This is Type C with rAEST at 19 dimensions fixed by sigma clipping.
The line indicates the average error of sensitivity indices of inputs with the same analytical value.

majority of intermediate case scenarios correspond to the first-order
index values.

In general, the Column Shift method improves the results most sig-
nificantly when the effective dimension is similar to 𝑘 in the truncation
sense, which indicates that the number of parameters causes the most
variance of model output; however, the results of the Column Shift
method under Type C exist in both the best case scenario and the worst
case scenario, which indicates that a high effective dimension in the
superposition sense may make the measurement less reliable.

5.2. The results by different number of replicates and sampling size

Another consideration in designing an SA is the trade-off between
sample size and number of replicates. The simplest approach is to use
the maximum sample size possible in a single run (i.e. no replicates)
given the available resources (time, computing capacity); however,
this is not necessarily the optimal approach. Fig. 7 shows two error
plots of the relationship between sample size and average error of
sensitivity indices across all inputs for two of the scenarios considered
in this paper. While in general, the single run results improve in error
at the same rate as the cases when 10 and 100 replicates are used,
there is considerable noise in the single run results indicating the high
uncertainty in the individual values. This is largest at small sample
sizes, but can still be an issue at larger sample sizes (e.g. in the case
of estimating rMAES for Type A2 with 19 dimensions shows a slight
increase in the error between 16 384 and 32 768 samples). As noted
earlier, this scatter in the single sample results is typically larger than
the estimated uncertainty obtained using standard methods, meaning
that users can have a false sense of confidence in their results. The
convergence rate in all cases is approximately quadratic, meaning the
error for a single large sample of size 𝑁 and a set of 𝑅 replicates
of size 𝑁∕𝑅 will be comparable. The difference is that if a suitable
method for generating the replicates is used, the confidence in the
estimated uncertainty will be considerably higher when using replicates
compared to a single large sample.

Using the results from 100 replicates as a reference, 10 replicates
yield less than a 10% difference in terms of the mean of relative
absolute errors, and this percentage is even less, at 5%, for a majority
of the cases. As a result, it is suggested that the Sobol′ method (and
SA methods in general) should be applied with a modest number
of replicates (about 10 replicates seems to be preferred here) when
estimating confidence in the results. If resources are not a concern,
then a sequential approach is recommended. Such an approach could
keep the number of replicates as 10 and increase the sample size from
a recommended number based on the number of model parameters,
model characteristics, and quantity of interest etc., and evaluated for
accuracy in the estimated index values. This can then be extrapolated

assuming a quadratic convergence to obtain a sample size suitable to
attain an acceptable level of accuracy.

In addition, for comparing different settings under a comparable
cost, we tested Monte Carlo sampling with 3 276 800 samples, and the
results can be seen in Fig. 8. The errors from the other three methods
are still shown for 32 768 samples with 100 replicates. As we can see,
Monte Carlo sampling yields a very high variance, and this provides low
confidence to the modellers as the results from Monte Carlo sampling
are unreliable. Throughout the literature, many papers also have em-
phasized the importance of using a dedicated sampling method. Andres
states that ‘‘sampling methods clearly have a significant role in SA. By
choosing the right sampling method one can increase the efficiency
with which one can detect and investigate parameter influences’’ [30],
whilst Qian claims that ‘‘random sampling may generate clustered
samples which reduces the reliability of regions further away from the
cluster. Instead, Quasi-random sequences provide faster convergence
and stable estimations’’ [31].

There are several methods for estimating the confidence in SA
indices, and bootstrapping [32] is the one most commonly used. As
indicated in [33], the bootstrap-t method [34] provides the most re-
liable coverage among nine different confidence interval methods.
Both bootstrapping and replication can be used to generate confidence
intervals, but they tend to offer sensitivity measures from different
perspectives. Bootstrapping is cheap but relies on the smoothness and
symmetry of the bootstrap distribution; however, solutions like bias-
correction and accelerated bootstrap intervals [35] can be used to
help handle skewness or multimodality. In comparison, replication
may be computationally expensive, but it provides more information
in terms of smoothing error curves and coverage of parameter space.
When dealing with a high dimensional model, 32 768 is considered
a small sample size. For example, when sampling a 10 parameter
model, 32 768 samples corresponds to the same sampling density as
a gridded sampling with just under 3 samples per dimension. With
smaller sample sizes bootstrapping may be problematic, and replication
can be a good alternative. There is still an ongoing discussion in regard
to the selection and development of methods for evaluating confidence
intervals, and it can be expected that there will in the future be a
more general bootstrap-like approach [33] or a well-developed new
approach [36] which succeed for a variety of model purposes and
sampling strategies.

6. Conclusion

For variance-based sensitivity analysis, we have compared the rel-
ative absolute errors from sampling with the Sobol′ sequence and
randomized Sobol′ sequence methods for the test case of the benchmark
V-function. A similar test was reported for the random shifted Sobol′
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Fig. 7. Mean of relative absolute error plots, comparing a single model run, replicating model runs 10 times, and replicating model runs 100 times. The left side represents Type
A2 with rMAES at 19 dimensions, and the right side Type B with rMAEST at 10 dimensions. Sobol′ sequence with the Column Shift method is used.

Fig. 8. Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′ at 32 768 samples with 100 replicates, and Monte Carlo sampling at 3 276 800 samples.
This is Type B with rAES at 19 dimensions. Monte Carlo sampling is indicated by the square label, and a high variance of it can be observed.

sequence and Latin Supercube in Tarantola et al. [5]. Here we have
modified the original test to enhance the amount of information gained
from the test results. Relative measures are used here as opposed to
absolute measures, and the standard error in the mean is calculated
for the analysis of replicates, and this provides a robust measure of
the confidence of the replicate estimates. However, this leads to the
conclusion that estimating the confidence bounds using replicates of a
Sobol′ sequence tends to result in an underestimation of the confidence
bounds coupled with large error spikes in the results. Indeed, none of
the existing randomization methods can address this issue properly.
An easy to use and computationally-efficient randomization algorithm
called the Column Shift method is recommended for future studies.

The Column Shift method is found to be the most consistent of
the methods investigated here for reducing the variance of errors
in Sobol′ sensitivity calculations, and it produces relatively smaller
errors in most scenarios. Greater confidence in error estimates provides
more confidence in index values, and this greatly helps modellers and
end-users to make reliable decisions. Replicating model samples is an
efficient way to gain the benefits of increasing the number of samples,
as it smooths the error curves and helps to obviate poor results obtained
by simply increasing the sample size without replication. In accordance
with the available computer resources, replicates should be considered
as an option to build confidence in the results and estimate the variance
of errors. It is recommended that a sequential approach employing
replication should be considered for future SA studies, starting at a
modest sample size and increasing the sample size to obtain the desired
level of confidence in the estimated index values.

To obtain reliable confidence intervals for Sobol′ indices, either
Owen’s technique [33] or Rugama and Gilquin’s approach [37] pro-
vides an alternative to the Column Shift method. The idea of Owen

evaluates the confidence intervals by using the bootstrap-t method
on the Sobol′ indices estimated from a certain number of groups of
independent and identically distributed replicated Sobol′ sequences.
Similarly, Rugama and Gilquin proposed an error bound estimation
procedure but in a sequential way using a user chosen tolerance. These
two approaches deliver valuable insight into the calculation of sound
confidence intervals, and it is essential to provide a comprehensive
comparison of the Column Shift method with these two approaches in
future studies.

The results of comparing randomization methods for the Sobol′
sequence have been summarized for the V-function only. While it is
expected that the Column shift method of generating replicates when
calculating the Sobol′ indices should perform well for other test func-
tions and models generally, this will need to be confirmed through
further research.
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Chapter 7

Conclusions

The overall level of assurance, or technical trustworthiness, of a global sensitivity
analysis (GSA) procedure applied to a modelling problem relies on the robustness of
model results to choices made in regard to various so-called impact factors which
we have categorised into five classes. Such consideration would minimally involve
transparent justification of individual choices made in the GSA exercise but, wherever
feasible, assessment of the impacts on results of plausible alternative choices. Satis-
factory convergence of GSA measures, however, play a key role in contributing to the
level of assurance, and hence the ultimate effectiveness of the GSA can be enhanced
if choices can be made to achieve that convergence.

The three aims of the thesis contribute to addressing the need to enhance the ef-
fectiveness of GSA exercises, especially when computational budget is restrictive.
Prime impact factors on the results of a GSA procedure are investigated using well-
established test functions.

1. The outcomes of the thesis have the potential to make GSA exercises more
effective by addressing how convergence can be monitored and assessed in
comparison to standard methods.

By monitoring convergence, researchers are able to identify the threshold of when
to stop investing resources and obtain desired sensitivity measures. In Chapter 2,
we concluded that convergence monitoring is only part of convergence assessment,
and the whole process of GSA application should be regarded as two procedures:
convergence rate improvement and convergence assessment. In the same chapter,
the available methods for assessing convergence rates for different purposes were
reviewed and discussed. In regard to ranking in GSA, four ranking performance
measures were elaborated and compared in Chapter 4, and the statranking and “Re-
liability” criteria were found to complement one another and provide the most
information regarding the assessment of convergence. By comparing the efficiency
of various sampling methods, GSA methods and their algorithm settings, the conver-
gence rate of errors in sensitivity measures was used as an indicator of evaluating if a
specific selection is relatively computationally efficient compared to other selections.
With the help of this convergence rate, we concluded that the Sobol’ sequence and
Latin Hypercube sampling are more computationally efficient than random (Monte
Carlo) sampling for calculating Sobol’ indices (Chapter 3), that activity scoring based
on the Active Subspace concept can be more computationally efficient than the So-
bol’ and Morris methods under various cases (Chapter 4), and that the Column



Chapter 7. Conclusions 136

Shift method is more computationally efficient in reducing errors in Sobol’ indices
compared to other randomisation methods (Chapter 6).

Going beyond consideration of errors, the confidence interval in the output of a
GSA exercise can be considered an essential component in improving the monitoring
of convergence. In Chapter 6, replication was employed to smooth error curves
and avoid poor results from any single model run. The mean across replicates of
the standard error of each replicate was able to provide a robust measure of the
confidence interval in helping to identify the abnormally large error of the Sobol’
sequence. Additionally, in Chapter 4, the standard deviation of replication was used
to measure the confidence interval in comparison to the bootstrap resamples. It
was shown that the bootstrap has the potential to suffer a loss in convergence rate
compared to replication when the Sobol’ sequence is used as the sampling method.

2. The outcomes of the thesis have the potential to make GSA exercises more
effective by analysing and improving sampling methods that provide a high
convergence rate with low error in sensitivity measures.

An efficient sampling method should provide a faster convergence than random
sampling, good coverage of the parameter space, and low errors in the resulting sens-
itivity measures. From Chapter 2, we concluded that quasi-Monte Carlo sampling
methods provide better performance than random sampling in terms of fewer clusters
or voids in the parameter space, and that they generally give a higher convergence
rate in approaching the desired sensitivity measures. Among quasi-Monte Carlo
sampling methods, the Sobol’ sequence and Latin Hypercube sampling are com-
monly used in the literature. Indeed, we further confirmed the superiority of the
Sobol’ sequence and Latin Hypercube to random sampling in Chapter 3 in showing
the difference between estimated and analytical sensitivity measures of the Sobol’
method to be smaller under the same computational cost. We concluded, at least
when testing with the Sobol’ G-function, that the Sobol’ sequence is suitable for
relatively large samples. This is because the estimated Sobol’ indices using the Sobol’
sequence produced smaller errors than using Latin Hypercube with 256 samples or
more, but the opposite is true for less than 256 samples.

In Chapter 4 the superiority of the Sobol’ sequence compared to random sampling
was also confirmed in the calculation of activity scores using the Active Subspace
approach. Although an efficient and relatively fast converging sampling method, the
Sobol’ sequence was found to produce abnormally large errors in the calculation of
indices when using the variance-based Sobol’ method. By using an absolute error
performance metric, this was identified to be the amplified effect of the determinism
constructed inside the direction number matrix for the Sobol’ sequence in Chapter 5.
In seeking a more consistent randomisation method for reducing the variance of er-
rors when using the Sobol’ sequence in applying the Sobol’ method, the Column Shift
method was proposed in Chapter 6. It addresses the abnormally large errors arising
from using the Sobol’ sequence. The column shifted Sobol’ sequence was found
to provide the lowest error in general compared to other existing randomisation
methods while keeping the low-discrepancy properties of the Sobol’ sequence.

3. The outcomes of the thesis have the potential to make GSA exercises more
effective by analysing and comparing choices in GSA methods, including their
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algorithm settings.

More efficient GSA methods should have relatively less cost for obtaining the sensit-
ivity measures of interest; the specific algorithm and their settings being used should
provide a relatively high convergence rate. In Chapter 3, two estimators for the
total-effect sensitivity index of the commonly-used variance-based Sobol’ method
were compared, with the Jansen1999 estimator found to provide a higher conver-
gence rate for a similar accuracy than the Sobol’2007. However, the Sobol’ method in
general is not considered computationally efficient, and the Morris method tends to
be used as an alternative for parameter ranking. In Chapter 4, the activity scores of
the Active subspace approach gave promising results in terms of efficiency compared
to the variance-based Sobol’ and even the Morris method. In employing eight test
functions with wide-ranging characteristics, the activity score provided comparable
ranking results with much less computational cost compared to the two reference
GSA methods in most cases. On the other hand, activity scoring provides different
information than the two reference methods in cases like the Friedman function.
Additionally, three gradient approximation methods for generating activity scores
were implemented and compared, and we concluded that the quality and accuracy
of the gradient approximation method highly impact the performance of activity
scores.

Overall, the thesis raises the three vital elements in improving the effectiveness of
a GSA exercise, especially for computationally expensive models. Firstly, it has
endeavoured to contribute holistically to shaping the factors influencing robustness
in GSA results. Secondly, it has proposed a new algorithmic solution for addressing
error spike issues in the Sobol’ sequence. Thirdly, it has presented a comprehensive,
state-of-the-art benchmarking exercise across several well-established test functions
and three methods with various algorithmic settings, nominally the promising Active
Subspace approach, the Morris method, and the variance-based Sobol’ method.

4. Future research

4.1 Extend the explorations in the thesis around effectiveness to environmental
models, and consider the effects of errors in inputs and outputs on accuracy and
convergence of sensitivity measures

The thesis focused on improving the effectiveness of GSA methods based on test
functions with analytical results. The computational analyses from this thesis warrant
being applied to environmental models for further evaluation and confirmation, es-
pecially in regard to the results from Chapters 3-5. Because we were dealing with test
functions in the thesis, errors in the inputs and outputs were not considered. Indeed,
the impact of errors in the inputs and outputs is rarely considered in GSA applica-
tions. In future work of applying the overall approach of the thesis to environmental
models, the errors in the inputs and outputs should be recognised and appropriately
represented, and their effects on the outcomes in general, and convergence in particu-
lar, of GSA exercises be evaluated. In addition to the consideration of errors in inputs
and outputs, it is also valuable to investigate the SA related information provided by
comparing prior and posterior parameter distributions (e.g., in a Bayesian approach).
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4.2 Focus on improving the effectiveness of GSA applications through the study of
setting an appropriate quantity of interest

GSA exercises can be made more effective through careful consideration of how a
model’s behaviour is assessed. This is achieved through use of a “quantity of interest”
that is designed to give as good a measure as possible of the model performance
relative to the modelling purpose and the uncertainty in the observed and modelled
values. However, the importance of the quantity of interest is rarely linked with
efficiency in undertaking a GSA exercise. Therefore, there is potential for significant
improvement in the effectiveness of GSA exercises through exploration of the design
of the quantities of interest being used. Furthermore, insufficient consideration
of model performance may lead to wasting computational resources on irrelevant
parameter space or incorrectly identified sensitivity indices.

4.3 Investigate multi-step GSA approaches

Undertaking GSA exercises through adoption of multi-methods could usefully be
an alternative approach to the typical one of relying on a single GSA method. And
the majority of existing two-step GSA approaches rely on screening methods first,
such as the Morris method, then a variance-based GSA, such as Sobol’ method
or extended FAST. In Chapter 4, the Active Subspace approach was benchmarked
against two reference GSA methods and showed promising results, and it has the
potential to be viewed as one of the steps in a multi-step GSA approach. For the
Active Subspace approach, it is possible to link principal component analysis or
singular value decomposition for future research direction. Furthermore, it seems
a valuable subject to investigate as to how many different GSA methods could be
involved in a multi-step approach and in what circumstances, and what different
combinations of involved GSA methods could work well. In the fields outside of SA,
the multi-method strategies have been well established, such as genetic algorithms
for model optimisation, and the development of multi-method strategies for GSA
could learn from those fields.

4.4 Study the combination of emulation and sensitivity analysis

As mentioned in Chapters 1 and 2, emulation has received increasing attention in
the field of sensitivity analysis in recent years. As it relies on an adaptive approach
for reproducing a model’s response surface, emulation with post-processing has the
potential to be more efficient than a direct GSA method by reducing model runtime
through simplification and dimension reduction. Future research, especially for
models with long runtimes, might usefully focus on a direct comparison between
direct GSA methods like those studied in the thesis and the potential of emulation,
with its inherent capacity for GSA, for improving GSA effectiveness. This would also
aim to clarify the conditions where emulation could be more feasible to reduce model
runtime compared to applying GSA directly on the original model. In addition,
the conditions around building emulation with satisfactory accuracy should also be
investigated, and how well the response surfaced built by emulation can be fitted in
different ways, such as via cross-validation on different sample sets.

4.5 Enhance the transparency of GSA exercises and convergence with a template
justifying choices made
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The impact factors on a GSA procedure and in particular the convergence in a GSA
exercise were addressed comprehensively in Chapter 2, and considerations around
the primary factors were expanded upon throughout the following chapters. A
way forward for documenting all the influencing decisions from a GSA exercise
would be to build a template listing decisions in the workflow of the GSA procedure
that can be filled in for a given GSA exercise. Alternatively, the modellers are
highly recommended to publish the workflow of their modelling study with the
study results. Completing such a GSA decision template would entail justifying
decision choices made in applying the procedure in an exercise. Any template would
contribute to good practice, enhancing the transparency of assessing robustness.

4.6 Investigate time-varying GSA methods

It is often the case that complex models like environmental models cannot capture the
full relationship between input and output; for any given model that relationship may
well change through time, for example, through the nature of its response to different
climate forcings. Time-varying sensitivity analysis can play a role here in capturing
the time-varying sensitivity of model output to input parameter variations, which can
be instrumental for understanding system behaviour and positing improved model
structures. This would require refining and improving extraction of statistics and
data from moving sub-period windows. Time-varying GSA can be performed with
minimal computational cost by extracting statistics from sub-periods of each model
run. This means a slight increase to the model runtime due to the extra statistics that
are needed as well as extra computational time for the additional GSA but would
not require more model runs. The alternative of storing all the model outputs for all
samples would also work but may lead to issues with data storage and time taken to
write the files.

4.7 Use of multiple SA methods

Another approach that could be beneficial is to use multiple, complementary SA
methods to get a more complete view of model sensitivity. This could be done effi-
ciently if the SA methods that are used can make use of the same model evaluations,
avoiding the need for additional model runs.
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1. Ranking Heat Map for Modified Sobol′ G-Function G1 - G4 coefficients
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Figure 1: The ranking heat map for the modified Sobol′ G-function with G1 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right.
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Figure 2: The ranking heat map for the modified Sobol′ G-function with G2 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right.
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Figure 3: The ranking heat map for the modified Sobol′ G-function with G3 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right.
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Figure 4: The ranking heat map for the modified Sobol′ G-function with G4 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right.
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2. Ranking Heat Map of Replication Results
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Figure 5: The ranking heat map for the Ishigami-Homma function, where the y-axis represents the model parameters, the
bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of model evaluations for the
ranking result of each column. The rightmost columns provide the analytical sensitivity measures from each method. The
annotated number in each cell indicates the rank of this model parameter in its column. The colour of each cell indicates
the magnitude of the corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 6: The ranking heat map for the Sobol′ G-function, where the y-axis represents the model parameters, the bottom
x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of model evaluations for the ranking
result of each column. The rightmost columns provide the analytical sensitivity measures from each method. The
annotated number in each cell indicates the rank of this model parameter in its column. The colour of each cell indicates
the magnitude of the corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 7: The ranking heat map for the Modified Sobol′ G-function with G1 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right. The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 8: The ranking heat map for the Modified Sobol′ G-function with G2 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right. The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 9: The ranking heat map for the Modified Sobol′ G-function with G3 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right. The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 10: The ranking heat map for the Modified Sobol′ G-function with G4 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right. The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 11: The ranking heat map for the Modified Sobol′ G-function with G5 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right. The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 12: The ranking heat map for the Modified Sobol′ G-function with G6 coefficient, where the y-axis represents the
model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right. The rank and sensitivity measure of each model parameter is averaged across 100 replicates.

Sun et al.: Preprint submitted to Elsevier Page 7 of 36



Supplementary file for "Benchmarking Active Subspace methods of Global Sensitivity Analysis against variance-based
Sobol′ and Morris methods with established test functions"

ST Mu Star AS-OLS AS-QPHD AS-OPG
Sensitivity Analysis Methods

x1

x2

x3

x4

x5

x6

x7

dummy

M
od
el
 P
ar
am

et
er
s

3 2 4 2 2 1

4 5 2 6 3 1

6 6 5 3 4 1

7 7 7 5 7 1

2 3 3 1 1 1

1 4 1 4 6 1

5 1 6 7 5 1

- - - - - -

2 2 4 6 4 1

3 3 5 2 6 1

7 6 7 3 1 1

1 5 1 5 2 1

6 4 2 7 7 1

5 1 3 4 5 1

4 7 6 1 3 1

- - - - - -

4 5 3 1 6 1

1 4 7 6 7 1

6 7 1 3 5 1

7 6 2 2 2 1

3 2 5 4 4 1

2 3 4 7 3 1

5 1 6 5 1 1

8 8 8 8 8 8

2 5 7 7 7 1

4 1 3 1 4 1

1 4 2 5 4 1

4 1 6 4 6 1

2 7 1 3 1 1

7 5 4 1 2 1

4 3 4 5 2 1

8 8 8 8 8 8

2 4 7 7 1 1

7 2 2 6 2 1

5 7 6 2 3 1

1 3 5 1 5 1

3 6 4 3 7 1

6 1 1 4 4 1

4 5 3 5 6 1

8 8 8 8 8 8

Heat Map for Morris Function 

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns
iti
vi
ty
 M
ea
su
re
s

256
1024
4096
16384
65536
Exact
256
1024
4096
16384
65536
Exact
256
1024
4096
16384
65536
Exact
256
1024
4096
16384
65536
Exact
256
1024
4096
16384
65536
Exact

Number of Model Evaluations (x 10e2)

Figure 13: The ranking heat map for the Morris function, where the y-axis represents the model parameters, the bottom
x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of model evaluations for the ranking
result of each column. The rightmost columns provide the analytical sensitivity measures from each method. The
annotated number in each cell indicates the rank of this model parameter in its column. The colour of each cell indicates
the magnitude of the corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 14: The ranking heat map for the Bratley function, where the y-axis represents the model parameters, the bottom
x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of model evaluations for the ranking
result of each column. The rightmost columns provide the analytical sensitivity measures from each method. The
annotated number in each cell indicates the rank of this model parameter in its column. The colour of each cell indicates
the magnitude of the corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 15: The ranking heat map for the Friedman function, where the y-axis represents the model parameters, the
bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of model evaluations for the
ranking result of each column. The rightmost columns provide the analytical sensitivity measures from each method. The
annotated number in each cell indicates the rank of this model parameter in its column. The colour of each cell indicates
the magnitude of the corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 16: The ranking heat map for the Linear function, where y-axis represents the model parameters, the bottom x-axis
the corresponding sensitivity analysis methods, and the top x-axis the number of model evaluations for the ranking result
of each column. The rightmost columns provide the analytical sensitivity measures from each method. The annotated
number in each cell indicates the rank of this model parameter in its column. The colour of each cell indicates the
magnitude of the corresponding sensitivity measures, whose value can be checked with the colour bar on the right. The
rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 17: The ranking heat map for the Sobol′ & Levitan function with the first configuration, where the y-axis represents
the model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the number of
model evaluations for the ranking result of each column. The rightmost columns provide the analytical sensitivity measures
from each method. The annotated number in each cell indicates the rank of this model parameter in its column. The
colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be checked with
the colour bar on the right. The rank and sensitivity measure of each model parameter is averaged across 100 replicates.
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Figure 18: The ranking heat map for the Sobol′ & Levitan function with the second configuration, where the y-axis
represents the model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis
the number of model evaluations for the ranking result of each column. The rightmost columns provide the analytical
sensitivity measures from each method. The annotated number in each cell indicates the rank of this model parameter in
its column. The colour of each cell indicates the magnitude of the corresponding sensitivity measures, whose value can be
checked with the colour bar on the right. The rank and sensitivity measure of each model parameter is averaged across
100 replicates.
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3. Standard Deviation Plots for Bootstrap and Replication

1 2 3
1024

1023

1022

1021

100

Bo
ot
−t
ra
p

ST (Log S ale)

1 2 3
0.0

0.2

0.4

0.6

0.8

Mu Star (Non-Log Scale)

1 2 3 4

10212

1029

1026

1023

100
AS-OLS (Log Scale)

256
1024
4096
16384
65536

1 2 3 4

10−6
10−5
10−4
10−3
10−2
1021
100

AS-QPHD (Log Scale)

1 2 3 4

10−2

1021

100
AS-OPG (Log Scale)

1 2 3
10−4

10−3

10−2

1021

100

Re
pl
ica

tio
n

1 2 3
0.0

0.2

0.4

0.6

0.8

1 2 3 4
Model Parameters

10−12

1029

1026

1023

100

1 2 3 4

1026

1025

1024

1023

1022

1021

100

1 2 3 4

1022

1021

100

Standard De0iation of Sen−iti0it1 Mea−ure− A ro−− Re−ample−/Replicates for Ishigami-Homma Function 

Figure 19: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 4th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour. Note that �∗ is not in log scale.
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Figure 20: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.

Sun et al.: Preprint submitted to Elsevier Page 11 of 36



Supplementary file for "Benchmarking Active Subspace methods of Global Sensitivity Analysis against variance-based
Sobol′ and Morris methods with established test functions"

1 2 3 4 5 6 7

10−4

10−3

10−2

10−1

Bo
o−
s−
ra
p

ST (Log S ale)

1 2 3 4 5 6 7

1012

1011

100

Mu S−ar (L)g S ale)

1 2 3 4 5 6 7 8

1016

1015

1014

1013

1012

1011

AS-OLS (Log Scale)
256
1024
4096
16384
65536

1 2 3 4 5 6 7 8

1016
1015
1014
1013
1012
1011
100

AS-QPHD (Log Scale)

1 2 3 4 5 6 7 8

1012

1011

100
AS-OPG (Log Scale)

1 2 3 4 5 6 7

1014

1013

1012

1011

Re
pl
ica

−i)
n

1 2 3 4 5 6 7

1012

1011

100

1 2 3 4 5 6 7 8
M)del Parameters

10−6
1015

1014

1013

1012

1011

1 2 3 4 5 6 7 8

1016

1015

1014

1013

1012

1011

100

1 2 3 4 5 6 7 8

1012

1011

100

S−andard Devia−ion of Sensi−ivi−0 Measures A ross Resamples/Replicates for Modified Sobol' G-Function G1

Figure 21: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 22: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 23: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 24: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 25: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 26: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 27: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 28: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 29: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour. Note that �∗ is not in log scale.
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Figure 30: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 4th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour. Note that �∗ is not in log scale.
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Figure 31: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 8th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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Figure 32: The first row of the subplots depicts the standard deviation of parameter sensitivity across 1000 resamples
from bootstrapping with the increasing of model runs, whereas the second row plots the standard deviation using 100
replicates. For each subplot, the y-axis shows the magnitude of the standard deviation, the bottom x-axis is labeled with
the corresponding model parameters by number, and each column provides the results for one of the five SA methods.
The 16th parameter is the dummy parameter. The legend at the top right denotes the number of model runs for each line
with the corresponding colour.
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4. Tables for Ranking Measurements - Sarrazin Ranking statranking

Sarrazin ranking statranking for Ishigami-Homma function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.959 0.916 0.000 0.000 0.000

Mu Star 1.369 0.765 0.762 0.000 0.000

AS-OLS 1.448 0.195 0.009 0.001 0.000

AS-QPHD 0.628 1.907 2.000 1.701 1.651

AS-OPG 0.216 0.262 0.015 0.303 0.944

Sarrazin ranking statranking for Sobol′ G-function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.000 0.000 0.000 0.000 0.000

Mu Star 0.001 0.001 0.001 0.001 0.001

AS-OLS 5.222 5.192 5.170 5.220 5.213

AS-QPHD 0.000 0.000 0.000 0.000 0.000

AS-OPG 0.011 0.003 0.001 0.003 0.000

Sarrazin ranking statranking for Modified Sobol′ G-function with G1 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 1.001 1.001 1.001 1.000 1.001

Mu Star 1.034 1.030 1.050 0.995 1.014

AS-OLS 1.023 1.003 1.001 1.001 1.001

AS-QPHD 1.015 1.000 1.000 1.000 1.000

AS-OPG 1.005 1.008 3.090 1.121 1.000

Sarrazin ranking statranking for Modified Sobol′ G-function with G2 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 2.360 2.461 1.802 1.187 0.783

Mu Star 1.765 2.101 0.842 0.578 0.000

AS-OLS 4.245 5.018 1.206 2.328 0.262

AS-QPHD 2.532 1.900 0.962 0.000 0.000

AS-OPG 4.105 2.792 3.958 3.607 4.751

Sun et al.: Preprint submitted to Elsevier Page 18 of 36



Supplementary file for "Benchmarking Active Subspace methods of Global Sensitivity Analysis against variance-based
Sobol′ and Morris methods with established test functions"

Sarrazin ranking statranking for Modified Sobol′ G-function with G3 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 1.000 1.000 1.000 1.000 1.000

Mu Star 1.036 1.022 1.030 1.020 1.005

AS-OLS 1.463 1.003 1.050 1.007 1.000

AS-QPHD 1.015 1.002 1.000 1.000 1.000

AS-OPG 1.000 1.007 2.305 1.723 1.001

Sarrazin ranking statranking for Modified Sobol′ G-function with G4 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 2.774 2.011 1.106 0.329 0.000

Mu Star 2.439 1.361 0.676 0.000 0.000

AS-OLS 3.044 3.472 0.673 0.475 0.000

AS-QPHD 2.941 1.915 1.101 0.215 0.000

AS-OPG 2.354 3.233 3.570 2.288 4.555

Sarrazin ranking statranking for Modified Sobol′ G-function with G5 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 1.004 1.001 1.001 1.001 1.001

Mu Star 1.031 1.018 1.030 0.025 1.008

AS-OLS 5.170 5.164 1.315 4.312 1.001

AS-QPHD 1.029 1.000 1.000 1.000 1.000

AS-OPG 1.885 5.179 1.008 1.019 1.004

Sarrazin ranking statranking for Modified Sobol′ G-function with G6 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 2.320 4.767 2.352 2.477 2.278

Mu Star 2.875 2.097 2.372 1.133 0.297

AS-OLS 3.408 2.018 4.340 0.446 0.000

AS-QPHD 2.921 2.036 1.768 0.419 0.000

AS-OPG 3.990 2.386 5.331 4.400 3.951
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Sarrazin ranking statranking for Bratley function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.028 0.000 0.000 0.000 0.000

Mu Star 0.228 0.006 0.001 0.001 0.001

AS-OLS 0.000 0.000 0.000 0.000 0.000

AS-QPHD 0.000 0.000 0.000 0.000 0.000

AS-OPG 0.000 0.000 0.000 0.000 0.000

Sarrazin ranking statranking for Morris function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 3.249 3.250 3.246 3.393 3.180

Mu Star 3.183 2.829 2.872 2.580 2.571

AS-OLS 3.184 3.250 3.426 3.428 3.155

AS-QPHD 3.143 3.143 3.143 3.143 3.143

AS-OPG 2.067 2.352 2.007 2.875 2.867

Sarrazin ranking statranking for Friedman function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 1.421 1.299 0.587 0.544 0.527

Mu Star 1.091 0.473 0.426 0.424 0.411

AS-OLS 0.429 0.326 0.300 0.289 0.283

AS-QPHD 3.294 0.571 0.535 0.520 0.514

AS-OPG 1.328 0.880 1.390 1.399 1.347

Sarrazin ranking statranking for Linear function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.000 0.000 0.000 0.000 0.000

Mu Star 0.000 0.000 0.000 0.000 0.000

AS-OLS 0.000 0.000 0.000 0.000 0.000

AS-QPHD 0.000 0.000 0.000 0.000 0.000

AS-OPG 0.000 0.000 0.000 0.000 0.000
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Sarrazin ranking statranking for Sobol′ & Levitan function with the first configuration

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 2.590 1.297 1.476 1.463 1.370

Mu Star 2.510 2.037 1.629 1.907 1.890

AS-OLS 1.557 1.410 1.340 1.290 1.261

AS-QPHD 1.248 1.273 1.256 1.246 1.241

AS-OPG 1.076 1.225 1.259 1.431 0.934

Sarrazin ranking statranking for Sobol′ & Levitan function with the second configuration

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 6.022 4.674 3.890 4.112 3.679

Mu Star 4.542 3.513 3.454 3.159 2.965

AS-OLS 3.948 4.092 4.094 4.099 4.163

AS-QPHD 6.241 3.713 3.943 3.975 4.047

AS-OPG 2.181 3.130 3.002 3.337 3.104
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5. Tables for Ranking Measurements - Position Factor

Position Factor for Ishigami-Homma function

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 0.000 0.000 0.000 0.000

Mu Star 1.333 0.000 0.000 0.000

AS-OLS 0.000 0.000 0.000 0.000

AS-QPHD 0.000 1.352 0.000 0.000

AS-OPG 2.552 0.000 0.571 1.352

Position Factor for Sobol′ G-function

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 0.669 0.000 0.000 0.364

Mu Star 0.669 0.364 0.308 0.364

AS-OLS 2.667 1.899 4.379 3.909

AS-QPHD 3.638 3.114 2.578 2.670

AS-OPG 2.987 0.000 3.328 2.696

Position Factor for Modified Sobol′ G-function with G1 coefficient

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 2.933 2.686 1.368 2.995

Mu Star 1.633 2.445 3.422 2.076

AS-OLS 2.434 2.998 2.985 2.044

AS-QPHD 1.600 2.416 2.225 1.652

AS-OPG 3.652 2.262 2.974 4.319

Position Factor for Modified Sobol′ G-function with G2 coefficient

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 3.760 1.746 0.000 0.000

Mu Star 2.333 2.793 0.444 0.000

AS-OLS 2.433 0.444 0.000 0.000

AS-QPHD 0.711 0.000 0.000 0.000

AS-OPG 6.089 5.174 3.569 6.206
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Position Factor for Modified Sobol′ G-function with G3 coefficient

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 3.352 2.682 2.682 1.000

Mu Star 2.967 1.348 0.444 3.761

AS-OLS 3.773 1.662 1.099 2.133

AS-QPHD 1.099 1.641 2.002 1.667

AS-OPG 2.593 5.441 4.139 2.962

Position Factor for Modified Sobol′ G-function with G4 coefficient

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 2.021 0.000 0.000 0.000

Mu Star 3.927 1.008 0.800 0.000

AS-OLS 0.444 0.444 0.000 0.000

AS-QPHD 3.340 0.000 0.000 0.000

AS-OPG 5.020 5.748 5.910 4.819

Position Factor for Modified Sobol′ G-function with G5 coefficient

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 2.002 1.240 1.654 3.333

Mu Star 1.995 2.065 1.982 1.368

AS-OLS 3.363 4.382 2.404 3.315

AS-QPHD 3.250 1.901 0.667 1.800

AS-OPG 6.508 5.504 2.535 3.761

Position Factor for Modified Sobol′ G-function with G6 coefficient

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 3.688 2.261 2.736 2.308

Mu Star 1.352 3.554 2.125 2.341

AS-OLS 1.368 1.552 1.552 0.000

AS-QPHD 1.765 0.000 0.000 0.000

AS-OPG 5.108 3.461 4.916 6.621
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Position Factor for Bratley function

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 0.000 0.000 0.000 0.000

Mu Star 0.000 0.308 0.308 0.000

AS-OLS 0.573 0.000 0.000 0.308

AS-QPHD 0.000 0.000 0.000 0.308

AS-OPG 0.267 0.000 0.308 0.000

Position Factor for Morris function

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 3.455 4.377 2.804 3.348

Mu Star 5.803 4.973 5.367 2.995

AS-OLS 3.633 1.469 6.379 1.469

AS-QPHD 4.777 4.427 4.410 1.316

AS-OPG 4.879 3.615 3.641 4.822

Position Factor for Friedman function

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 0.800 0.800 0.800 0.000

Mu Star 0.800 0.000 0.000 0.800

AS-OLS 0.800 1.067 0.000 0.267

AS-QPHD 0.000 0.000 1.067 0.000

AS-OPG 0.267 2.697 2.000 2.931

Position Factor for Linear function

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 0.000 0.000 0.000 0.000

Mu Star 0.000 0.000 0.000 0.000

AS-OLS 0.000 0.000 0.000 0.000

AS-QPHD 0.000 0.000 0.000 0.000

AS-OPG 0.000 0.000 0.000 0.000
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Position Factor for Sobol′ & Levitan function with the first configuration

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 2.433 0.000 2.400 2.071

Mu Star 3.670 3.575 2.848 2.963

AS-OLS 1.899 2.097 1.899 3.724

AS-QPHD 2.395 1.455 1.641 2.967

AS-OPG 1.455 2.522 2.511 3.670

Position Factor for Sobol′ & Levitan function with the second configuration

Sensitivity Analysis
Methods

M = 256 vs
M = 1024

M = 1024 vs
M = 4096

M = 4096 vs
M = 16384

M = 16384 vs
M = 65536

ST 7.371 7.703 4.368 5.788

Mu Star 5.836 7.718 7.401 7.044

AS-OLS 8.940 7.297 4.221 1.156

AS-QPHD 8.260 3.803 5.631 5.445

AS-OPG 9.428 6.236 8.251 8.701
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6. Tables for Ranking Measurements - TDCC with savage score

TDCC for Ishigami-Homma function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.748 0.777 0.993 1.000 1.000

Mu Star 0.676 0.659 0.588 1.000 1.000

AS-OLS 0.688 0.895 0.911 0.911 0.907

AS-QPHD 0.784 0.674 0.496 0.514 0.724

AS-OPG 0.875 0.886 0.874 0.854 0.937

TDCC for Sobol′ G-function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.985 0.988 0.987 0.991 0.985

Mu Star 0.985 0.996 0.985 0.985 0.994

AS-OLS 0.010 0.011 0.004 0.008 0.009

AS-QPHD 0.663 0.658 0.655 0.657 0.656

AS-OPG 0.780 0.761 0.772 0.803 0.863

TDCC for Modified Sobol′ G-function with G1 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.806 0.774 0.799 0.789 0.767

Mu Star 0.788 0.787 0.776 0.903 0.834

AS-OLS 0.761 0.766 0.798 0.799 0.799

AS-QPHD 0.735 0.767 0.802 0.750 0.800

AS-OPG 0.892 0.880 0.670 0.764 0.827

TDCC for Modified Sobol′ G-function with G2 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.601 0.620 0.682 0.856 0.946

Mu Star 0.690 0.597 0.899 0.978 1.000

AS-OLS 0.213 0.064 0.910 0.686 0.998

AS-QPHD 0.682 0.778 0.940 0.998 1.000

AS-OPG 0.342 0.617 0.392 0.537 0.264
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TDCC for Modified Sobol′ G-function with G3 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.853 0.763 0.806 0.770 0.772

Mu Star 0.784 0.849 0.819 0.806 0.884

AS-OLS 0.734 0.778 0.749 0.758 0.799

AS-QPHD 0.761 0.780 0.761 0.779 0.799

AS-OPG 0.875 0.778 0.730 0.775 0.827

TDCC for Modified Sobol′ G-function with G4 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.456 0.690 0.902 0.992 1.000

Mu Star 0.594 0.855 0.947 0.999 1.000

AS-OLS 0.482 0.398 0.971 0.987 1.000

AS-QPHD 0.595 0.789 0.929 0.995 1.000

AS-OPG 0.735 0.566 0.514 0.657 0.494

TDCC for Modified Sobol′ G-function with G5 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.817 0.822 0.785 0.812 0.778

Mu Star 0.861 0.856 0.839 0.932 0.821

AS-OLS 0.006 0.033 0.732 0.408 0.799

AS-QPHD 0.780 0.754 0.786 0.795 0.792

AS-OPG 0.779 0.362 0.772 0.801 0.792

TDCC for Modified Sobol′ G-function with G6 coefficient

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.679 0.481 0.609 0.669 0.533

Mu Star 0.496 0.668 0.577 0.861 0.998

AS-OLS 0.370 0.739 0.155 0.988 1.000

AS-QPHD 0.510 0.788 0.758 0.986 1.000

AS-OPG 0.365 0.731 0.204 0.518 0.502
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TDCC for Bratley function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.978 0.997 0.998 0.997 0.998

Mu Star 0.980 0.997 0.997 0.997 0.999

AS-OLS 0.986 0.993 0.997 0.997 0.997

AS-QPHD 0.994 0.997 0.998 0.997 0.997

AS-OPG 0.996 0.997 0.998 0.996 1.000

TDCC for Morris function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.284 0.115 0.036 0.003 0.008

Mu Star 0.178 0.405 0.236 0.369 0.346

AS-OLS 0.290 0.168 0.166 0.166 0.166

AS-QPHD 0.168 0.171 0.166 0.167 0.166

AS-OPG 0.670 0.514 0.728 0.424 0.429

TDCC for Friedman function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.758 0.905 0.967 0.971 0.972

Mu Star 0.921 0.973 0.972 0.972 0.995

AS-OLS 0.952 0.966 0.969 0.973 0.974

AS-QPHD 0.645 0.955 0.971 0.974 0.975

AS-OPG 0.864 0.913 0.822 0.848 0.927

TDCC for Linear function

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 1.000 1.000 1.000 1.000 1.000

Mu Star 1.000 1.000 1.000 1.000 1.000

AS-OLS 1.000 1.000 1.000 1.000 1.000

AS-QPHD 1.000 1.000 1.000 1.000 1.000

AS-OPG 1.000 1.000 1.000 1.000 1.000
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TDCC for Sobol′ & Levitan function with the first configuration

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.657 0.817 0.739 0.698 0.690

Mu Star 0.493 0.740 0.780 0.729 0.756

AS-OLS 0.782 0.733 0.730 0.727 0.727

AS-QPHD 0.846 0.799 0.778 0.759 0.728

AS-OPG 0.851 0.848 0.852 0.822 0.906

TDCC for Sobol′ & Levitan function with the second configuration

Sensitivity Analysis
Methods

M = 256 M = 1024 M = 4096 M = 16384 M = 65536

ST 0.592 0.500 0.554 0.455 0.560

Mu Star 0.574 0.531 0.544 0.642 0.684

AS-OLS 0.601 0.497 0.482 0.480 0.446

AS-QPHD 0.397 0.614 0.519 0.496 0.484

AS-OPG 0.809 0.693 0.718 0.693 0.709
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7. Plots for Ranking Measurements - Reliability
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8. Ranking Heat Map with Random Sampling Method
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Figure 33: The ranking heat map for the Ishigami-Homma function obtained from random sampling method, where the
y-axis represents the model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top
x-axis the number of model evaluations for the ranking result of each column. The annotated number in each cell indicates
the rank of this model parameter in its column. The colour of each cell indicates the magnitude of the corresponding
sensitivity measures, whose value can be checked with the colour bar on the right.
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Figure 34: The ranking heat map for the Sobol′ G-function obtained from random sampling method, where the y-axis
represents the model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the
number of model evaluations for the ranking result of each column. The annotated number in each cell indicates the rank
of this model parameter in its column. The colour of each cell indicates the magnitude of the corresponding sensitivity
measures, whose value can be checked with the colour bar on the right.
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Figure 35: The ranking heat map for the modified Sobol′ G-function with G1 coefficient obtained from random sampling
method, where the y-axis represents the model parameters, the bottom x-axis the corresponding sensitivity analysis meth-
ods, and the top x-axis the number of model evaluations for the ranking result of each column. The annotated number in
each cell indicates the rank of this model parameter in its column. The colour of each cell indicates the magnitude of the
corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
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Figure 36: The ranking heat map for the modified Sobol′ G-function with G2 coefficient obtained from random sampling
method, where the y-axis represents the model parameters, the bottom x-axis the corresponding sensitivity analysis meth-
ods, and the top x-axis the number of model evaluations for the ranking result of each column. The annotated number in
each cell indicates the rank of this model parameter in its column. The colour of each cell indicates the magnitude of the
corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
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Figure 37: The ranking heat map for the modified Sobol′ G-function with G3 coefficient obtained from random sampling
method, where the y-axis represents the model parameters, the bottom x-axis the corresponding sensitivity analysis meth-
ods, and the top x-axis the number of model evaluations for the ranking result of each column. The annotated number in
each cell indicates the rank of this model parameter in its column. The colour of each cell indicates the magnitude of the
corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
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Figure 38: The ranking heat map for the modified Sobol′ G-function with G4 coefficient obtained from random sampling
method, where the y-axis represents the model parameters, the bottom x-axis the corresponding sensitivity analysis meth-
ods, and the top x-axis the number of model evaluations for the ranking result of each column. The annotated number in
each cell indicates the rank of this model parameter in its column. The colour of each cell indicates the magnitude of the
corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
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Figure 39: The ranking heat map for the modified Sobol′ G-function with G5 coefficient obtained from random sampling
method, where the y-axis represents the model parameters, the bottom x-axis the corresponding sensitivity analysis meth-
ods, and the top x-axis the number of model evaluations for the ranking result of each column. The annotated number in
each cell indicates the rank of this model parameter in its column. The colour of each cell indicates the magnitude of the
corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
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Figure 40: The ranking heat map for the Bratley function obtained from random sampling method, where the y-axis
represents the model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the
number of model evaluations for the ranking result of each column. The annotated number in each cell indicates the rank
of this model parameter in its column. The colour of each cell indicates the magnitude of the corresponding sensitivity
measures, whose value can be checked with the colour bar on the right.
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Figure 41: The ranking heat map for the Morris function obtained from random sampling method, where the y-axis
represents the model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the
number of model evaluations for the ranking result of each column. The annotated number in each cell indicates the rank
of this model parameter in its column. The colour of each cell indicates the magnitude of the corresponding sensitivity
measures, whose value can be checked with the colour bar on the right.
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Figure 42: The ranking heat map for the Friedman function obtained from random sampling method, where the y-axis
represents the model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the
number of model evaluations for the ranking result of each column. The annotated number in each cell indicates the rank
of this model parameter in its column. The colour of each cell indicates the magnitude of the corresponding sensitivity
measures, whose value can be checked with the colour bar on the right.
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Figure 43: The ranking heat map for the Linear function obtained from random sampling method, where the y-axis
represents the model parameters, the bottom x-axis the corresponding sensitivity analysis methods, and the top x-axis the
number of model evaluations for the ranking result of each column. The annotated number in each cell indicates the rank
of this model parameter in its column. The colour of each cell indicates the magnitude of the corresponding sensitivity
measures, whose value can be checked with the colour bar on the right.
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Figure 44: The ranking heat map for the Sobol′ & Levitan function with the first configuration obtained from random
sampling method, where the y-axis represents the model parameters, the bottom x-axis the corresponding sensitivity
analysis methods, and the top x-axis the number of model evaluations for the ranking result of each column. The
annotated number in each cell indicates the rank of this model parameter in its column. The colour of each cell indicates
the magnitude of the corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
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Figure 45: The ranking heat map for the Sobol′ & Levitan function with the second configuration obtained from random
sampling method, where the y-axis represents the model parameters, the bottom x-axis the corresponding sensitivity
analysis methods, and the top x-axis the number of model evaluations for the ranking result of each column. The
annotated number in each cell indicates the rank of this model parameter in its column. The colour of each cell indicates
the magnitude of the corresponding sensitivity measures, whose value can be checked with the colour bar on the right.
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Results for each test case explored in ”Comparing
methods of randomizing Sobol′ sequences for improving

uncertainty of metrics in variance-based global
sensitivity estimation”
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Abstract
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1. The analytical values for V-function

The first-order and total-effect sensitivity indices of V-function can be ana-

lytically calculated through the following formulas by the definition of variance-

based Sobol′ method, and these formulas are also indicated in other papers

[1, 2]:

Vi = VXi
(EXi

(Y |Xi)) =
1/3

(1 + ai)2
,

VTi = Vi

k∏

j 6=i

(1 + Vj),

V =

k∏

i=1

(1 + Vi)− 1

where Si = Vi/V and STi = VTi/V , and V denotes the variance and E denotes

the expected value. The analytical values for V-function are listed below:

• Type A1-1

∗Corresponding author.
E-mail address: xifu.sun@anu.edu.au
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– k = 10

∗ a = 0, S̄i = 0.38608848, S̄ti = 0.53956636

∗ a = 6.52, S̄i = 0.00682733, S̄ti = 0.01264723

– k = 19

∗ a = 0, S̄i = 0.3455756, S̄ti = 0.5091817

∗ a = 6.52, S̄i = 0.00611093, S̄ti = 0.01193503

• Type A2

– k = 10

∗ a = 0, S̄i = 0.09981055, S̄ti = 0.32485791

∗ a = 6.52, S̄i = 0.00176498, S̄ti = 0.00761455

– k = 19

∗ a = 0, S̄i = 0.09323011, S̄ti = 0.31992258

∗ a = 6.52, S̄i = 0.00164862, S̄ti = 0.00749887

• Type B

– k = 10

∗ a = 6.52, S̄i = 0.09737608, S̄ti = 0.10266537

– k = 19

∗ a = 6.52, S̄i = 0.04989416, S̄ti = 0.05546169

• Type C

– k = 10

∗ a = 0, S̄i = 0.01989132, S̄ti = 0.26491849

– k = 19

∗ a = 0, S̄i = 0.00141541, S̄ti = 0.25106156

2. Simulation results

2



Figure 1: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type A1-1 with 10 parameters at 32768 samples: left ones are rAES, and

right ones are rAEST. The lines in the top two indicate the average error of sensitivity indices

of inputs.
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Figure 2: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type A1-1 with 19 parameters at 32768 samples: first and third are rAES,

and second and fourth are rAEST. The lines in the top two indicate the average error of

sensitivity indices of inputs.
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Figure 3: Mean of relative absolute error plots of comparing a single model run, replicating

model runs 10 times, and replicating model runs 100 times. The left one is Type A1-1 with

rMAES at 10 dimension, and the right one is Type A1-1 with rMAEST at 10 dimensions.

Sobol′ sequence with the Column Shift method is used.

Figure 4: Mean of relative absolute error plots of comparing a single model run, replicating

model runs 10 times, and replicating model runs 100 times. The left one is Type A1-1 with

rMAES at 19 dimension, and the right one is Type A1-1 with rMAEST at 19 dimensions.

Sobol′ sequence with the Column Shift method is used.
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Figure 5: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type A2 with 10 parameters at 32768 samples: left ones are rAES, and

right ones are rAEST. The lines in the top two indicate the average error of sensitivity indices

of inputs.
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Figure 6: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type A2 with 19 parameters at 32768 samples: first and third are rAES,

and second and fourth are rAEST. The lines in the top two indicate the average error of

sensitivity indices of inputs.
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Figure 7: Mean of relative absolute error plots of comparing a single model run, replicating

model runs 10 times, and replicating model runs 100 times. The left one is Type A2 with

rMAES at 10 dimension, and the right one is Type A2 with rMAEST at 10 dimensions. Sobol′

sequence with the Column Shift method is used.

Figure 8: Mean of relative absolute error plots of comparing a single model run, replicating

model runs 10 times, and replicating model runs 100 times. The left one is Type A2 with

rMAES at 19 dimension, and the right one is Type A2 with rMAEST at 19 dimensions. Sobol′

sequence with the Column Shift method is used.
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Figure 9: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type B with 10 parameters at 32768 samples: left ones are rAES, and right

ones are rAEST. The lines in the top two indicate the average error of sensitivity indices of

inputs.
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Figure 10: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type B with 19 parameters at 32768 samples: first and third are rAES, and

second and fourth are rAEST. The lines in the top two indicate the average error of sensitivity

indices of inputs.
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Figure 11: Mean of relative absolute error plots of comparing a single model run, replicating

model runs 10 times, and replicating model runs 100 times. The left one is Type B with

rMAES at 10 dimension, and the right one is Type B with rMAEST at 10 dimensions. Sobol′

sequence with the Column Shift method is used.

Figure 12: Mean of relative absolute error plots of comparing a single model run, replicating

model runs 10 times, and replicating model runs 100 times. The left one is Type B with

rMAES at 19 dimension, and the right one is Type B with rMAEST at 19 dimensions. Sobol′

sequence with the Column Shift method is used.
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Figure 13: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type C with 10 parameters at 32768 samples: left ones are rAES, and right

ones are rAEST. The lines in the top two indicate the average error of sensitivity indices of

inputs.
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Figure 14: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type C with 19 parameters at 32768 samples: first and third are rAES, and

second and fourth are rAEST. The lines in the top two indicate the average error of sensitivity

indices of inputs.
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Figure 15: Mean of relative absolute error plots of comparing a single model run, replicating

model runs 10 times, and replicating model runs 100 times. The left one is Type C with

rMAES at 10 dimension, and the right one is Type C with rMAEST at 10 dimensions. Sobol′

sequence with the Column Shift method is used.

Figure 16: Mean of relative absolute error plots of comparing a single model run, replicating

model runs 10 times, and replicating model runs 100 times. The left one is Type C with

rMAES at 19 dimensions, and the right one is Type C with rMAEST at 19 dimensions.

Sobol′ sequence with the Column Shift method is used.
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Figure 17: Absolute error plots of comparing Column Shift, Random Shift, and Sobol′ repli-

cates. This is type A1-1 with 10 parameters (top two) and 19 dimensions (bottom two) at

32768 samples: first and third are AES, and second and fourth are AEST. Absolute error is

used by Tarantola et al.[1], and these plots are used as a comparison. It shows that the results

of most parameters are hard to identify through these plots.
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Figure 18: Relative absolute error plots of comparing Column Shift, Random Shift, and Sobol′

replicates. This is type A1-1 with 19 parameters at 4096 samples (top two) & 8192 samples

(bottom two): first and third are rAES, and second and fourth are rAEST. The lines indicate

the average error of sensitivity indices of inputs.
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Figure 19: Monte Carlo sampling is used under the same cost (3276800 samples with no

replicate) to compare with other methods mentioned in the paper. The first one shows that MC

is the least reliable method to provide the relative absolute error for the first-order sensitivity

indices under Type B, and the bottom two figures show the confidence interval of MC method

of its sensitivity measures.
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