
1. Introduction
Global climate models are used to simulate climate and weather extremes, including extreme rainfall, high 
and low temperatures, droughts, and winds. Analyses of observations, historical simulations, and projec-
tions of extremes (Alexander, 2016; Bindoff et al., 2013; Sillman et al., 2013) have provided major advances 
in understanding how the statistics of extremes respond to natural variability and global warming. Many 
analyses of extremes focus on single hazards, such as how hot is the hottest day each year, or how much 
rain fell during the rainiest 5-day stretch of the year. An evaluation of models included in the fifth phase 
of the Coupled Model Intercomparison Project (CMIP5) highlights that extremes are generally more diffi-
cult to represent realistically than the average (Flato et al., 2013; Sillman et al., 2013b). For instance, Flato 
et al. (2013) note that CMIP5 models generally capture observed trends in temperature extremes, but rain-
fall extremes are more challenging, although this might be partly due to higher observational uncertainty. 
Since this assessment, extensive literature has emerged demonstrating the improved skill of climate models 
in simulating temperature (e.g., Di Luca et al., 2020) and rainfall extremes (Bador et al., 2020), particularly 
in hot and cold extremes (Di Luca et al., 2020) and the intensity of heavy rainfall (Kim et al., 2020). The eval-
uation of wind extremes is more limited, but Kumar et al. (2015) noted that CMIP5 models simulated the 
multimodel mean (MMM) of spatial patterns of extreme winds with 25–100-year return periods (RPs) well.

In the last decade, compound events (CEs) have emerged as a focus for understanding the link between 
changes in weather and climate and impacts on vulnerable systems (Leonard et al., 2014; Seneviratne 
et al., 2012; Zscheischler et al., 2020). Despite their potential to cause socioeconomic impacts, CEs have 

Abstract Compound events have the potential to cause high socioeconomic and environmental 
losses. We examine the ability of the sixth phase of the Coupled Model Intercomparison Project (CMIP6) 
models to capture two bivariate compound events: the co-occurrence of heavy rain and strong wind, and 
heat waves and meteorological drought. We evaluate the models over North America, Europe, Eurasia, 
and Australia using observations and reanalysis data set spanning 1980–2014. Some of the CMIP6 
models capture the return periods of both bivariate compound events over North America, Europe, and 
Eurasia surprisingly well but perform less well over Australia. For heavy rain and strong wind, this poor 
performance was particularly clear in northern Australia which suggests limits in simulating tropical and 
extratropical cyclones, local convection, and mesoscale convective systems. We did not find higher model 
resolution improved performance in any region. Overall, our results show some CMIP6 models can be 
used to examine compound events, particularly over North America, Europe, and Eurasia.

Plain Language Summary Compound events, such as the co-occurrence of heavy rain 
and strong wind or heat waves and drought, can have major economic, social, and environmental 
consequences. We therefore ask the question whether the new generation of climate models represented 
by the sixth phase of the Coupled Model Intercomparison Project (CMIP6) can simulate the occurrence 
of these important events. We found that some of the CMIP6 models do simulate these compound 
events surprisingly well over North America, Europe, and Eurasia. Unfortunately, they perform less well 
over Australia which is likely associated with the problem of simulating extratropical cyclones, local 
convection, and mesoscale convective systems. Our results suggest that some CMIP6 models can be used 
to examine these two compound events particularly over North America, Europe, and Eurasia.
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received little attention in climate model evaluations. As distinct to single hazards, CEs are caused by the 
joint occurrence of two or more hazards and/or drivers (Zscheischler et al., 2018). Impacts from weather 
and climate are commonly the result of CEs. For example, rainfall that might not constitute as treacherous 
in isolation, co-occurring in time and space with winds that are not technically extreme can combine to 
generate significant hazards (De Luca et al., 2020). Here, we focus on CEs defined as the joint exceedance 
of two climate variables or indices with predefined thresholds.

A key issue in evaluating CEs in climate models was the lack of a suitable climatology as baseline. Ridder 
et  al.  (2020) provided a first step in resolving this by using a combination of high-quality station data, 
supplemented by reanalyses, to provide a global climatology of multivariate CEs for 27 hazard pairs based 
on temperature, rainfall, wind, streamflow, and storm surge data. We use these data to evaluate the skill 
of CMIP6 models in capturing the probability of bivariate CEs. This is timely as studies are now emerging 
using climate models to study CEs for individual variable pairs (e.g., Vogel et al., 2020). We first explore 
the skill of the CMIP6 models for two kinds of CEs for which model outputs were available (heavy rainfall 
co-occurring with strong wind, and heat waves (HWs) co-occurring with meteorological drought). We then 
examine how consistent model skill is across four relatively data-rich regions: North America, Western 
Europe, Eurasia, and Australia.

2. Materials and Methods
2.1. Overview

We evaluate the performance of a subset of CMIP6 models in reproducing observed bivariate CEs. Follow-
ing Ridder et al. (2020), we adopt the definition of CEs introduced by Zscheischler et al. (2018). We focus 
exclusively on events in the category called “multihazard CEs” (hereafter CEs) in which two (or more) 
hazards simultaneously affect one region (Zscheischler et al., 2020).

We were unable to evaluate the full 27 hazard combinations reported by Ridder et al. (2020) with CMIP6 
data because many drivers of CEs including daily storm surge and streamflow data are not directly available 
from the CMIP6 models. Therefore, we consider two bivariate combinations, namely daily precipitation 
sums and daily mean 10-m wind speed (WP-CEs hereafter), and Excess Heat Factor (EHF) and Standard-
ized Precipitation Index (SPI) calculated at a 3-month scale as a measure for HWs and the occurrence of 
a meteorological drought (HD-CEs hereafter). The focus on these two combinations was based on data 
availability, as well as the recognition of their potential to cause socioeconomic and environmental impacts 
and their relative importance in many geographic regions (Ridder et al., 2020). These variables also pro-
vide a first test of the models for three key variables simulated by CMIP6 models: wind, precipitation, and 
temperature.

To identify the occurrence of bivariate CEs, each of the four meteorological variables was assigned a fixed 
threshold to identify potentially hazardous conditions. We used the thresholds from Ridder et al. (2020) to 
allow a direct comparison between their observational results and the CMIP6 models. Accordingly, daily 
precipitation sums and mean 10-m winds are considered extreme if they exceed their respective 99th per-
centile, a HW occurs if the EHF exceeds 0˚C2, and a meteorological drought arises when SPI ≤ −1.3 for the 
base period spanning 1980–2014. We define a CE as the simultaneous exceedance of the two components in 
a variable pair at the same location, that is, in the same grid cell, on the same day (see Section 2.3). Due to 
the extended nature of EHF and SPI, that is, at least three consecutive days of above-average temperatures 
and a 3-month period of low precipitation, HD-CEs are likely to occur over multiple consecutive days. Nev-
ertheless, we treat them as daily events to be consistent with the analysis of WP-CEs.

2.2. Data

Observed joint RP maps for the time period from 1980 to 2014 for HD-CEs were taken directly from Ridder 
et al.  (2020). The climatology for WP-CEs based on daily mean wind speed and precipitation sums was 
generated following the method applied by Ridder et al. (2020), who used daily maximum instead of mean 
wind speeds. HWs were calculated from HadGHCND daily maximum and minimum temperatures (Caesar 
et al., 2006). The two precipitation-related hazards, heavy precipitation and meteorological drought, are 
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based on the REGEN data set (Contractor et al., 2020). Wind speed was calculated from the meridional and 
zonal components of 10-m wind of the ERA-Interim reanalysis data set provided by the European Center 
for Medium-Range Weather Forecasts (Berrisford et al., 2011, p. 23).

We include 23 CMIP6 models for WP-CEs and 16 for HD-CEs—all the models with daily data available for 
the considered variable pairs (Table S1). We used daily data from the historical run spanning 1980–2014 
utilizing one ensemble member (r1i1p1f1) per model. EHF was calculated for each model using the model's 
daily maximum and minimum near-surface temperatures on the model's native grid where available or one 
of the CMIP6 target grids following Perkins and Alexander (2013) using python code developed by Tammas 
Loughran (https://github.com/tammasloughran/ehfheatwaves). SPI was calculated from monthly precipi-
tation at the 3-month scale using the ClimPact2 software package on the same grid as EHF (https://github.
com/ARCCSS-extremes/climpact2). ClimPact2 relies on the SPEI R package (Vicente-Serrano et al., 2010), 
which uses the gamma distribution to calculate SPI. Monthly SPI values are transformed to daily data to 
match the EHF timeseries with days taking the value of the associated month. Both climate indices and 
variables were bilinearly interpolated to a 2.5° × 2.5° regular grid to match Ridder et al. (2020).

2.3. Statistical Methods

We present results as RPs, that is, the inverse of occurrence probability, following Ridder et al. (2020). These 
are determined for each CMIP6 model individually on a grid cell basis following the methodology of Ridder 
et al. (2020) using the thresholds in Section 2.1. Following Ridder et al. (2020), we omit grid cells from our 
analysis where percentile thresholds are below the minimum threshold for wind (<0.5 m/s) and/or precipi-
tation (<1 mm/day) and those without CE occurrences throughout the study period (1980–2014).

A grid cell in a CMIP6 model is considered to experience a CE if both hazards in a pair simulated by the 
same model exceed their respective threshold on the same day. We calculate the joint occurrence probability 
empirically using the number of daily time steps over the 1980–2014 period (12,874 days for models with 
leap years and 12,775 days for those without). Note that the calculation of EHF uses a nonleap year calen-
dar. Therefore, probabilities for HD-CEs are based on 12,775 days regardless of individual CMIP6 model 
calendar. To obtain RPs in years, the inverse of the probability is then divided by 365.

The RPs of CEs in each model are compared to observed RPs (Ridder et al., 2020) using the probability 
density function (PDF) of the RPs in four different geographic regions (North America, Western Europe, 
Eurasia, and Australia; Figure S1). These regions were chosen based on the availability of reliable long-term 
observations and statistically significant RPs identified in Ridder et al. (2020).

To assess model skill for reproducing observed RPs, we applied the skill score (Sskill) based on Perkins 
et al. (2007). Sskill compares similarities between the probability density of a given distribution derived from 
a model (Zi

mod) with that of observations (Zi
obs). This method divides the modeled and observed PDFs into n 

bins (n ∈ ℕ; here, n = 100 resulting in a bin width of about 4 months, that is, one season). For each bin, the 
modeled (Z i ni

mod
; , , ,� ��� ��1 2 ) and observed probability densities ( obs; [1,2, , ]iZ i n  ) are compared. Sskill is 

the minimum of this comparison summed over all bins:

 obs mod
skill

1
minimum , .

n
i i

i
S Z Z


  (1)

Consequently, Sskill ranges between 0 and 1 ( skill skill{ | [0,1]}S S  ). A value of 1 indicates a perfect 
match to observations and 0 no model skill. Here, Sskill does not measure the skill over the whole PDF as in 
Perkins et al. (2007). Rather, by focusing on the RPs, that is, the probability of joint exceedance of extreme 
thresholds, Sskill highlights a model's ability to reproduce the joint tail of the variable pair. This is particular-
ly useful when one is interested in the occurrence probability of a CE, and the absolute values for the two 
variables and their thresholds are less important.

For the WP-CEs, we also considered a bivariate skill score ( bivariate
skillS ) to cover the full distribution of both var-

iables and assess model performance in reproducing the observed correlation between the two. For this, we 
extended the skill score presented in Perkins et al. (2007) to include two dimensions, one for precipitation 
and the other for wind speed. We divided the joint distribution into p × m (p,m ∈ ℕ) two-dimensional bins. 
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Here, p and m are chosen depending on the variable based on a trade-off between the recommended bin 
size following Scott's Normal Reference (Scott, 1979) and computational cost (400 for precipitation and 300 
for wind speed). The skill score is then derived as

 bivariate obs mod
skill , ,

1 1
minimum ,

pm
j i j i

j i
S Z Z

 
  (2)

This measure assesses the full individual distribution of both variables that make up the CE and simultane-
ously measures their correlation. For example, if a model underestimates rainfall, the bivariate

skillS  will be lower 
even if the correlation between rainfall and wind is modeled correctly. If the correlation between strong 
wind and heavy rainfall is not captured properly bivariate

skillS  likewise decreases. As such, bivariate
skillS  is a useful tool 

to determine model performance when one is interested in changes in the absolute values of RPs.

Note that theoretically a high Sskill can be obtained despite a low bivariate
skillS  since the two skill scores assess 

different parts and characteristics of the joint distribution and due to the independence of Sskill from model 
biases in the individual variables involved in a CE.

3. Results
3.1. Bias in Global RPs: Strong Winds and Heavy Precipitation

The MMM bias for RPs of WP-CEs suggests that there is a tendency to overestimate RPs over Europe, 
Australia, North Africa, India, and China and underestimate RPs over much of Eurasia, southern South 
America, and southern Africa (Figures 1a and 1b). However, the models show relatively little consistency 
in the sign of the bias (Figure 1b).
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Figure 1. (a) Joint return periods of compound events consisting of strong daily mean winds and high daily precipitation sums in observations. (b) Multimodel 
mean bias in joint return periods for the co-occurrence of strong winds and heavy precipitation. (c and d) As (a and b) but for compound events consisting of 
heat waves and meteorological drought. In panels (b and d), stippled regions indicate grid cells where at least 75% of the CMIP6 models agree on the sign of 
bias. CMIP6, sixth phase of the Coupled Model Intercomparison Project.
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The observations suggest that the RP for WP-CEs is mostly >5 years (Figure S2). Details on the mechanisms 
causing the spatial pattern of RPs are discussed in Ridder et al. (2020). Some models seem to capture this 
well (INM-CM4-8, INM-CM5-0, and IPSL-CM6-LR) while many models estimate the RPs < 1 year in many 
regions. This suggests that the models overestimate the correlation between precipitation and wind. Nev-
ertheless, given previous assessments that found CMIP6 models simulate heavy rainfall relatively poorly 
(Bador et al., 2020; Kim et al., 2020) and the relative lack of analyses of strong winds, many CMIP6 models 
capture WP-CEs surprisingly well. However, there are areas where individual models fail to reflect the ob-
servations well. For example, TaiESM1, MRI-ESM2.0, and GFDL-ESM4 all underestimate RPs over North 
America while BCC-ESM1, BCC-CSM2-MR, GFDL-CM4, FGOALS-f3-L, GFDL-ESM4, and SAM0-UNI-
CON all underestimate RPs over India and south-east Asia.

3.2. Bias in Global RPs: HW and Meteorological Drought

The MMM for HD-CEs reproduces observations relatively well in most regions with a positive bias in RPs 
largely <0.5 years at midlatitudes to high latitudes (Figures 1c and 1d). In the Northern Hemisphere, the 
MMM displays a consistent positive bias with considerable consistency across models (Figure 1d). However, 
the magnitude of the bias is relatively low with observed RPs (Figure 1c) mostly in the range of 0.5–1.5 years 
and the model bias mostly within 0.5 year. In the Southern Hemisphere, there are two large regions with 
a systematic negative bias over tropical southern South America and southern Africa corresponding to 
regions with longer observed RPs. Several models simulate high RPs for HD-CEs (BCC-CSM2-MR, INM-
CM4-8, and NorESM2-MM) but this is strongly influenced by patterns in the tropics and subtropics where 
observations are lacking (Figure S3). While there are therefore major differences between CMIP6 models 
over Africa, India, and South America, with RPs ranging from <1 to >5 years, it is impossible to determine 
which is consistent with observations.

3.3. Comparison Between Regions: Strong Winds and Heavy Precipitation

A regional analysis (see Figure S1 for regions) of WP-CEs highlights a strong tendency for many models to 
overestimate low RPs (Figure 2; left column) and thereby underestimate the occurrence of events with RPs 
of >15 years particularly over North America and Eurasia. The bar charts in Figure 2 (right column) quanti-
fy the skill of the CMIP6 models across the whole joint PDF ( bivariate

skillS ; crosses) and over the upper tail of the 
joint distribution, that is, the joint RP (Sskill; colored bars). In general, bivariate

skillS  indicates relatively high skill 
for many CMIP6 models, with bivariate

skillS  > 0.6 over virtually all models in every region. The MMM bivariate
skillS  is 

0.81 in North America, Western Europe, and Eurasia, and 0.79 in Australia. Thirteen models achieve bivariate
skillS

> 0.8 over North America, 15 over Europe, 14 over Eurasia, and 9 over Australia. Only one model simulates 
the bivariate

skillS  < 0.6 (TaiESM1 over Australia). The performance of models in terms of Sskill (bars in Figure 2) 
varies strongly. For example, MPI-ESM1-2-HR reproduces observed RPs quite well in North America, West-
ern Europe, and Eurasia with Sskill around 0.8 (Figure 2). CMIP6 models that capture both bivariate

skillS  and Sskill 
≳ 0.8 include MPI-ESM-1-2-HAM over North America, Europe, and Eurasia, and MPI-ESM-1-2-HR over 
North America and Eurasia. However, both these models perform poorly over Australia.

3.4. Comparison Between Regions: HW and Meteorological Drought

Over all four regions, CMIP6 models produce slightly shorter RPs for HD-CEs than observations (Figure 3, 
left column). However, differences in PDF maxima between models and observations are generally <1 year. 
This is in line with the low MMM bias in joint RPs (Figure 1d). Consequently, it is not surprising to see more 
models with Sskill > 0.8 than for WP-CEs (Figure 3; right column). For North America and Western Europe, 
only one model shows Sskill ≤ 0.6, namely NorESM2-MM and INM-CM4-8, respectively. Both these models 
show Sskill < 0.6 in Eurasia and Australia. As for WP-CEs, more models perform worse over Australia than 
over the other regions, with the exception of BCC-ESM1, INM-CM5-0, and SAM0-UNICON. Particularly, 
noteworthy is the low skill of BCC-CSM2-MR over Australia (Sskill < 0.1), while showing Sskill is >0.8 in 
Western Europe and ~0.7 in North America and Eurasia.
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3.5. CMIP6 Model Skill Over Australia for Strong Wind and Heavy Precipitation

Our results suggest that WP-CEs are simulated less well in Australia than elsewhere with a MMM Sskill < 0.6 
( bivariate

skillS  < 0.8) over Australia compared to Sskill > 0.7 ( bivariate
skillS  > 0.8) over other regions (Figure 2). Figure 4a 

shows the correlation for each CMIP6 model's performance in bivariate
skillS  for Eurasia, Western Europe, and 

Australia using North America as a reference. Some models simulate higher bivariate
skillS  for Eurasia and West-

ern Europe than North America. However, for most models, and particularly models with bivariate
skillS  > 0.6, 

CMIP6 model performance is largely comparable across these three regions. However, 16 out of the 23 mod-
els perform worse over Australia than North America, apart from BCC-ESM1, NorCPM1, ACCESS-CM2, 

RIDDER ET AL.
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Figure 2. Comparison of model performance for the co-occurrence of strong winds and heavy precipitation. Left column: Probability density functions (PDFs) 
of return periods of all models (colored lines) and observations (black dashed line) in four geographic regions. Note the different y axis scales between the 
subplots. Right column: Model skill scores Sskill (bars) and bivariate

skillS  (crosses) for all models. The color scheme in the PDFs is the same as for the bar plots. The 
models are ordered from lowest resolution on the left, to highest on the right. The black and red dashed lines indicate the multimodel mean value of bivariate

skillS  
and Sskill, respectively.
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BCC-CSM2-MR, CESM2-WACCM, GFDL-ESM4, and FGOALS-f3-L. Similarly, models with high Sskill in 
Eurasia and Western Europe also perform well in North America, but over Australia, all but five models per-
form worse than in North America (Figure 4b). Using any of the other regions as reference leads to similar 
conclusions about relative regional performance (not shown).

To examine the relatively poor performance over Australia for WP-CEs, we divided Australia at 26°S into the 
northern region dominated by tropical conditions and the southern region dominated midlatitude subtropi-
cal and temperate conditions. The MMM for bivariate

skillS  in northern Australia is ~0.7 (Figure S4), lower than the 
0.8 in southern Australia and the other regions (Figure 2). The CMIP6 models simulate the southern region 
indistinguishably from the other regions for bivariate

skillS  (see regression line aligned with the other three regions 
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Figure 3. Comparison of model performance for the co-occurrence of heat waves and meteorological drought. Left column: Probability density functions 
(PDFs) of return periods of all models (colored lines) and observations (black dashed line) in the four different geographic regions. Note the different y axis 
scales between the subplots. Right column: Model skill score Sskill for all models. The color scheme in the PDFs is equivalent to the bar plots. The models are 
ordered from lowest resolution on the left, to highest on the right. The red dashed line indicates the multimodel mean value of Sskill.
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in Figure S5a). However, the CMIP6 models perform less well in general for the northern region (red line 
in Figure  S5a). While some CMIP6 models do poorly over both northern Australia and North America 
(TaiESM1 with bivariate

skillS < 0.6 over North Australia and with bivariate
skillS  < 0.7 in North America; the worst per-

forming model there) other models show bivariate
skillS  < 0.5 over northern Australia while demonstrating higher 

skill over North America. For Sskill (Figures S4 and S5b), 17 out of 23 CMIP6 models demonstrate quite low 
skill (<0.6) over southern Australia. Two CMIP6 model groups form for northern Australia with 15 models 
with Sskill < 0.5, and six reaching Sskill ≳ 0.6 (Figure S5b). These six skilled models capture northern Australia 
as well as other regions. These models include CESM-FV2, FGOALS-g3, INM-CM5-0, ACCESS-CM2, MRI-
ESM2-0, and NorESM2-MM (Figure S4) but do not include NorESM2-LM, NorCPM1, CESM2, FGOALS-
f3-L, or INM-CM4.8 indicating that models from the same family can display very different levels of skill.

4. Discussion and Conclusions
The assessment of extremes in climate model simulations commonly finds a higher fidelity in the simu-
lation of temperature extremes compared to rainfall or wind extremes. However, the consequences of ex-
tremes events to society, business, or the environment often emerge when several extremes co-occur in time 
and space. These CEs are increasingly acknowledged as important to risk assessment. Therefore, evaluating 
how well CMIP6 models capture their occurrence probability is a necessary step before examining how 
these might change in the future.

We evaluated the skill of CMIP6 models in capturing the joint probability of strong winds and heavy rain-
fall, and HWs and meteorological drought. Strong winds and heavy precipitation have physical connec-
tions and common meteorological phenomena can cause a correlation between the two (e.g., cyclones, 
midlatitude mesoscale systems, and intense convection). However, CMIP6 models usually lack the spatial 
resolution to resolve these synoptic-scale phenomena well. HWs and meteorological drought also have a 
physical connection, with meteorological drought causing evaporation to become water limited resulting in 
a reduction of evaporative cooling and increased sensible heating (Donat et al., 2018; Miralles et al., 2018). 
Conversely, HWs require several sequential hot days often associated with blocking which climate models 
frequently struggle to capture (Scaife et al., 2010) despite increased performance in CMIP6 compared to 
CMIP5 (Schiemann et al., 2020). Given these known shortcomings, low skill in CEs may be anticipated. 
Yet, we found some CMIP6 models captured the RPs of the two bivariate CEs well in the relatively data-rich 
regions of North America, Europe, and Eurasia where the estimates of observed RPs are more robust. We 
noted very wide disagreement between the CMIP6 models over Africa, South America, and India but could 
not evaluate the models in these regions due to limited local observations. We also highlighted that the skill 
displayed by the CMIP6 models was broadly similar between North America, Europe, and Eurasia (Fig-
ure 4) but lower over Australia.
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Figure 4. Comparison of model performance for WP-CEs in North America compared to Western Europe (black 
circles), Eurasia (blue squares), and Australia (red triangles). (a) The bivariate skill score bivariate

skillS calculated over the full 
joint distributions for the high precipitation, wind hazard pair. (b) The skill score over the tail of the joint distribution 
(Sskill). The solid lines show the line of best fit for each region (Western Europe: black; Eurasia: blue; Australia: red) and 
the gray dashed line shows the one-to-one line.

 19448007, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020G

L
091152 by T

he A
ustralian N

ational U
niver, W

iley O
nline L

ibrary on [06/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

Spatial resolution is a possible explanation for the different performance of CMIP6 models. Such a connec-
tion has been found for atmospheric blocking (Flato et al., 2013) and heat extremes (Di Luca et al., 2020). 
However, we found no relationship between resolution and either bivariate

skillS  or Sskill for either CE (right col-
umns in Figures 2 and 3). We note the highest horizontal resolution used here is ∼100 km (T127 spectral 
grid, MPI-ESM1-2-HR) which is still below the resolution likely to enable the models to capture the weather 
scales that tend to characterize extremes.

The weak performance of the CMIP6 models in simulating WP-CEs over northern Australia is most likely 
associated with the nature of rainfall extremes in this region. Utsumi et al. (2007) examined weather sys-
tems (tropical cyclone, extratropical cyclone, etc.) associated with daily extreme precipitation. They found 
that, while southern Australia sourced ∼50% of its extreme rainfall from fronts and ∼50% from extratropical 
cyclones (Utsumi et al., 2007), northern Australia's extreme rainfall originates mostly from extratropical cy-
clones, combined with local convection and mesoscale convective systems. This suggests that the poor per-
formance in some models in simulating WP-CEs over northern Australia may be associated with challeng-
es in simulating these phenomena. Other regions, which receive most extreme rainfall from extratropical 
cyclones, include the Indian subcontinent and Mediterranean (Utsumi et al., 2007). We therefore suggest 
caution when exploring WP-CEs with CMIP6 models in regions where extreme rainfall is associated with 
extratropical cyclones or local convection and mesoscale convective systems.

To simulate HD-CEs well, models must capture the individual HW and drought hazards and their inter-
actions through land-surface feedbacks. The historical duration and frequency of seasonal-scale mete-
orological droughts are generally simulated well by CMIP6 models, although biases remain particularly 
in the tropics (Ukkola et al., 2018, 2020). These seasonal-scale droughts are relatively common in many 
mid-latitude regions (e.g., Europe). Meanwhile, drier regions like Australia tend to experience longer an-
nual-scale droughts driven by interacting modes of variability (De Luca et al., 2020; Santoso et al., 2019; 
Wang et al., 2014). CMIP models lack the skill to simulate these longer events (Moon et al., 2018; Ukkola 
et al., 2020). Next, coincident with drought, the synoptic conditions need to be conducive to HWs (common-
ly atmospheric blocking with clear skies, high incident solar radiation) and need to be amplified by surface 
fluxes where appropriate (Donat et al., 2017). Land-surface models systematically underestimate latent heat 
fluxes during drought conditions (Trugman et al., 2018; Ukkola et al., 2016), leading to an overamplification 
of heat extremes in coupled models through land-surface feedbacks, particularly in humid regions (Sippel 
et al., 2017; Ukkola et al., 2018). This may contribute to the overestimation of the occurrence of HD-CEs in 
many regions (Figures 1d and S3).

We showed that CMIP6 model skill can differ strongly between the two performance metrics in this study, 
that is, Sskill and bivariate

skillS . This highlights the need to base model selection on the focus of a study. For in-
stance, a model showing high skill in terms of RPs (Sskill) has potential for the assessment of relative change 
in joint occurrence probability and the model could be useful in assessing the change in RPs of CEs. In 
contrast, if the main focus of an assessment is the change in the absolute value considered a joint extreme, 
models with a higher bivariate

skillS  are likely more useful as these show combined skill in reproducing the univar-
iate distributions and the physical correlation between the two variables in question.

Overall, we demonstrate that some CMIP6 models simulate RPs of WP-CEs and HD-CEs with useful skill 
over multiple regions. Inevitably, some CMIP6 models fail to capture the observations providing an oppor-
tunity to examine the parameterizations used in these models with the more skillful models to help direct 
model development. We only evaluated two possible CEs due to data constraints. Future work should ex-
tend the evaluation to additional CEs given their importance in driving socioeconomic risk.

Data Availability Statement
The CMIP6 outputs used in this study are available from the Earth System Grid Federation (https://es-
gf-node.llnl.gov). The availability of observational data sets is indicated in Ridder et al. (2020).
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