
Data-driven Spectroscopic Estimates of Absolute Magnitude, Distance, and Binarity:
Method and Catalog of 16,002 O- and B-type Stars from LAMOST

Maosheng Xiang1,9 , Hans-Walter Rix1 , Yuan-Sen Ting2,3,4,5,10 , Eleonora Zari1, Kareem El-Badry1,6 ,
Hai-Bo Yuan7 , and Wen-Yuan Cui8

1 Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany; mxiang@mpia.de
2 Institute for Advanced Study, Princeton, NJ 08540, USA

3 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
4 Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA
5 Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia

6 Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720, USA
7 Department of Astronomy, Beijing Normal University, Beijing 100875, Peopleʼs Republic of China
8 Department of Physics, Hebei Normal University, Shijiazhuang 050024, Peopleʼs Republic of China

Received 2020 August 23; revised 2020 December 9; accepted 2020 December 11; published 2021 March 10

Abstract

We present a data-driven method to estimate absolute magnitudes for O- and B-type stars from the LAMOST
spectra, which we combine with Gaia DR2 parallaxes to infer distance and binarity. The method applies a neural
network model trained on stars with precise Gaia parallax to the spectra and predicts Ks-band absolute magnitudes
MKs with a precision of 0.25 mag, which corresponds to a precision of 12% in spectroscopic distance. For distant
stars (e.g., >5 kpc), the inclusion of constraints from spectroscopic MKs significantly improves the distance
estimates compared to inferences from Gaia parallax alone. Our method accommodates for emission-line stars by
first identifying them via principal component analysis reconstructions and then treating them separately for the
MKs estimation. We also take into account unresolved binary/multiple stars, which we identify through deviations
in the spectroscopic MKs from the geometric MKs inferred from Gaia parallax. This method of binary identification
is particularly efficient for unresolved binaries with near equal-mass components and thus provides a useful
supplementary way to identify unresolved binary or multiple-star systems. We present a catalog of spectroscopic
MKs, extinction, distance, flags for emission lines, and binary classification for 16,002 OB stars from LAMOST
DR5. As an illustration, we investigate the MKs of the enigmatic LB-1 system, which Liu et al. had argued consists
of a B star and a massive stellar-mass black hole. Our results suggest that LB-1 is a binary system that contains two
luminous stars with comparable brightness, and the result is further supported by parallax from the Gaia eDR3.

Unified Astronomy Thesaurus concepts: OB stars (1141); Early-type stars (430); Emission line stars (460); Stellar
distance (1595); Binary stars (154); Spectroscopic binary stars (1557); Absolute magnitude (10); Astronomical
methods (1043); Astronomy data modeling (1859); Principal component analysis (1944); Neural networks (1933);
Catalogs (205)

Supporting material: machine-readable table

1. Introduction

O-type and B-type (OB) stars constitute the population of
massive, young, and luminous stars in a galaxy. They play a
significant role in many aspects of astrophysics. They are
important factories for element production (Thielemann &
Arnett 1985; Timmes et al. 1995; Woosley & Weaver 1995;
Chieffi & Limongi 2004; Nomoto et al. 2006) and act as major
sources of ionization and energetic feedback to the interstellar
medium and intergalactic medium (Freyer et al. 2003, 2006;
Hopkins et al. 2014; Mackey et al. 2015; Struck 2020). They
often form in binaries and are candidate companions for, or
precursors of, black holes and associated gravitational wave
events (Abbott et al. 2016a, 2016b, 2017; Belczynski et al.
2016; Liu et al. 2019a). In our Galaxy and elsewhere, they

serve as signposts of star formation and diagnostics of the
initial mass function (e.g., Lequeux 1979; Humphreys &
McElroy 1984; Reed 2005; Bartko et al. 2010). They also serve
as tracers of the structure and dynamics of the Galactic disk,
including features like spiral arms (e.g., Torra et al. 2000;
Shu 2016; Xu et al. 2018; Chen et al. 2019a; Cheng et al. 2019;
Li et al. 2019; Wang et al. 2020). Knowledge of the
luminosities and distances of the OB stars in the Milky Way
is fundamental to all such analyses.
For OB stars close to the Sun, high-precision distance

estimates are obtainable using parallaxes from Gaia DR2 (Gaia
Collaboration et al. 2016, 2018a; Lindegren et al. 2018),
provided that the stars are not binaries. But for distances larger
than ∼1.5 kpc, the parallax-based distance estimates for OB
stars might become suboptimal (Shull & Danforth 2019). This
calls for developing alternative ways to accurately determine
the distances to such stars and detect binarity systematically.
Photometric distance estimation has a long and successful

history: for stars on the lower main sequence, e.g., G and K
dwarfs, unreddened broadband colors alone serve as excellent
luminosity predictors, as long as the metallicity is known to
within 0.5 dex (e.g., Ivezić et al. 2008; Jurić et al. 2008). For
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OB stars, on the other hand, the time spent on or near their
zero-age main sequence is so short that, at a given color, their
luminosities can range over an order of magnitude. Distant
young OB stars also tend to be in directions of high dust
extinction with ongoing star formation, further limiting the
accuracy of the derived dereddened colors. On top of that, there
is also a lack of color variation beyond the Rayleigh–Jeans tail
of the OB stars at ∼4000Å. This combination of factors makes
photometric luminosity and distance estimates for hot stars
particularly challenging.

The spectra of OB stars contain much more information than
photometric colors and can yield powerful constraints on
luminosities and distances. There are two conceptually different
approaches to infer spectroscopic distances. The first is to derive
the basic stellar parameters, Teff , glog and Fe H[ ], and then, for
example, employ the “flux-weighted gravity luminosity” relation-
ship (FGLR; Kudritzki et al. 2003), which relates the

ºg g Tf eff
4 of a star to its bolometric luminosity (Kudritzki

et al. 2020). With this relationship, the Teff and glog derived from
the high-resolution spectra of single stars yield luminosities and
distances with precisions of <20% and 10%, respectively, for
luminous hot stars. A similar method is from Shull & Danforth
(2019), who estimated the spectrophotometric distance of 139
O-type dwarfs using absolute magnitudes inferred by empirical
relation with spectral types from the Galactic O-star Spectroscopic
Survey (GOSSS; Maíz-Apellániz et al. 2004). Stellar isochrones
have also been used to infer stellar absolute magnitudes and
distances from stellar parameters Teff , glog , and Fe H[ ], as has
been widely implemented on spectroscopic survey data sets (e.g.,
Carlin et al. 2015; Yuan et al. 2015b; Wang et al. 2016; Xiang
et al. 2017a; Coronado et al. 2018a; Queiroz et al. 2020; Green
et al. 2021). So far the application has been mostly focused on
FGK stars, but it should provide decent distance estimates akin to
the FGLR method for hot luminous stars.

The second approach is to learn the luminosity and distance
directly from the data, without the detour of first deriving the
stellar parameters. This can be done if numerous examples of the
spectra of stars with independently known distances exist, which
is the case in the age of Gaia and extensive spectroscopic surveys.
Jofré et al. (2015) inferred stellar distance with spectroscopically
identified twin stars that have accurate parallax measurements, and
achieved a distance precision better than 10% from high-
resolution spectra. Hogg et al. (2019) demonstrated that the
distances of red giant branch stars with SDSS/APOGEE
(Majewski et al. 2017; Abolfathi et al. 2018) can be inferred to
within <10% using a data-driven model trained on Gaia
parallaxes. Leung & Bovy (2019) also estimated the stellar
distance from SDSS/APOGEE spectra but with a “deep-learning”
method, which simultaneously generates the zero-point offset of
Gaia DR2. From the LAMOST low-resolution spectra, Xiang
et al. (2017b) deduced absolute magnitudes for AFGK stars by
taking stars in common with the Hipparcos (Perryman et al. 1997)
as the training set. Verification with Gaia parallaxes suggests that
absolute magnitudes inferred from the LAMOST low-resolution
spectra with such a data-driven approach can be precise to
0.26mag, corresponding to a distance precision of 12% (Xiang
et al. 2017a).

For OB stars, such a data-driven approach for spectroscopic
luminosity estimation comes with two additional complications.
First, a non-negligible fraction of massive stars are in close
binaries, often with comparable luminosities (Sana et al.
2012, 2013). Second, the optical spectra of OB stars, such as

those from the LAMOST survey, frequently show emission lines
arising either from their corona, their surrounding disks, or nearby
H II regions. Eliminating these outliers is crucial for achieving
robust spectroscopic luminosity estimates.
In this work, we set up a data-driven method to estimate the

spectroscopic luminosity and, by implication, the distance of
individual OB stars. We employ a training set built from stars with
precise parallaxes from Gaia DR2 in a neural network model to
map observed spectra to Ks-band absolute magnitudes MKs. The
method is designed to account for issues stemming from binarity
and emission lines. We combine spectroscopic MKs and Gaia
parallaxes to identify binary stars as those that are overluminous
compared to the single stars. We apply the method to the
LAMOST low-resolution (R 1800 ) spectra for a set of 16,002
OB stars from Liu et al. (2019b), which is by far the most
extensive set of spectra for luminous, hot stars. We prefer this
data-driven approach over the FGLR, given the complications of
validating the accuracy of the stellar parameters determined for
OB stars from low-resolution spectra.
Our validation of the results suggests that the combination of

the spectroscopic MKs with the Gaia DR2 parallax yields a
median distance uncertainty of only 8% for the LAMOST OB
star sample. These distances are presented together with a
catalog of MKs, extinction, and flags for binary and emission
lines for the 16,002 LAMOST OB stars. The results allow a
reassessment for the nature of the binary system LB-1, which
has been recently suggested to hold a M70  black hole, the
most massive stellar-mass black hole ever found (Liu et al.
2019a).
This paper is laid out as follows: Section 2 gives an overview

of the methods. Section 3 introduces the identification of
emission lines in LAMOST OB star spectra with a principal
component analysis (PCA) reconstruction method; Section 4
introduces our extinction estimation; and Section 5 presents the
data-driven method for MKs estimation. Section 6 introduces
our method for binary identification. Section 7 describes the
inference of distance using the spectroscopic MKs together with
Gaia parallaxes. Section 8 discusses our estimates for the
absolute magnitude and distance to the LB-1 system. We
summarize in Section 9.

2. Method Overview

We derive absolute magnitudes MKs from survey spectra with a
data-driven neural network model trained on a subset of selected
stars with precise parallaxes from Gaia DR2 (Section 5). In light
of the non-negligible impact from emission lines on our data-
driven models, we identify the spectra containing emission lines
using a PCA reconstruction method (Section 3). For these stars,
we derive MKs using a separate neural network model, with the
emission-line wavelength regions masked. Considering the neural
network model is sensitive to spectral noise, we adopt the PCA-
reconstructed spectra, for both emission and non-emission stars, as
an approximate of the “noiseless” spectra for MKs estimation.
With the spectroscopic MKs estimates, we infer distances in
combination with the apparent magnitudes and Gaia DR2
parallaxes (Section 7). Binary and multiple-star systems are
discarded iteratively from the training sets used for MKs
estimation. To identify these systems, which should be over-
luminous compared to their single-star counterparts, we measure
the deviation between the spectrophotometric parallax and the
Gaia astrometric parallax (Section 6). To correct for the extinction
of individual stars, we use intrinsic colors estimated from
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synthetic photometry (Section 4). A schematic description of our
method is shown in Figure 1.

Our approach leverages the information contained in spectra,
astrometric parallax, and photometric magnitudes, and can be
applied to a wide range of stellar types. For the present study,
however, we restrict our analysis to LAMOST spectra of OB
stars. We adopt the OB star catalog of Liu et al. (2019b), which
contains a total of 16,032 OB stars from the fifth data release
(DR5)11 of the LAMOST Galactic surveys (Deng et al. 2012;
Zhao et al. 2012; Liu et al. 2014). These OB stars are identified
with line indices and further inspected by eye, leading to a high
purity of the sample (Liu et al. 2019b). We also adopt the
astrometric parallax measurements from Gaia DR2 (Gaia
Collaboration et al. 2018a), following Leung & Bovy (2019)
to correct for the zero-point offset as a function of G-band
magnitude. For the photometric input, we use the 2MASS
Ks-band measurements (Skrutskie et al. 2006).

3. Identifying Emission Lines with PCA Reconstruction

The spectra for a considerable fraction of OB stars can
exhibit emission lines, either from their associated H II regions
or from surrounding gas disks. Because this emission does not
necessarily correlate with the properties of the star, or its MKs,
these emission lines can confound our estimation of MKs. We
therefore opt to remove all objects with emission lines in the
spectra from our main training set and devise a separate
strategy to estimate MKs for these objects, using only the part of

the spectrum free of emission lines. Almost all of the spectra
with emission lines are found to exhibit aH emission. Some of
them also exhibit other hydrogen lines in the Balmer series and
Paschen series, as well as some metal lines. Nonetheless, in
most cases, the aH emission line is the most prominent. As
such, we adopt aH as a key diagnostic to identify OB stellar
spectra with emission lines.
To automatically identify spectra with emission lines, we

adopt a PCA reconstruction method as described below. In a
nutshell, we first define a set of clean wavelength windows that
suffer minimal impact from emission lines with which we will
determine the coefficient of the principal component of the
spectrum. We then reconstruct the full spectrum using the
coefficients as well as the full spectrum eigenbases derived
from a sample of non-emission stars. We identify the stars with
emission lines through the aH difference between the observed
spectra and the PCA reconstruction counterparts. This process
is implemented iteratively to obtain a sample without emission
lines. In practice, we found that only one iteration is sufficient
because further iterations will not make a significant change to
the results.
Given a set ofM spectra xi (with i=1, ...,M) each containing

N pixels, PCA projects the spectra in spectral space to an
eigenspace, where the eigenvalues represent the amount of
variance held by each orthonormal eigenbasis. The eigenbases
are obtained by diagonalizing the covariance matrix,

=C XX , 1T ( )

x xl=C , 2( )

where X is the N×M-dimensional array of spectra and λ is
the eigenvalue associated with the eigenbasis (eigenvector) x.
Entries in X are standardized by subtracting, from each pixel,
the mean flux of the training set and then normalized by the
standard deviation. The eigenvalues and eigenvectors are
computed using the trired.pro and triql.pro scripts in IDL.
In practice, we first consider only pixels in the clean

windows (as shown in Figure 2) and use those pixels to
construct the matrix X of the training spectra. We adopt the
matrix X to determine the principal components (eigenvectors/
eigenbases) x{ } in this restricted space. For any given training
spectrum, x, we calculate the principal component coefficients
by projecting x onto each principal component x. Because the
eigenvectors are by definition normalized, the projection is
simply the dot product of the two vectors, x= xp · . The
collection of all principal coefficients p for all training spectra
constitute a M×K matrix, P, where K is the number of
principal components, and M is the number of training spectra.
Here we choose only the top K=100 principal components in
order to denoise and omit irrelevant information in the spectra.
With matrix P in place, we then reconstruct the full spectra

as follow. Let X̄ to be the corresponding full spectra matrix for
the training spectra, we search for an array B such that

=PB XT¯ . In other words, we approximate the eigenbases for
the full spectra with which X̄ shares the same principal
component coefficients in the full spectral space as those from
X in the restricted space. Practically, the matrix B is solved by
inverting P with the Gram-Schmidt orthogonalization method.
Let ¢P be principal coefficients of the test spectra ¢X
determined by projecting ¢X onto the eigenvectors x{ }, we
can then reconstruct the full test spectra via  = ¢X P BT . Here
X is the PCA-reconstructed spectra of the test spectra ¢X .

Figure 1. Schematic illustration of our data-driven approach for deriving
absolute magnitudes and distances for OB stars, including the identification of
stars with emission lines and stars in binary or multiple-star systems.
Astrometric parallaxes, spectra, and apparent magnitudes are adopted as inputs.

11 http://dr5.lamost.org
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Figure 2 shows that the full stellar spectra can be well
reconstructed using the PCA method. Objects with emission lines
are identified using residuals between the PCA-reconstructions
and the LAMOST spectra. Figure 3 shows the mean aH flux
residual determined with our technique versus the reduced χ2

measured around the aH line. A clear branch of stars with flux
excess at the position of the aH line is present. We deem a star to
have aH emission if the flux excess exceeds the red vertical
dashed line as delineated in Figure 3. Such a criterion identifies
2074 of the 16,002 unique LAMOST OB stars (13%) as
emission-line stars.12 Figure 3 also shows a small fraction of
stars with large χ2. These stars are found to have erroneous
spectra due to multiple reasons, such as data artifacts or wrong
wavelength calibration. Figure 15 in Appendix A shows a few
examples of such erroneous spectra.

4. Extinction

As OB stars are mostly located in the Galactic disk with
ongoing star formation, they can suffer from serious interstellar
extinction. Accurate correction for extinction is thus necessary
to obtain accurate geometric MKs. Throughout this study, we
refer to geometric MKs as the “apparent”, distance-corrected,
MKs inferred using Gaia parallax and 2MASS Ks apparent
magnitudes. We note that extinction is an issue even we work
with the infrared Ks band. A reddening EB−V of 1 mag, which is
not uncommon for distant OB stars, can cause a ∼0.3 mag

extinction in the Ks band (e.g., Yuan et al. 2013; Wang &
Chen 2019), leading to a distance bias of 13%.
There are a variety of possible ways that we could obtain

extinction for our OB star sample: e.g., through direct use of an
existing 3D reddening map (e.g., Green et al. 2019; Chen et al.
2019b), the application of the Rayleigh–Jeans Color Excess
method with infrared colors (RJCE; Majewski et al. 2011), or
deducing from the intrinsic colors of OB stars either
empirically (e.g., Deng et al. 2020) or theoretically from
synthetic models. We adopt the latter in this study.
Deriving the intrinsic color requires a robust estimation of

the stellar parameters. To achieve that, we leverage the stellar
parameters derived for our OB star sample via the implementa-
tion of the spectral fitting codes THE PAYNE (Ting et al. 2019)
in the hot star regime (M. Xiang et al. 2021, in preparation).
Adopting Teff , glog , and Fe H[ ] derived in this companion
work, we estimate the intrinsic colors of the stars with the
MIST isochrones (Choi et al. 2016). We have tested that using
the PARSEC isochrones (Bressan et al. 2012) or the empirical
Teff–color relation of Deng et al. (2020) only incurs a difference
of <0.03 mag for the EB−V estimate, which is negligible for the
purposes of this study.
We estimate EB−V through the observed color excesses in the

2MASS J and H magnitudes (Skrutskie et al. 2006), Gaia DR2
BP/RP (Evans et al. 2018), and the g r i, , magnitudes from the
XSTPS-GAC survey (Zhang et al. 2014; Liu et al. 2014). For
bright ( <r 13 mag) stars that the XSTPS-GAC photometry
saturates, we adopt the APASS B V g r i, , , , photometric
magnitudes (Henden et al. 2012; Munari et al. 2014) instead.
To estimate EB−V (and subsequently AKs), we opt to avoid

Figure 2. Two example spectra reconstructed with a PCA method for a non-emission (top) and an emission (bottom) star. In each panel, black is the LAMOST
spectrum, while red is the PCA-reconstructed spectrum. Marked in blue are the clean wavelength windows with which we construct the principal component
coefficients for the PCA reconstruction. Note that, throughout this work, we normalize the spectra with a pseudo-continuum derived by smoothing the spectra with a
Gaussian kernel 50 Å in width, as such some pixels in the continuum-normalized spectra can exceed unity.

12 We note that there could be multiple visits for the same star in the LAMOST
database. For those stars, we adopt the results from the visit with the highest
signal-to-noise ratio (S/N).
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using Ks-band photometry as it can be contaminated by
emission from surrounding gas and dust disk. With all these N
photometry bands, we construct -N 1 colors using only the
photometry of adjacent bands. When compared to the intrinsic
color, each observed color gives an estimate of EB−V. We take
the average of these EB−V estimates weighted by uncertainties
of the colors, which are assumed to be the quadratic sum of the
uncertainties of the two photometric bands. On top of that,
the uncertainties in EB−V estimates are further derived through
the propagation of uncertainties in photometric colors. Note that
we have assigned a minimal uncertainty of 0.014 mag in all the
colors, including the Gaia BP−RP.

To convert color excesses into EB−V, we adopt extinction
coefficients determined by convolving the public Kurucz model
spectra (Castelli & Kurucz 2003; Kurucz 2005) with the
Fitzpatrick (1999) extinction curve, assuming RV=3.1. We
note that the RV value may vary among different environments,
from about 2 to 5 (e.g., Fitzpatrick & Massa 2007). In the case
of RV=5, there will be a 0.2 mag difference in the extinction
estimate for a star with =-E 1B V , an extreme case for our
sample stars. This will lead to a 9% bias in the distance
estimate. First, we note that, a constant shift of RV will not
change the precision of our distance estimate. Furthermore, we
expect such cases are rare for our sample stars, both because
the RV=3.1 has shown to be a good approximation in most
cases (for diffuse interstellar medium) (e.g., Fitzpatrick &
Massa 2007; Schlafly et al. 2016) and that the EB−V values of
our sample stars are moderate as they are mostly in the Galactic
anticenter direction. In addition, the extinction coefficient can
vary among stars with different stellar parameters according to
the SEDs (e.g., Green et al. 2021). However, considering we
only focus on the hot stars, this effect is negligible because all
the SEDs for hot stars are similar in the Ks band (the Rayleigh–
Jeans tail). With these taken into account, we argue that the

effect of RV variation is likely to be subdominant, and we
choose to derive the extinction coefficients using a fixed
Kurucz spectrum with Teff = 12,000 K, =glog 4.5, and

=Fe H 0[ ] .
Figure 4 shows a comparison of the derived EB−V with EB−V

interpolated from the 3D map of Green et al. (2019), using the
Gaia distance from Bailer-Jones et al. (2018). The differences
for the majority of stars are smaller than 0.1 mag, which
corresponds to a negligible extinction difference of 0.03 mag
in the Ks band. There are a small fraction of stars with large
EB−V differences. Many of them turn out to be stars with
emission lines. The large discrepancy could be caused by the
fact that these stars are distant objects that are outside the
feasible range of the Bailer-Jones et al. (2018) distance and/or
the Green et al. (2019) reddening map. Alternatively, especially
for stars with emission lines, they could suffer from additional
extinction from the dense H II regions or surrounding disks.
Due to the possibility of contamination in the Ks-band flux by
the surrounding environment, we caution about distance
estimates from stars with an emission-line flag in this study.

5. Data-driven MKs Estimation

The absolute magnitude (luminosity) is an intrinsic astro-
physical property of a star that is derivable from a stellar
spectrum. It is related to the stellar parameters via the Stefan–
Boltzmann equation

p=L R T4 , 32
eff
4 ( )

as well as the gravity equation

=g
GM

R
, 4

2
( )

where Teff , R, M, and g are, respectively, the effective
temperature, radius, mass, and surface gravity of the star.

Figure 3. Observed aH flux excess for emission spectra with respect to the
PCA reconstruction. The horizontal axis shows the differences in mean aH
fluxes in λ6571–6557 Å between the observed LAMOST spectra and the
reconstructed PCA spectra. The vertical axis shows the reduced χ2 across the
wavelength range that encapsulates the aH features (λ6400–6550 Å,
λ6590–6690 Å). Spectra with emission lines exhibit a large difference in the

aH line between the LAMOST and PCA-reconstructed spectra and are clearly
separated from the majority of stars. The vertical dashed line delineates our
criterion to select OB spectra with emission lines.

Figure 4. Comparison of the EB−V derived in this work and the EB−V from the
3D map of Green et al. (2019). We only consider stars with reliable Gaia
parallax measurements (v s >v 5). For stars without emission lines, the mean
and dispersion of the EB−V difference are 0.04 mag and 0.09 mag, respectively,
whereas for stars with emission lines in the spectra we find a shifted mean of
0.11 mag and a standard deviation of 0.13 mag. The larger EB−V for stars with
emission lines indicates that these stars are more extincted by the associated
H II regions or by their surrounding gas and dust.
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Equations (3) and (4) together yield

= + -
L

L

M

M

T

T

g

g
log log 4 log log . 5eff

eff,
( )

   

Recall that Teff and glog are basic stellar parameters that are
derivable from stellar spectra. Furthermore, the stellar mass
itself also implicitly depends on Teff , glog , abundance [X/H]
and rotation velocities, all of which are stellar properties that
are readily measurable from stellar spectra. Consequently, one
would expect that there exists an empirical relation that
connects stellar spectra to the absolute magnitude of the stars.
In this study, we will model this relation with a neural network.

5.1. The Neural Network Model

We consider a feed-forward multilayer perceptron neural
network model that maps the LAMOST spectra to the absolute
magnitude MKs of the stars. Adopting the Einstein sum
notation, our neural network contains two-layers and can be
succinctly written as

s s= + +l lM w w w f b b , 6K i i is · ( ˜ ( ) ˜) ( )

where σ is the Sigmoid activation function, w and b are weights
and biases of the network to be optimized, the index i denotes
the neurons, and λ denotes the wavelength pixels. We adopt
100 neurons for both layers. The training process is carried out
with the Pytorch package in Python. To reduce overfitting in
the training process, we also employ the dropout method
(Srivastava et al. 2014) with a dropout parameter of 0.2.

Considering the impact of emission lines, we set up two
neural network models. One neural network is constructed for
stars without emission lines, using the whole wavelength range
except for λ5720–6050Å, λ6270–6380Å, λ6800–6990Å,
λ7100-7320Å, λ7520–7740Å, and λ8050–8350Å; these
wavelength windows contain prominent absorption bands of
the Earth atmospheres and strong Na I D absorption lines from
the interstellar medium. The other neural network is for stars
with emission lines, using only wavelength windows that are
devoid of strong emission lines as demonstrated in Figure 2.
Finally, considering that the neural network model is sensitive
to spectral noise, we attempted to denoise spectra through the
PCA reconstruction, using only the first 100 PCs. For non-
emission stars, the PCA-reconstructed spectra are reconstructed
using the full wavelength range, while for emission stars, the
PCA-reconstructed spectra are reconstructed using only the
clean wavelength windows.

5.2. The Training and Test Set

We define two training sets that correspond to the two neural
network models set up above, for stars with or without
emission lines. We also define a test set that we use to verify
the MKs estimation.

The training and test sets adopt stars with good parallax
measurements (v s >v 10). To derive a more robust
empirical relation, we require the training stars to have a
spectral S/N (per pixel) higher than 50. Stars that meet these
requirements are divided into two groups: four-fifths of them
are adopted as the training set to train the neural network
model, while the remaining one-fifth constitute the test set, in

combination with stars with good parallaxes but lower
spectral S/N. Roughly 200 stars that are not in the Liu
et al. (2019b) sample but have < -M 1.5Ks mag are also
added to the training set. The inclusion of these stars is to
enlarge the sample size at the brighter end where there is a
limited number of training stars. Although not in the original
LAMOST OB stars catalog, all of these additional training
stars have >T 7000eff K according to the LAMOST DR5
stellar parameter catalog of Xiang et al. (2019). Their spectra
are further manually inspected to ensure they are early-type
stars. About half of them are OB stars that exhibit He
absorption lines, while the others are likely late-B or early
A-type stars. In total, we obtain 6861 stars for the training set
for stars without emission lines and 7161 stars for training set
for stars with emission lines.
Because the geometric “apparent” MKs for binaries are

biased, the training process is iterated to exclude the binaries.
Binaries are singled out based on significant deviation between
the predicted MKs and the geometric MKs (see Section 6 for
details). In practice, two iterations are implemented, as we find
negligible change in the resultant MKs estimates after these
iterations.
Figure 5 shows the comparison of the resultant spectroscopic

MKs estimates with the geometric MKs for the test stars with
>S N 20. The figure shows good overall consistency between

the two sets of MKs estimates across the range roughly from
−4 mag to 1.5 mag. Below ~M 0Ks mag, more stars have
fainter spectroscopic MKs than the geometric MKs. This is due to
a contribution to the geometric MKs from binaries at these
magnitudes. Recall that the geometric MKs is derived from the
apparent magnitudes, where both stars contribute.
We note that there are some subdwarfs and white dwarfs in

the LAMOST OB star sample. They typically have geometric
MKs fainter than 2 mag and are not shown in the figure. For
these stars, our spectroscopic MKs estimates, which are trained
primarily on normal OB star spectra, can be problematic. The
spectroscopic MKs for stars fainter than 2 mag should therefore
be used with caution.
Figure 5 also demonstrates that the scatter between the

spectroscopic MKs and the geometric MKs is larger for stars with
emission lines than for the non-emission stars. Particularly,
there are a number of emission-line stars that exhibit spectro-
scopic MKs much brighter than their geometric MKs. Peculiarly,
we found that both spectroscopic MKs and geometric MKs of
these stars appear to be robust. On the one hand, as illustrated
in Figure 6, the spectroscopic MKs for these stars is consistent
with the luminosity predicted by the temperature-weighted
gravity (Kudritzki et al. 2020). On the other hand, for about
half of these stars, their Gaia renormalized unit weight error
(RUWE)13 values are around 1.0, suggesting that at least half
of these outliers have decent astrometry measurements.
Investigating the nature of these stars is beyond the scope of
this study, but one possibility is that they might be stripped
stars as a consequence of binary evolution (e.g., Götberg et al.
2018). As a result of the stripping, they are in reality fainter (as
probed by the geometric MKs) while exhibiting similar spectra
to a main-sequence or subgiant star, and hence a brighter
spectroscopic MKs (see also Section 8).

13 A detailed explanation on the RUWE can be found in the public DPAC
document from L. Lindegren, titled “Re-normalizing the astrometric chi-square in
Gaia DR2”, via https://www.cosmos.esa.int/web/gaia/public-dpac-documents
(at the bottom of the page).
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Figure 7 illustrates the difference between the spectroscopic
MKs and the geometric MKs for the test stars as a function of
stellar parameters Teff , glog , and Fe H[ ]. The stellar parameters
were derived from LAMOST spectra in a parallel work
(M. Xiang et al. 2021, in preparation). Only results from single
stars without emission lines are shown. This figure demon-
strates that our spectroscopic MKs estimates do not exhibit bias
with respect to stellar parameters.

5.3. Measurement Uncertainty and Intrinsic Uncertainty

In this section, we evaluate the quality of our spectroscopic
MKs estimates. The nature of the uncertainty can be aleatoric or
epistemic. For the former, the uncertainty in MKs is caused by
uncertainties in the spectra. The latter can be caused by
multiple sources. For example, the spectra simply do not
contain the full information of the luminosity of the stars. On
top of that, our data-driven models might also be suboptimal in
extracting such information. In the following, we will quantify
both the aleatoric and epistemic uncertainties using the test set.
To make a complete accounting of the uncertainties in our

MKs estimates requires careful characterization of both the
contribution from uncertainties in the geometric MKs and the
additional scatter raised as a result of unresolved binaries. In
order to minimize the impact of binary stars, we calculate the
measurement uncertainty and intrinsic uncertainty with an
iterative approach. In each iteration, we identify and discard all
likely binaries that have more than 2σ difference between their
spectroscopic MKs and geometric MKs.
The measurement uncertainty and intrinsic uncertainty are

estimated in a Bayesian framework. In the following, we will
denote the ground-truth geometric absolute magnitude of each
star as Mg and the ground-truth spectroscopic absolute
magnitude as Ms. We assume that there is a linear relation
between the expected mean spectroscopic absolute magnitude
M s¯ and Mg, with a slope close to 1, with a correction term ε,
and an intercept of δ,

e d= + +M M1 . 7s g¯ ( ) ( )

We further assume that, for a given M s¯ , due to epistemic
uncertainty, the Ms of the individual stars are distributed as a

Figure 5. Comparison between the geometric MKs inferred from Gaia parallaxes and the spectroscopic MKs derived from LAMOST spectra for test stars. We only
show results for test stars that have precise Gaia parallax measurements (v s >v 10). The left panel demonstrates the spectroscopic MKs derived from the full
spectrum for stars without emission lines. The right panel illustrates the spectroscopic MKs derived using only wavelength pixels that are devoid of emission lines for
both non-emission stars (blue/green background) and emission-line stars (red dots). In both panels, the solid line delineates the one-to-one line. The dashed line shows
an offset of 0.75 mag from the one-to-one line, the offset one would expect from equal-mass binaries. Stars that are close to the dashed line have geometric MKs

brighter than the spectroscopic MKs, signaling the possibility of binaries or multiple systems.

Figure 6. Temperature-weighted gravity vs. MKs for test stars with emission
lines. The temperature-weighted gravity of a star is an indicator of its
bolometric luminosity. Spectroscopic MKs measurements are shown with dot
symbols while geometric MKs are shown with star symbols. The solid line
indicates the best-fit linear relation from the sample of nonemission stars.
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Gaussian with an intrinsic uncertainty of σint, i.e.,

s s= P M M M, , . 8s s s
int int( ∣ ¯ ) ( ¯ ) ( )

The estimated absolute magnitudes Mo
s are themselves assumed

to distribute around a given Ms as a Gaussian distribution with
width set by the aleatoric measurement uncertainty σs,

s s= P M M M, , . 9o
s s

s
s

s( ∣ ) ( ) ( )

For simplicity, we assume that the aleatoric measurement
uncertainty depends only on, and scales linearly with, the
spectral S/N. In particular, we have

s s= S N 100 , 10s s
100 [( ) ] ( )

where ss
100 is the uncertainty for spectra with S/N=100.

Finally, for the geometric absolute magnitude, we assume a
flat prior on the Mg. We can deduce that
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where ϖ and δϖ are the Gaia parallax and its uncertainty in
units of milliarcseconds. m0 and dm0 are the dereddened
apparent magnitude and its uncertainty, respectively. The latter
is computed for each star as the quadratic sum of the
uncertainties in the photometric magnitude and the extinction
estimate.
Combining all these ingredients, we arrived at the final
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In this work, we adopt a flat prior for all the parameters
and sample the posterior with Markov Chain Monte Carlo
(MCMC).
Figure 8 displays the results of the MCMC fitting to non-

emission single stars. The mean of posterior suggests an
aleatoric measurement uncertainty of s = 0.10s

100 mag for
spectra with S/N=100 and an epistemic intrinsic uncertainty
σint=0.25 mag. We find a moderate slope correction of
ε=−0.18, which is likely due to the lingering presence of
binaries, considering that our 2σ cut can leave a considerable
number of binaries with MKs excess smaller than 2σ
(0.5 mag) in the sample. The presence of lingering binaries
also implies that the intrinsic uncertainty from the MCMC
posterior is a conservative estimate as binaries can contribute to
part of the scatter.

6. Binary Identification

Binaries are ubiquitous and play important roles in
astrophysics (Abt 1983; Duchêne & Kraus 2013; Moe & Di
Stefano 2017). In star clusters, where all member stars share the
same distance and the same age, binary stars in the lower main
sequence are recognizable as they are brighter than all other
single stars that distribute along a well-described locus in the
color–magnitude diagram (e.g., Hurley & Tout 1998; Kou-
wenhoven et al. 2005; Li et al. 2013). The identification of
binary stars in the field is more complicated due to the mixture
of multiple stellar populations. There are a number of tailored
approaches that have been implemented for binary identifica-
tion in the field, such as interferometry (e.g., Raghavan et al.
2010), eclipsing transits (e.g., Qian et al. 2017; Zhang et al.
2017; Liu et al. 2018; Yang et al. 2020), color displacements
(e.g., Pourbaix et al. 2004; Yuan et al. 2015a), astrometric
noise excess (e.g., Kervella et al. 2019; Penoyre et al. 2020;
Belokurov et al. 2020), common phase space motion (e.g.,
Andrews et al. 2017; Oh et al. 2017; Coronado et al. 2018b;
El-Badry & Rix 2018; Hollands et al. 2018), radial velocity

Figure 7. Differences between spectroscopic MKs and geometric MKs as a
function of stellar parameters. Only results for single stars are shown. The solid
lines delineate the median and standard deviation as a function of stellar
parameters.
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variations (e.g., Matijevič et al. 2011; Gao et al. 2014, 2017;
Price-Whelan et al. 2017; Badenes et al. 2018; Tian et al.
2018, 2020), spectroscopic binaries with double lines (e.g.,
Fernandez et al. 2017; Merle et al. 2017; Traven et al. 2017;
Skinner et al. 2018; Traven et al. 2020), and full spectral fitting
(El-Badry et al. 2018b; Traven et al. 2020).

The various methods listed above have been extensively
employed to identify and characterize binaries from large
surveys. Belokurov et al. (2020) demonstrated that Gaia
RUWE is an efficient tool for identifying unresolved, short-
period binaries with low-to-intermediate-mass ratios. Short-
period binaries have also been characterized through their
double-line spectra from high-resolution spectroscopic surveys
(e.g., Fernandez et al. 2017; Merle et al. 2017; Traven et al.
2020), or through radial velocity variations with both high- and
low-resolution surveys (e.g., Gao et al. 2017; Badenes et al.
2018; Tian et al. 2018). Unresolved binaries with longer period,
which exhibit single lines in their spectra, are generally harder
to identify, but not impossible. Based on the full spectral fitting
technique, El-Badry et al. (2018b) have characterized thou-
sands of main-sequence binaries from the APOGEE spectra,
many of them long-period binaries.

Nonetheless, for long-period binaries, the method presented
in El-Badry et al. (2018b) is only mostly effective for systems
with intermediate mass ratios (  q0.4 0.85; where
=q m m2 1). It remains a challenge to identify unresolved

single-line binaries with higher mass ratios ( q 0.85). In this
regime, identifying binaries via the binary sequence in the H-R
diagram for cool stars with T 5200eff K is possible (e.g., Gaia
Collaboration et al. 2018b; Coronado et al. 2018a; Liu 2019),
while this method is not as applicable to the hotter (5200 K)
stars or giants due to the larger intrinsic variation of luminosity
(at a given Teff ).
Here we present a method of binary identification that

tackles this challenging regime (long-period binaries with hot
stars), leveraging differences between spectroscopic MKs and
geometric MKs, or analogously, differences between the
spectrophotometric parallaxes deduced from the spectroscopic
MKs and the parallaxes determined with Gaia. The method is
particularly efficient for identifying single-line binaries with
large mass ratios, e.g., binaries with equal-mass components,
thus serving as a complement to the aforementioned
approaches. A brief introduction on the philosophy of the
method has been laid out and applied to LAMOST AFGK stars

Figure 8. MCMC fitting of the intrinsic uncertainty and measurement uncertainty in our MKs estimates. Binaries were excluded iteratively. The intrinsic uncertainty
σint indicates the epistemic uncertainty in MKs estimates, whereas the measurement uncertainty σs quantifies the aleatoric uncertainty induced by spectral noise. The
MCMC results show an intrinsic uncertainty of σint=0.25 mag and a typical measurement uncertainty of σs=0.10 mag at S/N=100.
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in Xiang et al. (2019). Here we present a more detailed
description based on the application to LAMOST OB stars.

The basic idea is that, because the observed apparent
magnitude of an unresolved binary/multiple-star system is
brighter than any individual star in the system14, we should
expect the geometric MKs for binary systems to be brighter than
the spectroscopic MKs. This is possible because, while the
geometric MKs reflects the contributions from both stars
faithfully, the spectroscopic MKs mostly reflects the dominant
star in the system. To demonstrate the latter, we build an
empirical library of mock binary spectra using the LAMOST
spectra for single stars. The mock test allows us to compare,
and measure the differences between the spectroscopic MKs
derived from composites and that from the individual
components.

To generate the composite spectra, we scale the fluxes of the
LAMOST spectra to the same distance. We restrict our spectral
library to stars with robust Gaia parallax (v s >v 10) and
spectral S/N>100, to ensure high data quality. Accurate
spectral flux calibration is necessary to generate realistic
composite spectra. For this purpose, we adopt the LAMOST
spectra deduced with the flux calibration method of Xiang et al.
(2015). The calibrated spectral SEDs have a relative precision
of ∼10% in the wavelength range of λ4000–9000Å. We
ensure that, for spectra in our library, the scaled fluxes are
consistent with the photometry in all individual passbands,
including the Gaia G-band, the XSTPS-GAC, and APASS g, r,
and i band. Each of the spectra are further dereddened using the
reddening estimates in Section 4, assuming the extinction curve
from Fitzpatrick (1999). We assemble a set of binaries by
taking an OB star for the primary star and a star of any (O/B/
A/F/G/K) spectral type for the secondary. Figure 16 in
Appendix B shows a few examples of the composite spectra.

Figure 9 shows the difference between the MKs derived from
the composite binary spectra by simply treating them as single-
star spectra and the MKs derived from the spectra of the
primaries in these composites. In most cases, the spectroscopic
MKs for the binary is comparable to that of the single, primary
component. As expected, the spectroscopic MKs for equal-mass
binary systems are identical to those of the primary component;
the normalized spectra of the two component stars are identical.
A similar result also applies to binary systems with small mass
ratios. In this case, the secondary contributes minimally to the
spectrum. Our mock test suggests that their spectroscopic MKs
are fainter than that of the primary (by ∼0.2 mag on average).
Note that this is consistent with the findings of El-Badry et al.
(2018a), which suggest that, for AFGK stars in binaries, the
binary spectrum yields a larger glog than the single star. In any
case, this effect facilitates the identification of binaries, as the
difference between the geometric MKs and spectroscopic MKs
would be even larger. In short, our experiment concludes that,
unlike geometric MKs, spectroscopic MKs mostly reflects the
contribution from the dominant stars, regardless of the mass
ratio of the binary systems.

Nonetheless, we note that for some binary systems
composed of an OB-type primary star with M 0.5Ks mag
and an A/F/G/K-type secondary star, our spectroscopic MKs
estimates from the composite spectra could be brighter than the
primary by more than 0.2 mag. This is particularly common for

systems with a late-B-type primary. For these systems, the
Balmer lines of the composite are shallower than the primary
(Figure 16). The neural network model predicts a brighter MKs
because the model is trained on single OB stars, for which the
strength of Balmer lines decreases with increasing temperature,
and hence a brighter MKs.
To identify binary stars, we compute the spectrophotometric

parallax (in milliarcseconds),

v = - - - -10 , 15s
m M A0.2 10K K Ks s s ( )( )

and derive the S/N of the parallax excess of vs with respect to
the Gaia astrometric parallax ϖ,

v v

dv dv
=

-

+
vDS N , 16s

s
2 2

( )

where δϖs and δϖ are the measurement uncertainty of the
spectrophotometric parallax and the Gaia parallax, respectively.
The δϖs is defined via

dv
v

s s s s= + + +0.2 ln 10 , 17s

s
s m A
2

int
2 2 2

Ks Ks
( )

where σs and s int
2 are the (S/N-dependent) measurement

uncertainty and the intrinsic uncertainty, derived in Section 5.3;
smKs is the photometric uncertainty for the 2MASS Ks

magnitude, and sAKs the uncertainty of the extinction estimate.
We adopt a 2σ criterion, i.e., we assign a star to be a binary if

>vDS N 2. In total, 1597 of the 16,002 LAMOST OB stars in
our sample (10.0%) are identified as binary stars, 13,257
(82.8%) are marked as single stars, and 1148 (7.2%) stars are

Figure 9. Differences between the spectroscopic MKs estimates derived from
mock composite binary spectra vs. those for the primaries of the composites.
Red symbols show OB+OB binary systems and the gray symbols are binary
systems composed of an OB star and a companion with another (AFGK)
spectral type. In most cases, the composite spectra cause the inferred
spectroscopic MKs to be slightly fainter than the primary, further facilitating
the identification of binaries through the difference between geometric MKs and
spectroscopic MKs. For example, the geometric MKs for equal-mass binaries are
0.75 mag brighter than their primaries (dashed line in blue), due to the
contribution from the secondary. We note that for some binaries composed of a
late-B type primary with M 0.5Ks mag and an AFGK-type secondary, the
spectroscopic MKs could be brighter than that of the primary. As such, the
binary identification in this regime is less efficient (see text for details).

14 In general, the light centroids of binaries exhibit only little variation,
resulting in only minor systematics in the astrometry, especially for binaries
with similar mass companions.
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unclassified due to a lack of either a Gaia parallax or 2MASS
photometric magnitudes.

Figure 10 shows the differences between the spectro-
photometric parallax and Gaia parallax for individual
LAMOST OB stars. We show results from stars with robust
Gaia parallaxes (v s >v 10) and decent spectral quality
( >S N 50). Especially among stars with <M 0Ks mag, there
is a clear positive tail, contributed by binary/multiple-star
systems. These stars are overluminous compared to their single
star counterparts.

Most of the binary stars selected with our method have a
small RUWE value (∼1). This partly reflects that our method is
efficient for identifying binaries with large mass ratios,
especially equal-mass binaries, for which the Gaia RUWE
value is small due to negligible wobbles of the light centroids.
Viewed in this way, our method complements approaches that
identify binaries through large astrometric wobbles quantified
by the Gaia RUWE value (e.g., Belokurov et al. 2020).

Nonetheless, a few caveats apply. As discussed above, many
binaries with late-B-type primaries (with M 0.5Ks mag) can
be missed. This is also illustrated in Figure 10, where the
positive tail diminishes as we consider the full sample. The
quality of the Gaia parallax is another limit to the effectiveness
of this method. Because our method relies on the comparison
between the spectrophotometric parallax and the Gaia astro-
metric parallax, the results are less robust in recognizing distant
binary systems that have larger Gaia parallax uncertainty.

7. Distance

The distance to the star can be estimated by combining its
Gaia parallax with the spectrophotometric distance derived
from the spectroscopic MKs. We estimate the distance using the
Bayesian scheme presented below.

In terms of MKs, mKs, extinction AKs, and Gaia parallax ϖ,
the probability distribution function of distance d is

v v=P d M m A P d P d M m A, , , , , , 18K K K K K Ks s s s s s( ∣ ) ( ∣ ) ( ∣ ) ( )

where

v v=P d P d P d 19( ∣ ) ( ∣ ) ( ) ( )

and

=
P d M m A

P M d m A P m A d P d
, ,
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s s s

s s s s s

( ∣ )
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The likelihood function can be written as
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The extinction AKs is derived by

= ´ -A R E , 24K K B Vs s ( )

and RKs is the extinction coefficient in the 2MASS Ks passband.
We adopt a flat prior P(d), and P m A d,( ∣ ). Note that, for binary
systems, we adopt the Gaia parallax alone for distance estimation,
as their spectrophotometric distances might be biased.
We sample the posterior distribution function (PDF) for

individual stars with a fine distance step of 0.1 pc and adopt the
mode of the PDF as the distance estimate and the 16th and 84th
percentile as the 1σ estimates. We also sample the PDF in
logarithmic distance scale. The PDFs in logarithmic distance are
close to Gaussian, and we thus adopt the PDF-weighted mean and
standard deviation as the estimates of the logarithmic distance and
its uncertainty, respectively. The left panel of Figure 11 shows the
distribution of distances to our sample of LAMOST OB stars.
While the majority of stars are located within 3 kpc from the Sun,
a number of them could lie beyond 10 kpc. Figure 11 illustrates
the relative distance uncertainty as a function of distance. The
median distance uncertainty of the sample is 8%, and the distance
uncertainty only increases moderately with distance; the distance
uncertainty is about ∼14% at 15 kpc. The figure also shows the
distance uncertainty when only the Gaia parallax is adopted. It
illustrates that the inclusion of the spectroscopic MKs outperforms
Gaia distance estimates for stars farther than ∼1.5 kpc from the
Sun, and the improvement becomes critical for stars more distant
than about 5 kpc. This is consistent with Shull & Danforth (2019),
who found substantial differences between spectrophotometric
and parallax distances at >d 1.5 kpc. Although not shown, we
have also checked the distance of Bailer-Jones et al. (2018) for our
sample stars and found good consistency for stars with
d 2 kpc, a regime where their distance estimates are robust

and are not dominated by the priors imposed in their studies.
Nonetheless, we note that for binaries that are not identified with
our method due to large uncertainties in either the geometric and/
or spectroscopic MKs, the distance estimates may suffer large
systematics, which can reach 35% in the case of unidentified
equal-mass binaries when only spectroscopic MKs are available.
Figure 12 shows the LAMOST OB star sample in the X–Y

plane in Galactic Cartesian coordinates (X, Y, Z). The Sun is
assumed to be located at position = -X 8.1 kpc, Y=0 and
Z=0. The figure highlights the wide spatial range
- < -X16 5 kpc, - < <Y4 5 kpc covered by the sample.
A small number of stars outside these ranges are not shown here.

Figure 10. The normalized differences between the inferred spectrophoto-
metric parallax and the Gaia parallax for individual LAMOST OB stars. Only
the results from stars with robust Gaia parallaxes (v s >v 10) and decent
spectral quality ( >S N 50) are shown. The histogram in black shows results
from stars of all geometric MKs, while the red one shows only results for stars
with geometric <M 0Ks . Our method is more effective for finding binaries for
the latter. The vertical dashed line delineates the criterion adopted for binary
identification.
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The data exhibit overdensities at approximately the distance of
Perseus arm (e.g., at = -X 10 kpc and -Y 0.3 kpc), which is
about 2 kpc from the Sun (e.g., Xu et al. 2006).

Finally, our estimates of MKs, extinction, and distance, and
flags for binary and emission lines for the 16,002 LAMOST
OB stars are made publicly available.15 Table 1 presents a
summary of the catalog.

8. The Distance to the LB-1 B-star System

LB-1 (LS V +22 25; R.A.=92°.95450, decl.=22°.82575)
is a binary system discovered by Liu et al. (2019a). It was

purported to consist of a B-type star that exhibits periodic radial
velocity variations with an amplitude of around 50 km s–1 and a
period of 78.9 days; the system also exhibits broad emission
hydrogen lines that show periodic radial velocity variations of
∼10 km s–1 (Liu et al. 2019a, 2020). Liu et al. (2019a)
interpreted LB-1 as a B star orbiting a -

+68 13
11 M black hole as

the unseen primary companion, which, if true, would be the
most massive stellar-mass black hole ever found. Since its
discovery, there have been various controversies about the
origin of this system (Abdul-Masih et al. 2020; El-Badry &
Quataert 2020, 2021; Eldridge et al. 2020; Irrgang et al. 2020;
Liu et al. 2020; Rivinius et al. 2020; Shenar et al. 2020; Simón-
Díaz et al. 2020; Yungelson et al. 2020). Alternative
explanations have been proposed. In particular, spectral
disentangling (Shenar et al. 2020) has all but demonstrated
that LB-1 is an SB2 binary with two luminous components: it
shows a Be star, with its broad absorption lines and a
surrounding emission-line disk, and a luminous hot star with
low log g, presumably recently stripped to its current mass of
~ M1 . This has led Shenar et al. (2020) and El-Badry &
Quataert (2020) to conclude that the low mass and high
luminosity of the stripped star leads to the high radial velocity
variations in the combined spectrum. There is no need, and
presumably no room, for a black hole.
Here we investigate the MKs estimates of LB-1. Our catalog

contains spectroscopic MKs and distance measurements from 12
individual LAMOST spectra for the LB-1 system, all with

>S N 300. From these, we obtain a spectroscopic MKs of
−0.89±0.30 mag, which is fainter than the geometric MKs

based on Gaia parallax and 2MASS photometry (Figure 13).
Particularly, Gaia eDR3 (Brown et al. 2020) yields a parallax of
0.359±0.030 mas for LB-1. The zero-point offset correction
of Lindegren (2020) suggests a zero-point offset of −0.051 mas
for LB-1. These lead to a geometric MKs of - -

+1.67 0.16
0.15 mag,

with a significantly better precision compared to the Gaia DR2
value (- -

+1.39 0.47
0.39 mag).

Figure 11. Left: distribution of heliocentric distance of the LAMOST OB star sample. Right: Relative distance uncertainty (s s= ´d ln 10d dlog ) as a function of
distance. Only results for single stars are shown. The solid line delineates the median value of the relative distance uncertainty at various distances. The dashed line
delineates the relative distance uncertainty in the case where only the Gaia parallax is adopted to infer the distance. The improvement to distance estimates using the
spectroscopic MKs is clearly visible for distant stars.

Figure 12. Spatial distribution of the LAMOST OB star sample in the disk X–Y
plane in Galactic Cartesian coordinates. The plus symbol designates the
position of the Sun ( = -X 8.1 kpc, Y=0 kpc). The dashed rings delineate
constant distances from the Sun in step of 1 kpc.

15 The catalog is published online as a machine-readable version of Table 1. It
can also be accessed via a temporary link at https://keeper.mpdl.mpg.de/f/
56d86145cfb0417eb8a8/?dl=1.
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These results suggest that the geometric MKs of LB-1 is
significantly brighter than the spectroscopic MKs by more than
0.6 mag, implying the LB-1 is a binary system that contains
two luminous stars. This is largely consistent with the
conclusion of Shenar et al. (2020) and El-Badry & Quataert
(2020) and is in tension with the conclusion of Liu et al.
(2019a) that LB-1 is a system composed of one luminous B star
and a massive stellar-mass black hole.
As an independent check, we adopt stellar parameters for

LB-1 derived from the LAMOST spectra by fitting the Kurucz
ATLAS12 model spectra (Kurucz 1970, 1993) with THE
PAYNE (M. Xiang et al. 2021, in preparation) and evaluate
the temperature-weighted gravity (Kudritzki et al. 2020) as a
luminosity indicator. Note that, for hot stars, the rotation may
play a significant role in determining the luminosity. While
here we have ignored the rotation effect due to the lack of
accurate rotation measurements for our sample stars. None-
theless, Figure 14 illustrates that there is a good relation
between the inferred spectroscopic MKs and the Teff-weighted
gravity. The LB-1 stellar parameters are in line with such a
relation, leading credence to our spectroscopic MKs estimate of
LB-1. In short, our exploration suggests that both the geometric
MKs from the Gaia parallax and the spectroscopic MKs from the
LAMOST spectra for LB-1 are likely to be robust. The intrinsic
difference between the geometric MKs and the spectroscopic

Table 1
Descriptions for the Distance Catalog of 16,002 OB Stars in LAMOST DR5a

Field Description

specid LAMOST spectra ID in the format of “date-planid-spid-
fiberid”

fitsname Name of the LAMOST spectral .FITS file
ra R.A. from the LAMOST DR5 catalog (J2000; deg)
dec Decl. from the LAMOST DR5 catalog (J2000; deg)
uniqflag Flag to indicate repeat visits; uqflag=1 means unique star,

uqflag=2, 3, ..., n indicates the nth repeat visit
For stars with repeat visits, the uniqflag is sorted by the

spectral S/N, with uqflag=1 having the highest S/N
star_id A unique ID for each unique star based on its RA and Dec,

in the format of “Sdddmmss±ddmmss”
snr_g Spectral signal-to-noise ratio per pixel in SDSS g-band
rv Radial velocity from LAMOST (km s−1)
rv_err Uncertainty in radial velocity (km s−1)
MKs MKs estimated from LAMOST spectra
MKs_err Uncertainty in MKs

MKs_geo Geometric MKs inferred from Gaia parallaxes and 2MASS
apparent magnitudes

MKs_geo_err Uncertainty in MKs_geo
dis Distance at the mode of the distance probability density

function (PDF)
dis_low Distance at the 16th percentile of the cumulative probability

distribution function
dis_high Distance at the 84th percentile of the cumulative probability

distribution function
logdis PDF-weighted mean logarithmic distance
logdis_err Uncertainty in logdis
ebv Reddening estimated in this work
ebv_err Uncertainty in ebv
snr_dparallax Excess in spectrophotometric parallax with respect to the

Gaia astrometric parallax
binary_flag Flag of binarity; 1=binary ( snr_dparallax 2), 0=single

( <snr_dparallax 2), −9=unknown
em_flag Flag of emission lines; 1=with emission lines, 0=no

emission lines
gaia_id Gaia DR2 Source ID
parallax Gaia DR2 parallax (mas)
parallax_error Uncertainty in gaia_parallax (mas)
parallax_offset Offset of Gaia parallax according to the offset—G magni-

tude relation of Leung & Bovy (2019)
pmra Gaia DR2 proper motion in R.A. direction
pmra_error Uncertainty in pmra
pmdec Gaia DR2 proper motion in decl. direction
pmdec_error Uncertainty in pmdec
ruwe Gaia DR2 RUWE
J 2MASS J-band magnitude
J_err Uncertainty in J
H 2MASS H-band magnitude
H_err Uncertainty in H
Ks 2MASS Ks-band magnitude
Ks_err Uncertainty in Ks

X/Y/Z 3D position in the Galactic Cartesian coordinates (kpc)

Note.
a Due to multiple visits of common stars, the catalog contains 27,784 entries
for 16,002 unique stars. This is slightly different from the original catalog of
Liu et al. (2019b), which contains 22,901 spectra entries for 16,032 stars. We
have increased the number of spectra by including all repeat visits in the
LAMOST DR5 database. All of the spectra can be found on the LAMOST
DR5 website.

(This table is available in its entirety in machine-readable form.)

Figure 13. Comparison of spectroscopic MKs with geometric MKs for a test star
sample with precise Gaia parallax (w s >w 10  ). The solid line delineates the
one-to-one line, while the dashed line delineates an offset of 0.75 mag to the
one-to-one line. The inferred spectroscopic MKs and geometric MKs of the LB-1
system are highlighted by the pink circle with error bars. The plus symbol in
pink shows the MKs (−2.9 mag) inferred from the distance in Liu et al. (2019a),
which is at odds with our spectroscopic MKs. The red dot with error bars shows
the LB-1 geometric MKs based on the Gaia eDR3 parallax, which has a
significantly smaller error bar compared to the Gaia DR2 result. It shows that
LB-1 is a binary system, for which the component stars are comparably bright.
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MKs could be explained if LB-1 is a binary system with two
luminous component stars.

9. Summary

In this study, we have presented a data-driven approach for
deriving Ks-band absolute magnitudes MKs for OB stars from
low-resolution (R 1800 ) LAMOST spectra. Our method
uses a neural network model trained on a set of stars with good
parallaxes from Gaia DR2. Applying to a test data set, we find
that the neural network is capable of delivering MKs with
0.25 mag precision from the LAMOST OB star spectra. We
have also applied the method separately to stars with emission
lines in their spectra. The emission-line spectra are identified
through comparing the observed spectra and the PCA
reconstruction of the spectra.

We verify that the MKs estimated from the composite
spectrum of a binary system is comparable to, or slightly fainter
than, the MKs of the primary star. This is in contrast to the
geometric MKs calculated from Gaia parallaxes, as both
components of the binary contribute to the geometric MKs.
We propose a new method of binary identification, leveraging
differences between the spectroscopic MKs and the geometric
MKs. The method is particularly effective for identifying equal-
mass binaries or multiple-star systems, because the geometric
MKs of these systems are much brighter than their primaries.
Our method is generic and can be applied to any combined
astrometric and spectroscopic data beyond this study.

With the spectroscopic MKs determinations, we derive
accurate distances to 16,002 OB stars from the LAMOST
sample of Liu et al. (2019b). The median distance uncertainty
for our sample stars is 8%, and the distance uncertainty for the
most distant stars at more than 10 kpc away is about 14%. We
present a value-added catalog of OB stars for future studies
of the structure and dynamics of the Galactic disk. Besides

absolute magnitudes and distances, the catalog presents also
emission-line flags and binary flags for the LAMOST OB stars,
significantly expanding the number of known emission-line
objects and binaries for massive stars, especially those with
mass ratios close to unity. Our method yields a spectral MKs of
0.89±0.30 mag from the LAMOST spectra of LB-1. How-
ever, the geometric MKs of LB-1 derived from the Gaia
parallax, both Gaia DR2 and Gaia eDR3, is significantly
brighter than the spectroscopic MKs, suggesting that LB-1 is
likely a binary system that contains two luminous stars with
comparable brightness. This supports the previous conclusion
of Shenar et al. (2020) and El-Badry & Quataert (2020), and
contradicts Liu et al. (2019a), who argued that LB-1 is a system
composed of one luminous B star and a massive stellar-mass
black hole.

H.-W.R. acknowledges funding by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation)—
Project-ID 138713538—SFB 881 (“The Milky Way System”,
subproject A03). M.X. is grateful for Dr. Bodem for the
successful dental surgery and the attentive care from him
during recovery. Y.S.T. is grateful to be supported by the
NASA Hubble Fellowship grant HST-HF2-51425.001 awarded
by the Space Telescope Science Institute.
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Sky Area Multi-Object Fiber Spectroscopic Telescope;
LAMOST) is a National Major Scientific Project built by the
Chinese Academy of Sciences. Funding for the project has
been provided by the National Development and Reform
Commission. LAMOST is operated and managed by the
National Astronomical Observatories, Chinese Academy of
Sciences.

Figure 14. The temperature-weighted gravity vs. the geometric MKs (the left panel) and the spectroscopic MKs (the right panel). The temperature-weighted gravity is
adopted as a “ground-truth” luminosity indicator. Only stars with precise Gaia parallax (w s >w 10  ) are shown. The solid line is a second-order polynomial fit to the
geometric MKs as a function of the temperature-weighted gravity. The circle with error bar in pink highlights the LB-1 B-star companion. The spectroscopic MKs

estimate for LB-1 is perfectly consistent with the temperature-weighted gravity. The geometric MKs is brighter than the prediction from the gravity.
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Appendix A
Examples of Problematic LAMOST Spectra

As shown in Figure 2 in the main text, there are some stars
with large χ2 in the residuals between the LAMOST spectra
and the PCA reconstruction. We find that, for these stars, the
LAMOST spectra are often problematic due to various reasons,

including instrument problems, erroneous wavelength calibra-
tion, and other reasons. Figure 15 shows a few examples of the
erroneous LAMOST spectra.

Appendix B
Examples of Mock Binary Spectra

As discussed in Section 6, in order to study the spectroscopic
MKs derived from composite spectra, we build an empirical library
of binary spectra using the LAMOST spectra of single stars.
Figure 16 shows a few examples of our mock composite spectra
as well as their inferred spectroscopic MKs. The spectroscopic MKs
estimates of the binary spectra typically agree with those from the
spectra of the primary stars, with a difference of 0.2 mag.

Figure 15. A few typical examples that exhibit abnormal residuals between the LAMOST spectrum and the PCA reconstruction. The top panel shows a spectrum with
problematic fluxes over the wavelength range of λ4700–5000 Å, leading to poor PCA reconstruction. The middle panel shows a spectrum with artifacts in the
LAMOST spectra across λ5000–7000 Å. The PCA reconstruction is visually reasonable, but the χ2 between the LAMOST and PCA-reconstructed spectra is
suboptimal. The bottom panel shows a spectrum that has a problematic wavelength calibration from the LAMOST pipeline in the wavelength range of λ5800–7000 Å.
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Figure 16. A few typical examples of mock composite spectra. We focus on the wavelength range of λ3800–5100 Å. The spectra of the primary, secondary, and
binary are shown in black, gray, and red, respectively. For all these cases, the primary is a B-type star. The secondary are B-, A- and G-type stars from the top to
bottom, respectively. The spectroscopic MKs estimates applied to the primary, secondary, and composite binary spectra are also shown in the figure. The spectroscopic
MKs estimate of the binary spectra typically agrees with the one from the primary spectra, with a difference 0.2 mag.
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