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Inherent dose-reduction potential of classical ghost imaging
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Classical ghost imaging is a computational imaging technique that employs patterned illumination. It is
very similar in concept to the single-pixel camera in that an image may be reconstructed from a set of
measurements even though all imaging photons or particles that pass through that sample are never recorded
with a position resolving detector. The method was first conceived and applied for visible-wavelength photons
and was subsequently translated to other probes such as x rays, atomic beams, electrons, and neutrons. In the
context of classical ghost imaging using penetrating probes that enable transmission measurement, we here
consider several questions relating to the achievable signal-to-noise ratio (SNR). This is compared with the SNR
for conventional imaging under scenarios of constant radiation dose and constant experiment time, considering
both photon shot noise and per-measurement electronic readout noise. We show that inherent improved SNR
capabilities of classical ghost imaging are limited to a subset of these scenarios and are actually due to increased
dose (Fellgett advantage). An explanation is also presented for recent results published in the literature that are
not consistent with these findings.
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I. INTRODUCTION

Transmission imaging and diffraction with penetrating
probes such as x rays [1], neutrons [2], and electrons [3]
enables one to see inside an object (through radiography [4],
computed tomography [5,6], crystallography [7], ptychogra-
phy [8], etc.), in a nondestructive manner and potentially in
situ or operando [9,10]. Important understanding of speci-
mens may be obtained through these imaging modalities, that
cannot be accessed through any other technique, at scales
ranging from angstroms up to kilometers and beyond. Often,
particularly in a biological-imaging setting, the radiation dose
imparted to these specimens is an important consideration
[11]. For living specimens, such as in medical and preclinical
x-ray imaging, the probe may be carcinogenic [12] and a
tradeoff must be made between the information gained and the
probability of cancer developing. For excised samples, exces-
sive dose can cause structural damage distorting the resulting
images and thereby limiting their usefulness. How dose can
be minimized is an important question to ask in this context.
The same question is important in low-fluence settings [13]
where a paucity of imaging photons (or imaging particles)
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necessitates low dose, not necessarily on account of sample
damage, but rather on account of faint sources and/or short
image-acquisition times; ultrafast imaging [14] and imaging
using faint sources [15,16] falls into this category of imaging
problems for which dose reduction is also an important con-
sideration.

Ghost imaging (GI) is an unconventional imaging tech-
nique that has the potential to address this question. Ghost
imaging was first developed in the field of quantum optics
utilizing entangled photons [17]. In one arm of the ghost-
imaging experiment the interaction of photons with an object
of interest is recorded, while in the other arm, the position
of one photon in entangled-photon pairs is recorded. Neither
set of measurements alone can yield an image of the object,
and it is only through their correlation that an image emerges.
Such “ghost images” can be produced with extremely low
numbers of photons [18,19]. It was subsequently realized that
only the spatial correlation property of the entangled photon
pair was used in the early ghost-imaging experiments. The
same effect, at least qualitatively, can be reproduced by two-
photon-interference induced intensity fluctuation correlation
of thermal light [20] and, by extension, classical intensity-
intensity correlation between classical beams can produce
ghost imaging in the same configuration [21,22]. This led
to the experimental realization of classical ghost imaging
through patterned illumination.

Classical ghost imaging has now been translated to pen-
etrating probes such as x rays [23,24], electrons [25], and
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neutrons [26]. The initial work with x rays in one dimension
(1D) has now been extended to two-dimensional (2D) radio-
graphy by Zhang et al. [27] and Pelliccia et al. [28], as well
as three-dimensional (3D) computed tomography by Kingston
et al. [29,30]. In light of all of the above recent advances, it
is timely to explore the possibilities of dose reduction through
ghost imaging. This is the focus of this paper, specifically in
the context of classical ghost imaging using patterned illumi-
nation.

The dose-reduction capabilities of classical ghost imaging
seem to be poorly understood in the literature, with some in-
consistency between theoretical predictions and experimental
results. Gureyev et al. [31] showed that for the signal-to-noise
ratio (SNR) from GI to match that for direct imaging with a
pixelated detector, the number of measurements must be very
low. To achieve a high SNR with only a few measurements
would require either (1) that the object image be strongly
correlated with only a small number of patterned illuminations
(with the specific patterns known a priori), or (2) that the
object image be extremely sparse in some representational
basis such that compressed sensing (CS) can be exploited.
Lane and Ratner [32] showed that the Fellgett (or multiplex)
advantage applies to ghost imaging and provides superior
SNR for a given experiment time when noise is dominated
by a per-measurement readout noise independent of signal.
However, this SNR improvement is due to increased dose
rather than improved utilization of dose. Lane and Ratner
also showed that GI (and multiplexing in general) provides
no advantage under photon shot noise. They concluded that
to reduce dose, GI must be combined with CS or related
concepts. Ceddia and Paganin reached similar conclusions
[33]. Recent experimental results in the literature [27] have
demonstrated x-ray GI with ultralow dose that is stated to be
superior to direct imaging; this seems to suggest that reduced
dose is an inherent property of GI. However, we believe these
results can be explained by the absence of a shutter during
detector readout under continuous wave x-ray illumination (as
will be detailed herein).

In this paper we wish to reiterate and expand upon the
above theoretical predictions of SNR from classical GI in
settings where one is given no previous knowledge regarding
the object being imaged. We have chosen to base our SNR
calculations on experimental imaging parameters in order to
provide practical guidelines for designing classical GI exper-
iments. A key point, here, is that in the absence of any a
priori knowledge regarding the object, reduced dose is not an
inherent property of classical GI. The power of classical ghost
imaging (and computational imaging in general) for dose re-
duction lies in the ability to capitalize on a priori knowledge.
We do not need to measure object properties that are given,
and seek to only make sufficient measurements to identify
the differences from an expected result. Our focus here is on
classical ghost imaging where this ability is encapsulated in
either the basis of measurement (i.e., the illumination patterns
employed) or the representational basis in image reconstruc-
tion in which the image is assumed sparse. Quantum ghost
imaging (QGI) (first realized with x rays by Schori et al. [34]),
while almost optimal in imaging efficiency, is more similar to
direct imaging in this context since it does not utilize illumi-
nation masks and no image reconstruction is required. Owing

to its inherent imaging efficiency, QGI can almost certainly
provide a dose reduction, however, in our view it is likely to
be very limited; this point, while important, lies beyond the
scope of this paper and therefore will not be further explored
here.

The advantages and disadvantages of employing bucket
detectors in ghost imaging, over pixelated detectors, are an
important consideration in this paper. Since spatial resolu-
tion is not a consideration, bucket detectors typically have
a higher detective quantum efficiency (DQE). Since there
is no concept of spatial resolution, increasing signal spread
has no effect. One can then increase the interaction lengths
(for example, by using thicker scintillating materials) to in-
crease the degree of x-ray interaction (although, in the case
of scintillators, the conversion of x-ray energy to signal may
be reduced). Conversely, efficiency becomes an important
tradeoff for smaller and smaller pixel sizes in a position-
sensitive detector. The electronic readout noise may also be
lower for bucket detectors compared with pixelated detec-
tors. Other considerations include pixel crosstalk (or charge
sharing), and the effects of x-ray scatter on measurements.
Both these factors affect pixelated detectors but do not apply
to bucket detectors. For analysis and simulations through-
out this paper we will assume the worst case scenario for
GI by ignoring these effects and assuming equivalent DQE
and electronic noise for both bucket detectors and pixelated
detectors.

The remainder of the paper proceeds as follows. Section II
outlines classical ghost imaging and its properties. The point-
spread function of GI is derived and used to determine
the required normalization scale for the conventional ghost-
imaging reconstruction formula. In Sec. III the SNR of GI
as a function of experiment parameters is studied. Following
this, GI is compared with conventional imaging in Sec. IV;
the Fellgett advantage under per-measurement Gaussian noise
is demonstrated, and it is then shown that GI provides no
advantage under Poisson noise. A potential explanation for
the contradictory GI dose-reduction experimental results in
Zhang et al. [27] is presented in Sec. V, along with valida-
tion by simulation. This is followed by a discussion drawing
from the results together with an indication of some possible
directions for future research, in Sec. VI. Concluding remarks
are given in Sec. VII.

II. CLASSICAL GHOST IMAGING

While both quantum-mechanical and classical variants of
the ghost-imaging methodology exist, here and henceforth we
restrict consideration to the classical case only, using a set of
patterned illuminations. A key feature of classical GI is that
all photons1 or particles, that pass through the object being

1Since we have explicitly restricted consideration to the classical
variant of ghost imaging, the term “photon” is here and henceforth
taken to refer to the classical construct associated with the detection
of a single “click” on a suitable detector, associated with a pointlike
classical entity moving along a classical path connecting the source
to the detector. Our use of the term “photon,” in the context of the
classical variant of ghost imaging that is the main topic of this paper,
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FIG. 1. Variations of the experimental setup to achieve classical
ghost imaging. (a) Traditional setup using a beam splitter for simul-
taneous measurement of illumination patterns A and bucket signals
B. (b) Computational setup where the illumination patterns A are first
recorded, then the bucket signals B are measured with the repeated
set of mask positions.

imaged, are never registered using a position-sensitive detec-
tor. Instead, they are recorded using a single-pixel detector,
referred to as a “bucket,” to yield the total transmission of the
sample [35,36] for a given patterned illumination. Photons or
particles that never pass through the object are measured using
a position-sensitive detector, to give the set of illumination
patterns (or speckle maps2) that have no relation to the ob-
ject being imaged. Note that the spatial distribution of these
illumination patterns may arise due, e.g., to intrinsic beam
characteristics such as the partially coherent character of an
optical beam or, alternatively, patterned illumination may be
imposed, e.g., by transversely scanning a spatially random or
deterministic mask. A schematic depiction of typical exper-
imental GI setups is presented in Fig. 1. The speckle maps
may be recorded simultaneously with the bucket measure-
ments using a beam splitter as shown in Fig. 1(a). Controlled
and repeatable speckle maps may be prerecorded (or even
known a priori) as shown in Fig. 1(b). The latter variant is
referred to as computational ghost imaging [22]. When the
process described above is repeated many times, each with
a different spatial distribution of the illumination, one ob-
tains an ensemble of position-resolved illumination patterns
A that may be statistically independent or deterministically
orthogonal, together with a set of corresponding scalar bucket
signals B.

is not associated with the quanta of excitation of the quantized elec-
tromagnetic field, as would be the case in the quantum-mechanical
variant of ghost imaging.

2Throughout this paper, we use the term “speckle” to simply re-
fer to patterned intensity distributions. These distributions may be
spatially random or deterministic. This usage of “speckle” differs
markedly from the common usage which equates “speckle” with
“fully developed coherent speckle.”

Given a set of J patterned illuminations, A =
{A1(x, y), A2(x, y), . . . , AJ (x, y)}, where x and y are
detector-plane coordinates,3 the set of measured bucket
signals B = {b1, b2, . . . , bJ} can be modeled as the cross
correlations of A with the transmission image T (x, y) of the
object of interest, i.e.,

bj =
∑

x

∑
y

A j (x, y)T (x, y). (1)

While neither A nor B considered in isolation will enable
a transmission image of the object to be formed, the cor-
relation between these data sets enables a ghost image to
be reconstructed [35,36]. Classical ghost imaging is then by
necessity a computational imaging technique since no image
can be formed directly from the measurements. The traditional
ghost-image recovery equation presented, generally without
proof, in the literature (e.g., [35,36]) is the following:

T̂ (x, y) =
∑

j

A j (x, y)(b j − 〈b〉). (2)

Throughout the paper we will use 〈. . .〉 to denote the mean
value in dimension j, i.e., 〈η〉 = 1

J

∑
j η j ; thus, here 〈b〉 de-

notes the mean bucket signal. It is shown in Appendix A that
this traditional recovery equation can be derived as the adjoint
of a mean-corrected form of the cross-correlation equation
[Eq. (1)]. While in many cases the recovered image T̂ (x, y)
may resemble the original object transmission T (x, y), they
may not be equal for several reasons:

(1) A scale factor γ is introduced such that 〈T̂ 〉 = γ 〈T 〉.
While it is possible that γ = 1, for example, if the illumina-
tion patterns form an orthonormal basis, in general this scale
factor will not be equal to unity.

(2) The adjoint operation (scaled by γ −1) is only equal to
the inverse for unitary operators. In our context, the adjoint
will equal the inverse if the illumination patterns form an
orthogonal basis (e.g., the set of 2D binary patterns based on
the Hadamard transform). It will also be shown later that for a
nonorthogonal basis, the scaled adjoint approaches the inverse
as J → ∞.

(3) If the set of illumination patterns has a constant total
transmission, i.e.,

∑
x

∑
y A j (x, y) = k ∀ j ∈ [1, J], the mean

object transmission is lost so that 〈T̂ 〉 = 0. This condition
often arises when an orthogonal scanning mask is employed
(such as a pinhole or a uniformly redundant array).

Each of these issues will be addressed in subsequent sec-
tions, however, prior to this it is beneficial to understand the
Green’s functions associated with ghost imaging [31], as well
as a shift invariant point-spread function (PSF) representing
the expected Green’s functions.

3Here, x and y are discrete variables that map to the pixel positions
of the speckle maps recorded by the position-sensitive detector.
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A. Point-spread function

The classical ghost-imaging process is modeled by com-
bining Eq. (1) with Eq. (2) and rearranging to obtain4

T̂ (x, y) =
∑

x′

∑
y′

T (x′, y′)
∑

j

Ã j (x
′, y′)Ã j (x, y), (3)

where Ã j (x, y) = Aj (x, y) − 〈A(x, y)〉. The corresponding
Green’s function G(x∗,y∗ ) describes the point-spread effects of
the ghost-imaging process about the point (x∗, y∗). A recon-
structed ghost image can be decomposed into a sum of the
set of Green’s functions. G(x∗,y∗ ) is determined by inserting a
Dirac delta function at (x∗, y∗), i.e., setting T (x′, y′) = δ(x′ −
x∗, y′ − y∗), and applying Eq. (3) as follows:

G(x∗,y∗ )(x, y) =
∑

x′

∑
y′

δ(x′ − x∗, y′ − y∗)

×
∑

j

Ã j (x
′, y′)Ã j (x, y)

=
∑

j

Ã j (x
∗, y∗)Ã j (x, y). (4)

The expected Green’s function is described by a shift
invariant PSF found as the average over all registered (or
coaligned) Green’s functions. Registration is achieved by
shifting each G(x∗,y∗ ) to be about a common point, e.g., about
(x, y) = (0, 0) as G(x∗,y∗ )(x + x∗, y + y∗). The PSF is then
found as follows:

PSF(x, y) = 1

n2

∑
x∗

∑
y∗

G(x∗,y∗ )(x + x∗, y + y∗)

= 1

n2

∑
x∗

∑
y∗

∑
j

Ã j (x
∗, y∗)Ã j (x + x∗, y + y∗)

= J

n2
〈Ã ◦ Ã〉(x, y), (5)

where ◦ denotes 2D correlation. The PSF (or expected Green’s
function) is therefore directly proportional to the mean auto-
correlation of speckle patterns. As a simple simulated example
to exemplify this process, the PSFs for two sets of J =
65 536 � n2 speckle patterns generated as 64×64 pixel im-
ages are presented in Fig. 2.

Assuming spatial statistical stationarity (see, e.g., [37]),
we approximate each G(x′,y′ )(x, y) as PSF(x − x′, y − y′) and
Eq. (3) becomes

T̂ (x, y) =
∑

x′

∑
y′

T (x′, y′)G(x′,y′ )(x, y)

≈
∑

x′

∑
y′

T (x′, y′)PSF(x − x′, y − y′)

= {T ∗ PSF}(x, y), (6)

where ∗ denotes 2D convolution. This approximation has
been demonstrated in Fig. 3 for the two speckle patterns

4To achieve this result we have used the fact that∑
j〈A(x, y)〉Ã j (x, y) = 0.

FIG. 2. Ghost-imaging PSF determined using Eq. (5) from a
set of speckled illuminations. (a) An example 64×64 pixel random
binary speckled illumination pattern. (b) The ghost-imaging PSF
obtained using 65 536 random patterns. (c) An example blurred
speckled illumination generated by convolving the image in (a) with
a Gaussian having a standard deviation σ = 1.0 px. (d) The ghost-
imaging PSF obtained using 65 536 blurred random patterns.

FIG. 3. Demonstration of ghost imaging as the convolution of the
original transmission image with a point-spread function (PSF) deter-
mined from the set of speckled illuminations. (a) The original 64×64
pixel image. (b) Result from ghost imaging using 65 536 random
binary speckled illumination patterns [see example speckle pattern in
Fig. 2(a)]. (c) The original image in (a) blurred by convolution with
the ghost-imaging PSF in Fig. 2(d). (d) Result from ghost imaging
using the 65 536 random binary speckled illumination patterns used
in (b), blurred by convolution with a Gaussian with σ = 1 px [see
example speckle pattern in Fig. 2(c)].
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presented in Fig. 2. The results of {T ∗ PSF} are presented in
Figs. 3(a) and 3(c) with the corresponding ghost images given
in Figs. 3(b) and 3(d). The resolution of the ghost images
is limited to the width of the PSF [as predicted by Eq. (6)]
[28,31]; we also observe some additional background artifacts
that appear as noise. These artifacts disappear as J → ∞.

B. Normalization scale for the adjoint operator

It was shown in Eq. (6) that the classical ghost-imaging
process can be approximated as the convolution of the object
transmission image with the ghost-imaging PSF. From this
observation we see that the multiplicative scale introduced
by the ghost-imaging process such that T̂ (x, y) = γ T (x, y)
is found as the integral of the PSF with respect to transverse
position, i.e.,

γ =
∑

x

∑
y

PSF(x, y) = J

n2

∑
x

∑
y

〈Ã ◦ Ã〉(x, y). (7)

Here, the scale required to normalize the adjoint operation in
Eq. (2) is γ −1. By way of demonstration, Appendix B presents
the calculation of γ for the examples presented in Figs. 2 and
3. For independent random patterned illuminations, γ = Jσ 2

A
where σ 2

A is the variance of the speckle patterns, while for
the random patterns blurred by a 2D Gaussian function (with
standard deviation σg) γ = 4πJσ 2

g σ 2
A .

C. Landweber iteration for a general set of illumination patterns

Given an orthogonal set of illumination patterns, the ad-
joint operator scaled by γ −1 is the inverse operation, although
this is not the case for a general set of illumination patterns.5

Let us present classical ghost imaging in matrix notation
where t is the image T (x, y) represented as a vector, Ã is a
matrix with each row formed as the transpose of Ã j (x, y) as
a vector, and b̃ is the vector of mean-corrected bucket mea-
surements b̃ j = b j − 〈b〉. The mean-corrected form of Eq. (1)
then becomes b̃ = Ãt and the normalized adjoint in Eq. (2)
becomes

t̂ = 1

γ
ÃTb̃. (8)

For orthogonal mean-corrected speckle patterns, ÃT = γ Ã−1

so Eq. (8) is the inverse. However, this is not true in general
and the Moore-Penrose inverse (ÃTÃ)

−1
is employed as fol-

lows:

t̂ = (ÃTÃ)−1ÃTb̃. (9)

For large images, computing the Moore-Penrose inverse may
be prohibitive and the following Landweber algorithm that
iteratively updates the current estimate t̂i to t̂i+1 may be

5An indication of the flexibility in choice of illumination patterns
is given by a recent paper on computational GI using illumination
patterns given by successive grayscale frames of a Charlie Chaplin
movie [38]. The key point here is that the ensemble of illuminations
be linearly independent of one another [31].

preferable:

t̂i+1 = t̂i + α

2γ
(ÃT(b̃ − Ã̂ti )), (10)

where α ∈ (0, 1] is a regularization term. Note that this al-
gorithm is maximum likelihood assuming uniform Gaussian
noise. A modified form may be preferable if noise is domi-
nated by photon shot noise modeled as a Poisson distribution.

D. Correction for illumination patterns
with constant total transmission

While 2D Hadamard masks can be fabricated as stencils
and do provide an orthogonal set of illumination patterns, they
are extremely inefficient since each mask is only used once.
To generate an n×n pixel ghost image using Hadamard masks
requires fabricating n2 binary stencils with n×n elements.
A far more efficient mask is one that is orthogonal under
translation. Such masks include pinhole masks, uniformly
redundant arrays (URA, e.g., [39]), and masks based on the
finite Radon transform (FRT, e.g., [40]). To generate an n×n
pixel ghost image in this case requires a single stencil with
(2n − 1)×(2n − 1) elements [fabricated such that M(x, y) =
M(x + n, y + n)]. The ghost-imaging experiment illuminates
only n×n elements of this stencil per measurement and is
translated to the n2 available positions to record the set of
bucket signals.

These sets of illumination patterns have a constant to-
tal transmission, i.e.,

∑
x

∑
y A j (x, y) = k ∀ j ∈ [1, J]. In this

case, the mean object transmission is lost in ghost-image
reconstruction, so that 〈T̂ 〉 = 0. In these cases the mean 〈T 〉 =
〈b〉/k can be added to γ −1T̂ .

III. SIGNAL-TO-NOISE RATIO STUDY

Having addressed the deficiencies of classical ghost-image
reconstruction, we are now in a position to investigate the
signal-to-noise ratio, where the noise is defined as the root-
mean-square error (RMSE), i.e.,

RMSE(T̂ , T ) =
√

1

n2

∑
x

∑
y

(T̂ (x, y) − T (x, y))2. (11)

Here, we first establish the signal-to-noise ratio of classical
ghost imaging as a function of the imaging parameters. We
then compare the SNR of ghost imaging with that of (a)
a scanning probe and (b) direct imaging with a position-
sensitive detector. This underpins the overall objective of our
paper, which is to identify the capabilities of GI to achieve
the same SNR or contrast-to-noise ratio (CNR) as these more
conventional imaging techniques while subjecting the object
under investigation to minimal radiation dose.

Since we are working with simulations, noise can be spec-
ified as the error in image reconstruction, as quantified by
RMSE(T̂ , T ). The definitions of signal or contrast are func-
tions of object transmission (i.e., proportional to the mean
μT and standard deviation σT , respectively), and indepen-
dent of imaging parameters. It is therefore not important in
this study on the effect of imaging parameters. In a manner
similar to peak signal-to-noise ratio (PSNR) often used for
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evaluation of lossy codec performance,6 we will use the
maximum possible signal (the case of 100% transmission)
as the numerator and investigate SNR defined simply as
SNR(T̂ , T ) = 1/RMSE(T̂ , T ).

In what follows, we consider monochromatic, parallel-
beam illumination with photon flux B photons/s/mm2.
Speckle patterns are generated by illuminating masks fabri-
cated with n×n elements of area �2 mm2, with transmission
of element (x, y) of mask j described by Aj (x, y). With mask
j in place, the number of photons incident at pixel (x, y)
of the object after an exposure of duration t0 is described
by BAj (x, y)t0�2. Given J patterned illuminations, the total
exposure time is Jt0 and we define the total number of incident
photons per pixel from a ghost imaging experiment as P =
BJt0�2. Note that throughout this paper we have assumed a
uniform incident illumination (or flat field). In what follows,
we consider ensembles of speckle patterns that produce a PSF
that is a delta function with integral Jσ 2

A .
In the high-photon-flux (or noise-free) limit, given a set of

J independent, random masks with transmission Aj (x, y), the
RMSE (as derived in Appendix C) is as follows:

SNR0(T, T̂ ) = 1

RMSE0(T, T̂ )
≈

√
J

n2
(
μ2

T + σ 2
T

) . (12)

This quantifies the natural dependencies that (1) for a given
original image, the SNR is proportional to the square root
of the number of masks employed J , a dependence that
was observed by Bromberg et al. [36] and arises from the
random-basis character [33,41] of the ensemble of illuminat-
ing speckle maps; (2) for fixed J , the SNR becomes lower as
the original signal becomes larger (either mean or standard
deviation increase). This is a generalization of the finding in
Ref. [42] for binary images that SNR is inversely proportional
to the square root of the number of nonzero elements; for
binary images, μ2

T + σ 2
T = μT . We note that this analysis of

the adjoint operation provides an estimate of the lower limit
on SNR. Reconstruction through the Moore-Penrose inverse
or Landweber iteration [via Eq. (10)] can potentially improve
SNR up to the equivalent to that for a set of orthogonal masks.

Given a scanning mask that is orthogonal under translation
(such as a uniformly redundant array [39] or that generated
through the finite Radon transform [40]), the RMSE (as de-
rived in Appendix C) is as follows:

SNR⊥
0 (T, T̂ ) = 1

RMSE⊥
0 (T̂ , T )

≈
√

n2

(n2 − J )σ 2
T

, (13)

for 1 � J < n2. As identified by Ceddia and Paganin [33],
this equation becomes a function of the number of masks
missing, n2 − J , with SNR increasing as the number of masks
missing decreases. Regardless, observe that both Eq. (13)
and the random-mask equivalent, Eq. (12), are monotonically

6Note that one can consider ghost imaging as a codec (coder-
decoder): The ghost-imaging measurements encode the original
image of the object as coefficients in a space where the illumination
patterns form the basis vectors, and the ghost-image reconstruction
process decodes these data back to image space.

increasing functions of the number of masks J . (Simulations
demonstrating the validity of these noise-free SNR estima-
tions have been plotted in Fig. 10 in Appendix C.)

The above SNR observations for the “noise-free” case
could be considered as the signal-to-artifact ratio (SAR). Let
us now investigate the effect of incorporating experimental
noise into the measured bucket signals. In a manner similar
to that of Lane and Ratner [32], we will consider two extreme
cases: (1) photon shot noise modeled as a Poisson distribution
scaled by σp, and (2) per-measurement detector noise modeled
as a Gaussian distribution with uniform standard deviation σm.
Experimental noise can typically be modeled as a weighted
combination of Poisson and Gaussian distributions (see [43]).
The RMSE for both types of noise is derived in Appendix C in
the limit where there are no artifacts from GI (i.e., J � n2 for
the random mask case or J = n2 for orthogonal masks). In this
limit, SAR → ∞ and SNR approaches more “conventional”
imaging definitions. For photon shot noise,

RMSEp(T̂ , T ) =
√

σ 2
p μAμT n2

Pσ 2
A

, (14)

where μA is the mean transmission of the speckle masks. In
the same limit with per-measurement electronic readout noise

RMSEm(T̂ , T ) =
√

Jσ 2
m

P2σ 2
A

. (15)

Equation (12) for a set of random masks in the presence of
noise then becomes

SNR(T̂ , T )

= 1/

√
RMSE2

0(T̂ , T ) + RMSE2
p(T̂ , T ) + RMSE2

m(T̂ , T )

= 1/

√
n2

(
μ2

T + σ 2
T

)
J

+ σ 2
p μAμT n2

Pσ 2
A

+ Jσ 2
m

P2σ 2
A

. (16)

The expansion of SNR⊥
0 for orthogonal masks [Eq. (13)]

proceeds similarly.
A suite of simulations is presented in Appendix D, to both

(1) validate the above equations, and (2) demonstrate the
effect of each parameter on the recovered ghost-image SNR
given a constant exposure time per illumination pattern of t0 s.
As outlined in Appendix D, n×n = 64×64 pixel uniformly
random arrays, with T (x, y) ∈ [0, 1), were used as 1-mm2

transmission images of the object. The pixel pitch is therefore
1/n mm and the pixel area is 1/n2 mm2. A parallel x-ray
beam is assumed with a set of 1-mm2 speckle masks with
a resolution of 2/n mm creating the patterned illuminations
for ghost imaging. Given an incident photon flux of B =
4.1×105 photons/s/mm2 and an exposure time of t0 = 0.01 s
per bucket measurement, the total experiment time is then
τ = Jt0 s and P = BJt0/n2. The resulting speckled illumi-
nations are represented by n×n pixel random binary images
with Bt0Aj (x, y)/n2 photons per pixel for j ∈ [1, J]. Pois-
son and Gaussian distributions were used to simulate bucket
measurements with photon shot noise and per-measurement
electronic noise, respectively. For Poisson noise σp = 1, and
for the case of Gaussian noise, σm is set to yield similar noise
levels to the Poisson case. Based on these plots and analyzing
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Eqs. (12)–(16), we make the following observations about
classical ghost imaging:

(i) Increasing the image dimension n reduces the SNR in
all scenarios for random masks. Given an orthogonal scanning
mask, SNR reduces as n increases for both photon shot noise
and in the high-photon-flux limit (or noise-free case), but has
no effect on the per-measurement noise component of SNR.

(ii) Increasing the mean mask transmission μA has no ef-
fect with per-measurement noise, however, this reduces SNR
for photon shot noise since the noise is proportional to μA

while the GI signal is proportional to the mask standard devi-
ation σA and not μA.

(iii) When the mask standard deviation σA is increased,
SNR increases. As was derived in the previous section, the
magnitude of the signal is proportional to σ 2

A , thus the greater
the contrast of the random masks (for a given mean), the better
the GI SNR when noise is incorporated. The GI artifacts are
also proportional to σ 2

A , so this parameter has no effect in the
noise-free case.

(iv) Increasing the incident illumination per pixel P =
BJt0/n2 increases SNR for both photon shot noise and per-
measurement noise as they asymptote to the noise-free case.
The former is proportional to t0 and B while the latter is
proportional to t2

0 and B2. There is a “law of diminishing
returns” once P is so large that the second and third terms
(RMSEp and RMSEm, respectively) under the square root
become negligible compared to the first term (RMSE0 or
RMSE⊥

0 depending on the type of masks employed).
Assuming a constant exposure time per measurement

(t0 = 0.01 s in the simulations), the total dose on the object
is increased with the number of masks J . Consider the case
where the total experiment time is constant (τ = 75 s in the
following simulations); the available dose is then distributed
among the J measurements. SNR is affected in a different
manner since the first observation above, assuming 
 ∝ J , no
longer holds. The results of simulation demonstrating SNR as
a function of J have been presented in Fig. 4. Here, three cases
have been plotted: (1) the high-photon-flux limit (or noise-
free case) where t0 = τ = ∞, (2) constant exposure time
t0 = 0.01 s, and (3) constant total experiment time τ = 82 s;
for the latter two cases both photon shot noise and per-
measurement noise have been simulated.

We observe that, in this scenario, SNR will increase up to
the point where artifacts (RMSE0 or RMSE⊥

0 ) are no longer
the predominant contribution to total RMSE. For photon shot
noise we see that SNR seems to increase as J is increased
(with diminishing returns). This seems to be a parallel to the
dose-fractionation theorem in computed tomography [44]. For
per-measurement noise, no such fractionation exists; each ex-
tra measurement introduces additional error and a maximum
SNR is reached for a particular value where (for the random
masks) RMSE0 matches RMSEm:

Jopt =
√
P2n2σ 2

A

(
μ2

T + σ 2
T

)
σ 2

M

=
P n σA

√
μ2

T + σ 2
T

σM
. (17)

For the case in Fig. 4(a), we calculate ln(Jopt) = 7.9. The
analysis for orthogonal mask proceeds similarly, finding J
where RMSE⊥

0 matches RMSEm.

FIG. 4. Demonstration of the SNR of ghost imaging under
Poisson and Gaussian noise models for (a) random masks and (b) or-
thogonal masks, as a function of number of masks J; simulations
are run with either constant exposure time per mask t0 = 0.01 s or
constant total experiment time τ = 82 s. Markers in the plot are
simulation results while the lines connect the expected result accord-
ing to Eq. (16) and its orthogonal equivalent. Random masks and
orthogonal finite Radon transform based masks were simulated and
the ghost images have been recovered using the scaled adjoint given
in Eq. (8). The log-log plots employed the natural logarithm.

Now that the SNR for classical GI as a function of imaging
parameters is understood, we can now compare performance
with the more conventional imaging techniques of a scanning
probe as well as direct imaging with a pixelated detector. This
is explored in the following section.

IV. COMPARISON WITH CONVENTIONAL IMAGING

Theoretical studies in the literature, such as those of
Gureyev et al. [31] and Lane and Ratner [32], have concluded
that improved signal-to-noise ratio, or equivalently dose re-
duction, is not a general benefit of classical ghost imaging.
This is inconsistent with dose reduction of orders of mag-
nitude that was reported in Zhang et al. [27]; a potential
explanation for this discrepancy is detailed in Sec. V below.
However, there are instances where GI may be advantageous,
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e.g., under certain noise conditions, or given some a priori
knowledge of the object. In this section we explore the perfor-
mance of GI compared with that of the conventional imaging
techniques: scanning probe imaging, and direct imaging with
a pixelated detector under the noise conditions already ex-
plored (photon shot noise and per-measurement electronic
readout noise).

Observe that conventional classical imaging can be con-
sidered a subset of classical ghost imaging: conceptually, a
scanning probe is ghost imaging with a pinhole mask, while
direct imaging is a parallel scanning probe. The image pro-
duced by a scanning probe with area �2 mm2 translated in an
n×n array of positions with step size of � mm and a dwell
time of t0 s, is equivalent in dose and quality to a direct image
using an n×n pixel detector with a pixel pitch of � mm and an
exposure time of t0 s. In what follows, we compare GI with a
scanning probe given a total experiment time and compare GI
with direct imaging given a total dose incident on the object.

A. Detector electronic readout noise

Lane and Ratner [32] observed that the Fellgett (or
multiplex) advantage [45,46] applies to classical GI under
per-measurement noise. An improvement in SNR results
when recording multiplexed measurements rather than direct
measurements, when noise is dominated by detector noise.
Multiplexing is traditionally performed in frequency (or en-
ergy), however, in GI multiplexing is in the spatial domain.
The signal flux can be increased by measuring more regions
of the object per measurement while noise remains constant.

1. Comparison with scanning probe imaging
(constant total experiment time τ)

To compare classical GI performance, given J measure-
ments with a total experiment time of τ s, with a scanning
probe (SP) we assume that the same hardware is utilized for
both experiments. An n×n pixel scanning probe image pro-
duced from a total exposure time of τ = Jt0 s has a dwell time
per pixel of τ/n2 s. Each measurement has a standard devia-
tion of σm, therefore, we estimate SNR as SNRSP = P/n2σm.
Assuming that degradation from image reconstruction arti-
facts is negligible, the SNR from ghost imaging reduces to
the reciprocal of Eq. (15). Without knowledge of the object,
to achieve negligible artifacts we therefore require J � n2. We
can then determine the relationship

SNRSP =
√

J

n4σ 2
A

SNRGI. (18)

When considering the mask properties, we observe that the
upper limit to σ 2

A for a given μA is defined by the binary
case Aj (x, y) ∈ {0, 1}, where σ 2

A = μA(1 − μA) (see Fig. 5);
this gives 1/n2 − 1/n4 � σ 2

A � 0.25. Therefore, SNRSP �
SNRGI, with equality being obtained only when using a pin-
hole mask. So the scanning probe in this scenario can do
no better than classical GI and typically SNRSP � SNRGI.
However, the total dose on the object for the scanning probe
is just P while in ghost imaging the dose is Pn2μA, i.e., n2μA

times larger.

FIG. 5. Several speckle mask properties as a function of the mean
transmission μA. The area shaded red, below the solid line, provides
possible values that the standard deviation of mask transmission
σA can assume with an upper bound defined by the binary mask
case. The area shaded green, above the dotted line (respectively
blue, above the dashed line) provide the possible values that μA/σ 2

A

(respectively μ2
A/σ 2

A ) can assume with a lower bound defined by the
binary mask case.

Several simulated demonstrations for this scenario have
been presented in Fig. 6. In this figure, as well as for the
remainder of the paper, we denote by XC the cross-correlation
method corresponding to using Eq. (2) and then correcting for
the scale γ in Eq. (7); we denote by IXC the iterative cross-
correlation method corresponding to the Landweber iteration
in Eq. (10). A simulated scanning probe image is shown in
Fig. 6(a-ii), with the ghost image recovered from 1922 random
masks by XC in Fig. 6(b-ii) and IXC in Fig. 6(c-ii). The ghost
image recovered by XC using 961 orthogonal masks (FRT
based) is shown in Fig. 6(d-ii). These all used the same total
experiment time; both the random and orthogonal masks have
σ 2

A = 0.25 and the per-measurement noise had σm = 1.54.
From Eq. (18) we expect the SNR for Fig. 6(a-ii) to be re-
duced by a factor of 0.091 compared with Fig. 6(c-ii) (random
masks) and reduced by 0.0645 compared with Fig. 6(d-ii) (or-
thogonal masks). In the simulations we find ratios of 0.14 and
0.063, respectively. The result for orthogonal masks agrees
with theory, however, the ratio is higher than expected for the
random masks since the presence of noise has made it difficult
for IXC to converge, causing the assumption that artifacts are
negligible to become invalid. We see that despite this, SNR
from ghost imaging remains higher than that for a scanning
probe (or pinhole mask).

2. Comparison with direct imaging (constant dose)

Here we consider a pixelated detector and assume that
each pixel has the same characteristics as the bucket detec-
tor. Direct imaging has n2 more flux than an n×n position
scanning probe and 1/μA more flux than ghost imaging. In
this section we will maintain constant dose on the sample and
compare the SNR of several schemes. Given a total dose of
PμA photons/px from a classical GI experiment, we estimate
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FIG. 6. Demonstration of the effects of (i) artifacts (noise free), (ii) detector electronic readout noise (modeled as Gaussian noise), and
(iii) photon shot noise (modeled as Poisson noise), for the following cases: (a) scanning probe imaging with pinhole dimensions matching
one pixel (i.e., 1/n2 mm2); (b) classical ghost imaging, using J = 2n2 random binary masks with μA = σA = 0.5, recovered using scaled XC;
(c) classical ghost imaging as in (b) but recovered using n2 Landweber iterations of IXC with α = 0.13, 0.016, 0.0020 for (a)–(c); (d) classical
ghost imaging using J = n2 positions of an orthogonal FRT scanning mask (again with μA = σA = 0.5), recovered using scaled XC (which
is the inverse); and (e) direct imaging with an n×n pixel detector. The transmission image is a 1×1 mm2 binary stencil represented by a
32×32 px array with black = 0.25, white = 0.75 (μT = 0.395, σT = 0.227). Measured and recovered images are displayed with a grayscale
window of transmission in the range [0,1.0). The flux was set so that (a)–(d) had the same total experiment time while (b)–(e) had the same
dose incident on the stencil. B = 3.84×105 photons/mm2/s with t0 specified as follows: (a), (d) 0.02 s with 961 measurements, (b), (c) 0.01 s
with 1922 measurements, (e) 9.61 s. The SNR of the simulated results is provided where relevant (with theoretical values in brackets).

SNR for direct imaging (DI) as SNRDI = PμA/σm. We again
assume that degradation from image reconstruction artifacts
is negligible, and that the SNR from ghost imaging is the
reciprocal of Eq. (15). As was the case previously, in order for
this assumption to be valid (given no knowledge of the object)
we require J � n2. We can then determine the relationship

SNRDI =
√

Jμ2
A

σ 2
A

SNRGI. (19)

When considering the mask property μ2
A/σ 2

A , we note that
the lower limit to this is defined by the binary case with
μ2

A/σ 2
A = μA/(1 − μA). Therefore, μ2

A/σ 2
A � 1/(n2 − 1) and

SNRDI � SNRGI with equality given a pinhole mask. We
can conclude that in this scenario, in which one is given no
knowledge of the object, (1) classical GI can do no better
than direct imaging, and (2) typically SNRDI � SNRGI. The
Fellgett advantage through increasing signal is lost when dose
is fixed.

Several simulated demonstrations for this scenario have
been presented in Fig. 6. The case of direct imaging is shown
in Fig. 6(e-ii). The ghost image recovered from 1922 random
masks using XC is shown in Fig. 6(b-ii); the ghost image
using IXC is in Fig. 6(c-ii); the ghost image recovered by XC

using 961 orthogonal masks (FRT based) is in Fig. 6(d-ii).
These all had the same total dose incident on the object;
both the random and orthogonal masks have σ 2

A = 0.25 and
the per-measurement noise had σm = 1.54. From Eq. (19)
we expect the SNR for Fig. 6(e-ii) to be 38 times greater
than Fig. 6(c-ii) (random masks) and 31 times greater than
Fig. 6(d-ii) (orthogonal masks). In the simulations we find
ratios of 69 and 31, respectively. The result for orthogonal
masks agrees with theory, however, the ratio is again higher
than expected for the random masks, for the same reason
already given in Sec. IVA1 above.

B. Photon shot noise

For per-measurement readout noise, the improvement in
SNR through the Fellgett advantage [46] is proportional to
the square root of the number of channels that are multiplexed
(μAn2 for GI). However, as pointed out by Lane and Ratner
[32], for photon shot noise this advantage is lost since the
noise level in each measurement also increases with the square
root of the number of channels that are multiplexed. We there-
fore do not expect classical GI to be advantageous in such a
context.
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1. Comparison with scanning probe imaging
(constant total exposure time τ)

We again assume the same hardware for both classical GI
and a scanning probe and set the total experiment time to be
τ s. Scanning probe dwell time per pixel is therefore τ/n2 s.
Approximating the standard deviation of each measurement
as the square root of the signal (i.e., variance is σ 2

pPμT /n2)

we then estimate SNR as SNRSP =
√
P/σ 2

p μT n2. Here we are

assuming that degradation from image reconstruction artifacts
is negligible, and the SNR from ghost imaging reduces to the
reciprocal of Eq. (14). We can then determine the relationship:

SNRSP =
√

μA

σ 2
A

SNRGI. (20)

Observe that the smallest value that μA/σ 2
A can attain is

determined by the binary case where μA/σ 2
A = 1/(1 − μA).

The absolute minimum corresponds to a pinhole mask (with
n −→ ∞), i.e., a scanning probe. In this scenario, given no
knowledge of the object, classical GI can achieve a recon-
struction that is no better than that for a scanning probe, and
is typically worse.

Several simulated demonstrations for this scenario have
been presented in Fig. 6. Scanning probe imaging is shown
in Fig. 6(a-iii). The ghost image recovered from 1922 random
masks by XC is shown in Fig. 6(b-iii), with the corresponding
IXC reconstruction in Fig. 6(c-iii). The ghost image recovered
by XC using 961 orthogonal masks (FRT based) is shown in
Fig. 6(d-iii). These all used the same total experiment time.

Both the random and orthogonal masks have
√

μA/σ 2
A = 1.4,

thus, from Eq. (20) we expect the SNR for Fig. 6(a-iii) to be
1.4 times higher than both Figs. 6(c-iii) (random masks) and
6(d-iii) (orthogonal masks). In the simulations we find ratios
of 1.6 and 1.4, respectively. The result for orthogonal masks
agrees with theory, however, again we see the ratio is higher
than expected for the random masks, for the same reason given
in Sec. IVA1 above.

2. Comparison with direct imaging (constant dose)

Given a pixelated detector we assume that each pixel has
the same characteristics as the GI bucket detector. Here, we
keep dose on the sample constant and compare the SNR of
several schemes. Direct imaging has n2 more flux than an
n×n position scanning probe and thus 1/μA more flux than
ghost imaging. Given a total dose of PμA photons/px, SNR

is estimated as SNRDI =
√
PμA/σ 2

p μT . Here again we are

assuming that degradation from image reconstruction artifacts
is negligible, and that the SNR from ghost imaging reduces
to the reciprocal of Eq. (14). We can then determine the
relationship

SNRDI =
√

n2μ2
A

σ 2
A

SNRGI. (21)

Noting again that
√

μA/σ 2
A � 1 and n2 � 1, for this scenario

(given no knowledge of the sample), direct imaging will al-
ways have a significantly higher SNR than classical ghost
imaging.

Several simulated demonstrations for this scenario have
been presented in Fig. 6. Direct imaging is shown in
Fig. 6(e-iii). The ghost image recovered from 1922 random
masks by XC is shown in Fig. 6(b-iii), with the corresponding
IXC reconstruction in Fig. 6(c-iii). The ghost image recovered
by XC using 961 orthogonal masks (FRT based) is shown
in Fig. 6(d-iii). These all had the same total dose incident
on the object. Both the random and orthogonal masks have
σ 2

A = 0.25. From Eq. (19) we expect the SNR for Fig. 6(e-iii)
to be 31 times greater than Fig. 6(c-iii) (random masks) and
Fig. 6(d-iii) (orthogonal masks). In the simulations we find
ratios of 36 and 32, respectively. The result for orthogonal
masks agrees with theory, however, the ratio is again higher
than expected for the random masks, for reasons given in
Sec. IVA1.

To summarize the findings in this section: Assuming a
uniform illumination field, that pixelated and bucket detectors
share similar noise properties, and given no knowledge of the
sample, note the following:

(a) A scanning probe can do no better than classical GI for
per-measurement noise in the same experiment time since GI
takes advantage of multiplexing (which increases signal while
noise remains constant).

(b) Classical GI can do no better than direct imaging (or
a scanning probe) for per-measurement noise when subject to
the same dose.

(c) Classical GI can do no better than a scanning probe
under shot noise in the same experiment time.

(d) Direct imaging (or a scanning probe) will always be
better than classical GI under shot noise when subject to the
same dose.

These findings are in agreement with the conclusions
drawn from previous theoretical studies [31–33]. It seems that
the only way for classical GI to reduce dose is to capitalize
on knowledge of the sample, enabling a low-artifact image to
be reconstructed with very few measurements. This could be
achieved through optimal mask design based on the a priori
knowledge, or through reconstruction schemes that optimize
the result subject to the a priori knowledge (e.g., compressed
sensing, or maximum a posteriori methods). In the next sec-
tion, we will attempt to explain the experimental results from
a recent 2D x-ray GI paper by Zhang et al. [27] that seem to
contradict the simulations and conclusions here.

V. AN EXPLANATION FOR CONTRADICTORY
RESULTS IN THE LITERATURE

Experimental results indicating some extraordinary dose-
reduction capabilities of classical x-ray GI were presented
by Zhang et al. [27]. This group used sandpaper to generate
speckle in a repeatable manner, enabling a form of com-
putational GI on a tabletop system. This paper represented
the first demonstration of 2D x-ray GI, which is a remark-
able achievement that marks a significant step forward in the
field of x-ray GI.7 However, in this section we simulate their
experiments and show that the associated results relating to

72D x-ray GI was also independently reported later in the same
year, in the paper of Pelliccia et al. [28].
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FIG. 7. The resulting images from experiments (i)–(iii) in Ref. [27]: row (i) corresponds to ghost imaging with J = 10 000 and t0 =
150 ms, row (ii) corresponds to ghost imaging with J = 10 000 and t0 = 1 μs, and row (iii) corresponds to direct imaging with t0 = 10 ms.
Column (a) shows the results from Zhang et al. with permission from [27] (©The Optical Society); column (b) depicts the corresponding
simulations as described in Appendix E; column (c) presents the simulations revisited with CCD readout in the absence of a shutter
(as described in Sec. V B).

dose, specifically the claim that use of the XC formula in
Eq. (2) can yield “a much higher contrast-to-noise ratio com-
pared to projection x-ray imaging at the same low-radiation
dose” [27], do not align with the predictions formulated in
Sec. III of our paper. Our simulation procedure, detailed in
Appendix E, attempted to replicate the experiments with a
reasonable accuracy. The image quality from our simulations
matches that of the high-dose experimental results reported in
[27] reasonably well. However, a discrepancy arises between
our simulations and their results when considering ultralow
dose experiments; the direct image measured appears to have
lower contrast and be noisier than is the case for our simula-
tions and the ghost-image quality far exceeds that obtained in
our simulations. We then propose a mechanism that explains
this discrepancy and show that, when this suggested mech-
anism is included in our modeling, we are able to replicate
both experimental results.

A. Experiment simulation results

Three images of the stencil described in Appendix E are
presented in Fig. 7 and compared directly with the exper-
iments of Ref. [27]: (i) a ghost image reconstructed from
J = 10 000 with t0 = 150 ms [“Expt. (i)”]; (ii) a ghost image
reconstructed from J = 10 000 with t0 = 1 μs [“Expt. (ii)”];
(iii) a direct image recorded with t0 = 10 ms [“Expt. (iii)”].
Note that Expt. (i) has the equivalent total exposure Jt0 to that

of Expt. (ii). Results from the simulations are presented in
Fig. 7(b) while results from the experiments of Zhang et al.
are provided for reference in Fig. 7(a).

Observe that for high dose, i.e., Expt. (i) where Jt0 =
1500 s, the x-ray GI (XGI) results are of comparable quality.
However, for the two ultralow dose cases, Expts. (ii) and
(iii) where total experiment time τ = Jt0 = 0.01 s, the results
disagree markedly. The XGI simulation in Fig. 7(b-ii) has pro-
duced only noise. Figure 8 shows that in order to reconstruct
something meaningful, given J = 10 000 speckle patterns, t0
must be increased 1000 fold, to on the order of 1 ms. The
conclusion drawn in Ref. [27] from the experimental results is
that “for a given Jt0, XGI is better than projection imaging,”
however, our simulation results suggest that the opposite is
true. The ultralow dose direct image measured is worse than
simulations predict while the ultralow dose ghost-image qual-
ity far exceeds that expected from simulations.

We believe that the mechanism that can explain both the
degradation of ultralow dose direct imaging and the improve-
ment of ultralow dose GI is that no shutter was used and the
detector continues to collect signal during the charge-coupled
device (CCD) readout time (which is on the order of 100 ms).
It seems that the authors in Ref. [27] acknowledged the
possibility of this problem with the following statement:
“Of course, in practice we would need to shutter the beam
before the object or use a pulsed source.” In the remain-
der of this section we will first describe, then demonstrate
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FIG. 8. The ghost image recovered from 10 000 bucket measurements with (a) 10 μs, (b) 100 μs, and (c) 1 ms exposure per measurement.
The CCD is assumed to be shielded from the continuous-wave x-ray source during CCD readout. The field of view is 5 mm across.

experimentally, the effect of performing CCD readout in the
presence of a continuous wave (CW, as opposed to pulsed)
x-ray source. We will then simulate the experiments per-
formed by Zhang et al. [27] without a shutter.

B. Simulation results incorporating CCD readout time

A description and demonstration of the smearing effect
resulting from x-ray exposure during CCD readout time is
presented in Appendix F. Here, we have incorporated a “CCD
readout” function that replicates that process. We have used
t1 = 0.93 s for direct imaging and t1 = 0.12 s for ghost imag-
ing (since it was binned 8×8 for faster readout). The CCD
has 1300 rows, therefore, the dwell time per row readout was
t1/1300 = 720 μs for direct imaging and 92 μs for ghost
imaging. We observe from Fig. 7(a-iii) (and from correspon-
dence with the authors of Ref. [27]) that the stencil was rotated
approximately 60◦ relative to the CCD. Figure 9 presents the
results of incorporating both the CCD readout time and 60◦
rotation for t0 = 1, 10, and 100 ms. We are able to replicate
the appearance of Fig. 7(a-iii) and we observe that an exposure
time as low as t0 = t1/10 is sufficient for the diagonal smear-
ing, associated with CCD readout time, to become negligible.

The results from repeating the simulations of Expts. (i)–
(iii), this time incorporating CCD readout in the absence of
a shutter, are presented in Fig. 7(c). The ultralow dose cases,
Expts. (ii) and (iii), now more closely resemble those from
the experiments in Ref. [27]. The absence of a shutter is detri-
mental to the direct image since the “readout smear” obscures
the primary image. In ghost imaging the data from the CCD
is binned to a single “bucket” measurement. Therefore, the
absence of a shutter is beneficial as the additional x-ray expo-
sure during readout is as valuable as the initial x-ray exposure.

Therefore, we could say that the equivalent exposure in the
presence of a shutter for Expt. (ii) is J (t0 + t1) = 1200 s. The
corresponding dose is a factor of 105 times larger than that
which would be anticipated from the nominal exposure time
alone, approaching the high dose case in Expt. (i), which is
1500 s with a shutter (or 2700 s in the absence of a shutter).

Based on correspondence with the authors of Ref. [27] we
understand that this effect was mitigated to some degree by
(1) removing the “smear” above the stenciled letters before
summing to a “bucket” value, and (2) subtracting an estimate
of the smear magnitude based on signal in the dark-field re-
gion. The letters are approximately 125 pixels high, therefore,
considering (1), the effective readout time could be reduced
to 0.012 s such that J (t0 + t1) = 120 s. However, this is still a
104-fold larger dose than anticipated.

VI. DISCUSSION

We hope this paper clarifies the circumstances under which
classical GI may be a useful tool to employ, and under what
circumstances other tools (e.g., those based on conventional
imaging) are more appropriate. As GI transitions beyond
proof-of-concept foundational studies, practical considera-
tions such as dose reduction are likely to receive increased
attention. A route, from the now-established proof of concept
to a clearer practical understanding of the circumstances in
which GI is actually advantageous, is the core motivation for
undertaking the work presented here.

Leveraging suitable a priori knowledge is a necessary (but
not sufficient) condition for classical ghost imaging to achieve
dose reduction relative to conventional imaging employ-
ing position-sensitive detection. Both mask design and data

FIG. 9. Direct images (with first speckle mask in place) simulated assuming exposure times of (a) 1, (b) 10, and (c) 100 ms. The images
simulate the result of CCD readout in 0.93 s with no shutter in place. Note that all images assumed the camera to have been “cleared” before
exposure. The diagonal smearing, which is particularly evident in (a) and (b), gives a clear signature that the detector continues to collect signal
during the CCD readout time. The field of view is 5 mm across.
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processing can utilize such a priori knowledge in a GI setting.
It would be interesting to further investigate both strategies,
in the specific context of dose reduction. One could envis-
age specially designed ghost-imaging masks tailor made for
answering particular questions regarding particular classes of
sample, e.g., breast-cancer screening for persons of a known
gender and known age range, security screening of passenger
luggage, defect detection in particular manufactured products,
etc. At the postdetection data-analysis stage, relevant prior
knowledge could be readily incorporated into a plethora of
data-analysis approaches (including but not limited to those
that incorporate machine learning) with a view to achieving
GI-enabled dose reduction.

It is also worth pointing out that classical GI “does not need
to be about images.” For example, one may want to use an
ensemble of GI-bucket measurements to reconstruct a single
parameter of interest regarding a sample. Such sample param-
eters may be binary, e.g., a yes or no diagnosis for a patient or
a reject or retain decision for industrial-sample quality control.
These sample parameters may also be real numbers, such
as porosity, mean curvature, neck-to-void ratio, surface-area-
to-volume ratio, connected-volume-to-disconnected-volume
ratio, Euler-number density, mean chord length, fractal di-
mension, dislocation density, defect density, etc., of samples
such as sponges, foams, glasses, alloys, chemical-reaction cat-
alysts, oil-bearing rocks, lung tissue, etc. Questions regarding
dose reduction could be investigated in this context where
one does not seek to reconstruct an image of the sample, but
rather to reconstruct one or more parameters regarding that
sample. A conventional-imaging approach would measure one
or more images, and subsequently process these images to
extract the desired parameter or parameters; GI, on the other
hand, never measures image data in the first place, and could
process the bucket signals directly so as to yield the desired
parameter(s) without going via the intermediate step of re-
constructing an image. The question of dose reduction and
SNR could be revisited in light of the reconstruction of sample
parameters rather than sample images. Since this is a different
question to that of optimized image SNR, we expect there
to be different answers; perhaps there will be nonimaging
parameter-measurement situations in which GI gives superior
SNR, that have not been considered in this paper.

One can also consider questions complementary to the
above reduced-dimensionality settings: those using GI to ob-
tain higher-dimensional reconstructions, e.g., for three spatial
dimensions (3D) via ghost tomography [29,30], 4D (e.g.,
three spatial dimensions and one time dimension or two
spatial dimensions plus one energy dimension and one time
dimension), 5D (e.g., three spatial dimensions, one energy
or material-composition dimension, and one time dimen-
sion), etc. “Conventional imaging” in many of these contexts
becomes computational methods when a probe to scan indi-
vidual volume elements does not exist. It would be interesting
to explore the potential for classical GI to achieve dose re-
duction in these higher-dimensional contexts, both with and
without the leveraging of suitable prior knowledge.

Classical GI may still be important in contexts where
conventional imaging, while superior in principle, is not
available or practical. Bucket detectors used for GI are
much smaller, cheaper, and will often possess higher en-

ergy resolution and/or temporal resolution than corresponding
position-sensitive detectors. Dose reduction is one part of a
broader suite of tradeoffs that include financial cost, practical-
ity, availability, simplicity, detector weight, detector volume,
experiment miniaturization, etc. Even when GI is no better
than conventional imaging from the point of view of dose
and SNR, the findings of our paper may be useful within this
broader suite of tradeoffs.

VII. CONCLUSIONS

We have examined the inherent signal-to-noise ratio (SNR)
properties of classical ghost imaging (GI) as a function of
imaging parameters such as number of masks; mean mask
transmission; mask transmission variance; exposure time. By
“inherent” we mean that no a priori knowledge of the object
being imaged was exploited. The SNR under Poisson and
per-measurement Gaussian noise models was explored and
compared with conventional imaging techniques (direct and
scanning probe imaging) under conditions of constant dose
and constant experiment time. It was found that (i) a scanning
probe can do no better than classical GI for per-measurement
noise in the same experiment time; (ii) classical GI can do no
better than conventional imaging for per-measurement noise
when subject to the same dose; (iii) classical GI can do no
better than a scanning probe under shot noise in the same
experiment time; (iv) conventional imaging will always be
better than classical GI under shot noise when subject to the
same dose.

An explanation was proposed for the experimental results
from a recent 2D x-ray GI paper by Zhang et al. [27] that seem
to contradict these conclusions. The use of a CCD without
a shutter under continuous wave x-ray illumination both im-
proves GI results and degrades conventional imaging, causing
GI to appear to give better SNR when given the same dose.

We conclude that for GI to reduce dose it must capitalize on
a priori knowledge of the sample to yield low-artifact images
reconstructed from very few measurements. This could be
achieved through optimal mask design based on the a priori
knowledge, or through reconstruction schemes that optimize
the result subject to the a priori knowledge (e.g., compressed
sensing, or maximum a posteriori methods). While work in
compressed sensing literature directs how to reduce the num-
ber of measurements, we wish to emphasize that reducing the
number of measurements is not synonymous with reducing
dose; it is not a trivial undertaking. A first step towards this
goal could involve understanding how to modify masks, given
a priori knowledge, in order to reduce dose compared with
GI using the original masks. A second step would then be
understanding the limits of such a process and under what
conditions the result can improve on conventional imaging.

ACKNOWLEDGMENTS

We gratefully acknowledge useful correspondence with T.
E. Gureyev, A. Rack, T. J. Lane, D. Ratner, and with the
authors of Ref. [27]. This work was enabled by the Australian
Research Council Discovery Project DP210101312. A.M.K.
acknowledges the financial support of the Australian Research

033503-13



ANDREW M. KINGSTON et al. PHYSICAL REVIEW A 103, 033503 (2021)

Council Industrial Transformation Training Centre Grant No.
IC180100008.

APPENDIX A: TRADITIONAL GHOST-IMAGE
RECONSTRUCTION IS ADJOINT TO CROSS

CORRELATION

Recall that given J patterned illuminations, A =
{A1(x, y), A2(x, y), . . . , AJ (x, y)}, where x and y are
detector coordinates, the set of bucket signals measured,
b = {b1, b2, . . . , bJ}, is modeled as a set of cross correlations
of A with the transmission image of the object of interest, i.e.,
Eq. (1). The traditional ghost-image reconstruction equation
presented in the literature, typically without derivation, is the
following [35,36]:

T̂ (x, y) =
∑

j

A j (x, y)b̃ j,

where b̃ j = b j − 〈b〉 are mean-corrected bucket signals with
〈b〉 denoting the mean bucket signal, i.e., 〈b〉 = (1/J )

∑
j b j .

Observe that this reconstruction operation acts on b̃ j rather
than b j . Let us define a mean-corrected form of the cross
correlation [Eq. (1)] that results in b̃ j as follows:

b̃ j =
∑

x

∑
y

Ã j (x, y)T (x, y) = [ÃT ] j,

where Ã j (x, y) = Aj (x, y) − 〈A(x, y)〉 are mean-corrected il-
luminating speckle patterns with 〈A(x, y)〉 denoting the
mean speckle intensity at position (x, y), i.e., 〈A(x, y)〉 =
(1/J )

∑
j A(x, y). Traditional ghost-image reconstruction

[Eq. (2)] can be derived as the adjoint of this operator, i.e.,
T̂ = Ã†b̃. The adjoint (Hermitian conjugate) of operator Ã
can be found through the inner product identity 〈ÃT, b̃〉 =
〈T, Ã†b̃〉 as follows:

〈ÃT, b̃〉 =
∑

j

(∑
x

∑
y

Ã j (x, y)T (x, y)

)
b̃ j

=
∑

j

(∑
x

∑
y

[Aj (x, y) − 〈A(x, y)〉]T (x, y)

)
b̃ j

=
∑

x

∑
y

T (x, y)
∑

j

[Aj (x, y) − 〈A(x, y)〉]b̃ j

=
∑

x

∑
y

T (x, y)

×
(∑

j

A j (x, y)b̃ j − 〈A(x, y)〉
∑

j

b̃ j

)

=
∑

x

∑
y

T (x, y)
∑

j

A j (x, y)b̃ j

= 〈T, Ã†b̃ j〉.
In general, the linear operator A will not be such that its
adjoint coincides with its inverse. By definition, A† = A−1

if and only if A is unitary. Unitarity holds if the illumination
patterns form an orthogonal basis.

APPENDIX B: CALCULATION OF GHOST-IMAGING
NORMALIZATION SCALE γ−1

For a set of independent random patterned illuminations
[see, e.g., the example of patterned illumination and GI results
depicted in Figs. 2(a) and 2(b) and 3(a) and 3(b)] we assume
spatial statistical stationarity and observe the following prop-
erty: ∑

j

Ã j (x
′, y′)Ã j (x, y) ≈ Jσ 2

Aδ(x − x′, y − y′).

Inserting this property into Eq. (7) we arrive at

γ =
∑

x

∑
y

1

n2

∑
j

[Ã j ◦ Ã j](x, y)

=
∑

x

∑
y

1

n2

∑
j

∑
x∗

∑
y∗

Ã j (x
∗, y∗)Ã j (x

∗ + x, y∗ + y)

≈ 1

n2

∑
x∗

∑
y∗

Jσ 2
A

∑
x

∑
y

δ(x, y)

= Jσ 2
A .

Consider the case where the resolution of the random speckle
images is reduced, e.g., due to factors such as penumbral
blurring from a nonpoint source, detector cross talk, etc. Let
this be modeled as a blur through convolution with a 2D
Gaussian kernel with standard deviation σg, i.e.,

A∗
j (x, y) = {Aj ∗ Kσg}(x, y)

=
′∑
x

′∑
y

A j (x
′, y′)Kσg (x − x′, y − y′),

where

Kσg (x, y) = 1

2πσ 2
g

exp

[−(x2 + y2)

2σ 2
g

]
.

Example patterned illumination and GI results for this sce-
nario are depicted in Figs. 2(c) and 2(d) and 3(c) and 3(d). The
variance of these blurred masks becomes σ 2

A∗ = σ 2
A/4πσ 2

g .
Noting that the result of the convolution of two Gaussian
distributions, denoted Kσ1 ∗ Kσ2 , is also a Gaussian distribu-
tion with σ 2 = σ 2

1 + σ 2
2 , and again assuming spatial statistical

stationarity we observe the following property:∑
j

Ã∗
j (x

′, y′)Ã∗
j (x, y)

≈ Jσ 2
A

1

4πσ 2
g

exp

{−[(x′ − x)2 + (y′ − y)2]

4σ 2
g

}

= Jσ 2
A∗ exp

{−[(x′ − x)2 + (y′ − y)2]

4σ 2
g

}
.

Inserting this property into (7) we arrive at

γ =
∑

x

∑
y

1

n2

∑
j

∑
x∗

∑
y∗

Ã j (x
∗, y∗)Ã j (x

∗ + x, y∗ + y)

≈ 1

n2

∑
x∗

∑
y∗

Jσ 2
A∗

∑
x

∑
y

exp

[−(x2 + y2)

4σ 2
g

]
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FIG. 10. Demonstration of the SNR of ghost imaging for random and orthogonal masks as a function of imaging parameters: (a) number
of masks J; (b) image dimension n; (c) mean object transmission μT ; (d) standard deviation of object transmission σT . Markers in the plot are
simulation results while the lines connect the expected result according to Eqs. (12) and (13) (for random and orthogonal masks, respectively).
Ghost images recovered using iterative cross correlation (IXC) [Eq. (10)] have employed

√
n iterations with regularization term α = 0.5. The

log-log plots employed the natural logarithm.

≈ 1

n2

∑
x∗

∑
y∗

Jσ 2
A∗4πσ 2

g

= 4πJσ 2
g σ 2

A∗ .

APPENDIX C: DERIVATION OF SNR AS FUNCTIONS
OF IMAGING PARAMETERS

(a) Noise-free case with random masks. Consider the high-
photon-flux (or noise-free) limit, given a set of J independent,
random masks, Aj (x, y), with a mean value of μA and a stan-
dard deviation of σA. The variance of the bucket signals b j ,
determined from Eq. (1), is

σ 2
b ≈ n2

(
μ2

T + σ 2
T

)
σ 2

A ,

where μT and σT are the mean and standard deviation of
object transmission, respectively. The simplest situation to
consider is where T (x, y) is constant; the variance (or mean-
square error ε2

T̂
) in ghost-image reconstruction using the

adjoint [Eq. (2)] is found as

ε2
T̂ = σ 2

T̂ ≈ Jσ 2
Aσ 2

b

≈ Jσ 4
An2

(
μ2

T + σ 2
T

)
.

The standard deviation (or RMSE) of GI is then the square
root of this, scaled by γ −1 = 1/Jσ 2

A . Insert this into the defi-
nition of SNR to arrive at

SNR0(T, T̂ ) ≈
√

JμT

n2
(
μ2

T + σ 2
T

) .

(b) Noise-free case with orthogonal scanning masks. Again
consider the high-photon-flux (or noise-free) limit, this time
given a scanning mask that is orthogonal under translation
(such as a uniformly redundant array [39] or a mask that is
generated through the finite Radon transform [40]). In this
case, SNR analysis is performed from a different perspec-
tive. Here at most J = n2 masks are utilized and error only
arises when J < n2. We consider the (n2 − J ) unmeasured
bucket signals to be present but with a zero signal. The square
error in each “missing” bucket signal is then estimated to
be σ 2

b ≈ n2σ 2
T σ 2

A . Note that in this case μT disappears since
the masks are strictly constant mean, i.e.,

∑
x

∑
y A j (x, y) =

k ∀ j ∈ [1, J]. The square error in the reconstructed image
using the adjoint [Eq. (2)] is found as

ε2
T̂ ≈ (n2 − J )σ 2

Aσ 2
b ≈ (n2 − J )n2σ 4

Aσ 2
T .

The RMSE is the square root of this scaled by γ −1 = 1/n2σ 2
A

(here we have assumed n2 measurements were taken as de-
scribed above). Insert this into the SNR definition to arrive at

SNR⊥
0 (T̂ , T ) ≈

√
n2

(n2 − J )σ 2
T

.

(c) Photon shot noise. A Poisson distribution scaled by σp

is employed to model photon shot noise. In the limit where
there are no artifacts from GI (i.e., J � n2 for the random
mask case or J = n2 for orthogonal masks), SAR → ∞ and
SNR approaches a more “conventional” imaging definition.
The mean-square error (MSE) ε2

b in each bucket signal is
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FIG. 11. Demonstration of the SNR of ghost imaging for random masks under Poisson and Gaussian noise models as a function of imaging
parameters: (a) number of masks J; (b) image dimension n; (c) mean mask transmission μA; (d) standard deviation of mask transmission σA;
(e) mean object transmission μT ; (e) standard deviation of object transmission σT ; and (g) incident photons per pixel per measurement P/J .
Markers in the plot are simulation results while the lines connect the expected result according to Eq. (16). Random masks were simulated and
the ghost images have been recovered using the scaled adjoint [Eq. (8)]. The log-log plots employed the natural logarithm.

proportional to the mean number of photons detected:

ε2
b ≈ σ 2

p

(P
J

μAn2μT

)
,

where σ 2
p is a constant of proportionality. The MSE (or vari-

ance) in the reconstructed image using the adjoint [Eq. (2)] is
found as

ε2
T̂ ≈ Jσ 2

Aε2
b ≈ Pσ 4

Aσ 2
p n2μAμT .

The RMSE is the square root of this scaled by γ −1 = 1/PJσ 2
A ,

i.e.,

RMSEp(T̂ , T ) =
√

σ 2
p μAμT n2

Pσ 2
A

,

where μA is the mean transmission of the speckle masks.
(d) Per-measurement electronic readout noise. A Gaussian

distribution with uniform standard deviation σm is used to

model per-measurement electronic readout noise. In the same
limit as for the shot-noise case, the MSE in each bucket signal
is simply ε2

b = σ 2
m. The MSE (or variance) in the reconstructed

image using the adjoint [Eq. (2)] is found as

ε2
T̂ ≈ Jσ 2

Aε2
b = Jσ 2

Aσ 2
m.

The RMSE is the square root of this scaled by γ −1 = 1/PJσ 2
A ,

i.e.,

RMSEm(T̂ , T ) =
√

Jσ 2
m

P2σ 2
A

.

APPENDIX D: DEMONSTRATION OF SNR RESPONSE
TO IMAGING PARAMETERS

We performed a suite of simulations to demonstrate the
effect of each imaging parameter on the recovered ghost-
image SNR. For the simulations, a suite of n×n = 64×64 px
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FIG. 12. Demonstration of the SNR of ghost imaging for orthogonal masks under Poisson and Gaussian noise models as a function
of imaging parameters: (a) number of masks J; (b) image dimension n; (c) mean mask transmission μA; (d) standard deviation of mask
transmission σA; (e) mean object transmission μT ; (f) standard deviation of object transmission σT ; and (g) incident photons per pixel per
measurement P/J . Markers in the plot are simulation results while the lines connect the expected result according to the orthogonal variant
of Eq. (16). Finite Radon transform based masks were simulated and the ghost images have been recovered using the scaled adjoint [Eq. (8)].
The log-log plots employed the natural logarithm.

uniformly random arrays, with T (x, y) ∈ [0.0, 1.0], was used
as the 1-mm2 transmission image of the object. The values
were scaled and offset to modify the image mean and standard
deviation. The pixel pitch is therefore 1/n mm and the pixel
area is 1/n2 mm2. A parallel x-ray beam is assumed, with a
set of 1-mm2 speckle masks having a resolution of 2/n mm
creating the patterned illuminations for ghost imaging. Given
an incident photon flux of B = 4.1×105 photons/s/mm2 and
an exposure time of t0 = 0.01 s per bucket measurement, i.e.,

 = Jt0/n2 s/px, the total experiment time is then τ = Jt0 s.
The resulting speckled illuminations are represented by n×n
pixel random binary images with Bt0Aj (x, y)/n2 photons per
pixel for j ∈ [1, J].

(a) Noise-free case. Simulations demonstrating SNR0

[Eq. (12)] and SNR⊥
0 [Eq. (13)] as a function of imaging

parameters J, n, μT , σT are presented in Fig. 10 under the
high-photon-flux (or noise-free) limit for the cases of an or-

thogonal scanning mask, as well as random masks using both
the scaled adjoint [Eq. (2)] and Landweber iteration [Eq. (10)]
for image reconstruction. Equations (12) and (13) have been
overlaid to demonstrate their consistency with these simula-
tions.

(b) Noisy case with random masks. Based on a set of
random independent binary masks, Fig. 11 shows the response
of SNR [Eq. (16)] when varying each parameter while keeping
the remainder fixed. Poisson and Gaussian distributions were
used to simulate bucket measurements with photon shot noise
and per-measurement electronic noise, respectively. For Pois-
son noise σp = 1, and for the case of Gaussian noise, σm is set
to yield similar noise levels to the Poisson case; three cases of
Gaussian noise (one of which is noise free, i.e., σm = 0) are
presented to indicate the trend of relationships.

(c) Noisy case with an orthogonal scanning mask. Repeat-
ing the above simulations but with a set of scanned orthogonal
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FIG. 13. (a) An example speckle image generated as a random binary image with 50% transmission, blurred by a Gaussian with
σ = 0.117 mm. This is then rescaled to give transmission in the range 50%–100%. The field of view (FOV) is 5×5 mm2. (b) A profile
through the offset point-spread-function (PSF), g(2), produced by the set of 10 000 speckle images. The PSF has a full-width at half-maximum
(FWHM) of 0.4 mm. (c) The binary transmission image with width 5 mm and 20 μm pixel pitch used for simulation. (d) The expected output
transmission image from ghost imaging based on the imaging resolution of 0.4 mm.

masks, Fig. 12 shows the response of SNR [Eq. (16)] when
varying each parameter while keeping the remainder fixed. To
prevent SNR → ∞ the maximum number of masks used was
Jmax = 0.9n2. Poisson and Gaussian distributions were used
to simulate bucket measurements with photon shot noise and
per-measurement electronic noise, respectively, in a similar
manner.

APPENDIX E: METHODS USED FOR SIMULATING
THE EXPERIMENTS OF ZHANG et al.

The experiments in Ref. [27] utilized a 5×5-mm2 field of
view (FOV) with the detector placed 2.5 m from the x-ray
source. The detector employed for the ultralow dose experi-
ments was a direct imaging Princeton Instruments PIXIS-XB
1340×1300 pixel camera with a pixel pitch of 20 μm. Op-
erating in 2-MHz mode, the readout time t1 is 0.93 s (0.12 s
when binned 8×8).

Speckle was generated by sandpaper containing 40-μm
diameter silicon-carbide (SiC) grains placed 0.27 m from the
source. The sandpaper had a minimum transmissivity of ap-
proximately 50% and the grains projected to 0.4-mm diameter
at the detector. The Gaussian fit to the second-order correla-
tion g(2)(x0; y0; x; y) [defined in Eq. (2) of [27]] was shown to
have a maximum of 1.0007 and a full-width at half-maximum
(FWHM) of 0.4 mm. The reference speckle images were
recorded with 10-s exposure time. We have simulated a set of
noise-free speckled illuminations Aj (x, y) for j ∈ [1, J], using
random binary masks smoothed by a Gaussian function with
σ = 0.4/2.355

√
2 = 0.12 mm. The intensity was scaled to

range between 0.5 and 1.0 arbitrary units. An example speckle
image is presented in Fig. 13(a). The second-order correlation
generated using 10 000 speckle patterns [Fig. 13(b)] has a
maximum of 1.01 and a FWHM of 0.4 mm.

For an object, the experiments in Ref. [27] used a 5-mm-
thick plate of stainless steel with 2.5-mm-high letters “CAS”
stenciled out. This has been simulated as a 250×250 px
(5×5 mm2) binary transmission image T (x, y), with letters
“XGI” being 100% transmitting and the remainder being 0%.
This image is presented in Fig. 13(c) while the expected result

(in the noise-free case) from ghost imaging (with 0.4 mm
resolution) is shown in Fig. 13(d).

In Ref. [27], the average flux transmitting through the
sandpaper was estimated to be 2.9×105 photons/s/mm2 at the
detector. The flux per pixel was then 120 photons/s and, for an
exposure time of t0 s, the expected illuminations incident on
the CCD were simulated as

λ j (x, y) = T (x, y) × Aj (x, y) × 120t0

for 1 � j � J . The actual image readout from the CCD was
determined as follows:

Mj (x, y) = photon shot noise + electronic noise

= Poisson{λ j (x, y)} + 0.01 Poisson{100(t0 + t1)}

for 1 � j � J . Here, the photon shot-noise is simulated as a
Poisson distribution with expected value λ j (x, y); the elec-
tronic noise was simulated as a Poisson distribution with an
expected signal defined as the equivalent of 10 photons/s per
pixel (with 100 electrons per photon) scaled by the exposure
time t0 plus readout time t1. For direct (projection) imaging a
readout time of t1 = 0.93 s was used, however, while bucket
measurements were made the CCD was simulated to be con-
figured for 8×8 binning with a readout time of t1 = 0.12 s.

APPENDIX F: CCD READOUT PROCESS UNDER
THE PRESENCE OF A CW X-RAY SOURCE

Measurement using a charge-coupled device (CCD) is typ-
ically divided into an exposure phase, followed by a readout
phase. During exposure, the CCD passively converts incom-
ing photons to electrons which are stored in its cells. During
readout, the total charge stored in the cells is recorded one
line at a time. After each line of cells is read out, the entire
array of cells is shifted down one line and the next line is
read out; this process is repeated until the cells in all lines
have been read. In the presence of a continuous wave (CW)
x-ray source, if no shutter is employed, cells continue to
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FIG. 14. Average of 20 images of x-ray transmission through a
slot in a steel computer grill resulting from CCD readout with a CW
x-ray source and no shutter using exposure times of (a) 0.01, (b) 0.1,
and (c) 0.4 s. The CCD readout time is 0.111 s. Slot dimension is
20 mm×2 mm.

convert incoming photons during this cell-shifting process to
additional electrons building up charge that is later converted
to unwanted signal. These errors are commonly referred to as
“vertical smear” since the additional charge accumulates in
vertical columns of cells (matching the cell-shifting process).

Here, we present a straightforward experiment to illustrate
the “readout smear” when using a CW x-ray source on an
x-ray CCD camera. Here, we used an Andor Newton cam-
era with an e2v CCD30-11 front-illuminated deep-depletion
CCD sensor that has a 1024×256 pixel array and a 26-μm
pixel pitch. Figure 14 presents the results of imaging the
transmission through a slot in a steel computer grill. Adjacent
slits are blocked using 2-mm-thick Pb. The source-detector
distance is 100 mm. Three exposures of increasing time have
been presented: 0.01, 0.1, and 0.4 s. The time between adja-
cent frames (“kinetic cycle time”) corresponding to each of
these measurements is 0.121, 0.211, and 0.511 s, due to a
nonzero readout time of t1 = 0.111 s. In each case the im-
ages presented in Fig. 14 are the average over 20 consecutive
frames.

Looking at the 0.01-s exposure in Fig. 14(a), catching
this 10-ms exposure window is trivial using a pulsed source,
but with a CW source and readout time more than 10 times
longer than that window, we observe a uniform “smear” due
to the CCD reading out the image line by line and shifting
the image down. For the 0.1-s exposure in Fig. 14(b), the
exposure becomes significant in terms of the readout time, so
the relative significance of the smear begins to fade. The smear
becomes less significant as exposure time is increased beyond
this; the smear has become difficult to see in Fig. 14(c) with
0.4-s exposure time.
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