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Abstract

The use of machine learning (ML) has become prevalent in the genome engineering space, with applications ranging from
predicting target site efficiency to forecasting the outcome of repair events. However, jargon and ML-specific accuracy
measures have made it hard to assess the validity of individual approaches, potentially leading to misinterpretation of ML
results. This review aims to close the gap by discussing ML approaches and pitfalls in the context of CRISPR gene-editing
applications. Specifically, we address common considerations, such as algorithm choice, as well as problems, such as
overestimating accuracy and data interoperability, by providing tangible examples from the genome-engineering domain.
Equipping researchers with the knowledge to effectively use ML to better design gene-editing experiments and predict
experimental outcomes will help advance the field more rapidly.
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Introduction
Clustered regularly interspaced short palindromic repeats
(CRISPR)-based genome editing has become a popular tool for a
range of disciplines, from molecular biology to gene therapy
[1, 2]. Driving these applications is the ability of the ‘pro-
grammable’ system to target a specific location in the genome
through a single guide RNA (sgRNA), which uses Watson–Crick
base pairing to locate the genomic target. For example, the
CRISPR-associated protein 9 (Cas9) uses this ability to cleave
a specific DNA target, resulting in a double-strand break. This
in turn can be used to induce arbitrary indels through the error-
prone nonhomologous end joining (NHEJ) or microhomology-
mediated end joining (MMEJ) DNA repair pathways. Cas9 can also

be used to induce specific polymorphisms or insertions using a
DNA repair template through the non-error-prone homology-
directed repair (HDR) pathway, to modify the function of
existing genes or even insert large chunks of DNA. Furthermore,
removing the ability of Cas9 to cleave DNA results in the
catalytically inactive, dead Cas9 (dCas9), which can be used to be
used to control gene expression via transcription and chromatin
remodeling [3]. The CRISPR system can also be used for other
applications, such as nucleic acid detection [4] or CRISPR-based
diagnostics [5], with additional uses reviewed in [6].

Common to all these applications is the demand for control
over the involved CRISPR-system functionality; be that binding,
cutting or repair, with the aim of maximizing efficiency and
specificity. As this is a highly complex interplay of influencing
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factors—such as target nucleotide sequence, cellular environ-
ment and experimental conditions—utilizing a simple rule-
based system to choose target sites or design CRISPR sgRNAs
has proven to be inadequate [7].

Machine learning (ML) enables capturing this complex inter-
play of various inputs. Specifically, ML allows researchers to
model systems, such as the CRISPR gene-editing technology, for
a set of ‘samples’ (experiments) without specifying the relation-
ship between the ‘features’ (target properties or experimental
parameters) and the ‘label’ (outcomes of the experiment). In
the context of CRISPR modeling, the experimental success, or
outcome, can reflect the target site’s ability to generate indels,
induce a specific point mutation or control gene expression.

By training on samples, supervised ML algorithms can auto-
matically learn the relationship between features and labels.
This representation of the relationship can then be stored in
a ‘model’. Subsequently, a model can be used to predict the
outcome for ‘unlabelled’ samples, i.e. new samples without a
known efficiency. ML hence enables researchers to predict the
effectiveness of an sgRNA design in silico, rather than having to
test every design empirically, saving resources and time.

In addition to predicting the efficiency of sgRNA designs,
ML can also be used to predict off-target effects, that is,
unintended binding activities to other regions of the genome.
While some off-targets can be identified using rules or sequence
similarity to find loci with a similar sequence to the target [8, 9],
more recent tools are shifting toward the use of ML [10]. This
is because sgRNA efficiency for targets, and subsequently off-
targets, depends on factors other than sequence similarity.
Unlike methods that identify like-sequences in the genome
using genomic alignment tools and simply present them as
potential off-targets, ML can go one step further and predict the
likelihood of these sequences being true off-targets based on
efficiency models.

With the potential of ML to predict the editing efficiency and
off-target risk of CRISPR/Cas9 experiments, many groups have
released tools utilizing ML for this purpose [11]. This review dis-
cusses common problems, such as algorithm choice and inter-
pretability, as well as pitfalls, such as overestimating accuracy
and data interoperability, to equip researchers employing CRISPR
systems for gene editing, with the knowledge to effectively use
ML approaches.

Considerations in data labeling

To train a supervised ML model, one of the first steps is to define
an appropriate ‘label’. For CRISPR gene-editing experiments, the
label could be cleavage efficiency, knockdown efficiency of a
gene or amount of expression measured by fluorescence. This
can be represented either ‘discretely’ (e.g. high/low) or ‘continu-
ously’ (e.g. 0 to 1). The representation depends on various factors,
such as the algorithm used, the data being modeled and what the
desired outcome is. For discrete variables, ‘classification’ algo-
rithms are used, whereas for continuous variables, ‘regression’
algorithms are used.

The sgRNA cleavage efficiency, for example, is continuous;
as efficiency is on a range from 0% to 100%. So, given a model
trained using a regression algorithm, predicting the efficien-
cies for four unlabeled sgRNAs would result in each one being
assigned a value in this range. For example, [0%, 80%, 90%, 100%].
With higher efficiencies being desired, the clear choice would be
an sgRNA prediction of 100%.

Continuous values like efficiency can also be represented
discretely. For example, when training a classification model, we

Figure 1. This figure represents two potential decision thresholds (20% and

50%) for 10 hypothetical sgRNA samples (colored dots). Each sample has a DNA

cleavage efficiency in the range of 0% and 100%. For a binary classifier, samples

above the decision threshold are considered ‘high-efficiency’ (orange) and sam-

ples below the decision threshold are considered ‘low-efficiency’ (purple). The

decision threshold can be arbitrarily set to any value between 0% and 100%, and

an appropriate decision threshold can help keep data balanced. A threshold of

50% in the upper example results in two ‘highs’ and eight ‘lows’. This can result

in a poor-performing model as a resulting model could indiscriminately classify

all 10 targets as low-efficiency (purple) yet have a relatively good accuracy of 80%

(8 out of 10 are correct). However, a threshold of 20% results in five highs and five

lows. Now if a model indiscriminately classifies all 10 targets as low-efficiency

it will have a more appropriate accuracy of 50% hence being forced to learn the

discriminating features between the two classes.

can arbitrarily assign ‘< 50%’ efficiency sgRNAs to be ‘low’ and
‘> = 50%’ efficiency sgRNAs to be ‘high’. In this case, the resulting
model would classify the previous four targets as [low, high, high,
high]. However, this removes the ability to discriminate between
the top three targets as now they are all simply ‘high’, rather
than 80%, 90% and 100%. Although potentially less informative
than regression, classification has the benefit of being faster in
training and predicting [12].

Current regression models for CRISPR efficiency prediction
do not achieve a high accuracy, and empirical observations of
efficiency are frequently reported to not correlate well with pre-
dictions [13]. For example, a target predicted to be 100% efficient
may be no more efficient than a target predicted to be 80%
efficient. This is because the inherent complexity involved in
modeling biological systems can result in models with a limited
sensitivity for prediction. Classifying an sgRNA as ‘high’ or ‘low’
efficiency requires less information than placing an sgRNA on a
continuous scale of 0% to 100% efficiency. Limited sample sizes
and incomplete feature-sets mean that high/low classifications
can yield more accurate, albeit less informative, results than
continuous predictions (0–100%). Therefore, the ability of clas-
sification algorithms to differentiate between highly active sites
and others remains valuable in practice, even if only as a stopgap
solution until regression algorithms can more accurately model
sgRNA efficiency.

A common pitfall with CRISPR data is imbalance [14].
Imbalance is when the positive editing results outnumber the
negative results, or vice versa. This can result from researchers
only publishing positive results for CRISPR experiments, or from
results being overwhelmingly negative due to, for example,
the low efficiency of HDR [15, 16]. One way to overcome data
imbalance when training a classification model is by choosing
an appropriate threshold when converting efficiency from a
continuous value to a binary (high/low) value (Figure 1). For
example, a threshold of 50% may seem like the obvious choice,
but if only 2 out of 10 targets have an efficiency >50%, then a
classification model could classify all 10 targets as low efficiency
and still have an accuracy of 80%. One potential solution is to
adjust the decision threshold [17], for example, from 50% to
20%. This results in an even number of high- and low-efficiency
samples. However, now samples with an efficiency of >20% are
considered high efficiency, which may not be ideal. A potential
solution here is modifying how targets are sampled. For example,
rather than choosing targets randomly for training and testing,
a bootstrap (sampling with replacement) method can be used to
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oversample the minority class, as demonstrated by CRISTA and
DeepCRISPR [18, 19].

The problem of imbalance is exacerbated for labels with more
than two classes. One example is predicting the exact change
that results from the editing outcome, as attempted by FORECast
[20] and SPROUT [21]. While this greatly increases the control
over experimental outcomes, it also increases the number of dis-
tinct classes, which in turn requires an increase in training data
size to adequately fit the model. For example, for binary labels
(high/low) and a perfectly balanced dataset of 1000 samples,
each class has 500 (1000/2) samples. If the same dataset is labeled
according to the single-nucleotide change (A, C, G or T) present
in each sample, the number of samples in each class drops to
250 (1000/4). Predicting other outcomes, such as insertions or
deletions will drop the sample size of each class even further,
potentially until classes contain only a single sample. To combat
this problem and still have enough samples for each of the
combinatorial scenarios, FORECast is trained on >40,000 sgRNAs.
However, where large sample sizes are not possible, an alternate
solution is to limit the number of classes or to train multiple
models. For example, rather than having a single model trained
on data labeled for every type of change (A, T, AA, AT, TT, etc.),
SPROUT relies on multiple models, where one may be trained
on length of deletion, and another trained on the type of single-
nucleotide change. This allows it to be successfully trained on
1656 sgRNAs.

Selecting data for a generalizable model

As well as being labeled, each sample must include a set of
‘features’. Features are essentially data (i.e. genetic, epigenetic
or experimental) abstracted to a format suitable for training an
ML model. The challenge here is to include enough data for
an algorithm to produce accurate results, but without including
data that is difficult/expensive to obtain, unique to a particular
experiment or irrelevant. The aim is to produce a model that can
not only make correct predictions but is also ‘generalizable’.

Used in every model mentioned throughout this review are
genetic data. This includes the sgRNA sequence, protospacer
adjacent motif (PAM) and/or adjacent nucleotides. Although this
is primarily because efficient sgRNAs have been demonstrated to
prefer certain nucleotides over others [8], a secondary benefit is
that sequence information is universal. That is, with the sgRNA
sequence being essential for guiding CRISPR/Cas9 to a target,
it is a property that will be known for previously conducted
CRISPR experiments (resulting in more training data), as well as
for experiments in planning. The only variability between the
data required for many tools is hence the window size at the
sgRNA target (23 nt for ge-CRISPR [22], 26 nt for WU-CRISPR [23]
and 30 nt for sgRNA design [24], CRISPRpred [25] and TUSCAN
[13]). As each of these tools takes solely sequence information as
input, they can predict sgRNA efficiency agnostic to cell type or
species.

Azimuth [26] and CRISPRpred [25] aim to improve accuracy
over these baseline models by including positional features
like ‘exon targeted’ and ‘position of target in gene’. Although
Doench et al. demonstrated that including these features
improves model performance [26], it also has the consequence
of decreasing the generalizability compared to sequence-only
models. This is because genetic annotation is now required to
predict sgRNA efficiency, and this leads to predictions being
species-specific. Azimuth will hence fall back to the sequence-
only sgRNA design algorithm if positional information is not
available.

Figure 2. Four different ways to encode the sgRNA nucleotide sequence. Demon-

strated are the four encircled nucleotides (CATA): (A) as a string—this will not

be compatible with many ML algorithms; (B) as a list of characters—here, each

nucleotide has its own ‘feature’. However, many ML algorithms require features

to be represented as numbers; (C) as a list of numbers—here, each nucleotide has

been arbitrarily assigned a value from 0 to 3. However, algorithms that accept

‘continuous’ features will consider T (3) to be more different from A (0), than T

is from G (2) because of the larger difference in the arbitrarily assigned values;

(D) one-hot encoded—here, each nucleotide is represented as four list elements.

One (and only one) of these elements is ‘hot’ (i.e 1) depending on the nucleotide.

In this example, the first element being hot, i.e. [1, 0, 0, 0], represents an A. In this

representation, all nucleotides are represented as being equally different.

Chari et al. identified epigenetic status to be an additional
modulator of efficiency using DNase-seq and H3K4 trimethyla-
tion data [27]. While including epigenetic information may have
improved the model accuracy, it would make the predictor not
only species-specific but also cell type-specific [28]. They hence
opted for using only sequence information for their sgRNA scorer
and sgRNA scorer 2.0 algorithms [27, 28].

In the pursuit of finding features that add more information
and increase accuracy, care should be taken to avoid including
as much data as possible, regardless of relevance. Feature sets
should ideally include only properties that have a causal rela-
tionship to the label. Including irrelevant features (i.e. experi-
ment ID in a tracking system) can be detrimental by increasing
the noise and search space, thus potentially reducing model
performance [29, 30, 31].

Translating data to machine-readable features

Once data has been identified for inclusion in training, it needs
to be processed to meet certain criteria. This is especially true
for sequence data because most ML algorithms cannot han-
dle strings natively. For example, an algorithm may be able to
identify that ‘CATA’ ‘is’ different to ‘CATT’, but not ‘how’ it is
different. To overcome this problem and to capture quantitative
differences, sequence features therefore need to be ‘tokenized’
(Figure 2).

Tokenization generally involves breaking down an item, such
as a string, into a more generic format, such as an array of
numbers. For example, each nucleotide in the DNA (or RNA)
alphabet could be represented as a number from 0 to 3 (A = 0,
C = 1, G = 2, T = 3). In this case ‘CATA’ would become [1, 0, 3,

0] and ‘CATT’ would become [1, 0, 3, 3]. This is effective
because now any ML algorithm can see that only the fourth posi-
tion has changed. However, this representation is not adequate
for algorithms that expect continuous variables because T (3)
is more different to A (0) than T (3) is to G (2). Instead, we can
process strings further by using ‘one-hot encoding’. This allows
nucleotides to be represented as 0s and 1s, by using a separate
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column for each position in the sequence as well as for each
possible nucleotide (Figure 2).

The above processes can be extended to create additional
features that represent, for example, nucleotide pairs. This sim-
ply entails creating an additional feature column for each per-
mutation and combination of two nucleotides at each position
along the sequence. Feature generation can also be driven by
domain or expert knowledge. For example, by including a feature
to represent the nucleotides either side of the ‘GG’ in the PAM
(‘NGGN’) [26], if this were empirically observed to influence
efficiency.

Choosing the right algorithm

With a well-curated feature set and carefully chosen labels, it
is possible to train a model. There are many ML algorithms
currently used for CRISPR prediction, with each having different
advantages and pitfalls. Here, we cover the algorithms frequently
used in CRISPR prediction tools. For more detailed comparisons
of specific tools, see Chuai et al. 2017 [32] and Cui et al. [33], and
for benchmarks see Yan et al. [34].

Two algorithms frequently used in ML are linear regres-
sion and logistic regression. While linear regression—used by
CRISPRscan [35]—is suited for continuous labels, logistic regres-
sion—used by sgRNA design [36]—is suited for discretely labeled
data. Both algorithms model linear relationships between the
features and label but can also be extended to model nonlinear
relationships through nonlinear transformations. For example,
Doench et al. observed a nonlinear relationship between sgRNA
GC content and efficiency, where a high or low guanine-cytosine
(GC) content were correlated with a lower activity than a GC
content of ∼50%. For this nonlinear relationship, they created
two disparate features (one for >50% GC and one for below),
which enabled the logistic regression algorithm to capture this
nonlinear relationship [36]. However, to avoid these manual
transformations, algorithms that support nonlinear separation
can be used.

One such example that supports nonlinear separation is the
support-vector machine (SVM) algorithm. Trained SVM mod-
els, which can support classification or regression, are used
by sgRNA scorer, sgRNA design, ge-CRISPR, sgRNA scorer 2.0,
CRISPRpred, WU-CRISPR, TSAM and CRISPR-DT [27, 36, 22, 28, 25,
23, 37, 38]. SVM algorithms model nonlinear data by transform-
ing features into a high-dimensional representation where lin-
ear separation of samples is possible [39]. Although adding these
additional dimensions enables SVMs to model the represented
data, it obscures which features contributed to the decision
process. This lack of transparency, or ‘black box’ behavior, is
balanced against explainable models by generally being more
accurate [40, 24, 19, 41]. However, this also depends on the algo-
rithm in question, as well as the data being modeled [42, 43, 13].

Another important property for the CRISPR space is an algo-
rithm’s ability to capture higher-order interactions between fea-
tures, i.e. interacting features. In the context of sgRNA efficiency,
interacting features are two or more features—be that nucleic,
epigenetic or otherwise—that if present together have a cor-
relation with or influence the efficiency. Tree-based methods
are one such group of algorithms that can capture higher-order
interactions. For example, decision trees model data by itera-
tively ‘splitting’ the dataset based on features that separate the
data. The aim is to generate groups that are ‘pure’, i.e. groups
that contain ‘only’ high-efficiency targets or ‘only’ low-efficiency
targets. Consider the hypothetical example where sgRNAs with
a G at position 20 (G20) ‘and’ a <20% GC content have higher

Figure 3. A hypothetical example of a decision tree trained on 10 samples. The

first split is on an sgRNA GC content > or <20%, which separates out two samples

with a GC content >20%. As both samples are ‘high efficiency’, it results in a pure

node (orange). Of the eight sgRNAs with a GC content >20%, three have a high

efficiency and five have a low efficiency, so this node is impure (purple). The

next split is on the presence (or absence) of a G at position 20 in the sgRNA. All

three sgRNAs with a G have a high efficiency and all five sgRNAs without a G

have a low efficiency. The resulting nodes are pure, so training concludes. This

model would classify new sgRNAs as high if ‘the GC content is >= than 20%’ or

‘the GC content is < 20% and there is a G at position 20’. In reality, such a model

would be much more complex with purity not being reached so early, or possibly

not at all.

efficiencies than sgRNAs with either or none of these features.
The iterative nature of decision trees means that because G20
cannot separate the data into pure groups, a new level is added
to split the data based on <20% GC as well (Figure 3). Another
benefit of tree-based methods is that they are applicable to both
regression and classification [44]. Furthermore, it is possible to
interrogate tree-based models to identify which features have
the most influence on efficiency prediction, hence making the
prediction ‘explainable’.

Two tree-based algorithms used for predicting sgRNA
efficiency prediction are random forests (used by CRISPRpred,
CRISTA, TUSCAN, CRISPR-DT and CUNE) [18, 13, 25, 45, 38] and
gradient boosting (used by Azimuth and SPROUT) [26, 21]. These
algorithms are ‘ensemble’ methods, meaning they create models
consisting of multiple decision trees. This collection of trees can
survey a larger search space and hence are superior to a single
tree by improving the generalization or by reducing the error [46].

Recent increases in compute power have enabled another
group of ML, deep learning. This group includes algorithms that
consist of multiple nonlinear levels, such as convolutional neural
networks (CNNs) [47]. Such algorithms have been demonstrated
to be successful for image analysis, where the many inter-
connected levels allow for highly general models that can not
only classify images, but also objects within images. The field
of sgRNA prediction has recently started using deep learning
with the development of tools such as DeepCpf1, DeepCRISPR,
off_target_prediction and DeepCas9 [19, 48, 41, 49]. However,
deep learning is but one tool in the toolbox and finding the
right algorithm remains critical as demonstrated by CRISPR-GNL,
a Bayesian ridge regression solution that outperforms its deep
learning counterpart, DeepCas9 [50].

However, a unique feature of deep learning is its ability to
make preprocessing redundant in some circumstances. Algo-
rithms like CNNs can decompose images containing objects at
arbitrary positions/sizes/angles without the need for techniques
like cropping, scaling and rotating, not only on the training set
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but also for novel samples [51]. Being able to uncover underlying
patterns in arbitrary data, rather than requiring perfectly curated
feature sets, is a useful capability in the CRISPR space.

Currently, the search space for CRISPR targets is much
smaller than the typical image analysis task. Where an image
may consist of millions of pixels, with objects at arbitrary scales,
locations and orientations, a typical CRISPR target consists of
20 to 30 bases, with known coordinates for objects such as the
sgRNA target and PAM. Because of this, implementing CRISPR
target preprocessing for traditional ML tools is relatively trivial,
somewhat negating the need for deep learning algorithms.
However, this may change for different Cas enzymes and more
complex applications in the future where using the whole
genome as input for finding genome-wide optimal targets is
conceivable and may improve accuracy.

Hence, choosing the right approach depends on the task
(classification versus regression). It also depends on whether the
problem is linear or nonlinear, whether feature interactions need
to be captured and whether the ability to identify influential
features should be present. However, in the case where more
than one algorithm is applicable to a problem, comparisons
and benchmarks are often appropriate to identify the optimal
solution.

Gaining insights from CRISPR ML models

Training a model on irrelevant features can reduce a model’s
performance, but prior to training, it is not always obvious as
to which features are relevant. For example, which, if any, epi-
genetic properties influence sgRNA efficiency and should be
included in the model? One way to identify influential features
is to selectively train on different subsets of features and subse-
quently observe variations in the model’s performance as each
feature is added. However, training models on different subsets
of potentially thousands of features can be inefficient and time-
consuming. More appropriate for identifying influential features
are explainable models, such as logistic regression and tree-
based methods [52, 46]. Such algorithms allow researchers to
train a single model on all available features and subsequently
rank features by their contribution to the model, or ‘feature
importance’.

Feature importance, as well as enabling researchers to only
include relevant features, can be extended to ‘hypothesis gener-
ation’. While a feature ranking highly is not necessarily indica-
tive of its biological influence over sgRNA efficiency, it can
promote the design of further CRISPR experiments to gather
support for the generated hypotheses. For instance, features
such as position-independent (di) nucleotide count, location of
sgRNA within the protein and melting temperatures have been
demonstrated to contribute to models and therefore may be
involved in DNA cleavage efficiency [26].

Minimizing the error

Understanding how to interpret the performance metrics of a
model is key to ensuring it accurately represents the underlying
data. Here we describe ‘bias’ and ‘variance’, and ways in which to
minimize them. Commonly, decreasing one (i.e. bias) will come
at the cost of increasing the other (i.e. variance) [53]. The aim,
therefore, is to find the sweet spot where both forms of error are
kept to a minimum.

A model that is overly complex will generally have a high
variance, and this can lead to ‘overfitting’. An overfitted model
is a model that represents the data it was trained on well (or

perfectly), but without being generalizable to the system as a
whole (i.e. sgRNA editing efficiency). Because of this, an over-
fitted model will generally have poor prediction accuracy on
samples that it was not trained on. Complexity in a model can
arise from noise or outliers in the training data.

Noise can result from features, such as specific nucleotides,
that happen to have a relationship to the sgRNA efficiency in
the training data, but not in general. Outliers, on the other hand,
are samples that are dissimilar from the group they belong
to. For example, a negative target (low-efficiency) that happens
to have a sequence that is very different from other negative
targets, in fact so much so, that it more closely resembles the
sequence properties of positive targets (high-efficiency). This
may be due to experimental error, especially if the sample size is
small, or because the features that would identify it to be a poor
target (such as epigenetic information) were not included in the
dataset. Training a model on noise and outliers such as these can
result in a model with a high variance.

On the other hand, an excessively simplistic model will gen-
erally have a high bias. Unlike high-variance models, high-bias
models do not capture enough information and tend to underfit.
Such models do not accurately model the data they were trained
on, let alone the system they were trained to represent. A high-
bias model would result from a dataset lacking information, for
example if arbitrary sequence data were used, rather than the
target sequence, or from an algorithm failing to capture relevant
information from the dataset.

To modify how an algorithm learns from the data, with the
intent of reducing the bias and variance, its ‘hyperparameters’
can be adjusted. Hyperparameters, unlike model parameters
(which are derived through training), are set by the researcher
a priori. Each algorithm has its own set of hyperparameters,
and each hyperparameter modifies a certain aspect of the
training process. For example, the random forests algorithm
includes hyperparameters such as the ‘number of trees’ and the
‘maximum tree-depth’. Typically, if increasing a hyperparameter
increases the model complexity, decreasing it will decrease the
model complexity. So, where a deep tree will tend to have a
high variance, a shallow tree will typically have a high bias.
Therefore, by trialing different hyperparameters, one can find
the balance between bias and variance to result in the lowest
possible prediction error.

Regardless of hyperparameters and other optimizations,
algorithms must have access to a large and representative data
set to train accurate models. For CRISPR experiments using the
template-free repair pathways, large datasets are now available,
with recently published datasets presenting 40 000 Cas9 samples
[20] and 15 000 Cas12a samples [48]. However, for other repair
pathways (i.e. HDR), there is little data available, impeding the
ability to accurately model these biological systems.

Conclusions
The use of ML in CRISPR applications is improving at a rapid
pace, with multiple prediction tools being released every year.
Although most models aim to improve the efficacy of CRISPR-
Cas9 experiments, they each vary in some detail. While some
models are simple and generalizable across organisms and cell
types, others are more complex, capturing data like epigenetic
information, and are therefore modeling differences in CRISPR
efficiency between certain environments. With explainable
ML, gaining insights into biological mechanisms becomes
more data-driven and encapsulates a wide range of scenarios,
reducing the potential for human bias.
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With the broad availability of ML-based CRISPR tools, the
need to empirically test CRISPR-Cas9 designs to conduct suc-
cessful experiments is replaced by in silico optimization. Here,
experiments can be designed algorithmically, optimizing for
maximum editing efficiency and minimum off-target effects.

However, available tools have scope for improvements
around prediction accuracy or catering for varied experimental
parameters, which currently can still lead to misclassification
of targets. Also, most current tools are designed for CRISPR-Cas9
NHEJ experiments and are therefore not readily transferrable
to other CRISPR systems or DNA repair pathways. In practice,
however, a model that performs better than chance is still more
economical than a researcher designing guides arbitrarily espe-
cially when systematic empirical testing is resource intensive.

Going forward, the following recommendations would enable
data scientists and experimental researchers to improve CRISPR
ML modeling together:

i. Jointly creating large datasets for ML training by submitting
results to repositories such as Sequence Read Archive [54]
or GenomeCRISPR [55].

ii. Both positive and negative examples (i.e. target sites that
have been shown to be inefficient) are valuable and should
be published.

iii. Computationally identified factors influencing genome
editing experiment should be phrased as experimentally
testable hypotheses.

Key Points
• Machine learning approaches can minimize the empir-

ical testing of potentially inefficient sgRNA designs,
reducing the workload involved in CRISPR experiments.

• Current models are not perfect, but advancements
can be expedited by researchers jointly creating large
datasets and submitting these to repositories such as
the Sequence Read Archive.

• Computationally identified factors shown to have
a relationship with the efficiency of genome edit-
ing experiment should be phrased as experimentally
testable hypotheses.
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