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Unambiguous magnetic mineral identification in sediments is a prerequisite for
reconstructing paleomagnetic and paleoenvironmental information from environmental
magnetic parameters. We studied a deep-sea surface sediment sample from the Clarion
Fracture Zone region, central Pacific Ocean, by combining magnetic measurements and
scanning and transmission electron microscopic analyses. Eight titanomagnetite and
magnetite particle types are recognized based on comprehensive documentation of
crystal morphology, size, spatial arrangements, and compositions, which are indicative
of their corresponding origins. Type-1 particles are detrital titanomagnetites with micron-
and submicron sizes and irregular and angular shapes. Type-2 and -3 particles are well-
defined octahedral titanomagnetites with submicron and nanometer sizes, respectively,
which are likely related to local hydrothermal and volcanic activity. Type-4 particles are
nanometer-sized titanomagnetites hosted within silicates, while type-5 particles are typical
dendrite-like titanomagnetites that likely resulted from exsolution within host silicates.
Type-6 particles are single domain magnetite magnetofossils related to local
magnetotactic bacterial activity. Type-7 particles are superparamagnetic magnetite
aggregates, while Type-8 particles are defect-rich single crystals composed of many
small regions. Electron microscopy and supervised magnetic unmixing reveal that type-1
to -5 titanomagnetite and magnetite particles are the dominant magnetic minerals. In
contrast, the magnetic contribution of magnetite magnetofossils appears to be small. Our
work demonstrates that incorporating electron microscopic data removes much of the
ambiguity associated with magnetic mineralogical interpretations in traditional rock
magnetic measurements.
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INTRODUCTION

Sedimentary sequences provide important geological records for
understanding long-term variations of Earth’s magnetic field and
paleoclimate (e.g., Valet andMeynadier, 1993; Guyodo and Valet,
1999; Kissel et al., 1999; Evans and Heller, 2001; Evans and Heller,
2003; Yamazaki, 2009; Hao et al., 2012; Liu et al., 2012; Roberts
et al., 2013; Kissel et al., 2020; Valet et al., 2020). Magnetic mineral
identification in sediments is fundamentally important for both
paleomagnetic and environmental magnetic studies because the
type, concentration, size and shape of magnetic minerals control
their magnetic properties, including magnetic recording quality
(e.g., Dunlop and Özdemir, 1997; Dekkers, 2003; Liu et al., 2012;
Chang et al., 2014a; Larrasoaña et al., 2014; Roberts et al., 2019).
However, quantitative identification of individual magnetic
mineral components is challenging because each component
can have different origins, grain size, shape, mineralogy and
stoichiometry. For example, four or five distinct magnetic
mineral components are identified commonly in pelagic
carbonate sediments, which might otherwise be considered to
be among the simplest of magnetic mineral assemblages (e.g.,
Roberts et al., 2013). Quantitative identification of each magnetic
mineral component and its magnetic contribution can be
important in environmental and paleomagnetic studies (e.g.,
Ouyang et al., 2014; Chen et al., 2017).

Numerous magnetic techniques have been developed to
measure the bulk magnetic properties of sediments to provide
information about the concentration, domain state (a measure of
magnetic grain size), and mineralogy of magnetic particles in a
sample (e.g., Verosub and Roberts, 1995; Evans and Heller, 2003;
Lascu et al., 2010; Liu et al., 2012; Roberts et al., 2014; Zhao et al.,
2017; Roberts et al., 2019). Mathematical unmixing methods have
also been developed to identify these magnetic mineral
components quantitatively based on their bulk magnetic
properties (e.g., Heslop, 2015). They generally involve fitting
of functions to derivatives of isothermal remanent
magnetization (IRM) acquisition or direct current
demagnetization (DCD) curves (e.g., Robertson and France,
1994; Kruiver et al., 2001; Heslop et al., 2002; Egli, 2003, Egli,
2004a; Egli, 2004c; Heslop and Dillon, 2007; Maxbauer et al.,
2016), alternating field demagnetization curves of an anhysteretic
remanent magnetization or IRM (Egli and Lowrie, 2002; Egli,
2004a, Egli, 2004b, Egli, 2004c), or analysis of hysteresis loops
(e.g., Roberts et al., 1995; Dunlop, 2002a, Dunlop, 2002b; Tauxe
et al., 2002; Heslop and Roberts, 2012a; Heslop and Roberts,
2012b), ferromagnetic resonance (FMR) spectra (e.g., Weiss et al.,
2004; Kopp et al., 2006a; Kopp et al., 2006b; Gehring et al., 2011;
Kind et al., 2011; Gehring et al., 2013; Chang et al., 2014b), or
first-order reversal curve (FORC) diagrams (e.g., Roberts et al.,
2014; Lascu et al., 2015; Channell et al., 2016; Harrison et al., 2018;
Roberts et al., 2018).

Nonuniqueness is a fundamental issue for bulk magnetic
property analysis because 1) mathematical unmixing can
produce an infinite number of solutions, and 2) magnetic
minerals have variable magnetic properties that can overlap
with those of other minerals (e.g., Liu et al., 2012). The
combined presence of multiple magnetic mineral components

produces a complicated relationship between the magnetic
properties of magnetic minerals and their domain states,
concentration, sizes, shapes and stoichiometry, which often
frustrates component-specific magnetic diagnosis (e.g.,
Yamazaki and Ioka, 1997; Heslop, 2009; Roberts et al., 2011a;
Li et al., 2012; Liu et al., 2012; Li et al., 2013a; Roberts et al., 2019).
To minimize ambiguity for environmental and paleomagnetic
interpretations, integration of multiple magnetic parameters and
non-magnetic techniques is recommended to identify and
quantify magnetic minerals in sediments (e.g., Kopp and
Kirschvink, 2008; Liu et al., 2012; Chang et al., 2014b; Heslop,
2015; Roberts et al., 2019).

Transmission electron microscope (TEM) observations are
among the most useful microscopic approaches because they can
be used to characterize simultaneously mineralogy,
stoichiometry, magnetism and crystallography of magnetic
minerals at the micron and nanometer scales, even to the
atomic level (e.g., Harrison et al., 2002; Galindo-Gonzalez
et al., 2009; Pósfai et al., 2013; Li and Pan, 2015; Li et al.,
2020). TEM and scanning electron microscope (SEM)
observations have been used in environmental magnetism and
paleomagnetism for many years (e.g., Evans and Wayman, 1970;
Kirschvink and Chang, 1984; Harrison et al., 2002; Roberts and
Weaver, 2005; Kopp and Kirschvink, 2008; Harrison and
Feinberg, 2009). Most recent studies emphasize the use of
TEM in testing for the presence of biogenic magnetite
particles produced by magnetotactic bacteria (MTB)
(magnetofossils) from sediments (e.g., Petersen et al., 1986;
Stolz et al., 1986; Chang and Kirschvink, 1989; Vali and
Kirschvink, 1989; Akai et al., 1991; Hesse, 1994; Snowball,
1994; Tarduno et al., 1998; Yamazaki and Kawahata, 1998;
Pan et al., 2005; Housen and Moskowitz, 2006; Kopp et al.,
2007; Maloof et al., 2007; Kopp and Kirschvink, 2008;
Schumann et al., 2008; Kopp et al., 2009; Roberts et al., 2011b;
Chang et al., 2012; Larrasoaña et al., 2012; Yamazaki and
Shimono, 2013; Chang et al., 2014a; Chang et al., 2014b; Liu
et al., 2015; Chang et al., 2016a; Dong et al., 2016; Chang et al.,
2018; Usui et al., 2019; He and Pan, 2020; Jiang et al., 2020; Qian
et al., 2020; Yamazaki et al., 2020; Yuan et al., 2020). In contrast,
relatively few studies have used TEM observations to study the
mineralogy and chemistry of other magnetic mineral types in
sediments (e.g., Gibbs-Eggar et al., 1999; Franke et al., 2007;
Chang et al., 2016b; Zhang et al., 2018; Li et al., 2019). While
magnetofossils are relatively easy to recognize in TEM
observations due to their distinctive crystal morphologies and
chain structures compared to other magnetic mineral types (e.g.,
Kopp and Kirschvink, 2008; Jimenez-Lopez et al., 2010; Li et al.,
2013b), this can lead to bias in overestimating their magnetic
contributions, and/or to ignoring contributions from, for
example, weakly interacting or noninteracting single domain
(SD) magnetite particles hosted by silicates (e.g., Wang et al.,
2015; Chang et al., 2016b).

We combine rock magnetic measurements with SEM and
TEM observations to characterize the magnetic mineralogy of a
surface sediment from the central Pacific Ocean.We show that by
incorporating detailed SEM and TEM characterizations, much of
the ambiguity that is inherent to magnetic mineralogy
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interpretations when using only rock magnetic measurements is
eliminated. This approach allows evaluation of the contribution
of magnetic mineral components to paleomagnetic and rock
magnetic signals and/or their environmental significance.

MATERIALS AND METHODS

Sample and Preparation
Surface sediment was retrieved at station XTGC1311
(158.0485,917 W, 14.44244 N; 5,260 m water depth; Figure 1)
during cruise DY29–02 of R/V Haiyang Liuhao in 2013 to the
Pacific Ocean (Dong et al., 2016). The station is adjacent to the
Clarion Fracture Zone to the south, the Hawaiian Island Chain to
the North, and Kiribati (Line Islands) to the West. The
surrounding islands were formed by upper Jurassic to lower
Cretaceous volcanic activity (Clouard and Bonneville, 2005).
The seafloor between the Clarion Fracture Zone and the
Clipperton Fracture Zone is characterized by long, north-
south-trending hills, ridges, intervening valleys, and furrows
(Vithana et al., 2019; Maciąg and Harff, 2020). Sediments in
the area are characterized by organic carbon-starved siliceous clay
(Mewes et al., 2016). Modern sedimentation at the sampled
station consists of both Asian eolian dust transported by zonal
westerlies and northeast trade winds and local hydrothermal and
volcanic inputs (Hyeong et al., 2005; Hyeong et al., 2006; Maciąg
and Harff, 2020). It is also possibly influenced by Antarctic
Bottom Water (AABW), which is oxygen rich and migrates
eastward and northward into this area (Deng et al., 2016;
Mewes et al., 2016).

Sediment samples were collected using a gravity corer. Surface
sediments were subsampled immediately on the ship from the
upper 1 cm of the core (hereafter referred to as EPMNP-31) and
were then stored at −20°C prior to analysis to minimize oxidation.
Samples were vacuum dried at 30°C for 12 h and were then loaded
into non-magnetic gelatin capsules for magnetic measurements.

For nanometer scale characterization, magnetic minerals were
separated from the bulk sediment. Magnetic separation was carried

out with the following procedure. First, about ∼10mg of sediment
was suspended into ∼50ml of Milli-Q water in a ∼100 ml beaker
and was then mixed by ultrasonication assisted by agitation with a
glass stirring rod. Second, a 5 × 5 mm cylindrical neodymium
magnet (surface field strength > 100 mT) was attached to the
outside of the beaker ∼2 mm above the water-sediment surface.
After ∼4 h of magnetic absorption, magnetic minerals that were
concentrated adjacent to the magnet were transferred to a 10ml
glass tube. To extract as much of the magnetic mineral content
from the sediment as possible, the first and second steps were
repeated several times until no obvious magnetic aggregates
adjacent to the magnet were found. Third, extracted magnetic
minerals were resuspended in ∼5 ml of Milli-Q water in a 10ml
glass tube, mixed by ultrasonication, and then extracted
magnetically again following a similar procedure as the second
step above. To remove non-magnetic minerals from the extracts,
the third step was repeated several times until non-magnetic
particles were not observed at the bottom of the tube. The final
three repeats were performed in 99.5% ethanol. Finally, extracted
magnetic minerals were suspended in 50 µl of 99.5% ethanol and
were stored at −20°C prior to TEM or SEM observations.

Magnetic Measurements
Low-temperature magnetic measurements were made with a
Quantum Design Magnetic Property Measurement System
(MPMS XP-5, 5.0 × 10−10 Am2 sensitivity). Zero-field-cooled
(ZFC) and field-cooled (FC) curves were obtained by cooling
the sample from 300 to 10 K in a zero field and in a 2.5-T field,
respectively, followed by imparting a saturation IRM (SIRM) to the
sample in a 2.5-T field at 10 K (hereafter SIRM10 K_2.5 T), and then
bymeasuring SIRM10 K_2.5 T during warming back to 300 K in zero
field (Moskowitz et al., 1993). For low-temperature cycling (LTC)
of a room temperature SIRM obtained in a 2.5-T field at 300 K
(hereafter SIRM300 K_2.5 T), remanence was measured in zero field
during a cooling-warming cycle (300 → 10 → 300 K).

Room-temperature magnetic experiments were made using a
Micromag Model 3,900 vibrating sample magnetometer (VSM)
(PrincetonMeasurement Corporation; 5.0 × 10−11 Am2 sensitivity).

FIGURE 1 | Location map with the position of sample station.
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A hysteresis loop was measured in a 1 T maximum field with
500ms averaging time. The saturation magnetization (Ms),
saturation remanence (Mrs), and coercivity (Bc), were determined
after applying a high-field (0.7–1 T) slope correction. Static IRM
acquisition and DCD curves were measured on an initially
demagnetized and 1 T-re-magnetized sample, respectively. The
coercivity of remanence (Bcr) was determined from the DCD
curve. IRM acquisition and DCD curves were measured to 1 T
using a logarithmic sweep mode with 1 mT initial field and 120
measurement points. To simplify comparison of remanence results
and to calculate the R-value of the Wohlfarth-Cisowski test
(Cisowski, 1981), the IRM acquisition curve was normalized to
the SIRM, and the DCD curve was rescaled as ½ [1 + IRM(−H)/
SIRM]. To quantify contributions from different coercivity families
to the total IRM, the IRM curve was decomposed into cumulative
log Gaussian (CLG) curves (Robertson and France, 1994) using the
software of Heslop et al. (2002). The different coercivity families are
defined by their half saturation IRM (SIRM) field (B1/2) and the
percentage of their contribution to the total IRM.

FORCs (Pike et al., 1999; Roberts et al., 2000) were also
measured with the VSM using the protocol described by Egli
et al. (2010). A total of 300 FORCs were measured with a positive
saturation field of 1 T, increasing field steps of 0.976 mT, and a
600 ms averaging time. A FORC diagram was calculated using the
FORCinel v3.06 software (Harrison and Feinberg, 2008) and
smoothed using the VARIFORC algorithm (Egli, 2013). The
horizontal (Bc) and vertical (Bi) axes on a FORC diagram
indicate the microcoercivity and interaction field distribution for
SD particles, respectively (Pike et al., 1999; Roberts et al., 2000).

Scanning Electron Microscope and
Transmission Electron Microscope
Analyses
Extracted magnetic minerals were deposited onto carbon-based,
double sided adhesive tape that was mounted onto the surface of
an aluminum stub for SEM observations. The sample was carbon
coated prior to imaging to create a conductive layer. Extracted
magnetic minerals were deposited onto carbon-coated copper
grids for TEM experiments. SEM and TEM experiments were
carried out with a Nova NanoSEM 450 field-emission SEM
(15 kV accelerating voltage) and a JEM2100 TEM (200 kV
accelerating voltage), respectively, at the Institute of Geology
and Geophysics, Chinese Academy of Sciences (IGGCAS,
Beijing, China). Microchemical analyses were made by Energy-
dispersive X-ray spectrometry (EDXS) elemental mapping in the
SEM and point analysis in the TEM.

RESULTS

Room- and Low-Temperature Magnetic
Properties
A hysteresis loop for the sample is closed at values well below
∼400 mT (Figure 2A). Stepwise SIRM acquisition and
demagnetization indicate that the sample is saturated and
demagnetized largely below ∼300 mT, and completely at

∼600 mT (Figure 2B). Hysteresis parameters after high-field
slope correction are Bc � 20.6 mT, Bcr � 44.9 mT, Bcr/Bc �
2.18, and Mrs/Ms � 0.28. Normalized IRM acquisition and
DCD curves are roughly symmetric with a calculated R-value
of 0.45 for the Wohlfarth-Cisowski test (Cisowski, 1981).

Both ZFC and FC SIRM10 K_2.5 T curves decrease gradually
during warming from 10 to 300 K (Figure 2C). The LTC curve is
humped. The SIRM300 K_2.5 T cooling curve increases gradually
from 300 to ∼176 K and then decreases gradually to 10 K. The
warming curve overlaps with the cooling curve below ∼50 K, and
then increases slowly to 153 K, and finally decreases gradually to
300 K. The SIRM300 K_2.5 T cooling-warming curves are roughly
reversible with a ∼6% remanence loss after cycling (Figure 2D).
The Verwey transition, which is characterized by an obvious
remanence drop at ∼100–120 K, is not clearly present in the ZFC/
FC warming and LTC curves. This indicates that magnetite
particles in this sample are nonstoichiometric, either due to
surface oxidation or cation substitution (e.g., Muxworthy and
McClelland, 2000; Özdemir and Dunlop, 2010).

First-Order Reversal Curve Results
FORC measurements provide information about all magnetic
particles in a sample in terms of their magnetization
(magnitude), microcoercivity (horizontal distribution) and
magnetic interaction field for SD particles (vertical distribution)
(Pike et al., 1999; Roberts et al., 2000; Roberts et al., 2014). The
FORC diagram in Figure 3 indicates the presence of non-
interacting SD (Newell, 2005; Egli et al., 2010; Roberts et al.,
2014), vortex state (Pike and Fernandez, 1999; Muxworthy and
Dunlop, 2002; Roberts et al., 2017) and viscous particles near the
superparamagnetic (SP)/SD threshold size (Pike et al., 2001). The
non-interacting SD contribution produces a central ridge signal
that can be extracted (Figure 3B) following Egli et al. (2010) and
separated into three components along a horizontal profile at
Bi � 0 mT (Figure 3D). The three SD components have peak
coercivities of ∼20.4, ∼76.8, and 126.1 mT. The remaining FORC
distribution after central ridge extraction has a tri-lobate shape
(Figure 3C) associated with the vortex state (Lascu et al., 2018).
The upper lobe intersects the vertical axis at higher values
(Bi � ∼50mT) than the lower lobe, which intersects the vertical
axis closer to the origin. The middle lobe is narrower and extends
along the horizontal axis to Bc � ∼140 mT (Figure 3C). A narrow
FORC distribution along the lower vertical axis is related to viscous
magnetic particles near the SP/SD threshold size (Figures 3A,C)
(Pike et al., 2001; Roberts et al., 2014).

Scanning Electron Microscope Analyses of
Magnetic Minerals
SEM observations combined with EDXS elemental mapping
reveal the overall microscale morphology and composition of
sedimentary magnetic minerals. Minerals can be distinguished
readily by combining analysis of particle morphologies and
corresponding backscattered electron contrast and chemical
composition (Figure 4; Supplementary Material S1). Most
particles with dark contrast generally consist of Si, O and Fe
(and/or Mn), which indicates that they are Fe/Mn silicates. In
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contrast, particles with bright contrast are often composed of Fe
and O, some of which also contain Ti. They are titanomagnetite
(with variable Ti contents) or magnetite, as confirmed by TEM
analyses (see below). The particles are morphologically diverse
with sizes ranging from tens of nm to tens of µm.

SEM observations reveal well-defined and uncorroded
octahedral (Figures 4G,I), truncated octahedral (Figure 4H)
and irregular and angular shapes for micron- and submicron
magnetite particles (Figures 4A–I). Most nanometric magnetite
particles are hosted within silicates (Figures 4J–O); a few are
isolated or attached onto other particles (Figures 4A–4F). Two
silicate-hosted titanomagnetite inclusion types are identified:
randomly oriented, dispersed particles (Figure 4J–L) and
dendritic particles (Figures 4M–O). Compared to the micron-
sized titanomagnetite particles, the morphology and
stoichiometry of these nanometric magnetite particles are
difficult to characterize with SEM imaging and SEM-EDXS
elemental mapping because of the ∼1 nm spatial resolution limit.

Transmission Electron Microscope
Analyses of Magnetic Minerals
Systematic TEM and high-resolution TEM (HRTEM)
observations were made on different magnetic particle types to

identify their mineralogy and stoichiometry. Representative
particles were further studied by selected area electron
diffraction (SAED) and TEM-EDXS point analyses. Eight
magnetic particle types were identified based on crystal
morphology, size, composition and spatial arrangement
(Figures 5–9).

Type-1 and type-2 particles are micron-or submicron-sized and
generally occur as loose aggregates (Figures 5A,D) or isolated
particles (Figure 5B). They are too thick to image lattice fringes
directly by HRTEM. We generally tilted the sample stage to allow
the incident electron beam to pass through large particles along a
certain zone axis, and then selected thinner edge areas for HRTEM,
SAED and TEM-EDXS point analyses. As shown in Figures 5A–F,
TEM observations from one zone axis combined with SAED
analyses on individual Type-1 particles reveal that they consist
mainly of micron or submicron angular titanomagnetite (Figures
5A,B,D), with Type-2 particles consisting of well-defined
octahedral magnetite (Figures 5G,H). Type-3 aggregates tend to
consist of randomly organized nanometric titanomagnetite
particles. HRTEM observations combined with corresponding
Fast Fourier Transform (FFT) analyses reveal that these
particles are elongated octahedral magnetite with average length
of 52.9 ± 10.9 nm, width of 43.9 ± 9.2 nm and aspect ratio (length/
width) of 1.22 ± 0.18 (n � 30). TEM-EDXS point analyses reveal

FIGURE 2 | (A) Room-temperature hysteresis loop (solid and dashed lines are the original raw and high-field slope-corrected data, respectively. (B) Normalized
IRM acquisition and DCD curves. (C) FC-SIRM10 K_2.5 T and ZFC-SIRM10 K_2.5 T warming curves. (D) SIRM300 K_2.5 T cooling-warming cycle curves.
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that Type-1 to Type-3 particles are titanomagnetite with variable Ti
contents.

In contrast to Type-1 to Type-3 titanomagnetite, Type-4 and
Type-5 magnetic particles are hosted within silicates (Figures 6
and 7). No preferred particle orientations are observed for the
morphologically diverse Type-4 particles, which have sizes
ranging from a few to several hundred nanometers. Some
particles appear to have rounded or irregular 2D-projections
in which crystal faces are difficult to define even from
HRTEM lattice images (Figures 6A–D). In contrast, other
particles likely have euhedral octahedral or cubo-octahedral
shapes (Figures 6E–N). Type-5 particles are typical dendrite-
like self-assembled magnetic nanoparticles (Figure 7). Combined
HRTEM, SAED and TEM-EDXS point analyses reveal that these
silicate-hosted nanometer-sized particles are titanomagnetite
with variable Ti contents (Figures 6 and 7).

Consistent with SEM results, Type-1 to Type-5 particles
dominate the magnetic mineral assemblage in TEM
observations. With careful and extensive searching, we also
found Type-6 particles, which clearly represent magnetite
magnetofossils based on their well-defined crystal morphologies,
nanometer sizes and chain organization (e.g., Kopp and
Kirschvink, 2008; Li et al., 2013a). Three magnetofossil crystal
morphologies are found in this sediment sample (Figure 8):
octahedral magnetofossils have an average length of 53.0 ± 5.7
nm, width of 50.6 ± 5.9 nm and aspect ratio of 1.05 ± 0.05 (n � 19),
prismatic magnetofossils have an average length of 103.3 ±

21.2 nm, width of 81.9 ± 15.8 nm and aspect ratio of 1.26 ±
0.13 (n � 13) and bullet-shaped magnetofossils have an average
length of 116.5 ± 13.7 nm, width of 41.1 ± 1.3 nm and aspect ratio
of 2.83 ± 0.3 (n � 3). HRTEM observations confirm that they are
single crystals without obvious twinning defects.

Type-7 and Type-8 particles have similar morphology in low-
magnification TEM observations. Both appear to be tight
aggregates of nanometer-sized magnetite (Figures 9A,D).
However, HRTEM observations and SAED analyses
demonstrate that they are different. Type-7 magnetite aggregates
are composed of many randomly oriented single crystals with sizes
of about 10 nm. As a result, SAED analysis of Type-7 magnetite
aggregates have a typical ring-like diffraction pattern for
polycrystalline samples (Figures 9B,C). In contrast, Type-8
magnetite aggregates are single crystals with significant defects.
Despite obvious boundaries that divide particles into different
small regions, HRTEM observations reveal clearly that the same
lattice fringes run intact through the particle, resulting in a typical
spot-like single crystal diffraction pattern (Figures 9E,F).

DISCUSSION

Magnetic Mineral Assemblage in Surface
Sediment Sample EPMNP-31
The generally low magnetic mineral concentration and mixture
with non-magnetic minerals in sediments makes it necessary to

FIGURE 3 | First-order reversal curve (FORC) results. (A) FORC diagram. (B) Central ridge component extracted from the FORC diagram. (C) Background FORC
component after removal of the central ridge. (D)Horizontal profile ρ(Bc) of the FORC function (coercivity distribution atBi � 0 mT). The black line indicates raw data, while
blue, cyan and purple lines indicate three components decomposed from the raw data. The dashed red line indicates a sum of all three Gaussian components. (E)
Vertical profiles ρ(Bi) of the FORC function (magnetostatic-interaction field distribution) at 20 mT: the central ridge component (black), the background component
with vertical spread (dashed black line), and the total of the two components (red line) are shown.
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pre-treat samples effectively to extract and enrich magnetic
minerals for SEM and TEM analyses. Any magnetic mineral
extraction process has inevitable biases, i.e., strongly magnetic
minerals are relatively easy to extract from sediments (e.g.,
Hounslow and Maher, 1996; Han et al., 2016). The extraction
process used here did not involve chemical treatment (e.g.,
dissolution by acid-ammonium oxalate) or mechanical
treatment apart from ultrasonication to disperse the sediment

slurry. It is, therefore, a relatively straightforward process. Our
experimental results indicate that this extraction procedure has
removed most non-magnetic minerals and that it has concentrated
magnetic minerals, which is necessary for SEM and TEM analyses,
although the procedure might miss weakly magnetic minerals (e.g.,
hematite, goethite). Five dominant (Type-1 to -5) and three minor
(Type-6 to-8) titanomagnetite and magnetite particle types were
identified from sample EPMNP-31 by combined use of SEM, SEM-

FIGURE 4 | Backscattered SEM images of magnetic mineral extracts. Fe-Mn silicate particles (yellow arrows), angular titanomagnetite particles (green arrows),
octahedral or truncated octahedral titanomagnetite particles (red arrows), silicate-hosted magnetite particles (blue arrows), silicate-hosted dendritic magnetite particles
(cyan arrows), and individual nanometer-sized magnetite particles (purple arrows) are recognized from SEM morphological observations and SEM-EDXS elemental
mapping (Supplementary Material S1).
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EDXS elemental mapping, TEM, HRTEM, SAED and TEM-EDXS
point analyses from micron to atomic scales. These microscopic
observations provide direct evidence to help understand bulk
sediment magnetic properties.

IRM decomposition indicates that the remanent magnetization
in this sample is carried by four main coercivity components
(Figure 10). Component 1 has a 7% contribution and might
represent the magnetic response from coarse vortex state grains

FIGURE 5 | TEM analyses of (A–F) Type-1, (G–I) Type-2, and (J–K) Type-3 magnetite particles. (A) Low-magnification TEM image of many micron-sized
titanomagnetite particles. (B) TEM image of an individual titanomagnetite particle. (C) SAED pattern recorded from the [111] zone axis of the particle in (B). (D) TEM
image of an individual magnetite particle. (E)HRTEM image of a thin edge region of the particle in (D) (yellow dashed box). (F) SAED pattern recorded from the [112] zone
axis of the particle in (D). (G) TEM image of many octahedral magnetite particles [367.8 ± 44.9 nm average size (n � 18)]. (H) TEM image of a single octahedral
magnetite particle recorded from the [111] zone axis [yellow dashed box in (G)]. The inset SEM image demonstrates an octahedral morphology. (I) SAED pattern of the
particle in (H) recorded from the [111] zone axis of magnetite. (J) TEM image of many nanometer titanomagnetite particles. (K) HRTEM image of a single magnetite
particle [yellow dashed box in (J)] recorded from the [011] zone axis (the inset is the corresponding pattern). (L) EDXS spectra for individual particles (indicated by colored
crosses and names in (B), (D), (G), and (J)). The d-spacing values from HRTEM observations and indirectly calculated from SAED analyses, combined with
corresponding TEM-EDXS point analyses, SAED and FFT patterns, match the crystal structure (Fd3m space group) of magnetite or titanomagnetite.
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(e.g., Type-1,-2 and some submicron Type-4 and-5 particles).
Component 2 has a 56% contribution and may originate mainly
from SDmagnetite particles with low Ti contents (e.g., Type-4 and
-5), and SD magnetite magnetofossils (i.e., Type-6). Component 3
has a 28% contribution, which may originate from SD
titanomagnetite particles with relatively high Ti contents, good
crystallinity and elongated Type-3 particles. Component 4 has a 9%

contribution and may represent the magnetic response of weakly
magnetic minerals that were missed by the magnetic extraction
procedure. The Type-7 and -8magnetite aggregates weremissed by
IRM decomposition possibly because they are likely to have SP
properties. It should be noted that magnetic unmixing with CLG
functions does not enable fitting of skewed distributions, which can
result in solutions with more components (e.g., from three to five

FIGURE 6 | TEM analyses of Type-4 magnetite inclusions hosted within silicates. (A) TEM image of a silicate particle hosting many dispersed titanomagnetite or
magnetite inclusions. (B–D) Titanomagnetite or magnetite particles likely attached to silicates: (B) low-magnification TEM image, (C)HRTEM image of part of the particle
in the yellow dashed box in (B) and (D) the corresponding SAED pattern recorded from the [011] zone axis. (E–H) Silicate particle hosting many titanomagnetite or
magnetite inclusions: (E) low-magnification TEM image, (F) TEM image of a single particle indicated by the yellow dashed box in (E), (G) HRTEM image of a small
region of the particle in (F) and (H) SAED pattern recorded from the [112] zone axis of the particle in (F). (I–K) TEM images of (I) a silicate particle hosting many
titanomagnetite or magnetite inclusions and (J) of a small region indicated by the yellow dashed box in (I), (K) HRTEM image (inset is the corresponding FFT pattern) of a
particle indicated by the yellow dashed box in (J). (L–N) TEM images of (L) several titanomagnetite or magnetite inclusions that are likely embedded in, and attached to,
silicates, and (M) a small region indicated by the yellow dashed box in (L), and (N) HRTEM image (inset is the corresponding FFT pattern) of a particle indicated by the
yellow dashed box in (M). (O) EDXS spectra for different particles or regions of interest (indicated by colored crosses and names in (B), (E), (F) and (J)). The d-spacing
values from HRTEM observations and indirectly calculated from SAED analyses, combined with corresponding TEM-EDXS point analyses, SAED and FFT patterns,
match the crystal structure (Fd3m space group) of magnetite or titanomagnetite.
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components) (Figures 11A,B). When using skewed generalized
Gaussian (SGG) functions (Egli, 2003), as few as two components
can also give a good match (Figures 11C,D). Therefore, we argue
that precise magnetic mineral assemblage identification based on
systematic electron microscopic observations is a prerequisite for
supervised unmixing.

Magnetic mineral types and their corresponding domain states
were further identified by linking IRM, FORC and electron
microscope analyses. Coarse-grained titanomagnetite or magnetite
particles (e.g., IRM component 1) occur in the vortex state, as
indicated by a tri-lobate FORC distribution after central ridge
extraction (Figure 3C). A strong central ridge FORC signal can be
divided into three components with distinctive peak coercivities,
which correspond to the other three IRM components. The lowest
coercivity SDFORCcomponent is dominant and corresponds to IRM
component 2 and likely corresponds to Type-4 and -5 fine magnetite
and low-Ti titanomagnetite particles. The intermediate coercivity SD
FORC component corresponds to IRM component 3 and may be
carried by Type-3 high-Ti titanomagnetite particles. The highest
coercivity SD FORC component corresponds to IRM component
4 and likely represents weakly magnetic minerals that were missed by
the magnetic extraction procedure. The magnetic minerals
responsible for IRM component 2 are non-interacting (e.g., Type-4
and -5). For IRM component 3, individual titanomagnetite particles
may be separated by non-magnetic sediment matrix, and therefore
behave as non-interacting SD particles (e.g., Type-3; particles
aggregate relatively easily during magnetic extraction). IRM
measurements cannot detect SP particles because they do not carry
a remanence at room temperature. However, as shown in Figures 3

and 9, small particles (Type-7, -8 and some Type-4 particles) near the
SP/SD threshold size (∼25–30 nm for equidimensional magnetite;
Muxworthy and Williams (2009)) produce a clear FORC signal,
which is confirmed by TEM observations.

Magnetite magnetofossils (Type-6 particles) should also
contribute to the central ridge FORC signal and IRM
component 2. However, the magnetofossil contribution within
the studied sample appears to be small. First, both SEM and TEM
analyses reveal that Type-1 to -5 titanomagnetite or magnetite
particles are the dominant magnetic minerals within the magnetic
extract. Magnetofossil chain structures should be observed readily
by SEM if they are as abundant in the magnetic mineral
assemblage as they are in silicate-hosted nanometric magnetite
particles. They were found only occasionally after much searching
under TEM. Second, although magnetite magnetofossils may
have comparable coercivities to IRM component 2, they
generally produce two typical IRM components between ∼30
and ∼80 mT with DP values <0.2 due to their narrow grain size
distributions (e.g., Kruiver et al., 2001; Egli, 2004b; Heslop, 2015).
IRM component 2 has DP � 0.3, which matches well with the
silicate-hosted magnetite particles with diverse grain sizes
ranging from a few to several hundred nanometers. Third, the
chain structure of magnetite particles produced by modern MTB
or preserved within sediments as magnetofossils generally
produces significant shape anisotropy, which can be enhanced
by elongation of prismatic and bullet-shaped magnetite particles
(e.g., Moskowitz et al., 1993; Pan et al., 2005; Housen and
Moskowitz, 2006; Li et al., 2010; Li et al., 2012; Li et al.,
2013a; Chang et al., 2016b). Such shape anisotropy results in

FIGURE 7 | TEM analyses of Type-5 magnetite dendrites hosted within silicates. (A) TEM image of a magnetite dendrite aggregate hosted within a silicate. (B)
HRTEM image of a small region of the particle indicated by the yellow dashed box in (A). (C) SAED pattern recorded from the [011] zone axis of the particle in (B). (D)
EDXS spectra for dendrite magnetite and the host silicate [indicated by colored crosses in (A)].
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an apparent bifurcation of FC and ZFC warming curves below the
Verwey transition temperature (i.e., ∼90–110 K) (e.g., Moskowitz
et al., 1993; Li et al., 2013b). Despite detection of chain structures
for octahedral and prismatic magnetofossils and elongated bullet-
shaped magnetofossils in TEM observations, FC and ZFC
warming curves do not bifurcate; the former is slightly higher
than the latter throughout warming, possibly due to the presence
of particles that undergo thermal activation and remanence gain/
loss during cooling/warming. Despite magnetite magnetofossils
being found in the studied sediment, both bulk magnetic
measurements and electron microscope observations reveal

that they are much less abundant than other SD particle types,
and that their magnetic contributions are small.

Combined Use of Magnetic and
Microscopic Analyses: Importance and
Necessity
Precise sedimentary magnetic mineral identification is a prerequisite
for many paleomagnetic and environmental magnetic studies. In
practice, bulk sediment samples are generally screened using bulk
magnetic measurements to provide indications of the possible

FIGURE 8 | TEM analyses of Type-6 magnetite magnetofossils. (A) Three octahedral magnetite particles with chain structure. (B) Four elongated prismatic
magnetite particles with chain structure. (C) Two bullet-shaped magnetite particles. (D) HRTEM image of an individual elongated prismatic particle recorded from the
[001] zone axis. (E) Close-up image of the lower left-hand part of the particle in (D) (indicated by the yellow dashed box). (F) FFT pattern from the HRTEM image of the
particle in (E). (G) HRTEM image of a bullet-shaped magnetite particle recorded from the [011] zone axis (H) Close-up image of the lower right-hand part of the
particle in (G) (indicated by the yellow dashed box) (I) FFT pattern from the HRTEM image of the particle in (H). (J) EDXS spectra for different individual particles (for
positions of colored crosses in (A), (D) and (G)). The d-spacing values from HRTEM observations and indirectly calculated from SAED analyses, combined with
corresponding TEM-EDXS point analyses, SAED and FFT patterns, match the crystal structure (Fd3m space group) of magnetite.
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presence of certain magnetic minerals, which are then confirmed by
direct SEM or TEM observations. Such a strategy enables efficient
identification of targeted magnetic minerals, which has been used
widely to identify magnetofossils in marine and lake sediments (e.g.,
Kopp and Kirschvink, 2008; Roberts et al., 2012; Chang et al., 2014a).
Of the available magnetic measurements, combined use of FORC

diagrams and FMR analyses is powerful for detecting magnetofossil
chain structures because these methods are sensitive to the SD
properties and strong shape anisotropy of magnetofossil chains
and less sensitive to surface magnetite oxidation, which can
compromise low-temperature remanence warming tests (e.g., Kind
et al., 2011; Chang et al., 2013). However, like all other magnetic

FIGURE 9 | TEM analyses of Type-7 (A–C) and Type-8 (D–F) nanometer-sized magnetite aggregates. (A–C) Randomly oriented magnetite crystal aggregates: (A)
low-magnification TEM image, (B) HRTEM image of many particles with the corresponding SAED pattern (inset), and (C) HRTEM image of several particles with Miller
indices. (D–F) Uniformly oriented magnetite crystal aggregates: (D) low-magnification TEM image, (E) HRTEM image of many particles with the corresponding SAED
pattern (inset) and (F) HRTEM image of several particles with Miller indices.

FIGURE 10 | IRM component analysis based on supervised unmixing with information frommagnetic mineral assemblages identified from SEM and TEM analyses.
(A) Linear acquisition plot. (B) Gradient of acquisition plot. Four CLG components are required to fit the IRM acquisition curve: raw data (black circles), component 1
(blue), component 2 (cyan), component 3 (purple), component 4 (yellow), and the sum of the four components (red).Bc,1/2 values (the acquisition field at which 50% of the
IRM is reached) for each coercivity fraction are indicated in parentheses in (A). The dispersion parameter (DP, i.e., IRM coercivity distribution width) and remanence
contribution for each coercivity fraction are indicated in the pie chart in (B).
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magnetofossil identification methods, FORC and FMR analyses also
have limitations because neither method gives unique indications of a
single magnetic mineral (e.g., Liu et al., 2012) and sediments tend to
contain mixed magnetic mineral assemblages. Each component may
have different origins and magnetic responses that can carry useful
paleomagnetic and paleoenvironmental information. This is why so
much effort has been expended in recent decades to identifymagnetic
minerals precisely and quantitatively in sediments by developing
magnetic, mathematical, microscopic and non-magnetic methods
(e.g., Liu et al., 2012; Heslop, 2015; Roberts et al., 2019).

Based on systematic analysis of amarine surface sediment sample,
we emphasize the importance and necessity of combined use of bulk
magnetic and electron microscopic approaches to precisely and
comprehensively identify sedimentary magnetic minerals. First,
direct SEM and TEM observations provide important constraints
on supervising IRM curve unmixing, which allows quantification of
four major remanence-bearing components. FORC analysis then
enables association of each magnetic component with its respective
domain state. FORC diagrams also indicate the presence of particles
near the SP/SD threshold size, which cannot be detected by IRM
measurements. IRM and FORC analyses also indicate that the
sediment contains weakly magnetic high-coercivity minerals (e.g.,
hematite, goethite) that were not extracted or detected by SEM and
TEM observations. Second, metagenomic analyses have shown that
this sample contains 16S rRNA genes affiliated with MTB (Dong
et al., 2016). A strong central ridge FORC component might be

interpreted to indicate the presence of magnetofossils. However,
careful comparative SEM and TEM analyses, along with IRM
decomposition, demonstrate that magnetite magnetofossils are not
abundant in this sample and that their contribution to remanence
may be small or even negligible compared to abiotic SD magnetite
and titanomagnetite. Third, systematic analyses of magnetic mineral
morphology, mineralogy and composition by combined SEM and
TEM approaches allow identification of at least eight magnetite and
titanomagnetite particle types from central Pacific Ocean surface
sediment. Each magnetic particle type may have its own origin that
reflects local or remote environmental processes. Irregular angular
shapes for Type-1 titanomagnetite or magnetite particles indicate
that they have a detrital origin related to erosion ofmagnetite-bearing
igneous rocks from elevated submarine volcanic sources, of which
there are nearby sources (Clouard and Bonneville, 2005). Submicron
(Type-2) and nanometer-sized (Type-3) octahedral titanomagnetite
particles may have formed from local hydrothermal and volcanic
activity in the Clarion Fracture Zone region (e.g., Mewes et al., 2016;
Gartman and Hein, 2019). Dendritic titanomagnetite particles
(Type-5) are generally self-assembled and embedded within
silicates, which indicates that they are exsolved microstructures
that formed by phase separation in an originally homogenous
solid solution during igneous rock cooling. In contrast,
nanometer-sized titanomagnetite and magnetite particles occur as
randomly oriented inclusions within silicates. Theymay have formed
prior to the host silicate minerals and were incorporated into the

FIGURE 11 | Alternative IRM component analysis based on unsupervized fitting of coercivity distributions with (A,B) CLG functions (e.g., Kruiver et al., 2001) and
(C,D) SGG functions (Egli, 2003). Left-hand column: linear acquisition plots; right-hand column: gradient of acquisition plots.
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silicate during its subsequent crystallization (e.g., Tarduno et al.,
2006; Chang et al., 2016a). Magnetite magnetofossils (Type-6)
represent local MTB activity (e.g., Dong et al., 2016). Weakly
magnetic high-coercivity minerals likely result from remote
westerly-transported input from the Asian interior (e.g., Hyeong
et al., 2005; Hyeong et al., 2006). Despite their unknown origin, two
types of SP magnetite particles were found, which indicates that
reductive dissolution of fine-grainedmagnetite is limited in this area.
Two oxygen sources, i.e., diffusive oxygen transfer from underlying
seamount basaltic basement and oxygen rich AABW (e.g., Deng
et al., 2016;Mewes et al., 2016), produce a fully oxic sediment column
at the study site. Such an oxic environment will produce surficial
titanomagnetite and magnetite oxidation, while limiting reductive
diagenetic modification of fine-grained titanomagnetite and
magnetite (e.g., Roberts, 2015).

CONCLUSIONS

We have studied systematically a deep-sea surface sediment from
the Clarion Fracture Zone region in the central Pacific Ocean by
combining bulk magnetic analyses and electron microscope
observations. Eight titanomagnetite and magnetite particle types
with different magnetic properties were identified, and their
corresponding origins are discussed (Table 1). Type-1 particles
are micron- and submicron-sized titanomagnetite with irregular
and angular shapes, which are likely to be detrital particles that
originated from erosion of magnetite-bearing igneous rocks in
surrounding submarine volcanic highlands. Type-2 and-3
particles are well-defined octahedral titanomagnetite with
submicron and nanometer sizes, respectively, which indicates
that their formation may have been related to local
hydrothermal and volcanic activity along the Clarion Fracture
Zone region. Type-4 and-5 particles are silicate-hosted

nanometer-sized titanomagnetite inclusions with diverse crystal
morphologies and sizes that range from a few to a hundred
nanometers. Type-4 particles are randomly assembled, while
Type-5 particles are typical dendritic titanomagnetite. The
inclusions would have resulted from exsolution within host silicates.

The above five magnetic particle types dominate the
magnetization of the studied sediment. In contrast, Type-6 to-
8 magnetic particles are much less abundant. Type-6 particles are
magnetite magnetofossils, which are related to local MTB activity.
Type-7 comprises SP magnetite aggregates that consist of many
randomly oriented single crystals. Type-8 consists of single
crystals with significant defects in which obvious boundaries
divide particles into many small (SP-like) regions. The well-
preserved nature of the fine-grained magnetite indicates that
surface sediments in this area are fully oxic.

Electron microscope results are consistent with bulk magnetic
properties. They also provide a basis to constrain supervised IRM
unmixing to identify quantitatively each magnetic component in
the sediment. Coarse-grained titanomagnetite (e.g., Type-1, -2,
and some submicron Type-4 and-5 titanomagnetite particles) are
in the vortex state and contribute 7% of the remanence.
Noninteracting SD titanomagnetite particles of Type-4 and -5
contribute 56% of the remanence. Noninteracting SD
titanomagnetite particles of Type-3 contribute 28% of the
remanence. A fourth IRM component due to weakly magnetic
high-coercivity minerals was not extracted successfully by our
extraction method and was not documented in TEM
observations; it contributes 9% of the remanence.

Our work demonstrates that diagenetically unmodified
natural surface sediments host diverse detrital magnetic
mineral assemblages. Magnetic methods are used widely to
identify magnetic minerals within such assemblages, although
unsupervized interpretation is unlikely to accurately represent the
complexity of natural magnetic mineral assemblages. Electron

TABLE 1 | Magnetic mineral types identified in sample EPMNP-31.

Type Morphology Size Spatial arrangement Chemistry Domain state Origin

Type 1 Irregular, angular Several hundred nm to a
few microns

Loose aggregates,
isolated

Titanomagnetite,
magnetite

Vortex state Detrital

Type 2 Well-defined
octahedral

367.8 ± 44.9 nm Loose aggregates,
isolated

Titanomagnetite Vortex state Hydrothermal or igneous

Type 3 Elongated octahedral 52.9 ± 10.9 nm (length);
43.9 ± 9.2 nm (width)

Random aggregates Titanomagnetite,
magnetite

Single domain Hydrothermal or igneous

Type 4 Irregular, octahedral,
cubo-octahedral

Tens to hundreds of
nanometers

Hosted within silicates Titanomagnetite,
magnetite

Single domain, vortex state,
superparamagnetic

Exsolved microstructures
from precursor minerals

Type 5 Dendrite-like Tens to hundreds of
nanometers

Hosted within silicates Titanomagnetite Vortex state, single domain Formed early and
incorporated into host
silicates

Type 6 Octahedral
magnetofossils

53.0 ± 5.7 nm (length);
50.6 ± 5.9 nm (width)

Short chain Magnetite Single domain Local magnetotactic
bacteria

Prismatic
magnetofossils

103.3 ± 21.2 nm (length);
81.9 ± 15.8 nm (width)

Short chain Magnetite Single domain Local magnetotactic
bacteria

Bullet-shaped
magnetofossils

116.5 ± 13.7 nm (length);
41.1 ± 1.3 nm (width)

Loose aggregates,
isolated

Magnetite Single domain Local magnetotactic
bacteria

Type 7 Irregular A few nanometers Random aggregates of
many single crystals

Magnetite Superparamagnetic Unknown

Type 8 Irregular A few nanometers Aggregates of single
crystals with defects

Magnetite Superparamagnetic Unknown
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microscopic observations of the type presented here are time-
consuming but essential for ground truthing of supervised
magnetic unmixing. Nevertheless, the diversity of observed
magnetic mineral types means that we aggregated different
particle types to explain identified magnetic components. This
demonstrates the complexity of producing consistent supervised
magnetic data interpretations.
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