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Abstract— Most recently, III-V based ultra-thin solar cells have 

attracted much attention for their inherent advantages such as 

increased tolerance to defect recombination, efficient charge 

carrier separation, photon recycling, flexibility, and reduced 

material consumption. However, so far, almost all reported 

devices make use of conventional doped p-i-n kind of structures 

with a wide bandgap III-V lattice-matched epitaxial window layer, 

for passivation and reduced contact recombination. Here, we show 

that a high-efficiency device can be obtained utilizing an InP thin 

film of thickness as low as 280 nm, without the requirement of a 

conventional p-n homojunction or epitaxial window layer. This is 

achieved by utilizing a wide bandgap electron and hole selective 

contacts for electrons and holes transport, respectively. Under 

ideal conditions (assuming Interface Recombination Velocity 

(IRV) = 103 cm/s and bulk lifetime =1 us), the proposed solar cell 

structure can achieve efficiency as high as 28%. Although, in the 

presence of bulk and interface SRH recombination, the efficiency 

reduces, still for bulk minority carrier lifetime as low as 2ns and 

an IRV as high as 105 cm/s, an efficiency of ~22% can be achieved 

with InP thickness as low as 280 nm. The proposed device 

structure will be beneficial in cases where the growth of controlled 

p-n homojunction and window layer can be tedious as in case of 

low-cost deposition techniques, such as thin-film vapour-liquid-

solid (TF-VLS) and close-spaced vapour transport (CSVT).     

 

Index Terms— Carrier selective contacts, Heterocontacts, 

Optoelectronic Simulation, III-V Photovoltaics, FDTD, TCAD  

 

I. INTRODUCTION 

VEN though III-V semiconductors such as InP and GaAs 

have near optimum bandgap for high-efficiency solar cells, 

they are not widely used as a solar cell material for commercial 

applications [1-3]. This is mainly due to the high cost of III-V 

solar cells. The high cost of III-V solar cells is a result of costly 

substrate requirement for epitaxial growth as well as the high 

processing cost involved in the fabrication of these cells [3-5]. 

Nonetheless, III-V semiconductors have great potential to 

achieve low cost, if the problem of the high cost of the substrate 

and absorber layer can be addressed without compromising its 
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high efficiency [3, 5]. One of the best examples of such 

affordable and efficient devices is the flexible solar cells 

commercially available from “Alta Devices” [6]. III-V solar 

cells from Alta Devices incorporate epitaxial lift-off technology 

to reduce the substrate cost [7, 8]. Though epitaxial lift-off has 

been able to reduce the overall cost of III-V solar cells, it is still 

significantly more expensive than commercial silicon solar 

cells [9].   

Most recently, researchers have started looking into the 

development of ultra-thin solar cells based on III-V 

semiconductors [10-14]. For example, in a very recent report, 

Ling et al. reported an untra-thin GaAs solar cell with 19.9% 

efficiency [14]. Ultra-thin solar cells are usually only few 

hundred nanometers thick and have several advantages such as 

reduced material consumption, increased fabrication 

throughput, lower radiation damage, high defect tolerance, 

reduced bulk recombination, and photon recycling [10-13, 15-

18]. So far, researchers have only used conventional solar cell 

structures for fabrication of these ultra-thin III-V solar cells. In 

a conventional solar cell structure, a base (intrinsic) layer is 

sandwiched between heavily doped n+
 and p+

 layers to achieve 

charge carrier separation, along with a heavily doped wide 

bandgap window layer for surface passivation and carrier 

selectivity [10-13, 15-18]. These doped layers, along with the 

window layer, add to the complexity as well as the final cost of 

the III-V solar cell. Furthermore, despite being mainstream, 

these doped devices are not optimal and are hindered by several 

optoelectronic losses along with technological limitations 

specific to doped structures [1, 2, 19].  

Furthermore, recent cost analysis of III-V solar cells shows 

that the high cost of III-V solar cell is mainly due to relatively 

costly epitaxial growth and processing of III-V solar cells along 

with maintenance of MOCVD (Metal-Organic Chemical 

Vapour Deposition) equipment [9, 20]. To overcome the cost 

limitations imposed by MOCVD based epitaxial growth, 

researchers have started looking into alternative growth 

techniques such as thin-film vapor-liquid-solid (TF-VLS) [21-

23] and close-spaced vapor transport (CSVT) [24, 25]. These 
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growth techniques are expected to lower the overall cost of III-

V solar cell significantly. However, at present, these relatively 

nascent growth techniques face severe optimization challenges 

in achieving controlled p-n junction, doping, and growth of the 

window layer. These optimization problems can largely be 

solved by eliminating the requirement of a doped p-n junction.  

In recent times, carrier selective contacts have emerged as an 

efficient alternative to doped junctions. For example, most 

recently, researchers have been able to fabricate silicon solar 

cells with efficiency exceeding 20% by replacing the p+ and n+ 

layers with hole and electron selective contacts, respectively 

[19, 26]. Though very well studied for silicon, reports on 

electron and hole selective contacts for III-V solar cells is 

somewhat limited, with only separate studies of electron or hole 

selective contacts for InP [1, 2, 27-29]. So far there are no 

reports on thin film InP solar cells where both electron and hole 

selective contact have been studied simultaneously.  

In this work, we have performed a detailed optoelectronic 

simulation of an ultra-thin InP solar cell, where the p+ and n+ 

regions of the solar cell are replaced by the corresponding hole 

and electron selective contacts, respectively. Here, we utilize 

ZnO as an electron selective contact and copper iodide (CuI) as 

hole selective contact for InP, because they very well studied 

carrier selective contacts [1, 2, 30-35]. Our simulation results 

show that in the presence of a metal back reflector and an 

optimized front anti-reflection coating (MgF2/ ITO/ZnO), a 

high short-circuit current (Jsc) of more than 28 mA/cm2 can be 

achieved, for InP thickness as low as 280 nm. Note that in the 

absence of a metal back reflector and a front anti-reflection 

coating, the Jsc reduces to less than 19 mA/cm2, for the 280 nm 

thick InP substrate. Furthermore, a 1-D device simulation 

performed on InP heterojunction solar cell 

(metal/ITO/ZnO/InP/CuI/metal) shows that under ideal 

conditions, efficiency of 26.1% and 27.6% can respectively be 

achieved, with and without photon recycling. Even for a bulk 

lifetime as low as 2 ns and a surface recombination velocity of 

less than 105 cm/s, an efficiency exceeding 22% can be 

achieved. Finally, we discuss the importance of the current 

work toward reducing the cost of III-V solar cells, while 

minimizing growth related complexities.  

 

II. MODELING METHODS 

A. FDTD Simulation 

Optical simulation of the proposed solar cell was performed 

using a commercial FDTD package from Lumerical Inc.[36] 

FDTD (Finite-difference time-domain) is a numerical 

technique for solving Maxwell’s equation in complex 

geometries for calculation of 𝐸(𝑟, 𝜔) (electric field) and 

𝐻(𝑟, 𝜔) (magnetic field) at all points within the computational 

domain [1, 37]. The spatial 𝐸(𝑟, 𝜔) (electric field) and 𝐻(𝑟, 𝜔) 

(magnetic field) calculated using FDTD simulation can then be 

used to calculate the absorbed power as a function of space and 

angular momentum using the following equation:  

𝑃𝑎𝑏𝑠(𝑟, 𝜔) =
1

2
 𝜔 |𝐸(𝑟, 𝜔)|2𝐼𝑚{𝜖(𝑟, 𝜔)} (1) 

where 𝑃𝑎𝑏𝑠 is the power absorbed, ω is the angular frequency, 

|E|2 is the electric field intensity, and 𝐼𝑚(𝜖) is the imaginary 

part of the permittivity. In the ideal case, it can be assumed that 

for each absorbed photon, one electron-hole-pair is generated, 

and the generation rate in such cases is equivalent to the power 

absorbed (𝑃𝑎𝑏𝑠). Then, the generation rate, 𝐺(𝑟) for solar 

spectrum can be calculated by normalizing the absorbed power 

to the solar spectrum as  

𝐺(𝑟)  ≈  ∫
𝑃𝑎𝑏𝑠(𝑟, 𝜔) .  𝐼𝑠𝑜𝑙𝑎𝑟 (𝜔)

𝐼𝑠𝑜𝑢𝑟𝑐𝑒 (𝜔)
 𝑑𝜔 (2) 

where 𝐼𝑠𝑜𝑙𝑎𝑟 (𝜔) and 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 (𝜔) are the solar (AM1.5) and 

source spectral irradiance, respectively. The ideal short circuit 

current, which is defined as the maximum achievable short-

circuit current from a solar cell can be written in terms of  𝐺(𝑟) 

as:  

𝐽𝑠𝑐 (𝑖𝑑𝑒𝑎𝑙) =
𝑒 ∫ 𝐺(𝑟). 𝑑𝑟

𝐴
 (3) 

Where, e is the electronic charge and A is the area of the solar 

cell. In this paper, 𝐽𝑠𝑐 (𝑖𝑑𝑒𝑎𝑙) is used as a performance parameter 

for optical optimization of the solar cells.  

 

Figure 1 shows a 3-D schematic of the proposed solar cell. 

The proposed solar cell consists of an undoped InP absorber 

layer sandwiched between the electron (ZnO) and hole (CuI) 

selective contacts. Here, ITO functions as a transparent 

conductor, and the front metal contact is directly made on the 

ITO.  For optical confinement in current solar cell, we use an 

optimum thickness of MgF2/ITO/ZnO to reduce the reflection 

from the top surface along with a one µm-thick copper thin film 

at the bottom of the cell which acts as a back contact as well as 

a “metal back reflector”. For FDTD simulations, the refractive 

index (n) and the extinction coefficient (k) of InP and copper 

were obtained from the software (Lumerical FDTD); however, 

Fig. 1.  3-D schematic (not to scale) of proposed heterojunction solar cell. 
Interfaces between two materials are shown using a black line.  
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the n, k values for ZnO, CuI, MgF2, and ITO were measured 

using an ellipsometer. The experimental values were then fitted 

using Lumerical’s in-built analytical model and the best fit n, k 

values were used for performing the simulation. Figure S1 of 

the supplementary section shows experimental n, k values of 

different materials fitted using Lumerical’s in-built fitting 

model. For simplicity, we fix the thickness of ZnO and CuI at 

10 nm, while varying the thickness of ITO and MgF2 to achieve 

minimum reflection from the top surface.  

B. Device Simulation 

We used SCAPS-1D to perform 1-D device simulation of the 

solar cell structure shown in Figure 1. SCAPS-1D solves the 

drift-diffusion, continuity and Poisson’s equations in 1-D to 

calculate the energy bands, carrier concentrations, J-V curve, 

and quantum efficiency at a given working point [38, 39]. The 

working point condition specifies the parameters, such as 

temperature, voltage, frequency, and the illumination, which 

cannot be varied during simulation but are relevant to create the 

output. Detailed mathematical and physics formalism of 

SCAPS-1D can be found in the supplementary section. The 

semiconductor input parameters and recombination parameters 

used during simulation are given in Table I. During device 

simulations we only simulate three fundamental recombination 

mechanisms including, radiative recombination, Auger 

recombination, and surface and bulk SRH recombination.  

In general, SCAPS-1D has an in-built generation calculator; 

however, for solar cell structure, which involves complex 

optical behaviour, SCAPS-1D generation profile is not 

accurate. Therefore, we import the generation profile calculated 

using Lumerical FDTD to SCAPS-1D, to perform the device 

simulation. It is essential to mention that the mesh size of FDTD 

simulation and SCAPS-1D simulation were quite different, and 

therefore, the generation rate calculated using FDTD was 

interpolated at mesh points generated using SCAPS-1D.  

 

During all device simulation, we account for photon 

recycling effects. In general, the radiative recombination 

coefficient (B) is a material property and can be defined by 

Roosbroeck-Shockley relation as follows:  

𝐵 =  
8𝜋𝑛2

𝑛𝑖
2𝑐2

 ∫
𝜆2𝛼(𝜆)

𝑒
ℎ𝑐

𝜆𝑘𝑇 − 1

 𝑑𝜆
∞

0

 (4) 

where 𝑛 is the refractive index of the absorber, 𝑛𝑖is the 

intrinsic carrier concentration of the absorber, 𝑐 is the speed of 

light, 𝛼(𝜆) is the absorption coefficient as a function of 

wavelength (𝜆), k is the Boltzmann constant and T denotes the 

device temperature. In radiative recombination, an electron-

hole-pair (e-h-p) recombines to emit a photon, and the photon 

escapes the cell through an escape cone. However, in the 

presence of photon recycling, the emitted photon is reabsorbed 

and remitted several times before it is lost through an escape 

TABLE I 

MATERIAL PARAMETERS USED FOR DEVICE SIMULATIONS  

 i-InP [34] ZnO [2] ITO [2] -CUI  [33, 35] 

Thickness (nm) 280 10 60 10 

Bandgap (eV) 1.344 3.4 3.65 3.1 

Electron affinity (eV) 4.380 4.05 4.6 2.8 

Dielectric permittivity (relative) 12.500 10 8.900 6.5 

CB effective density of states 
(1/cm3) 

5.7 x 1017 2.2 x 1018 2 x 1018 2.8 x 1019 

VB effective density of states 

(1/cm3) 
1.1 x 1019 1.8 x 1019 1.8 x 1019 3.8 x 1020 

Electron thermal velocity (cm/s) 1 x 107 1.0 x 107 1.0 x 107 1 x 107 

Hole thermal velocity (cm/s) 1 x 107 1.0 x 107 1.0 x 107 1 x 107 

Electron mobility (cm²/Vs) 1000 50 10 1 

Hole mobility (cm²/Vs) 400 1 1 5 

Shallow uniform donor density (ND) 

(1/cm3) 
1.0 x 1017 1.0 x 1019 1.0 x 1020

 1.0 x 107 

Shallow uniform acceptor density 

(NA) (1/cm3) 
1.0 x 107 1 x 107 1 x 107 1.0 x 1019 

RECOMBINATION PARAMETERS [34] 

Radiative recombination coefficient for InP 1.2 x 1010 cm6/s 

Auger electron capture coefficient for InP 9 x 10-31 cm6/s 

Auger hole capture coefficient for InP 9 x 10-31 cm6/s 
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cone or non-radiative recombination.  In the end, fractions of 

photons emitted during radiative recombination are reabsorbed 

to create more electron-hole-pairs [15, 42-44].  In other words, 

the net effect of photon recycling is a reduction in the rate of 

radiative recombination [42, 45]. Unlike radiative 

recombination, photon recycling is not only dependent on 

absorber material but is also dependent on solar cell structure, 

front and back reflectance, absorber layer thickness, doping, 

etc. [46, 47] Because of this complexity, the self-consistent 

solution to this process is very complicated. However, a 

straightforward way to incorporate photon recycling is to scale 

the radiative recombination coefficient by the recycling 

coefficient (Asbeck coefficient [48]) using the following 

relation [45]:  

𝑅𝑟𝑒𝑐𝑦𝑐𝑙𝑒 ≡
𝑅𝑟𝑎𝑑

𝜙
≈

𝐵

𝜙
 (𝑛. 𝑝 − 𝑛𝑖

2) (5) 

where 𝑅𝑟𝑒𝑐𝑦𝑐𝑙𝑒  is the effective radiative recombination rate 

after photon recycling,  𝑅𝑟𝑎𝑑 is the radiative recombination rate 

without photon recycling, 𝜙 is the recycling factor (Asbeck 

coefficient), 𝑛 and 𝑝 are the electrons and holes concentrations, 

respectively, and ni is the intrinsic charge carrier concentration. 

The use of a recycling factor to account for photon recycling is 

a valid way to get the upper bound of the working of a given 

solar cell in presence of photon recycling and has readily been 

used by several of the authors.[46, 47, 49, 50] In the current 

scenario, we assume the radiative recombination coefficient of 

InP is 1.2x10-10 cm-3s-1, and we use the recycling factor values 

for n-type InP reported in ref [51].  We use a recycling factor 

corresponding to n-type InP because undoped InP grown using 

different techniques tends to have n-type background doping of 

the order of 1x1015-1x1016 cm-3 due to silicon impurity.[22, 52, 

53]  

III. RESULTS 

A. Optical Simulation 

A 2-D FDTD simulation was performed to study the effect 

of thickness of InP on Jsc(ideal) in the presence of a metal back 

reflector and a top anti-reflection coating. The anti-reflective 

coating comprises of a stack of ZnO, ITO, and MgF2, whereas, 

the metal back reflector is a one µm-thick Cu film. For 

optimization of anti-reflective coating, the thickness of ZnO is 

fixed at 10 nm while those of ITO and MgF2, are varied to 

achieve minimum reflection from the top surface. We find that 

the best anti-reflective coating is achieved for 10 nm ZnO, 53 

nm ITO, and 80 nm MgF2. Using the optimized anti-reflective 

coating, reflection from the front of the cell decreases below 

10% for most of the wavelength regime, leading to a Jsc(ideal)  

greater than  28 mA/cm2 for InP thickness as low as 280 nm. 

Figure 2(a) shows the effect of the thickness of MgF2 and ITO 

on the Jsc(ideal) of the proposed solar cell when the thickness of 

InP is fixed at 280 nm.  

We next calculate the maximum Jsc that can be obtained from 

InP thin film of different thicknesses. Figure 2(b) shows the 

effect of InP thickness on the Jsc(ideal) of the solar cell in the 

presence of an optimum anti-reflective coating and a metal back 

reflector.  The Jsc(ideal) shows an oscillatory behavior depending 

on the thickness of InP because of optical resonance and 

interference effects, consistent with previously reported Jsc 

behavior for thin film heterojunction solar cells [54-56]. The 

ideal short circuit current has three local maxima for three 

different InP thicknesses. The maxima occur at an InP thickness 

of 170, 280 and 430 nm. It is evident that the degree of  Jsc(ideal) 

reduces with increasing InP thickness. For example, a gain of 

~9.5 mA/cm2 is achieved when InP thickness is increased from 

100 to 280 nm; however, this gain reduces to less than 2 

mA/cm2 when the thickness is further increased from 280 to 460 

nm. The decrease in the influence of InP thickness on Jsc(ideal) is 

a result of reduced impact of optical confinement with increased 

thickness of InP, as confirmed by plotting the generation rate 

for different InP thicknesses shown in Fig. 3. In general, the 

generation rate vs. depth curve for a solar cell is an 

exponentially decaying curve. However, in the current solar cell 

structure, the exponential decay is no longer valid as shown in 

Fig. 2.  (a) Jsc(ideal) as a function of MgF2 and ITO thickness. (b) Effect of InP 

thickness on Jsc(ideal) in the presence of an optimum anti-reflective coating and 

metal back reflector.  
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Figure 3 because of optical confinement. Figure 3(a)-(d) shows 

the generation rate plotted against solar cell depth, for different 

thicknesses of InP. It is apparent from Figure 3 that the effect 

of optical confinement reduced with increased thickness.  

 

B. Ideal Condition 

To evaluate the maximum achievable efficiency for our solar 

cell, we perform device simulation under an ideal condition 

assuming a bulk minority carrier lifetime of 1 µs (based on ref 

[57]) and an interface recombination velocity (IRV) of 103 cm/s 

at the InP/CuI and ZnO/InP interfaces. An SRV of the order of 

103 cm/s has often achieved for both InP [58, 59] as well as 

oxide/InP [60]. Besides, a thickness of 280 nm of InP is 

assumed during device simulation, based on optical simulation 

results obtained above. This means that the current solar cell 

will also benefit from the photon recycling, as the material 

thickness if very low. Photon recycling is a proven method for 

improvement in the Voc of a solar cell device, and has been 

found crucial in realizing a high Voc of 1.12 V in GaAs solar 

cells [61, 62].  To investigate the effect of photon recycling, we 

scale the radiative recombination coefficient according to 

equation 5. Figure 4(a) shows the IV curves with and without 

photon recycling. As expected, photon recycling improves the 

Voc from 1.05 to 1.12 V, while maintaining the Jsc and FF at 

28.2 mA/cm2 and 88.3%, respectively. The calculated 

efficiencies without and with photon recycling are 26.1% and 

27.9%, respectively.  

 The Shockley-Queisser limit (S-Q limit) for InP solar cell 

predicts a maximum efficiency of ~33.1 % with a Voc, Jsc, and 

FF of 1.06 V, 33.2 mA/cm2 and 88.8%, respectively. In 

comparison to SQ-limit, a slightly lower Voc and FF originates 

from finite bulk minority carrier lifetime and interface 

recombination in the proposed solar cell. At the same time, the 

Jsc in proposed device is ~5 mA/cm2 lower than SQ-limit, 

mainly because of optical losses. Nonetheless, these optical 

Fig. 3.  Carrier generation rate profile for different thicknesses of InP, in 
presence of an optimized anti-reflective coating and a metal back reflector. (a) 

100 nm, (b) 170 nm, (c) 280 nm and (d) 420 nm.  

Fig. 4.  (a) Simulated J-V curve of the proposed heterojunction solar cell with 

and without photon recycling, (b) energy band diagram of proposed 
heterojunction solar cell in dark, and (c) energy band diagram of proposed 

heterojunction solar cell at Voc. 
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losses may be reduced in future through utilization of 

nanostructures and more advanced light trapping techniques 

[32].  

Figure 4(b) shows the band diagram of the proposed device 

in dark at 0V. InP forms a type-I band alignment with ZnO such 

that a very small conduction band offset allows unrestricted 

flow of electrons from InP to ZnO, while a large valence band 

offset blocks the holes. Similarly, InP band alignment with CuI 

shows a small valence band offset, and a large conduction band 

offset which ensures an easy flow of holes from InP to CuI but 

restricts the flow of electrons. Moreover, previous reports on 

ZnO and CuI show that both ZnO [2] and CuI [33] are wide 

band gap material that can be heavily doped relatively easily to 

achieve high conduction towards electrons and holes, 

respectively. Therefore, during simulations, we assume both 

ZnO and CuI are heavily doped with a carrier concentration of 

1x1019 cm-3. Such asymmetric conductivity towards charge 

carrier is required for carrier selectivity [63, 64]. Furthermore, 

because of large band gap of ZnO and CuI, there is a very low 

intrinsic carrier concentration as well as low generation under 

illumination that ensures that the conductivity of minority 

carrier always remains extremely low compared to majority 

carriers, both under dark and under illumination [1, 2, 65]. 

Therefore, a proper band alignment along with the asymmetric 

conductivity toward electrons and holes makes both ZnO and 

CuI perfect candidates for electron and hole selective contact, 

respectively. In the inset of Figure 4(b) the band bending at 

InP/CuI and ZnO/InP is shown. It is apparent that at ZnO/InP 

and InP/CuI interfaces, there is an accumulation of electrons 

and holes, respectively. Such an accumulation of one kind of 

charge carrier at the interface has an important consequence 

toward mitigating the overall effect of interface recombination 

[66]. Figure 4(c) shows the band diagram of the proposed solar 

cell under illumination at open circuit voltage. Under steady 

Fig. 5.  The effect of bulk defect density and SRV (at CuI/InP and ZnO/InP interface) on (a) Voc, (b) Jsc, (c) FF and (d) efficiency of the proposed solar 

cell. 
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state condition, the splitting of electrons and hole quasi-fermi 

levels at V=Voc is equal to the Voc and is given by relation:  

𝑞. 𝑉𝑜𝑐 = (𝐸𝑓𝑛 − 𝐸𝑓𝑝) 

where, q is the charge of an electron, and 𝐸𝑓𝑛and 𝐸𝑓𝑝 are 

respectively electron and hole quasi-fermi levels. The high Voc 

in proposed solar cell is also apparent in the band diagram 

shown in Figure 4(c). 

C. Effect of bulk and interface SRH recombination  

The Shockley-Read-Hall (SRH) recombination for bulk and 

interface can respectively be defined in terms of surface 

recombination velocity and bulk minority carrier lifetime using 

the equations given below:  

 

𝑈𝑆𝑅𝐻,𝐼 =  
(𝑛𝑖𝑓𝑝𝑖𝑓 − 𝑛𝑖

2)

𝑝𝑖𝑓 + 𝑝1

𝑆𝑛
+ 

𝑛𝑖𝑓 + 𝑛1

𝑆𝑝

   6(𝑎)
 

 

 

𝑈𝑆𝑅𝐻,𝐵 =  
(𝑛𝑝 − 𝑛𝑖

2)

𝜏𝑝(𝑛 + 𝑛1) + 𝜏𝑛(𝑝 + 𝑝1)
 6(𝑏) 

 

Where,  

𝑆𝑛 = 𝜎𝑛𝑁𝑖𝑡𝑣𝑡ℎ  7(a) 

 

 

 𝑆𝑝 = 𝜎𝑝𝑁𝑖𝑡𝑣𝑡ℎ 7(b) 

 

  𝜏𝑛 =
1

𝜎𝑛𝑁𝑡𝑣𝑡ℎ

 8(𝑎) 

 

 𝜏𝑝 =
1

𝜎𝑝𝑁𝑡𝑣𝑡ℎ

 8(𝑏) 

 

𝑝1 =  𝑛𝑖𝑒
𝐸𝑖−𝐸𝑇

𝑘𝐵𝑇  9(𝑎) 

 

𝑛1 =  𝑛𝑖𝑒
𝐸𝑇−𝐸𝑖

𝑘𝐵𝑇  9(𝑏) 

 

 

In the above equations, the parameters S with subscript n and 

p is the surface recombination velocity for the electrons and 

holes, respectively at the interface. Similarly, 

𝜎𝑛, 𝜎𝑝 , 𝑁𝑖𝑡  and 𝑣𝑡ℎ are the capture cross-section for electrons, 

capture cross section for holes, interface trap density, and 

thermal velocity, respectively. The parameter 𝜏 with subscript 

n and p is the minority carrier lifetimes for the electrons and 

holes, respectively. To model the SRH recombination, a mid-

band gap neutral defect is defined with a capture cross section 

for electrons as 3 x 10-13 cm2 and for holes as 3 x 10-13 cm2. 

Further, we vary the interface recombination velocity for 

CuI/InP and ZnO/InP interfaces from 103-107 cm/s, while 

changing the bulk defect density from 1011 cm-2 to 1016 cm-2eV-

1. By equation 8(a) and 8(b) a change in 𝑁𝑡 from 1011 to 1016 

cm-2 means that the bulk minority carrier lifetime is varied from 

10 µs to 0.1 ns, respectively.  

Figure 5(a)-(d) shows the effect of bulk and/or interface SRH 

recombination on Voc, Jsc, FF, and efficiency. As expected, 

higher bulk and/or interface recombination leads to lower Voc 

(see Figure 5(a)). Additionally, the effect of photon recycling 

(not shown here) on Voc is also diminished for higher SRH 

recombination because most of the excess charge carriers 

recombine through non-radiative recombination and not 

thorough radiative recombination. For a bulk minority carrier 

lifetime (τp) of less than 10 ns, changes in SRV seems to have 

larger effect as compared to when τp > 10 ns.  Although for τp 

less than 10 ns, the effect of SRV on Voc is minimal, yet the Voc 

deteriorates significantly because of high bulk recombination. 

For example, for τp = 10 ns, Voc degrades from 1.05 to 0.9 V 

when the SRV is increased from 103 to 107 cm/s. On the other 

hand, for τp ≤ 10 ns, there is almost no variation in Voc with a 

change in SRV.  Similar trends are obtained for Jsc and FF, 

shown in Figure 5(b) and 5(c), respectively. This shows that for 

τp higher than 10 ns, the solar cell is limited by the bulk 

recombination, whereas, for τp less than 10 ns, the solar cell is 

limited by interface recombination. In addition, the effect of 

bulk and interface defect recombination on Jsc is almost 

negligible compared to Voc and FF, especially when τp higher 

than 10 ns. This is because the depletion region extends to a 

large portion of the solar cell, which allows for highly efficient 

charge carrier separation and transport through the bulk region 

of the solar cell. Figure 5(d) shows the effect of bulk and 

interface defect recombination on the overall efficiency of the 

solar cell. It is quite clear that the efficiency of proposed solar 

cell degrades significantly when the τp is less than 10 ns, 

regardless of SRV. Nevertheless, even for bulk minority carrier 

lifetime of 10 ns and an SRV of 105 cm/s, an efficiency of ~22% 

can be achieved with Voc, Jsc, and FF of 0.93V, 28.1 mA/cm2, 

83%, respectively.  

IV. DISCUSSION 

In this section, we discuss the potential and practicality of the 

proposed solar cell. At present, III-V semiconductor solar 

modules may cost anywhere from $40-150/W, which is several 

orders of magnitude higher than the current prices for 

mainstream c-Si solar and CdTe modules ($0.30–$0.50/W) 

[67]. Indeed, the proposed solar cell structure has huge potential 

to solve several costs related as well as technological challenges 

of III-V solar cells, especially when combined with low-cost 

deposition techniques such as TF-VLS (thin-film vapor-liquid-

solid) [21-23], CSVT [24, 25](close-spaced vapor transport) 

and HPVE (hydride vapor phase epitaxy) [68-70]. First of all, 

these solar cells are extremely thin and therefore reduces the 

materials cost, which is the most significant component to 

overall III-V cost [5, 71]. Further, thinner cells allow for higher 

flexibility and reduce transport and logistics costs. Secondly, 

the proposed solar cell structure can be particularly important 

when a controlled formation of p-n homojunction for charge 

carrier separation can be challenging, such as in the case of 
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TFVLS and CSVT [22, 23, 25, 72].  

In some cases, dopants can lead to degradation of the material 

quality of the absorber layer, along with additional 

optoelectronic losses [22, 23, 25]. Because the proposed solar 

cell structure does not rely on doping of absorber layer, they can 

overcome several optoelectronic losses while also reducing the 

complexity and cost associated with doping optimization, 

especially in case of relatively nascent growth methodology 

such as TFVLS and CSVT. Another major advantage of the 

proposed solar cell is that there is no requirement of window 

layers for passivation, and electron and hole selective contacts 

are expected to achieve both passivation as well as charge 

carrier selectivity. Therefore, the proposed solar cell will also 

reduce the costs associated with doping and growth of window 

layers. Besides, unlike window layers, the proposed electron 

and hole selective contacts can respectively be intrinsically 

heavily n-type and p-type doped at relatively low temperatures. 

The ease with which these electron and hole selective contacts 

can be heavily doped has other significant advantages, such as, 

low contact resistance, high charge carrier selectivity, and 

reduced interface recombination. In view of the above, the 

proposed solar cell structure holds vast potential toward 

achieving high efficiency, low cost flexible InP thin film solar 

cell.  

In addition to several advantages, the proposed solar cells 

may also have a few limitations and challenges, when compared 

to very well established homojunction III-V solar cell. One of 

the biggest challenges would be optimization of carrier 

selective contacts to achieve both carrier selectivity as well 

passivation. Though we have shown that ZnO can improve both 

carrier selectivity as well passivation [1, 2, 32, 34], so far, there 

is no such study on CuI. Another problem may arise due to 

instability of copper iodide in ambient atmosphere. Instability 

of copper iodide has been one of major limitation for its use as 

in inorganic solar cells [33, 35]. However, in our design, this 

problem may not be so consequential if copper is deposited over 

CuI without its exposure to ambient condition. Another big 

challenge would be transfer and bonding of the proposed solar 

cell on a flexible or foreign substrate. In conventional solar cell, 

the layer bonding to metal are very smooth, which reduces the 

complexity of transfer and bonding to foreign substrate. 

However, in current case, both ZnO and CuI are expected to 

have very high roughness and therefore, they cannot be directly 

transferred and bonded to foreign substrate. One way around 

this problem would be utilization of grid consisting of alternate 

layers of polymer binder and metal contact (please see Figure 

6). Nonetheless, the proposed solar cell can be realized using a 

scheme shown in Figure 6.  

Figure 6 shows the fabrication scheme that one may adopt to 

fabricate the proposed device. Fabrication of the proposed 

device should start with the growth of sacrificial layer and the 

absorber layer on a lattice matched substrate (Figure 6(a)). 

After growth of epitaxial layer, a hole selective material should 

be deposited (Figure 6(b)) followed by deposition of copper for 

back contact (Figure 6(c)). To bind the wafer coated with back 

contact (copper) to a flexible carrier, a rectangular grid with 

alternate metal and polymer binder can be used. A similar 

scheme has been used by Chen et al. to realize more than 19% 

efficient ultra-thin III-V solar cell [14]. The metal will be 

required for ohmic contact, whereas the polymer will ensure the 

wafer bonding. Subsequently, the absorber layer containing the 

hole selective contact and back contact can be separated from 

the epitaxial substrate through selective removal of sacrificial 

layer (Figure 6(e)). After that, ZnO and ITO can be deposited 

to form the electron selective contact, followed by the 

deposition of optimum MgF2 as anti-reflective coating (Figure 

6(f)). Finally, the front side can be patterned for metal 

deposition (Figure 6(g)).   

V. CONCLUSION 

We presented heterojunction solar cells based on InP, which 

Fig. 6.  Proposed fabrication procedure for the solar cell structure with carrier selective contacts: (a) Epitaxial growth of sacrificial layer followed 

by the growth of absorber layer, (b) Deposition of CuI on epitaxial layer, (c) Deposition of back contact, (d) Binding of wafer with a flexible carrier 
using a rectangular grid with alternate metal and polymer binder, (e) Selective removal of sacrificial layer, (f) Deposition of ZnO followed by ITO 

followed by MgF2, and (g) Deposition of metal contact through MgF2. 
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utilize carrier selective contacts for charge carrier separation. 

We show that an InP thickness as low as 280 nm can achieve a 

sufficiently high Jsc of more than 28 mA/cm2 in the presence of 

an optimized anti-reflective coating and a metal back reflector, 

as a result of optical confinement. Furthermore, a thorough 

device analysis shows that to achieve sufficiently high 

efficiency, a bulk lifetime of InP should more than 2 ns while 

maintaining a surface recombination velocity lower than 105 

cm/s.   Finally, we discuss how our device structure can be 

important, in cases where doping and growth of p-n junction or 

window layers are complicated followed by a schematic for 

realization of the proposed device.  
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