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Studying flower color evolution can be challenging as it may require several different

areas of expertise, ranging from botany and ecology through to understanding color

sensing of insects and thus how they perceive flower signals. Whilst studies often

view plant-pollinator interactions from the plant’s perspective, there is growing evidence

from psychophysics studies that pollinators have their own complex decision making

processes depending on their perception of color, viewing conditions and individual

experience. Mimicry of rewarding flowers by orchids is a fascinating system for studying

the pollinator decision making process, as rewarding model flowering plants and mimics

can be clearly characterized. Here, we focus on a system where the rewardless orchid

Eulophia zeyheriana mimics the floral color ofWahlenbergia cuspidata (Campanulaceae)

to attract its pollinator species, a halictid bee. Using recently developed psychophysics

principles, we explore whether the color perception of an insect observer encountering

variable model and mimic flower color signals can help explain why species with

non-rewarding flowers can exist in nature. Our approach involves the use of color

discrimination functions rather than relying on discrimination thresholds, and the use

of statistical distributions to model intraspecific color variations. Results show that

whilst an experienced insect observer can frequently make accurate discriminations

between mimic and rewarding flowers, intraspecific signal variability leads to overlap in

the perceived color, which will frequently confuse an inexperienced pollinator. This new

perspective provides an improved way to incorporate pollinator decision making into the

complex field of plant-pollinator interactions.

Keywords: mimcry, color modeling, orchid, signal detection, pollination, honeybee

1. INTRODUCTION

Those walking through a forest in early spring cannot help to notice the burst of biological activity
evidenced by the wide array of different sounds, aromas and movement. However, due to the
particularities and complex architecture of our own senses, the vast palette of color produced
both by animals and plants will quickly catch our eyes and very likely drive our attention. Human
fascination with colors presented by nature is old with formal writings on the topic dating back
to Aristotle, one of the earliest naturalists, who pointed out that “Whatever is visible is color
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and color is what lies upon what is in its own nature visible”
(Aristotle, 1970). Whilst modern color science separates the
philosophical aspects of color theory from its physical nature,
there still remains several ways to interpret color: either as a
purely physical property of objects, as a subjective experience of
the observer; or, by acknowledging that the physical aspects of
color drive the subjective experience of the observer (Hatfield,
2003). Whilst the study of color in ecological and evolutionary
contexts are currently mainly driven by purely physical aspects,
i.e., treating color as a trait, it is potentially important to
also consider the perceptual aspects of color vision to better
understand how animals use this information to drive their
behavior (Bruce et al., 2003).

The evolution of flower coloration has become a recurring
research topic in biology, and color is often used as measurable
trait for understanding different plant-pollinator interactions.
We now recognize that many animals see the world differently
to us, as suggested by data on the spectral sensitivity of
their photoreceptors (Kemp et al., 2015). For example, many
hymenopteran pollinators are characterized by possessing a
trichromatic visual system perceiving spectral radiation between
about 300 and 650 nm (Peitsch et al., 1992), allowing them to
perceive UV radiation invisible to us, but limiting their ability
to discriminate long wavelengths, which we and at least some
other primates can easily recognize as being “red.” On the other
hand, most birds have a tetrachromatic visual system that is
often sensitive to ultraviolet and long wavelength radiation from
about 350 to 700 nm (Hart and Hunt, 2007), allowing them
to perceive spectral and non-spectral color stimuli (Stoddard
et al., 2020). These differences suggest that different animals,
including humans, very likely perceive the same object differently
and as such all interpretations of a color signals should be made
considering the specific characteristics of the visual system of the
receiving animal (Cuthill et al., 2017).

In its most basic definition, the term trait is used to describe
a measurable feature at the individual level, and as floral
color can have a large impact on the fitness of a plant, it is
considered a key functional trait (Violle et al., 2007; Phillips
et al., 2020). When applied to plants, such as comparative studies
testing for an association between colors and pollinator groups,
some authors refer to color through visual attributes defined
by human perception, such as brightness, saturation, and hue
(Smith, 2014; Reverté et al., 2016). Whilst the use of these
attributes has provided interestingly insights into the distribution
of plant colors along spatial gradients (Gray et al., 2018), and its
association with biotic and abiotic factors (Dalrymple et al., 2015,
2020; Reverté et al., 2016), it is still unclear if color attributes
applicable to human vision are universal among animals and
relevant for all species. Brightness, for example, is a confound to
color perception (Kelber et al., 2003) and in primates during the
early stages of visual processing the chromatic and achromatic
information are separated (Livingstone and Hubel, 1988; Nassi
and Callaway, 2009) into the magnocellular and pavocellular
pathways. It is only latter that these pathways are integrated
using multiple stages in the primate brain to enable the dynamic
color perception including brightness that humans have (Nassi
and Callaway, 2009). Currently there is no definitive proof that

any non-primate animal processes brightness as a dimension of
color vision, and thus using human perception to define traits of
flowers that are not pollinated by primates is highly questionable.
Therefore, there is a need to understand how pollinators perceive
color signals.

With the exception of a few recent studies in plant-insect
interactions (Shrestha et al., 2019), the perceptual aspect of vision,
the brain’s interpretation of a physical color signal (Cornsweet,
1971), is rarely considered in animal color studies (Endler and
Mappes, 2017). Reasons for this are the scarcity of data on the
complex relationship between the neurophysiological processing
of color signals and behavioral responses triggered by these. With
the exception of humans, the European honeybee (Apis mellifera)
is the only animal model for which there is currently sufficient
data allowing us to model the complex and dynamic perceptual
aspect of color vision in real-world scenarios (Dyer, 2012).

Bees and other pollinating insects live and navigate in
complex and constantly changing environments, where they
have to continuously process visual information from target and
distractors to make decisions, often several times per second
(Spaethe et al., 2001). To better understand how a bee may
perceive color information in different ways depending upon
the context in which colors are encountered, it is important
to (i) understand how color stimuli are sensed and stored in
memory by a visual system, and (ii) that evidence shows that
the reliability with which color information can be recalled from
memory is dependent upon individual experience (Dyer, 2012).
Thus, a bee cannot be regarded as an ideal observer with perfect
acuity, memory and color discrimination capabilities. Instead,
under a Darwinian framework, bees should be regarded as an
animal acting for its own survival based on the sensory processing
capabilities it has evolved.

Considering the effect of memory on color perception, signals
from a stimulus are initially processed at a photoreceptor level
by integrating spectral reflectance, illumination and relative
photoreceptor sensitivities (Chittka, 1992; Vorobyev and Osorio,
1998; Spaethe et al., 2001; Kemp et al., 2015). When two
differently colored stimuli are viewed side by side at exactly the
same time a very precise color judgement can be made. This
is termed simultaneous color discrimination and is analogous
to when we want an exact paint or fabric match to a known
model color, so we take a sample to view side by side with any
potential candidate color. However, if we are required to make an
evaluation of a model color to a sample that is spatially separated
then the information captured by photoreceptors must be coded
to memory and then when a subsequent comparison is made the
color must be retrieved from memory to enable a judgement of
whether the colors are indeed the same. This is termed successive
color discrimination, and in both humans (Newhall et al., 1957)
and honeybees (Dyer and Neumeyer, 2005) color judgements
with successive viewing conditions are significantly poorer than
when made simultaneously.

Regarding the effect of individual experience on color
perception, psychophysics experiments on honeybees (Giurfa,
2004; Reser et al., 2012), bumblebees (Dyer and Chittka, 2004),
and hawkmoths (Kelber, 2010) shows that the accuracy with
which an individual insect can make such color judgements is
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dependent upon the level of experience with respective stimuli.
Specifically, if an insect has only experienced one type of
rewarding model color, which is termed absolute conditioning,
color discrimination is subsequently relatively coarse when
presented with similar alternative colors in a test. However, if an
individual insect has the opportunity to learn a rewarding model
color relative to a similar distractor, then learning occurs which
results in changes in the brain and the enablement of long term
memory (Dyer and Garcia, 2014; Sommerlandt et al., 2016).

Effects of memory and experience on color perception can be
quantified by means of a function predicting the probability of
accurate discrimination based on color similarity between two
stimuli (von Helversen, 1972). Such a function has been formally
derived from behavioral data (Dyer and Neumeyer, 2005) for
honeybees and bumblebees considering simultaneous viewing
condition (Garcia et al., 2017) and absolute conditioning (Garcia
et al., 2018), but can also be formulated for successive color
discrimination from behavioral data (Dyer and Neumeyer, 2005).

If color rather than spectral reflectance is a functional trait,
the predicted accuracy of discrimination between two stimuli
should be unaffected by context and/or memory as the observer
judgement of the difference should be based solely on the
stimulus’ physical properties. Rejection of this null hypothesis
would suggest that perception prevents the generalization of
conclusions based on purely physical aspects of color signals. A
biological system for testing this hypothesis is that of deceptive
orchids where a non-rewarding species closely resemble a
rewarding flower (Peter and Johnson, 2008; Jersáková et al.,
2016). In this scenario, resemblance between mimic and model
should be close enough that pollinators are sometimes unable
to reliably discriminate between them (Jersáková et al., 2016).
Specifically, here we use published data from Peter and Johnson
(2008) on petal color from the mimic Eulophia zeyheriana
(Orchidaceae) and the rewarding flowerWahlenbergia cuspidata
(Campanulaceae) (Figure 1) to test this hypothesis. In the
absence of color discrimination data for the Lipotriches bee
pollinating these species, we used color discrimination data from
Apis mellifera, a model hymenopteran pollinator, as it is known
that trichromatic color vision is phylogenetically conserved in
bees (Briscoe and Chittka, 2001). Whilst the precise effect of
color similarity on discrimination accuracy may differ between
species, data from Australian and Neotropical singless bees
(Garcia et al., 2017), and more recently pollinator flies (Hannah
et al., 2019), suggest that color discrimination by insects can
be accurately described by continuous functions of different
shape. So whilst the precise color discrimination capabilities of
Lipotriches may differ from those observed in Apis, data from
the latter species serves as a valid example of the general model
describing the effects of cognition and viewing condition on
color discrimination as theoretically predicted by von Helversen
(1972).

Accuracy to discriminate between two stimuli based on their
color similarity can be used as an indirect measurement of
task’s difficulty. For example, an accuracy of 0.75 means that
there is a chance of 0.25 for a bee to make an error. In other
words, a bee will fail to discriminate a stimulus from a distractor
about once in every four choices. Under our null hypothesis,

FIGURE 1 | Flowers used in our study to understand pollinator decision

making depending upon experience and viewing conditions. (A) Rewarding

Wahlenbergia cuspidata (Campanulaceae) with mean flower size of 13.5mm

(Brehmer, 1915), and (B) rewardless Eulophia zeyheriana (Orchidaceae) with

mean flower size of 8.4mm (Rolfe, 1913). Photos by C. Peter.

the probability of discrimination between the mimic and model
flower colors should remain at the same level independent
of experience and viewing conditions: i.e., the probability of
discriminating two stimuli based on their color difference should
be independent of conditioning and viewing conditions. As an
alternative hypothesis we propose that an acquired tolerance to
“perceptual noise” arising from color variability on petals of the
rewarding species (Garcia et al., 2018) affects the probability of
a pollinator accurately discriminating between rewarding and
mimic flowers. When a bee searches for a target it should be able
to detect and discriminate it among a set of options, potentially
including non-rewarding distractors. However, the color signal
produced by rewarding “target” flowers is also variable and likely
discriminable by bees (Paine et al., 2019). Therefore, a pollinator
should balance the probability of rejecting a correct flower as
a result of only accepting a narrow range of color variants of
their target, i.e., increase their possibility of a Type I error. To
decrease the chances of committing Type I errors, a bee could
increase its tolerance to accept a wider range of the target’s color
variants. This solution, however, would then increase its chances
of accepting non-rewarding mimics resulting in an increase of its
Type II error (Endler and Mappes, 2017).

Lichtenberg et al. (2020) presented a theoretical model
explaining the complexity of this scenario using univariate
probability density functions (PDFs) to describe the effects
of signal variability in both mimic and rewarding species.
This is an interesting approach as PDFs better describe the
distribution of flower colors in the wild in similar way to
that encountered by a foraging bee. The area where two PDFs
overlap creates a “confusion” region: signals falling within this
area will be ambiguous and potentially difficult to discriminate
by a pollinator as it could correspond to either the mimic
or an infrequent color signal variant of the rewarding species
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(Lichtenberg et al., 2020). Here we apply and extend this
theoretical model to color signals of wild plants to test if tolerance
to perceptual noise, resulting from an increase in discrimination
ability through experience and bee pollinator viewing conditions,
is a likely explanation to the success of mimic orchid species.

2. MATERIALS AND METHODS

2.1. Case Model: Flower Mimicry in Floral
Deception
To test our null hypotheses of whether color signals are a
constant trait rather than variable perception if values change
depending upon bee viewing conditions, we used reflectance
data from Wahlenbergia cuspidata and Eulophia zeyheriana
published by Peter and Johnson (2008) (Figure 1). E. zeyheriana
is a terrestrial orchid that is restricted to grasslands of the
Drakensberg Mountains of the summer rainfall region of South
Africa (Johnson and Bytebier, 2015). While the flowers are self-
compatible, a pollen vector is required for effective pollination
to occur. E. zeyheriana (Orchidaceae) is pollinated by males
of a single undescribed species of Lipotriches bee (Halictidae).
For a human observer, the rewardless flowers closely resemble
those of the co-flowering nectar producing species W. cuspidata
(Campanulaceae) (Figure 1). At these sites W. cuspidata is a
major food source of the Lipotriches bees. The bees are thought to
be attracted to E. zeyheriana through their similarity in color and
overall floral shape toW. cuspidata. Both species have prominent
petals that appear blue-violet to the human eye. The pollen
presenter in W. cuspidata is white to the human eye and is
similar in color to the white papilose area of the labellum of E.
zeyheriana. While male bees do not collect pollen, the white area
of the labellum of E. zeyherianamay be important for mimicking
the overall floral pattern of W. cuspidata. Measurements of
spectral reflectance revealed that the petals of both species are
similar and located in the blue-UV segment of the hexagonmodel
of bee vision (Peter and Johnson, 2008). An experiment where
flowers were painted with a UV absorbing mixture revealed that
flowers became less attractive to pollinators when they did not
reflect UV, suggesting that floral color plays an important role
in pollinator attraction. Scent is unlikely to be used as a luring
cue as bees show no response to scent extracts of Wahlenburgia
flowers (Welsford and Johnson, 2012). Further, reproductive
success of the orchid was greater in close proximity to the model
species (Peter and Johnson, 2008).

2.2. Absolute and Successive Viewing
Color Discrimination Functions
We modeled color discrimination functions for Apis mellifera
from isoluminant “blue” and “yellow” stimuli considering
successive viewing and absolute conditioning using data from
behavioral experiments (Dyer and Neumeyer, 2005; Garcia
et al., 2018). Both functions describe the probability of accurate
discrimination for increasing color differences, here expressed
as distance in the hexagon space (Chittka, 1992), by means of a
non-linear expression. Functions were fitted using a least-squares
regression using the methods by Garcia et al. (2017) to model the

color discrimination function for this species when stimuli were
observed simultaneously. A separate function was modeled when
color discrimination occurs under absolute conditioning; i.e.,
when bees learn the target stimulus in the absence of a distractor.

We fitted a non-linear mixed effect model using the package
nlme for the R environment for statistical computing to produce
the successive discrimination functions for the “blue” and
“yellow” color stimuli. As the response variable we used the
proportion of correct choices made by n = 5 and n = 4
bees when discriminating a reference stimulus from a set of
nine different blue and yellow distractors, respectively varying in
color similarity to the reference. See Dyer and Neumeyer (2005)
for a complete description of the behavioral experiment and
stimuli. Color dissimilarity between each reference/distractor
pair, expressed as Euclidean distance in the hexagon color space
(Chittka, 1992), was used as an independent variable in the
model. Bee ID number was included as a random term in each
model to account for the multiple measurements collected from
each individual bee.

For the absolute discrimination behavioral experiment, a total
of six different color stimuli were tested, comprised of three
samples from the “yellow” and “blue” stimulus sets. Experimental
data showed the same behavioral response from bees to larger
color differences, so only three stimuli pairs were tested for each
color. To ensure a robust fit, responses from the n = 9 tested bees
to the six stimuli were pooled and used as response variable, so no
random term was included in this model.

If color distance represents a measurable trait, the same
mathematical function can be used to describe the relationship
between color difference (1C) and probability of accurate
discrimination (π) under absolute conditioning and successive
viewing conditions. We formally tested this hypothesis by
initially fitting a three (Equation 1) and four (Equation 2)
parameter logistic functions to each data set, and subsequently
used a likelihood ratio test (LRT) to compare between the
two models. If the LRT test was not significant for an α =

0.05, we selected the simpler function following standard model
selection procedures (Faraway, 2006). Under the null hypothesis,
we expected that the two datasets can be modeled by the same
type of function.

π =
MoK

Mo+ (K −Mo) exp(−r · 1C)
(1)

π =
Mo+ (K −Mo)

1+ exp( xmid−1C
r )

(2)

In the three parameter function (Equation 1),K defines the upper
limit of the function, Mo represents the 1C value at which the
function begins to increase rapidly, and r gives the increment
rate. In the four parameter model, K and Mo indicate values of
the upper and lower asymptotes of the function, respectively; r
describes magnitude of the increment rate, and xmid determines
the value of 1C corresponding to the first inflection point of the
curve (Garcia et al., 2017).

Even if the functions modeling color discrimination under
absolute conditioning and successive viewing have the same
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number of parameters, it is possible that the coefficients shaping
each function differ thus suggesting a different relationship in
each case. Mechanistically, such changes would reflect how the
brain of honeybees changes and develops long term memory
depending upon conditioning (Sommerlandt et al., 2016). Under
the null hypothesis, probability of accurate discrimination
predicted by both functions should not be significantly different
in spite of shape differences; therefore, we also tested for
equality between the mean probability of accurate discrimination
predicted by the absolute and successive functions using a
bootstrap test for equality of means (Hall and Hart, 1990; Efron
and Tibshirani, 1993). For completeness, we also compared the
shape of absolute conditioning and successive viewing conditions
against the function for simultaneous discrimination published
by Garcia et al. (2017). All bootstrap tests were performed with
100,000 samplings with replacement.

2.3. Spectral Measurements
For full methodology see Peter and Johnson (2008). However,
briefly, the reflectance spectra of floral parts of the two species
were measured using an Ocean Optics S2000 spectrophotometer
(Ocean Optics, Dunedin, FL, USA), coupled to an Ocean Optics
Mini-D2T light source. We measured spectra of n = 25 adaxial
petal surfaces of separate flowers for both E. zeyheriana and n =

26 W. cuspidata flowers, as well as n = 22 point samples of the
prominent white papillose area of the labellum of E. zeyheriana
and n = 22 samples of the pollen-covered pollen presenter of
male-phaseW. cuspidata flowers. Raw spectral data were binned
into 10 nm intervals between 300 and 650 nm using the piece wise
cubic Hermite interpolating Polynomial routine for Python 3.7.
Spectra was subsequently modeled in the hexagon color space
by Chittka (1992) assuming an average green leaf as adaptation
background (Bukovac et al., 2017) and an illumination typical
of a clear midday open sky in the Northern hemisphere (Judd
et al., 1964) expressed as photon flux using custom code written
for Matlab release 2017 (The Mathworks, USA).

2.4. Color and Statistical Modeling
The particular conditioning of a pollinating bee and target
viewing conditions, either simultaneous or successively,
determines the minimum color difference it requires to
accurately discriminate between two samples (Dyer and Chittka,
2004; Giurfa, 2004). However, color variability in the observed
flowers determines the frequency by which the pollinator will
encounter a flower pair whose color difference is low enough
that they cannot be reliably discriminated between.

Color signals produced by flowers and perceived by
trichromatic pollinators, such as most bees (Briscoe and Chittka,
2001), are modeled as bivariate variables. More specifically, the
spectral profile making up the color signal can be modeled
in a two dimensional space (Shrödinger, 1970), such as
the Maxwell triangle (Neumeyer, 1980), hexagon color space
(Chittka, 1992), or other alternative models each with their
own set of assumptions (see Renoult et al., 2017 for a review).
For example, modeling the different spectral measurements
collected from pollen ofW. cuspidata and labella of E. zeyheriana
produces two clouds of points whose shape, distribution

and sparseness correspond to differences in their spectral
profiles (Figures 2A,B).

The colors more frequently observed on each species will be
clustered together in the same region of color space. If variability
is low, most samples will be located in a small area of color space
resulting in PDF high density (d) values. On the contrary, if
variability is high, colors will be distributed in a wider area of
color space resulting in a lower density. In a two dimensional
space PDFs are not represented as curves, but as mound-shaped
surfaces where the breadth and height of the peak is given by
density of the most frequently observed loci (Figures 2C,D).

The most commonly used multivariate distribution to model
two dimensional data is the (bivariate) joint normal distribution
where the two variables are described by the same univariate
distribution. This condition, however, is rarely observed in
natural samples as flower colors in plant populations tend to
be clustered in particular areas of color space (Chittka and
Menzel, 1992; Dyer et al., 2012; Shrestha et al., 2014). A
solution tomodel complex PDFs ismodeling the joint cumulative
distribution function for two continuous variables (marginals),
each described by a different distribution, and their dependence
structure independently through a copula (Genest and Favre,
2007).

Marginals and copulas describing the PDFs for petals, pollen
presenter and labella of W. cuspidata and E. zeyheriana were
fitted bymaximum likelihood employing the package Vinecopula
(Nagler et al., 2019) for the R language and environment for
Statistical Computing (R Core Team, 2020). Marginals were
fitted by maximum likelihood using the package fitdistrplus
(Delignette-Muller and Dutang, 2015) for R, and tested for
goodness of fit using the Anderson-Darling test available in the
ADGofTest package (Bellosta, 2011) for R.

2.5. Likelihood of Discrimination in the
Presence of Color Noise
In a symmetrical PDF, such as a bivariate normal distribution,
frequency of observed loci could be predicted from the
analytical expression describing this distribution as done in
most parametric multivariate analysis techniques (Johnson and
Wichern, 2007). However, such an approach cannot always be
implemented when PDFs are modeled by copulas. To identify
typical, less frequent and rare colors from the different plant
species, we generated 100,000 random samples from their
corresponding PDFs and calculated their density using functions
available in the package copula (Kojadinovic and Yan, 2010)
version 1.0-0 for R. For each species we subsequently obtained
density values corresponding to the 0.9, 0.55, 0.45, 0.25, and
0.15 probability quantiles. As larger density values correspond
to a higher probability, we assigned as typical colors loci whose
density values were higher than the 0.9 quantile; less frequent
colors as those whose probability of occurrence is between 0.45
and 0.55; and as rare, colors with density values corresponding to
a probability between 0.15 and 0.25.

If probability density functions can tell us the likelihood of
observing a flower of any given color for a species, discrimination
functions will predict the probability with which given flower
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FIGURE 2 | Modeling and statistical analysis of color variability in flower samples. (A) Reflectance profiles of pollen grains from W. cuspidata (blue) and labella region

of E. zeyheriana (orange). (B) The same samples following modeling in the hexagon color space and translating the original x-y coordinates to an alternative x′ y′

coordinate system to ensure that all values are positive. Surfaces describing the probability density functions corresponding to the orange (C) and blue (D) cloud of

points. Note how differences in variability are reflected in different maximum density values in the two PDFs as indicated by the surface’s maximum height. Contour

maps of (C,D) are two-dimensional representations of their respective surfaces. On these maps each contour represents different density values in analogous way to

physical maps that use contours to represent altitude variations in the landscape.

colors can be discriminated given a bee’s experience and viewing
conditions. We can use both of these functions to predict if
pollinating bees can perceive as being different typical, less
frequent and rare flower colors. To answer this question, we
applied the same sampling method for each species PDF and
classified them as typical, less frequent or rare based on their
density values. Then, we calculated the Euclidean distance
between loci pairs belonging to each group and obtained their

mean distance, and used functions to obtain their predicted
probability of discrimination.

We used a similar approach to predict the probability with
which a bee can discriminate between likely colors of two
different species. We generated random loci from the respective
PDFs, and calculated the Euclidean distance between each
loci pair. We then used the color discrimination functions to
obtain the probability of accurately discerning between each
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stimulus pair considering absolute conditioning, successive and
simultaneous viewing conditions.

3. RESULTS

3.1. Color Discrimination Function Under
Successive Viewing Conditions
We initially tested if a function with four parameters was
necessary to obtain a better fit of data describing discrimination
under successive viewing conditions, or if a simpler alternative
with one less coefficient could provide the same fit using a
likelihood ratio (LRT) test. We found no significant difference in
the goodness of fit provided by a three or four parameter logistic
function for either the blue or yellow stimuli (χ2

blue
= 0.161, P =

0.688; χ2
yellow

= 1.73, P = 0.188), so the former function was

used to model the two data sets as it is mathematically simpler.

TABLE 1 | Coefficients (K, r, Mo) defining the shape of a three parameter logistic

curve (Equation 2) describing the probability of accurate color discrimination by

Apis mellifera when successively viewing “blue” and “yellow” stimuli increasing in

color dissimilarity.

K r Mo

Blue
0.990 53.8 0.528

(0.969, 1.01) (45.3, 66.3) (0.474, 0.571)

Yellow
0.951 47.2 0.555

(0.913, 0.989) (35.7, 69.5) (0.420, 0.651)

Values in parentheses are the 95% confidence intervals for each coefficient.

For the “blue” and “yellow” color stimuli we initially fitted
a non-linear model including a random term for each one of
the three parameters and alternative reduced models including
only fixed terms for each term, followed by LRT comparisons.
This method allowed us to identify which of the three parameters
was significantly varying across individuals so that it should be
included as a random term in the finalmodel (Pinheiro and Bates,
2000).

For the “blue” and “yellow” stimuli functions the second
term showed the highest variability across individuals so it was
included as a random term in both models. Values for coefficients
(K, r, Mo), defining the shape of each discrimination function
are provided in Table 1, and a graphical representation of the two
functions is given in Figure 3.

For the absolute color discrimination function, a four
parameter logistic model provided a significantly better fit than
the simpler, three parameter alternative (χ2 = 4.69, P = 0.030)
so the former was used to fit the data. Coefficients describing
the absolute color discrimination function for A. mellifera are
provided in Table 2, and a graphical representation of the
function is given in Figure 4.

Mean probability of accurate discrimination predicted by the
absolute conditioning and successive viewing conditions were
significantly different from each other (tHo = −22.0, P < 0.001).
Likewise, significant differences in predicted accuracy were
observed between the absolute and successive functions
(tHo = −23.5, P < 0.001), and between successive and
simultaneous conditions (tHo = −16.5, P < 0.001).
This result evidences a significant effect of experience
and memory on the perception of color differences
by A. mellifera.

FIGURE 3 | Color discrimination functions (solid colored lines) for deferentially-conditioned Apis mellifera when successively viewing different isoluminant “blue” (A)

and “yellow” stimuli (B) varying in color similarity here expressed as Euclidean distance in the hexagon model (Hu) for hymenopteran vision (Chittka, 1992). Vertical

black line indicates the color distance at which a bee observer will discriminate between a pair of color stimuli with a probability of 0.75 (π75). Dashed lines represent

the 95% confidence intervals for their respective function, and the dash dotted line represent the color discrimination function for simultaneous viewing for the same

stimuli (Garcia et al., 2017). Markers represent the proportion of correct choices made by individual bees.
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TABLE 2 | Coefficients (Mo,K, xmid, and scal) defining the shape of a four

paramter logistic curve (Equation 1) describing the probability of accurate color

discrimination by Apis mellifera when discriminating “yellow” and “blue” stimuli

following absolute conditioning.

K Mo xmid scal

Absolute
0.842 0.441 0.081 0.009

(0.766, 0.919) (0.377, 0.505) (0.076 0.086) (0.004, 0.015)

Values in parentheses are the 95% confidence intervals for each coefficient.

FIGURE 4 | Color discrimination function for inexperienced A. mellifera under

absolute conditioning. The vertical black line indicates the color distance at

which a bee observer will discriminate between a pair of color stimuli with a

probability of 0.75 (π75). Note that for an inexperienced bee, larger color

distances are required to achieve the same probability of accurate

discrimination than for the experienced forager modeled in Figure 3. Dashed

lines indicate the 95% confidence intervals for their respective function.

Markers represent mean responses from n = 9 bees. Whiskers indicate the

standard error of the mean proportion of correct choices.

3.2. Effect of Color Difference and
Variability
The color of lateral petals of the orchid Eulophia zeyheriana and
the sympatric rewarding species Wahlenbergia cuspidata appear
blue to the human eye and fall between the blue and blue-UV
sectors of the color hexagon (Figure 5). Consequently the “blue”
discrimination function was used to model this system.

Mean color differences between all petals samples of E.
zeyheriana and W. cuspidata was 0.056 (Hu) ± 0.032 (standard
deviation). Such a color difference cannot be discriminated by an
inexperienced bee as the probability of accurately discriminating
between such a stimuli is of 0.5. However, an experienced
bee can discriminate between petals of the two species with
an accuracy of 0.949 and 0.987 when comparing them in
succession or simultaneously, respectively. Color differences

between the labellum of E. zeyheriana and the pollen presenter
of W. cuspidata are easier to differentiate by a bee. Mean
color differences between these two stimuli is equal to 0.138 ±

0.074 (Hu), which can be discriminated by an inexperienced
bee with an accuracy of 0.841. This value increases to 0.99
for an experienced bee comparing between these stimuli either
successively or simultaneously. Altogether, the results indicate
that the perception of a given color difference changes with
experience of the pollinator and is also context dependent,
hence perception prevents interpreting the color signal as a
trait. Our results suggest that spectral reflectance data should
always be interpreted in a specific context, thus rejecting the null
hypothesis that color interpretation is independent from viewing
conditions and experience; we thus proceed to test the color
noise alternative.

To model signal noise produced by color variability, bi-variate
probability density functions (PDFs) were fitted to data
from petals, pollen and labellum from rewarding and mimic,
respectively, using copulas (Figure 6). Parameters defining each
PDF are given in Table 3.

Low color noise on petals of both species make typical, less
frequent and rare colors more similar to each other and thus
harder to discriminate by an insect pollinator. Indeed,mean color
difference between typical and rare petal colors of E. zeyheriana
and W. cuspidata is of about 0.025 and 0.051 Hu, respectively,
which are unlikely to be discriminated by an inexperienced
bee forager, here modeled using the discrimination function for
absolute conditioning. However, an experienced pollinator would
be able to discriminate between typical, less frequent and rare
petal colors of E. zeyheriana with an accuracy between 80 and
90% when viewing them successively. This value increases to
about 90% if colors are viewed simultaneously (Table 4). Larger
color difference in petals of W. cuspidata makes discrimination
between typical and less frequent colors more likely with a
probability of an accurate discrimination higher than 0.9 for
successive and simultaneous viewing conditions.

Labellum and pollen color loci show higher variability than
petals in both E. zeyheriana and W. cuspidata. Mean color
difference between typical and rare colors of E. zeyheriana
labella is ∼0.06 Hu, whilst differences in pollen color of W.
cuspidata is ∼0.086 Hu. Whilst differences between labella
cannot be discriminated with an accuracy higher than 50%
by inexperienced foragers, our model predicts that the same
observers would be able to discriminate between typical and
less frequent pollen colors about 70% of the time. Experienced
foragers are predicted to discriminate between typical and less
frequent colors of labella and pollen with an accuracy higher
than 90% when viewing these stimuli either successively or
simultaneously (Table 4).

The confusion region produced by overlap of probability
density functions (PDFs) from petals of E. zeyheriana and
W. cuspidata suggests that the most frequent colors produced
by each species roughly occupy the same area of color space
(Figure 6). In a scenario where both mimic and rewarding
species have a similar abundance, bees searching for the
rewarding species will very likely find flowers of the mimic
whose color is very similar to the most frequently displayed by
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FIGURE 5 | General view (A) and detail (B) of the n = 95 spectral samples used to model adaxial lateral petals (n = 25, triangular markers) and labella (n = 22,

inverted triangles) of the mimic orchid Eulophia zeyheriana, and adaxial petals (n = 26, circle markers) and pollen (n = 22, square markers) of the rewarding species

Wahlenbergia cuspidata. (B) Shows a detail of (A) highlighting color variability in sampled regions. Marker colors were selected to ease visualization: gray (lateral

petals E. zeyheriana), red (petals W. cuspidata), orange (labella E. zeyheriana), and blue (pollen W. cuspidata). Color space’s center is indicated by a blue cross marker.

rewarding flowers. Indeed, the median color distance observed
between petals of the two species is of about 0.053 Hu, which
cannot be discriminated by an inexperienced bee. However, both
colors can be identified as being different with a probability of
0.94 by an experienced bee if both targets as seen successively, and
with a probability of 0.98 if seen simultaneously. Furthermore,
87.6% of comparisons between the lateral petals of the orchid
flowers and petals of the rewarding species are below the 75%
discrimination threshold for an inexperienced bee, although
this proportion falls to 7.2% when considering an experienced
forager observing petals from the two species and to 4.3%
when flowers are observed simultaneously. The range of color
distances for petals of E. zeyheriana and W. cuspidata, along
with their associated probability of accurate discrimination by
either inexperienced or experienced forager bees, is presented in
Table 5.

Labella and pollen presenter color in E. zeyheriana and
W. cuspidata, respectively, show a higher variability than petal
color as indicted by the maximum density values of their
PDF (Figure 6). Such a variability results in larger median
color differences between these targets (0.110 Hu) than those
observed for petals, in spite of presenting a larger confusion
region in color space (Figure 6). This increase is the result of
a higher chance of observing less frequent labella and pollen
presenter colors, thereby facilitating discrimination for both
inexperienced and experienced foragers (Table 5). Indeed, 41%
of color comparisons between labellum and pollen colors will
be below the 75% accuracy threshold for an inexperienced
bee, whilst 3.1% of these comparisons will be below this
level when considering an experienced bee observing both
stimuli successively. The proportion of comparisons below
the accuracy threshold diminishes to 1.8% when stimuli are
observed simultaneously.

4. DISCUSSION

When using color distance, researchers seek to infer from this
metric if a particular flower color signal has an effect on plant
fitness. Whilst this metric can potentially describe differences in
the physical nature of a color signal between flowers, it cannot
predict unambiguously if such a difference is perceivable by
a pollinator.

When answering questions about the behavioral response
of an animal to perceived color differences, discrimination
functions provide a more realistic prediction of what an animal
may perceive and its response. Compared to morphological
traits, such as shape, length, and width of advertising floral
parts measured with precise instruments (Violle et al., 2007),
the interpretation of color difference by an animal brain is
frequently context dependent and thus not a trait. In the current
manuscript, we show that considering absolute conditioning,
an inexperienced bee would be able to discriminate a color
difference of about 0.09 Hu with an accuracy of 75%. However,
after a bee has acquired more experience it will be able to
discriminate the same color difference with an accuracy of almost
100% (Figures 3, 4). As such, we show that for a given color
distance it is more appropriate to discuss the likelihood that an
inexperieced or experienced pollinator is deceived by the mimic,
rather than using a single color distance threshold.

Functions defined by Equations (1) and (2) and corresponding
coefficients (Tables 1, 2), allow for the construction of modeling
tools describing color discrimination by honeybees considering
multiple viewing conditions including absolute conditioning
(Figure 4), and simultaneous or successive color discrimination
(Figure 3). Significant difference in the predicted probability
of accurate discrimination by respective functions for the
same color distance rejects the null hypothesis of equality and
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FIGURE 6 | Confusion region in hexagon color space produced by the overlap of bivariate PDF describing variability in color signal produced by lateral petals of the

orchid E. zeyheriana and petals of the rewarding flower W. cuspidata (A); in addition to labella and pollen presenter from respective species (C). Numbers on the

contour lines indicate the various density values for each PDF, larger magnitudes represent areas of color space where most samples occur for each species. All loci

were translated from their original hexagon x-y coordinates into a new set of coordinates x′ and y′ where all values are positive. Distribution of Euclidean distances

obtained after drafting 100,000 random samples from petal (B) and labella/pollen distribution (D). In (B,D), black, dashed lines represent the median distance; solid,

green lines indicate the color difference which can discriminated by an inexperienced bee with an accuracy of 75%; and blue lines indicate color distance for the

required by an experienced forager to attain the same accuracy when observing both targets successively.

evidences an effect of both experience and conditioning on
perception of floral color difference by a pollinating bee. This
result thus indicates that though a flower’s reflectance spectrum
can be considered as a functional trait in some circumstances
(Dalrymple et al., 2020), its interpretation by the brain of a
pollinator cannot. Therefore, the color sensation experienced
by a bee is frequently context dependant, and as such, cannot
be quantified and compared as other purely physical traits.
Interestingly, the use of functions like those presented in

Figures 3, 4 produce data from physical traits that are compatible
with a signal detection theory (Endler and Mappes, 2017;
Lichtenberg et al., 2020), which better predict bee behavioral
responses when foraging in the presence of rewarding targets and
non-rewarding distractor flowers.

Studies of plant-pollinator interaction can benefit from
considering insect perception of flower color, as this can provide
better explanations of the relationship between the spectral color
signal as measured by a spectrometer and animal behavior.
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TABLE 3 | Parameters for the different elements describing the probability density function (PDF) of color loci for the different flower parts considered.

Stimulus Component Distribution Parameter (SE)

W. cuspidata petals

x′ Gamma
Shape = 491 (136)

Rate = 659 (183)

y′ Gamma
Shape = 1270 (353)

Rate = 1150 (320)

Copula Tawn II 270◦
Par 1=-9.13 (4.75)

Par 2=0.244 (0.030)

W. cuspidata pollen presenter

x′ Gamma
Shape = 182 (54.9)

Rate = 159 (48.0)

y′ Weibull
Shape = 22.8 (3.86)

Scale = 1.26 (0.012)

Copula Tawn II 180◦
Par 1=3.61 (0.846)

Par 2=0.490 (0.110)

E. zeyheriana lateral petal

x′ Normal
Mean = 0.761 (0.006)

Std = 0.027 (0.004)

y′ Normal
Mean = 1.08 (0.002)

Std = 0.012 (0.002)

Copula Joe 90◦ Par 1 = −2.15 (0.552)

E. zeyheriana labellum

x′ Normal
Mean = 1.22, (0.015)

Std = 0.070 (0.011)

y′ Gamma
Shape = 1370 (423)

Rate = 1100 (339)

Copula Survival Gumbel Par 1= 4.19 (0.764)

Each PDF is defined by the univariate distribution of the values for x and y color coordinates in the hexagon space (marginals) and their join distribution modeled by a specific copula

type. SE denote the standard error for each parameter value.

TABLE 4 | Probability of a honeybee discriminating between pairs of typical (typ.), less frequent (lfq.) or rare (rar.) colors for various flower regions of E. zeyheriana and W.

cuspidata under absolute conditioning, or when seeing targets successively or simultaneously.

Species Region Pair d 1C Abs Succ. Simul.

E. zeyheriana

Lateral petal

typ./lfq. >590 0.025 0.500 0.806 0.873

typ./rar. 300 ≤ d < 360 0.035 0.500 0.874 0.938

lfq./rar. 100 ≤ d < 166 0.040 0.500 0.899 0.957

Labellum

typ./lfq. > 188 0.063 0.500 0.962 0.993

typ./rar. 87 ≤ d < 109 0.094 0.765 0.985 0.999

lfq./rar. 26 ≤ d < 45 0.100 0.759 0.986 1.00

W. cuspidata

Petal

typ./lfq. > 250 0.051 0.500 0.937 0.982

typ./rar. 90 ≤ d < 108 0.070 0.532 0.970 0.996

lfq./rar. 32 ≤ d < 53 0.057 0.500 0.951 0.988

Pollen

typ./lfq. > 42 0.086 0.716 0.982 0.999

typ./rar. 19 ≤ d > 23 0.135 0.841 0.989 1.00

lfq./rar. 6 ≤ d < 10 0.146 0.842 0.990 1.00

Color dissimilarity is expressed as mean distance in the hexagon space (1C) in all cases. Typical, less frequent and rare colors where determined from density (d) values of the PDF

corresponding to each sample.

For example, Peter and Johnson (2008) concluded that the
orchid E. zeyheriana is a non-rewarding mimic of the rewarding
flowers of W. cuspidata, based on several lines of evidence,
including their color difference. When considering petal color
variability from the two plant species we predict that about
25% of flower comparisons made by an inexperienced bees will

be easy to discriminate (Figure 6B), whilst an experienced bee
viewing the same colors successively would make perceptual
errors <5% of the time (Figure 6B). Considering simultaneous
viewing conditions, a bee would almost never make a perceptual
error (Table 5), further reinforcing the contextual nature of color
as a perceptual signal. Thus, the color modeling provides insights
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TABLE 5 | Median and range of color distances (1C) observed after randomly drawing 100,000 samples from the PDF describing color variability of the petals and pollen

of the rewarding plant W. cuspidata; and, lateral petals and labellum of its mimic orchid E. zeyheriana.

Flower region pair 1C πabs πsucc πsimul

Lateral petal/petal
0.053 0.500 0.941 0.984

(≈0, 0.244) (0.500, 0.842) (0.529, 0.989) (0.500, 1.00)

Labellum/pollen
0.110 0.826 0.987 1.00

(≈0, 0.679) (0.500, 0.842) (0.535, 0.989) (0.502, 1.00)

Third to fifth columns contain the predicted probability of discrimination for either absolute (πabs) conditioning, successive (πsucc), or simultaneous (πsimul ) conditions corresponding to

the reported color distances based on the discrimination functions in Figure 3.

into how bee pollinators contribute to the pollination system in a
dynamic way.

Classically, deceptive flowers are thought to rely on
inexperienced insect visitors for pollination (Jersáková et al.,
2006). Whilst our modeling confirms that inexperienced bees
are often unable able to discriminate between mimic and model
species (Figure 4), bees can readily distinguish these colors
after acquiring some experience in spite of memory limitations
(Figure 3). Honeybees under differential conditioning can learn
to discriminate colors following 15 (Giurfa, 2004) to 50 choices
for very similar stimuli (Reser et al., 2012), and these differences
form memory lasting for at least 48 h days after initial testing
(Dyer and Garcia, 2014). In the wild, however, such a learning
does requiring visiting some mimics. Whilst the precise number
of visits to either rewarding or mimic species by Lipotriches bees
is unknown, it is very likely that hundreds of visits are done in
the wild at least to rewarding flowers, suggesting that learning
likely occurs in natural settings.

Considering that experienced bees are likely to discriminate
between mimic and rewarding species (Table 5), an alternative
explanation for the repeated visitation to flowers observed in the
E. zeyheriana-W.cuspidata system (Peter and Johnson, 2008) is
that bees develop a tolerance to color variability as a means to
maintain flower constancy toward the rewarding species. Color
variation in W. cuspidata is large enough that less frequent and
rare colors are easy to discriminate from the more typical flowers
(Table 4). Thus, bees visiting the rewarding species should have
to develop a tolerance to “color noise” in order to identify the
various colors displayed by flowers of this species (Figure 5). As
color variability of the mimic is lower than the rewarding species,
bees are likely to accept flowers of the mimic as potential variants
of W. cuspidata (Figure 6). Such an outcome is consistent with
signal theory predictions where an decrease in Type I errors
results in an increase of the probability of making Type II errors
(Endler and Mappes, 2017; Lichtenberg et al., 2020) highlighting
the benefits of using PDFs to the study of plant mimicry.

Our empirical and statistical evidence partially addresses
theoretical positions of pollinator generalization (Fields
et al., 1991) and/or generalized food deception in orchids
(Jersáková et al., 2006). Considering pollinator decision making,
generalization refers to an animal responding to stimuli that
differ in some dimension from a target stimulus (Fields et al.,
1991; Aguiar et al., 2020). For example, inexperienced honeybees
predominantly use simple elemental cues and will generalize

to similar shapes (Horridge, 2009) or colors (Giurfa, 2004),
whilst experienced bees show evidence of fundamentally
different processing like statistical learning enables avoidance of
perceptual errors resulting from generalization (Avarguès-Weber
et al., 2020). Generalized food deception is a description of
how some orchids show evidence of achieving pollination
from insect species that may lack a capacity to overcome the
limitations of reliable food identification via simple elemental
cues (Steiner, 1998; Jersáková et al., 2006). Our understanding of
the way these two types of generalization theories may interplay
will likely benefit from the formal framework provided by the
PDFs (Figure 6), and a better description on how pollinator
experience mediates different choice criteria as modeled by the
color discrimination functions (Figures 3, 4).

Information from other floral traits, such as shape (Dyer and
Chittka, 2004) and scent (Kunze and Gumbert, 2001; Leonard
et al., 2011), have been shown to reduce information uncertainty
in behavioral experiments and thus could help to set the balance
between errors of Type I and II in the presence of color noise
in deceptive orchid systems. Indeed, an important caveat in this
field of research is that discrimination behavior is modeled based
on color differences between matching floral parts. However,
other cues are available to pollinators when making choices on
visiting flowers. For example, there may be differences in color
pattern that could inform foraging decisions, particularly if there
is a variable model or multiple model species (e.g., Jersáková
et al., 2016; Scaccabarozzi et al., 2018). Outside of color, floral
odor (Leonard et al., 2011) and morphology (Howard et al.,
2018) are used as cues to identify suitable food sources, and
corolla shape has shown to be important for successful mimicry
of flowers (Jersáková et al., 2012). More work is needed on how
pollinators use colors together with other cues to discriminate
between flowers and what this might mean for mimicry systems.

The approaches we present here allow for a more nuanced
understanding of floral mimicry systems. Studies evaluating
whether a rewardless plant uses a mimetic strategy often involve
spectral reflectance measurements that are used to infer whether
the mimic can be recognized by pollinators as different from
the model based on a simple color discrimination threshold
(Peter and Johnson, 2008). However, our use of functions
(Equations 1 and 2) coupled with PDFs modeling illustrates that
the ability of a pollinator to discern between model and mimic
follows a non-linear relationship with color distance (Figures 3,
4), and that the likelihood of successful discrimination is
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greatly increased by experience foraging on the model/mimic.
The use of discrimination functions combined with PDFs for
modeling flower color variability represents a new solution for
understanding other systems, such as: (i) mimicry of multiple
models (Jersáková et al., 2016; Scaccabarozzi et al., 2018), (ii)
systems where pollinators show some level of discrimination
against the mimic despite effective pollination (e.g., de Jager et al.,
2016), (iii) putative cases of generalized mimicry where color
resemblance between mimic and model is very low (Jersáková
et al., 2006), and (iv) the evolution of flower polymorphism
(Kagawa and Takimoto, 2016). For example, our discrimination
functions, and PDF of color variability can be used to model
discrimination ability by pollinators to variable color based
on real data in simulation experiments designed to explain
the evolution of color polymorphism at species or population
levels (Kagawa and Takimoto, 2016).

Further, this approach can be extended beyond mimicry
systems, to understanding the foraging choices of pollinators
when faced with a series of rewarding plant species, that may vary
in the reward received compared with energy expended. A key
challenge, however, for applying this approach will be the lack of
knowledge of the psychophysics of pollinators outside of certain
model species, although published data currently exists for three
key bee pollinators (Garcia et al., 2017), and with these new
methods it will be possible to push the frontiers of pollination
biology and color signal evolution.
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