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Abstract 

 

Background 

External hydrocephalus is a condition sometimes seen in infants. It is 

characterized by an enlarged head or rapidly increasing head circumference. 

Neuroimaging shows wide subarachnoid spaces, especially overlying the 

frontal lobes. The condition has traditionally been termed ‘benign’, as most 

children seem to do well, and symptoms and neuroimaging findings normalize 

over time. Hence, few infants have been treated for this condition. However, 

limited knowledge exists on long-term consequences of external 

hydrocephalus, the possible benefit of treatment, epidemiology, and its 

connection with the very similar conditions chronic subdural hematoma (SDH) 

and hygroma (SDHy). 

Aim 

To gain thorough epidemiological data about external hydrocephalus in 

infants. To explore the long-term consequences of external hydrocephalus, 

both with and without treatment. To examine the pathophysiology of external 

hydrocephalus and chronic SDH/SDHy, and their relation to and importance 

in the investigation of infants with suspected abusive head trauma (AHT). 

Methods 

Papers 1-4 are based on a cohort of infants diagnosed with idiopathic external 

hydrocephalus in a relatively well-defined population in Southern Norway 

during the period 1994-2003. Papers 1 and 3 explored the epidemiology, 

clinical features, and radiology of external hydrocephalus in this cohort. In 

papers 2 and 4, long-term neurocognitive and psychosocial functioning were 

evaluated using neuropsychological tests and questionnaires. Paper 5 is a 

literature survey exploring the pathophysiology behind external hydrocephalus 

and chronic SDH. Paper 6 is also a review, focusing on the existing knowledge 

about bridging veins, thrombosis, and its role in AHT diagnostics. Paper 7 is 
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based on a cohort of infants with SDH and alleged AHT. Clinical and 

neuroimaging findings are explored. 

Results 

The incidence of idiopathic external hydrocephalus was 0.4 per 1000 live 

births, with a large male preponderance (86.4 %) (paper 1). The main 

symptom was a large and/or rapidly increasing head circumference, with a 

mean age at debut of 3.4, range 0-7 months. Neuroimaging showed lateral 

ventricle enlargement in most cases, with neuroimaging characteristics 

persisting beyond one year of age (paper 3). 

The results on neuropsychological tests were compared with the normative 

mean (paper 2). Performance IQ and verbal fluency in children with prior 

external hydrocephalus were better than the normative mean, while attention 

span, psychomotor speed, executive functions, and fine motor functions were 

poorer. On quality of life, the children scored themselves better than the 

normative mean, while the parents scored the children poorer on the school 

subscore. Operated children performed poorer than non-operated ones on two 

tests of psychomotor speed. For some of the patients, various cognitive and 

social problems were reported (paper 4). 

Reviewing the literature, the similarities between external hydrocephalus and 

chronic SDH were discussed, such as neuroimaging and fluid characteristics, 

and sex and age distribution. A birth-related perinatal SDH was suggested as a 

common etiological condition (paper 5). 

A thorough literature review covering radiological studies, autopsy studies and 

biomechanical studies could not support the suggestion that neuroimaging 

signs of thrombosis are markers of bridging vein rupture, and thus AHT (paper 

6). 

Infants with chronic SDH and alleged AHT had a male preponderance and low 

mortality, and were associated with external hydrocephalus and stretched 
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bridging veins. Infants with acute SDH, subarachnoid hemorrhage, or hypoxic-

ischemic injury, seemed to comprise distinct groups (paper 7). 

Conclusions 

Infantile external hydrocephalus occurs in 0.4 of 1000 live births, which is 

around half of all infants with primary hydrocephalus, and has a marked male 

preponderance. Although most children with external hydrocephalus seem to 

do well when growing up, a non-negligible number of patients struggle in 

various areas, especially related to school functioning. Treatment with a 

shunting procedure does not seem to improve outcome. 

As the epidemiological and neuroimaging features of external hydrocephalus 

and chronic SDH are similar, a common etiology seems plausible. A small SDH 

during birth could be one possible common cause. External hydrocephalus 

should also be kept in mind when investigating infants with chronic SDH and 

alleged AHT. Our results both question the neuroimaging “evidence” of 

bridging vein rupture, and show that an underlying external hydrocephalus 

can mimic symptoms and findings of suspected AHT. 
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1 Introduction 

 

Hydrocephalus is one of the most common neuropediatric conditions, with an 

incidence of about 0.8 per 1000 births (1, 2). It is commonly defined as an 

abnormal cerebral ventricular expansion, i.e. a disorder of cerebrospinal fluid 

(CSF) physiology (3). 

External hydrocephalus can be seen as a form of hydrocephalus where the 

CSF-filled (subarachnoid) spaces outside the brain are enlarged (4). Although 

the term ‘external hydrocephalus’ is old (5, 6), it became more common after 

the introduction of modern neuroimaging techniques, such as computed 

tomography (CT) and magnetic resonance imaging (MRI). 

External hydrocephalus is a condition seen in infants. It is the combination of 

a large or increasing head circumference, combined with radiological findings 

of enlarged extracerebral subarachnoid spaces, mainly frontally, with normal 

or slightly/moderately enlarged lateral ventricles (4, 7, 8). The word ‘benign’ is 

commonly used, as the condition is regarded as self-limiting and with a good, 

natural outcome. Compared to other hydrocephalus subtypes, these children 

seem to do better and is rarely in need of surgical treatment (4, 9).  

Through the years, several terms have been used on this and similar conditions 

(Table 1). 
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Table 1: Different terms for external hydrocephalus or similar 

conditions as found in the literature, with reference to the articles 

where they were used. Adapted from paper 5. 

Benign/idiopathic external hydrocephalus (7, 10) 

Benign infantile hydrocephalus (11) 

Benign extra-axial fluid/collection (12, 13) 

Benign communicating hydrocephalus (14) 

Subarachnoid fluid collection (15) 

Benign extracerebral fluid collection (16) 

Benign enlargement of the subarachnoid spaces (BESS) (17) 

Benign familial macrocephaly (18) 

Benign subdural collection (19) 

Pericerebral fluid collection (20) 

Chronic subdural hematoma (21) 

Chronic subdural hygroma (22) 

External hydrocephalus (23) 

Idiopathic macrocephaly (24) 

Subdural effusion (25) 

 

In this thesis, the term ‘external hydrocephalus’ will be used.  

What follows is a summary of knowledge about external hydrocephalus in 

infants, as it appeared at the start of this project. 

 

1.1 Definition 

In modern textbooks, external hydrocephalus is defined as enlarged 

subarachnoid spaces seen in infancy, usually accompanied by abnormally 

increased head circumference with normal or moderately dilated ventricles 

(26). The term external hydrocephalus was first used by Dandy and Blackfan in 



23  

 

1914 (6). They defined it as increased intracranial pressure (ICP) combined 

with dilated subarachnoid spaces in infants.  

After the introduction of modern neuroimaging modalities such as CT and 

MRI, external hydrocephalus was finding its present definition as mentioned 

above. A few articles from late 1970s and early 1980s have been cited 

numerous times and still serve as important references (7, 14, 17, 23, 27-29). 

 

1.2 Epidemiology 

No previous studies have reported the incidence or prevalence of external 

hydrocephalus, nor the number of hydrocephalic children with this condition, 

as most of the studies are hospital based. Finding better epidemiological data 

was a main objective of this project. 

 

1.2.1 Sex 

A male preponderance of around two thirds is reported in most studies (13, 19, 

21, 27, 30-37). This is thoroughly investigated in this project. 

 

1.2.2 Age 

External hydrocephalus occurs during infancy (first year of life), with most 

cases occurring around six months of age (7, 32). Many reported children are 

born prematurely (usually defined as a gestational age < 37 weeks). Alvarez et 

al. concluded that 50 % of their patients had idiopathic external 

hydrocephalus, while many of the others were premature (7). Yew et al. 

reported that 20 of the 99 infants with external hydrocephalus in their 

institution were premature (38). The incidence of external hydrocephalus in 

very low birth weight survivors were found to be 3.3 per 1000 in a United 

States high-risk infant follow-up program (15). 
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1.2.3 Macrocephaly 

Of macrocephalic children (head circumference ≥ 95th percentile) investigated 

at a children’s hospital, 16 % had external hydrocephalus (16). In a large 

radiologic survey, Tucker and colleagues found that 57.8 % of the 

macrocephalic children in their hospital had external hydrocephalus (39). Two 

other studies found that around 65 % of macrocephalic children in their 

cohorts had external hydrocephalus (30, 40). 

 

1.3 Etiology 

External hydrocephalus in infants is an idiopathic condition, hence no direct 

causes are known, although several risk factors and associated conditions exist 

(chapter 1.3.5). Some theories of pathophysiology have been suggested.  

 

1.3.1 Pathophysiology 

A common theory is that the accumulation of CSF is caused by immature 

arachnoid granulations (or villi), thus causing a reduced filtration of CSF and 

subsequently an increasing volume of CSF, especially close to the granulations, 

i.e. on the surface of the brain (29). As long as the skull is compliant (open 

sutures and fontanelles), the result will be an increasing head growth, rather 

than more dramatic symptoms of increased ICP (14). The reason for a delayed 

maturation is unknown, but some heredity has been suggested, which could 

explain the high degree of “familial macrocephaly” commonly reported (7, 28, 

30, 31, 41). 

Related to this theory is the idea of ‘arrested hydrocephalus’, which suggests 

that external hydrocephalus is a step towards communicating hydrocephalus 

(23). It has been suggested that cases requiring a shunting procedure are more 

likely due to agenesis rather than delayed maturation of the arachnoid 

granulations (42). 
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Other authors have suggested that the skull might be growing faster than the 

brain for some time, hence creating a temporary, fluid-filled space between 

these structures (43). This, however, seems unlikely as common knowledge is 

that the increasing volume of the intracranial content (brain and CSF) drives 

skull growth, not vice versa (44). 

Robertson et al. found reduced CSF flow over the cerebral convexities in 

infants with subdural collections, and hypothesized that subdural fluid might 

obstruct the reabsorption of CSF through the arachnoid villi, creating a local 

enlargement of the subarachnoid space (19). 

 

1.3.2 CSF outflow 

The traditional view of CSF physiology is that it is produced in the choroid 

plexus in the ventricles, flows through the ventricles, aqueduct and foramina 

until it reaches the subarachnoid space, where it is filtered by the arachnoid 

granulations into the venous circulation. Arachnoid granulations develop 

gradually during infancy and early childhood (45). However, more recent 

research reveals a far more complex CSF outflow physiology than previously 

thought. CSF is absorbed along the roots of cranial and spinal nerves, ending 

in lymphatic vessels (46, 47). A perineural pathway through the cribriform 

plate into the nasal mucosa is also described (48, 49), and absorption may also 

occur along the blood vessels (50). Although these last observations of 

absorbance pathways are mainly based on animal studies, a recent MRI survey 

found that intrathecally administered contrast “escaped from CSF into 

parasagittal dura along the superior sagittal sinus” (51). 

Some evidence suggest that CSF may be absorbed through the ependyma-lined 

ventricles, at least when the ICP is increased (52). The recently discovered cell 

membrane water channels (Aqp4) is thought to play a role in water transport, 

hence CSF absorption, especially through the ependyma (46). 
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Prior to the maturation of the arachnoid granulations, CSF is possibly 

absorbed in the intradural capillary bed, through venous plexuses that later 

seem to degenerate as the arachnoid granulations form (53).  

CSF dynamics is a field still under investigation, with partly diverging 

hypotheses of CSF drainage (54). See Figure 1. 

 

 

 

Figure 1: Depicting known routes of CSF absorption. The colors indicate level 

of evidence for the specific drainage routes, as considered by the author of 

this review article (55). Reprinted from Proulx. Cell Mol Life Sci 2021. 

Creative Commons License 4.0. 
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1.3.3 External hydrocephalus in fetal life 

The subarachnoid spaces are wide during fetal life, starting to decrease to 

normal size around 32 weeks of gestation (56). Girard et al. found that 19 % of 

fetuses with mild ventriculomegaly and prominent subarachnoid spaces 

developed external hydrocephalus postnatally (57). They also found that 

during pregnancy, the fluid is most prominent posteriorly (58). This is thought 

to reflect the development of the subarachnoid space, which begins as a 

cavitation of the primitive meninges, spreading from the ventral to the dorsal 

part of the neural tube. Of fetuses with congenital heart disease, 7 % had 

increased extra-axial spaces in one report (59). This, however, was not shown 

in a recent study using 3D ultrasound (60).  

Nine fetuses with macrocephaly and wide subarachnoid spaces were followed 

until two years age, all but one (who had a genetic mutation) developed 

normally (61). In children with isolated fetal ventriculomegaly, a favorable 

neurodevelopmental outcome was seen in about 80 % of cases (62).  

In a case series of ten fetuses with widened subarachnoid spaces, associations 

with maternal alcohol use and congenital cytomegalovirus infection were 

identified. Only one child had a normal postnatal development (63). 

 

1.3.4 Heredity 

Many external hydrocephalus children seem to have close relatives with 

macrocephaly, hence some degree of heredity has been assumed. It is probable 

that the term “familial megalencephaly” were previously used for external 

hydrocephalus, although those studies often lacked modern neuroimaging (18, 

64). Most studies report that around 40 % of external hydrocephalus children 

have at least one relative with a large head (28, 30, 31, 34, 43, 65). Case reports 

of twins and triplets seem to support some heredity (10, 66-70). Both 

autosomal dominant (7, 71) and multifactorial (72) models of inheritance have 

been suggested. 
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1.3.5 Risk factors 

External hydrocephalus has known risk factors such as prematurity and 

intraventricular hemorrhage (14, 17, 32, 73), meningitis (14), metabolic 

disorders (74), steroid therapy (75), chemotherapy (76), neurosurgery (77), 

and trauma (14). Raised venous pressure, for instance following cardiac 

disease, has also been related to external hydrocephalus (78, 79). 

Some congenital conditions are associated with external hydrocephalus, such 

as craniosynostoses (80, 81), achondroplasia (82, 83), Sotos syndrome (83-

85), and glutaric aciduria type 1 (86, 87). 

 

1.4 External hydrocephalus and SDH 

External hydrocephalus is thought to be a risk factor for developing subdural 

hematoma (SDH) after minimal or no head trauma (32, 88-94). A suggested 

explanation for this is that the veins traversing the subarachnoid space 

(‘bridging veins’) are stretched in external hydrocephalus, thereby being more 

vulnerable to injury, and thus bleeding (95). The theory however has been 

questioned recently. Based on a finite element model of an infant head with 

enlarged subarachnoid spaces, Raul et al. simulated shaking of the infant, with 

emphasis on the bridging veins (96). They concluded that the enlarged 

subarachnoid spaces probably had a dampening effect and that it therefore is 

not a risk factor for developing SDH. Fingarson and colleagues did not find 

enlarged subarachnoid spaces to be associated with SDH in children with 

minor head traumas (97). 

SDH is commonly divided in chronic and acute. Chronic SDH and external 

hydrocephalus are both chronic subdural collections, which is reflected in the 

literature where both terms have been used for similar conditions (Table 1). 

This subject has been thoroughly investigated during this project, and is 

reviewed in detail later in the thesis. 
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1.5 Neuroimaging 

As a prerequisite for the condition, the typical external hydrocephalus patient 

has enlarged extracerebral spaces, especially overlying the frontal lobes, and 

normal or moderately enlarged ventricles. Common imaging modalities are 

cranial ultrasound, CT and MRI (Figure 2).  

0.6 % of the children in a pediatric neurology practice had external 

hydrocephalus in a survey of intracranial incidental findings on MRI (98).  

 

 

 

Figure 2: An MR image of a 6.5-month-old 

boy with external hydrocephalus. The 

investigation was undertaken due to a 

rapidly increasing head circumference. 

The frontal subarachnoid spaces are 

enlarged - increased craniocortical (CCW 

– red arrow), sinocortical (SCW – blue 

arrow) and interhemispheric (IHW – 

green arrow) widths - and there is slight 

ventriculomegaly. There is no flattening of 

adjacent gyri. Bridging veins can be seen 

traversing the subarachnoid space (yellow 

arrow).  

 

 

1.5.1 Size of the extracerebral space 

The definition of a normal extracerebral or subarachnoid space size varies in 

the literature. There also exist different ways of measuring this space. Lam et 
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al. defined craniocortical width (CCW) as the widest vertical distance between 

the calvarium and the cortical surface, sinocortical width (SCW) as the widest 

distance between the lateral wall of the superior sagittal sinus and the cortical 

surface, and interhemispheric width (IHW) as the widest horizontal distance 

between the hemispheres (99). See Figure 3 for common measuring options, 

and Table 2 for published upper limits of normal subarachnoid spaces. The 

wide range reflects the rather divergent measures published. This lack of 

consensus will lead to uncertainty both when comparing studies of external 

hydrocephalus, and between cases examined by different radiologists. What is 

a pathologically increased subarachnoid space? 

 

 

 

Figure 3: Schematic view 

of the subarachnoid 

space. C = cerebral 

cortex; SSS = superior 

sagittal sinus; CCW = 

craniocortical width; 

IHW = interhemispheric 

fissure width; SCW = 

sinocortical width. 

Reprinted from Lam et 

al. Pediatr Neurol 

2001. With permission 

from Elsevier. 
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Table 2: Published upper limits of normal subarachnoid space size 

in infants (99-107), above which the subarachnoid space has been 

regarded as abnormally large. 

Craniocortical width (CCW) 4 – 10 mm 

Interhemisferic fissure width 

(IHW) 

5 – 8.5 mm 

Sinocortical width (SCW) 2 – 10 mm 

 

 

Another important aspect is how the size of this space develops over time. Yu 

et al. recently published percentiles of “cerebrospinal fluid width” in normal 

children 1-24 months of age, divided in two-month intervals (106). They found 

that the frontal CSF width was largest at 5-6 months of age. 

 

1.5.2 Ventricular enlargement 

Some degree of dilatation of the lateral ventricles is commonly found in 

external hydrocephalus, although the amount of patients with ventricular 

dilatation varies considerably between studies (8, 13, 24, 29-31, 84, 89, 108). 

One study found that the degree of ventricular enlargement was proportional 

to the width of the frontal subarachnoid space (109). Maytal et al. reported that 

ventricular dilatation was a later finding than subarachnoid enlargement, i.e. 

that the enlargement ‘spread’ in a reverse direction of the expected CSF flow, 

like a stasis of fluid (84). 

Enlarged third ventricle and basal cisterns have also been reported (8, 10, 29). 

The excess subarachnoid fluid seems to decrease and disappear spontaneously 

within 2-3 years of age (8, 24, 31, 36, 41, 65, 84, 110). Once the subarachnoid 

fluid disappears, it does not seem to recur (35). Muenchberger et al. did the 

longest follow-up (24). All nine patients with long-term neuroradiological 

follow-up (mean age 19 years old) had normal MRI findings. 
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1.5.3 Radiological differentiation 

To differentiate between external hydrocephalus and other subdural fluid 

collections can be challenging. A cortical vein traversing the fluid is thought to 

show external hydrocephalus, as a subdural collection (such as SDH) would 

compress the subarachnoid space and the veins in it (20, 111). Furthermore, in 

an early CT era survey, the authors observed that enlargement of the basal 

cisterns was often seen in external hydrocephalus, but not in SDH (17). Finally, 

based on fluid intensity, differentiation between CSF and other fluids can often 

be made on MRI (20, 112). 

 

1.6 Other investigations 

Some early studies of external hydrocephalus performed additional 

investigations of these children: 

 

1.6.1 Fluid composition 

The composition of the fluid found in the enlarged extracerebral space varies 

from normal CSF (7, 43), to xanthochromic fluid with high protein 

concentration (113, 114). The latter is possibly due to an older hematoma, also 

known as chronic SDH. 

 

1.6.2 ICP measuring 

ICP measurements in external hydrocephalus vary from normal (43) to slightly 

increased pressure (37, 68). In one study, a normal baseline pressure was 

found, but abnormal rises above 20 mmHg occurred intermittently (42). 
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1.6.3 Electroencephalography (EEG) 

Seizures are not an uncommon symptom in external hydrocephalus (see 

chapter 1.7.2), and some studies report abnormal EEG findings – often as non-

specific slowing of electric activity (37, 42, 43, 110). 

 

1.7 Clinical presentation 

 

1.7.1 Macrocephaly 

Most often, a large head or rapidly increasing head circumference is the first 

symptom in infants with external hydrocephalus, sometimes followed by other 

symptoms. As head circumference is measured regularly during infancy, a 

deviating growth curve is often the initial sign leading to referral, typically 

when crossing two or more percentile lines. This is similar to children 

developing any type of hydrocephalus during infancy. Hydrocephalus is the 

most common cause of increased head circumference (115). Most of the head 

circumference increase in external hydrocephalus seems to occur around the 

age of 3-6 months (7, 36). The amount of children ending up with 

macrocephaly on long-term follow-up varies considerably in the literature, 

from just a few (24) to almost everyone (30, 31, 108).  

 

1.7.2 Other signs and symptoms 

Besides macrocephaly, several other signs and symptoms have been reported, 

as shown in Table 3. 
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Table 3: Reported signs and symptoms in children with external 

hydrocephalus, besides increased head circumference (with 

references). 

Tense anterior fontanel (23, 28, 29, 35, 37, 43, 68, 110) 

Dilated scalp veins (23, 37, 116) 

Frontal bossing (an unusually prominent forehead) (89) 

Irritability (8, 13, 43, 68, 110, 117) 

Hypotonia (10, 36, 41, 42, 109, 116, 118) 

Vomiting (8, 32, 43, 110) 

Gross motor delay (10, 17, 24, 31, 33, 35, 37, 41, 43, 65, 109, 116-118) 

Ataxia (8, 37, 110) 

Poor head control (8, 33, 34) 

Seizures (30, 32, 37, 43, 110, 119) 

Fever (32) 

 

 

1.8 Long-term effects 

A psychomotor developmental delay is often reported during infancy and early 

childhood in patients with external hydrocephalus (7, 24, 34, 35, 89, 120). It 

seems to affect mainly gross motor development and to a lesser extent 

language development, and most studies report a gradual decrease and 

disappearance of delay – normalization – within 1-4 years (8, 41, 121). 

Identified studies of external hydrocephalus children with follow-up beyond 

one year of age are listed in Table 4. 
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1.8.1 Preschool age 

Ten of the studies shown in Table 4 have followed children with external 

hydrocephalus for 2-5 years (14, 29, 31, 32, 34, 35, 37, 41, 108, 121). Around 15-

20 % of all children reported in these ten studies were described as having an 

abnormal psychomotor development at last follow-up. Seemingly, most studies 

base their evaluations on clinical examination, while some standardized tests 

have been used.  

Two studies have used the Denver Developmental Screening Test, testing four 

developmental domains: gross motor, language, fine motor-adaptive, and 

personal-social (7, 33, 128). Alvarez et al. found that many of the infants 

showed transient delay in either gross motor or language development. It was 

typically present at 5 to 12 months of age and disappeared by 15 to 18 months 

of age (7). Another study also reported delay in gross motor development, 

while the other domains were within the normal range (33). 

A revised version of the above-mentioned test, the Denver II, was used by 

Alper and colleagues (30, 129). One of 13 infants were reported with “language 

delay”, while two had “fine motor deficit”. The remaining ten had a normal 

development (30). 

The Milani Comparetti, a gross motor assessment survey (130), was used in 

one study (33). The authors reported that the infants “were lacking in belly 

crawling and sitting skills”. They found the gross motor developmental pattern 

to be abnormal, and hypothesized this to be secondary to the increased head 

size.  

The Gesell Developmental Schedules (131) and the Movement Assessment of 

Infants (132) were used by Nickel and Gallenstein (34). They reported nine 

infants where seven of them showed gross motor delay during the first year of 

life. At around two years of age, three were delayed in speech/language, one of 

them also with persistent gross motor delay.  

The French Brunet-Lézine scale (133) was used in one study of nine infants 

(120). Six had “abnormal neurodevelopmental findings” at presentation, but 
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the majority was considered normal at follow-up. Further details about test 

findings are not available.  

 

1.8.2 School age 

Very few studies have followed children up to school age. Muenchberger et al. 

did a long-term follow-up of nine patients with external hydrocephalus (24). At 

final follow-up (mean 19 years), all nine were considered neurologically normal 

and the neuropsychological assessment showed an intellectual ability within 

the normal range. Nevertheless, reduced performance was noted on tests of 

attention, and several patients reported learning problems in reading and 

mathematics. Three of the nine patients had been diagnosed with a psychiatric 

disease. 

Laubscher et al. investigated 22 ‘megalencephalic’ children with dilated 

pericerebral subarachnoid spaces (89). Twelve of them were classified as 

developmentally delayed (type of delay and age not specified). Eleven of the 

twelve who had reached school age at time of study end had a normal school 

outcome. 

Yew et al. received Hydrocephalus Outcome Questionnaires (HOQ) from some 

of their patients (mean age 7 years). They reported slight reduction in quality 

of life, but less so than in shunted hydrocephalus (38). 

The aim of this project was to further explore the long-term effects of external 

hydrocephalus. 

 

1.8.3 Adulthood – idiopathic normal pressure hydrocephalus 

Bradley has suggested that idiopathic normal pressure hydrocephalus could be 

a “two-hit” disease: external hydrocephalus during infancy, leading to 

increased intracranial volumes, followed by a second hit during late adulthood, 

possibly ischemia or other ageing variations, leading to decreased outflow of 

CSF (134, 135). This was partly based on the finding of significantly increased 
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intracranial volumes in adults with idiopathic normal pressure hydrocephalus, 

compared to age- and sex-matched controls, indicating that the large head 

must have been contracted during childhood (136). No studies have followed 

children with external hydrocephalus into adulthood. 

 

1.9 Treatment 

Most children with external hydrocephalus have been managed conservatively, 

i.e., they have only been observed. Some studies have reported shunting 

procedures in external hydrocephalus (23-25, 32, 35, 42, 65, 68), usually 

ventriculoperitoneal or subduroperitoneal shunts. Symptoms and signs of 

increased ICP are the most common causes of shunting, while no studies have 

been found that report developmental delay as treatment indication alone. No 

studies have compared treatment versus non-treatment in children with 

external hydrocephalus. Yew et al. compared their external hydrocephalus 

patients with a previously published cohort of shunted hydrocephalic children 

(38). They found that external hydrocephalus children reported slightly better 

HOQ scores than the shunted patients, although not significantly so. 

Only a few studies have reported outcome after shunt surgery in external 

hydrocephalus, mostly stating “clinical improvement” (23, 42, 68). Some 

authors advocate temporary shunting (25, 137). 

Other treatment options have been found in the literature, such as various 

forms of external drainage (117, 138), repeated subdural taps (113), and 

acetazolamide as monotherapy (8, 29, 139) or in combination (110). Even 

craniotomy is described (22, 28).  

We have compared treated and untreated patients with external 

hydrocephalus. 
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2 Aims of the study 

 

• To find the incidence and other epidemiological data of infantile external 

hydrocephalus in a well-defined population. 

• To find the long-term effects of external hydrocephalus regarding 

neurocognitive and psychosocial function, and quality of life. 

• To compare treated and untreated patients with external hydrocephalus. 

• To examine the pathophysiology of external hydrocephalus and chronic 

SDH in the light of recent knowledge of perinatal subdural hematoma, 

and the possible consequences for suspected abusive head trauma 

(AHT). 

• To explore the assumption that ruptured and thrombosed bridging veins 

indicates AHT, and how this could be related to external hydrocephalus. 

• To examine clinical and neuroimaging findings in infants with alleged 

AHT, and a possible connection with external hydrocephalus. 
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3 Methods 

 

For papers 1-4, a retrospective and population-based study from southern 

Norway was performed, identifying patients with external hydrocephalus. For 

paper 5, existing literature was the basis for a discussion of possible 

pathophysiological mechanisms leading to external hydrocephalus and chronic 

SDH, as well as a comparison between the epidemiology and neuroimaging of 

these entities. For paper 6, literature regarding bridging veins were reviewed, 

and discussed regarding its role in AHT investigation. In paper 7, clinical and 

neuroimaging findings in a national cohort of infants with alleged AHT were 

studied. 

 

3.1 Study population (papers 1-4) 

During the study period Norway consisted of four health regions. Each region 

had a three-level hospital structure with local hospitals, central hospitals (with 

pediatric departments), and university hospitals (with neurosurgical 

departments). This study covered the two largest health regions in Norway, 

covering the southern part of the nation. During the study period (1994-2003) 

the mean population for these two regions was 3.34 million, about 75 % of 

Norway’s total population. The regional annual average of live births during 

this period was 44,225 (140).  

All infants in Norway are seen at local health centers at regular intervals. 

During the first year of life, it is recommended that head circumference is 

measured at each visit. Children with rapidly increasing head circumference, 

defined as crossing two curves on the registration sheet, or a head 

circumference > 97.5th percentile, should be referred to a specialist. The 

national head circumference reference chart used during this period was 

published in 1988 (141).  
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Children with any neurosurgical condition in our study region were evaluated 

and treated at the neurosurgical departments in either Oslo (Oslo University 

Hospital – Rikshospitalet) or Bergen (Haukeland University Hospital). 

Medical records at these two centers were searched for relevant diagnoses 

(Table 5) in the 10-year period from January 1, 1994, to December 31, 2003. 

Inclusion criteria: Head circumference crossing two percentiles or more, or a 

large head circumference (> 97.5th percentile) during the first year of life, and 

typical neuroimaging findings. 

Exclusion criteria: History of head trauma, intracranial hemorrhage, CNS 

infection, other known causes of hydrocephalus, or prematurity (< 37 weeks of 

gestation). 

The following information was collected from the medical records: age, sex, 

symptoms and signs, head circumference, neuroimaging reports, treatment, 

follow-up, and other information deemed relevant. 

 

Table 5: Diagnoses used in the search for relevant patients. 

ICD-9 331.3; 331.4; 741.0; 742.3; 742.4; 432.1; 852.2 

ICD-10 G91.0; G91.1; G91.2; G91.3; G91.8; G91.9; Q03.0; Q03.1; Q03.8; 

Q03.9; Q75.3; I62.0; S06.5 

 

 

3.2 Neurocognitive and psychosocial functioning (papers 2 and 4) 

For papers 2 and 4, external hydrocephalus patients and their families were 

invited to participate in the neuropsychological assessment and evaluation of 

quality of life. Neurocognitive functioning was assessed for the domains verbal 

fluency, attention span, psychomotor speed, learning and memory, and 

motor speed and coordination. General IQ (divided in verbal and 

psychomotor IQ) as well as performance-based executive functioning were 
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evaluated. Parental scoring of the latter was obtained using BRIEF (The 

behavior rating inventory of executive function) (142). 

Quality of life was assessed using the Pediatric Quality of Life Inventory 

(PedsQL) questionnaire (143). The self-report versions for teenagers (13-18 

years) and children (8-12 years), and the parental version were used. A total 

score and four subscores (physical function, emotional function, social 

function, function at school) were calculated and compared with normative 

data from a Norwegian validation study (144). Table 6 gives an overview over 

domains and the respective tests used. 
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Table 6: Neuropsychological tests and questionnaires used when 

examining children with external hydrocephalus. 

Domains Tests 

Verbal fluency Delis-Kaplan Executive Function 

System (D-KEFS) (145) 

Attention span Children’s Auditory Verbal Learning 

Test 2 (CAVLT-2) (146) and 

Wechsler Intelligence Scale for 

Children-IV (WISC-IV) (147) or 

Wechsler Adult Intelligence Scale-IV 

(WAIS-IV) (148) 

Psychomotor speed WISC-IV/WAIS-IV and D-KEFS 

Learning and memory CAVLT-2 

Motor speed and coordination Grooved pegboard (149) 

General IQ Wechsler Abbreviated Scale of 

Intelligence (WASI) (150) 

Executive functioning D-KEFS and 

The Behavior Rating Inventory of 

Executive Function (BRIEF) (142) 

Quality of life Pediatric Quality of Life Inventory 

(PedsQL) (143) 

 

 

3.3 Additional medical information (paper 4) 

All Norwegian inhabitants are registered with a family physician providing 

primary health care. The doctor also receives medical information about their 

patients from specialists and hospitals. The doctors of the included patients 

were contacted by letter and asked for medical information about their 

patients, with emphasis on developmental, cognitive, and social status. 
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3.4 Study population (paper 7) 

A national registry of children suspected of AHT in Sweden is managed by the 

Swedish National Board of Forensic Medicine. During the period 1994 – 2018, 

a total of 1380 infants (< 1 year of age) were included in the register. The study 

population included both live and deceased infants with suspected AHT. 

Information from medical records including neuroimaging, autopsy reports, 

and medico-legal investigations were assessed. 

 

3.5 Statistics 

The neuropsychological scores (papers 2 and 4) were transformed into z-scores 

and T-scores based on normative data. One-sample t test and Student’s t test 

were used to compare patient groups. For the quality of life data (PedsQL), 

means from raw scores were compared with the normative mean. A score 

below 70 was considered clinically relevant (151). 

For paper 7, the following statistical tests were used: chi-square, Mann-

Whitney U, Fisher exact test and t-test. 

Analyses were conducted using IBM SPSS Statistics, versions 22 – 27. 

The level of significance was set to p < 0.05. 

 

3.6 Ethics 

Papers 1-4: After the initial medical records search, eligible patients and 

families received a letter with information about the study and an invitation to 

participate. On the day of testing (papers 2 and 4), they signed an informed 

consent form. The project was approved by the Regional Committee for 

Medical and Health Research Ethics, as well as the Norwegian Centre for 

Research Data, and the Norwegian Directorate of Health. 
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Paper 7: The study was approved by the Regional Ethics Review Board in 

Uppsala, Sweden. 
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4 Results 

 

4.1 Paper 1 

Epidemiology of benign external hydrocephalus in Norway – a 

population-based study. Wiig US, Zahl SM, Egge A, Helseth E, Wester K. 

Pediatr Neurol 2017. 73:36-41. 

 
176 children were identified with external hydrocephalus during the study 

period. This gives an incidence of 0.4 per 1000 live births. 86.4 % were males. 

161 (91.5 %) of the children were referred because of a large or rapidly 

increasing head circumference, in 38.6 % this was the only finding. Other 

commonly reported (>5 %) signs and symptoms were frontal bossing, delayed 

development, distended scalp veins, bulging fontanel, hypotonia, and sunset 

gaze. 

The mean age at referral to hospital was 7.3 months (median 7 months, range 

1.5 to 23 months). 

Neuroimaging showed, in addition to the mandatory enlarged subarachnoid 

spaces, some degree of ventricular enlargement in 79 % of the patients. No 

correlation was found between ventricle size and clinical findings. 

49 (27.8 %) of the children were treated surgically, mainly with 

ventriculoperitoneal shunting. 

 

4.2 Paper 2 

Neurocognitive and psychosocial function in children with benign 

external hydrocephalus (BEH) – a long-term follow-up study. 

Mikkelsen R, Rødevand LN, Wiig US, Zahl SM, Berntsen T, Skarbø AB, Egge A, 

Helseth E, Andersson S, Wester K. Childs Nerv Syst 2017. 33(1):91-99. 
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Of 171 available patients, 86 (76 males) were included in the study. Age range 

at inclusion was 8-18 years (mean 13.90, SD 2.60). 26 children (30.2 %) had 

been treated with ventriculoperitoneal shunt (mean age at follow-up 14.80 

years, SD 2.28), and the rest (60 patients) had not been operated (mean age at 

follow-up 13.44 years, SD 2.58).  

For the external hydrocephalus group in total, performance IQ (p = 0.047) and 

verbal fluency (p = 0.027) were significantly above the normative mean. For 

the following neuropsychological domains, the external hydrocephalus group 

scored significantly poorer than the normative mean: attention span (p = 

0.001), psychomotor speed (p < 0.001), executive functions (p < 0.001), and 

fine motor function (p = 0.003). On executive functioning according to BRIEF, 

no scores were significantly different than the normative mean. On quality of 

life (PedsQL), the children scored themselves significantly higher (better) than 

the normative mean on total score, as well as the subscores emotions, social 

and school. The parents, however, scored their children significantly lower 

(poorer) on the school subscore. 

When comparing operated with non-operated patients, the operated children 

performed significantly lower on one test of attention span (CAVLT memory 

span, p = 0.010) and two tests of psychomotor speed (CWIT1, color naming, p 

= 0.034. CWIT2, word reading, p = 0.043). Otherwise, there were no 

differences between the groups regarding neuropsychological and IQ scores. 

Non-operated children scored themselves significantly higher on the PedsQL 

school subscore than the operated children (p = 0.011). Otherwise, there were 

no significant differences for self-reported and parent reported PedsQL scores 

and BRIEF scores between operated and non-operated external hydrocephalus 

patients. 
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4.3 Paper 3 

Clinical, radiological, and demographic details of benign external 

hydrocephalus: a population-based study. Zahl SM, Egge A, Helseth E, 

Wester K. Pediatr Neurol 2019. 96:53-57. 

 

176 children (152 boys) with external hydrocephalus were identified for this 

study. 

Detailed studies of the development of head circumference for 107 of the 

children showed that mean age of symptom onset was 3.4 months (median 3 

months, range 0 to 7 months). At final measurement, 52 % of the children still 

had large heads (at or above the 97.5th percentile). For 24 % of these, head 

circumference continued to increase too rapidly beyond 12 months of age. 

For the 77 children with neuroimaging available beyond 12 months of age 

(mean 21.7 months), 74 % still had enlarged subarachnoid spaces, while 61 % 

also had dilated lateral ventricles. 10 % had dilated lateral ventricles only, 

while 16 % had normal neuroimaging. 

13 % of external hydrocephalus patients had a history of complicated birth. 13 

children were twins, but only one infant from each pair. 

 

4.4 Paper 4 

Quality of life and physician-reported developmental, cognitive, 

and social problems in children with benign external 

hydrocephalus – long-term follow-up. Zahl SM, Egge A, Helseth E, 

Skarbø AB, Wester K. Childs Nerv Syst 2019. 35:245-250. 

 

176 patients (152 boys) with external hydrocephalus were identified for this 

study. 
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103 teenagers and children (8-18 years old) answered the quality of life 

(PedsQL) questionnaire. Self-reported total score and all subscores (physical 

health, emotions, social, and school) were significantly higher than the 

normative mean, i.e., they reported better quality of life than the normal 

population (144). 86 parents answered the proxy version of PedsQL. For 

parent reports, the school subscore was significantly lower (poorer) than the 

normative mean. 

For 142 (81 %) of the 176 patients, medical information was obtained from 

their family physicians. For 104 of these children, no relevant problems were 

reported. The remaining 38 patients had various reported problems, such as 

delayed speech (9.2 %); social behavioral problems (8.5 %); motor impairment 

(7.7 %); mental retardation (5.6 %); and concentration problems (5.6 %). Less 

than 5 % reportedly had cognitive deficits; epilepsy; ADHD/ADD; autism 

spectrum disorders; anxiety and depression; and dyslexia. 

 

4.5 Paper 5 

Examining perinatal subdural haematoma as an aetiology of extra-

axial hygroma and chronic subdural haematoma. Zahl SM, Wester K, 

Gabaeff S. Acta Paediatr 2020. 109(4):659-666. 

 

Perinatal subdural hematoma is an intracranial bleeding inside the dura or 

subdural compartment occurring during birth. A prolonged or complicated 

birth process probably increases the risk of such events. An MRI study found 

perinatal SDH in 46 out of 101 asymptomatic term neonates (152). 

We hypothesize that this condition in some patients can develop into both 

external hydrocephalus and chronic SDH. This theory of a common cause is 

based on several observations. 
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• Neuroimaging and fluid characteristics: the terms chronic SDH, external 

hydrocephalus and hygroma are sometimes used interchangeably for 

subdural collections. Studies analyzing the fluid also report differing 

protein concentrations, possibly indicating various stages of disease. 

• Epidemiology: age and sex distributions of SDH and external 

hydrocephalus are very similar, with a marked male preponderance and 

a mean age of symptom debut at around 3.5 months. 

• Pathophysiology: the dural capillary bed is responsible for CSF 

absorption during early infancy. A bleeding within the dura will obstruct 

this absorption, creating a local hygroma. These formations could lead to 

external hydrocephalus as CSF absorption is hampered, as well as 

chronic SDH, as small hemorrhages within the dura could lead to 

continued or bigger leaks of blood, creating a process of chronic SDH. 

These subdural collections are prone to rebleed, creating an 

inflammatory response with formation of neomembranes, which could 

lead to new rebleeds. 

The possible misinterpretation of such SDHs as signs of AHT is discussed. 

 

4.6 Paper 6 

Thrombosis is not a marker of bridging vein rupture in infants with 

alleged abusive head trauma. Zahl SM, Mack JA, Rossant C, Squier W, 

Wester K. Acta Paediatr 2021. 110(10):2686-2694. 

 

Abusive head trauma (AHT) is often suspected in infants with SDH without a 

known trauma. Bridging veins traversing the space between the cortex and 

venous sinuses are assumed to rupture during trauma, leading to SDH. 

Thrombosis of bridging veins has been suggested to be a neuroimaging marker 

of bridging vein rupture, and thus AHT. Our literature review concluded that: 
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• Radiological studies claiming that cortical vein thrombosis (CVT) 

indicates traumatic bridging vein rupture lack pathological verification, 

and have to a little degree considered other, medical causes for 

thrombosis. 

• Autopsy studies have not provided evidence for trauma as a cause of 

thrombosis resulted from bridging vein rupture. 

• No biomechanical studies have shown that shaking can cause bridging 

vein rupture. 

In addition, the literature on biomechanics and pathology is mainly based on 

adult patients. Altogether, we conclude that CVT cannot be considered a 

neuroimaging marker of AHT. 

 

4.7 Paper 7 

Neuroradiological findings in a national cohort of alleged abusive 

head trauma cases suggest different etiologies. Zahl SM, Andersson J, 

Wester K, Wikström J. (Submitted manuscript.) 

 

96 cases were included, 65 were males (68 %). 69 infants had chronic SDH, of 

whom many with radiological characteristics compatible with external 

hydrocephalus, as well as stretched bridging veins on neuroimaging. 16 had 

acute SDH and were more prone to have skull fractures.  

16 % of the infants had HII, which was associated with SAH, acute SDH and 

higher mortality. While the sex distribution in infants with HII was even, a 

clear male preponderance was seen in the external hydrocephalus group. 

The children were referred because of several signs and symptoms, and were 

grouped in acute and non-acute symptoms. Neuroimaging signs of CVT, as 

well as bilateral retinal hemorrhage, were found in the acute group, while 
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external hydrocephalus was significantly more common in the non-acute 

group. 
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5 Discussion 

 

This project has investigated external hydrocephalus in infants. We have found 

some new epidemiological information, including incidence, of external 

hydrocephalus. Details about the long-term consequences have been 

presented, as well as the effect of treatment. Some theoretical considerations 

regarding pathophysiology of external hydrocephalus, and its relation to 

chronic SDH and AHT, is put forward. 

Our findings will be discussed in detail below, in relation to existing 

knowledge. Finishing off, some perspectives for the future will be presented. 

 

5.1 Definition 

No well-established definition of external hydrocephalus exists. According to 

Rekate’s definition of hydrocephalus (“..distension of the ventricular system..”) 

(3), one might argue that only external hydrocephalus children with enlarged 

ventricles are truly hydrocephalic. Other authors have proposed that external 

hydrocephalus children with no other symptoms/findings than macrocephaly 

and enlarged subarachnoid spaces “represent the extreme of the normal 

population rather than a distinct clinical entity” (107). The vast number of 

terms used for this and similar conditions (see Table 1) reflect the different 

views on etiology, outcome, and clinical importance. 

The term external hydrocephalus is used throughout this thesis, and defined as 

a large head (≥97.5th percentile) or rapidly increasing head circumference 

(crossing two or more percentiles) in an infant, combined with typical 

radiological findings of enlarged subarachnoid spaces – especially frontally – 

and normal or slightly to moderately enlarged lateral ventricles. The term 

benign external hydrocephalus (BEH) was used in the articles that constitutes 

this thesis. 
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Based on the presented results, one might question the use of the word 

‘benign’. Furthermore, as ‘hydrocephalus’ is commonly used for a condition of 

increased CSF volume leading to enlarged ventricles and increased ICP (153), a 

different term should be considered. Extra-axial fluid collection is a 

description covering the neuroimaging features, while still being broad enough 

to include several types of fluid (such as blood). 

 

5.2 Epidemiology  

We found the incidence of idiopathic external hydrocephalus in our population 

to be 0.4 per 1000 births. As population-based incidences have not been 

reported earlier, no comparison is possible. However, due to the structure of 

the Norwegian health system (with mandatory health center workups), we 

believe that essentially all patients in our region have been registered. The 

variation in head circumference charts, and different cutoff values, and the 

lack of strict radiological criteria are all variables that may influence the 

number of patients, and hence the incidence of external hydrocephalus. 

Another important aspect of the study population is our choice not to include 

infants with bleedings, such as SDH, and premature infants. As these are 

known risk factors for developing external hydrocephalus, the total incidence 

in the entire infant population is higher than our figures indicate. 

A national study found the incidence of primary hydrocephalus to be 0.75 per 

1000 births in Norway (115), thus external hydrocephalus comprises a 

considerable amount (>50 %) of the hydrocephalic children managed by the 

health care system.  

5.2.1 Sex 

The male preponderance in our study is as high as 86.4 %. This 

overrepresentation of boys is somewhat more marked, although in accordance 

with earlier publications (32, 89, 109). A male preponderance is also found in 

pediatric hydrocephalus: 74 % was found in a similar Norwegian cohort (115); 

and 66 % in a large Danish register study (154). The authors of the latter 
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suggested that the male preponderance seen in both isolated and syndromic 

congenital hydrocephalus could be due to X-linked genetic factors. Another 

aspect is that boys in general have a higher risk of neonatal morbidity and 

mortality, including SDH (155, 156). It is possible that a larger fetal head 

circumference, known to be associated with complicated labor (157), could 

explain some of the sex difference. A higher risk of congenital hydrocephalus is 

seen in first-born children, which hypothetically could be due to perinatal 

SDH, again “due to lower mechanical compliance of the birth canal of the 

primiparous” (154). Interestingly, though, mean head circumference at birth is 

similar in boys and girls (158), pointing to relevant susceptibility also after 

birth. Whether these factors can explain the sex difference seen in external 

hydrocephalus remains unknown. 

5.2.2 Age 

At birth, external hydrocephalus children have head circumferences marginally 

larger than the normal population. This is found in our study (paper 1) and has 

been reported before (7, 32, 89, 122). The mean age at which the macrocephaly 

was discovered was 3.4 months, and no children started to show signs of 

external hydrocephalus later than 7 months of age. The referral age of 7.3 

months corresponds well with the literature (16, 32).  

 

5.3 Pathophysiology – what this study adds 

The theory of ‘delayed maturation’ of the arachnoid granulations, which is 

often presented, cannot fully explain external hydrocephalus, as the arachnoid 

granulations develop late during infancy in normal subjects as well (45). In 

paper 5, we have discussed the theory that perinatal blood might surround the 

structures in the dural capillary bed, thereby hampering CSF absorption 

through this alternative route (53). This blood can be the result of the birth 

process, where small perinatal subdural hemorrhages can be created, a quite 

common phenomenon as reported by Rooks et al. (152). In their MRI study, 

they found that 46 % of asymptomatic term neonates had subdural 



 62 

 

hemorrhages. In a more recent survey on incidental MRI findings, 115 of 500 

(23 %) asymptomatic term neonates had SDH (159), while yet another study 

reported SDH in 37.8 % of neonates investigated with CT or MRI for various 

reasons (160). As pointed out in the prior section, infants which later present 

with external hydrocephalus are born with marginally larger heads than their 

normal peers. Hypothetically, it is possible that these larger heads can be more 

prone to perinatal SDH during the birth process, which has been suggested for 

other forms of hydrocephalus as well (154). 

The decrease in absorption capacity will result in a larger CSF volume, which 

then gives an increased ICP, leading to an increase in head circumference and 

other symptoms associated with external hydrocephalus. A net increase in the 

subarachnoid CSF volume could be the neuroimaging result of this process. 

Small intradural bleedings can trigger larger subdural hemorrhages through 

the process of inflammation and neomembrane formation (161). This theory of 

pathology unifying external hydrocephalus and chronic SDH can explain some 

of the striking epidemiological similarities. Both conditions have a male 

preponderance and a similar age of occurrence (around 3.5 months) (156). See 

Figure 4 for an anatomical overview. 
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Figure 4: Schematic drawing of a cross-section through the superior sagittal 

sinus. Examples of intradural bleeding sites are depicted. 

Reprinted from Squier and Mack. Forensic Sci Int 2009. With permission 

from Elsevier. 

 

 

A difficult labor (vacuum extraction, forceps, cesarean section) is known to 

increase the risk for SDH (162). Could this be the case with external 

hydrocephalus as well? In our retrospective study, we unfortunately did not 

systematically register birth related data, and to the knowledge of the author, 

this has not been systematically investigated. As pointed out by Miller et al., 

SDH in a macrocephalic child raises the possibility of several medical 

explanations, not only AHT (163). External hydrocephalus is one of the best-

known risk factors for infant SDH (32, 90, 164, 165). The higher incidence of 
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SDH reported in external hydrocephalus children can be turned upside down: 

in concordance with the unifying theory presented above, one might 

hypothesize that external hydrocephalus can be an early or intermediate form 

of SDH. 

Whitehead and colleagues, based on findings of altered subarachnoid diffusion 

in external hydrocephalus, suggested that capillary hyperpermeability and 

reduced protein transport in the frontal region could explain the formation of 

extracerebral fluid (166). This however cannot explain the initial cause of 

excessive fluid. 

Sainz et al. found that 15 out of 17 patients with external hydrocephalus had 

venous sinus abnormalities (167). They thus interpreted external 

hydrocephalus findings primarily as a result of cerebral venous hypertension. 

Some questions could be raised regarding this hypothesis. First, no control 

group was used, and the amount of normal children with similar venous 

findings are unknown. Second, the reason for these structural abnormalities, 

and how they obviously resolve over time, remains unexplained. More recently, 

Cinalli et al. investigated 97 infants with external hydrocephalus and compared 

them with 75 healthy controls (168). They found both a higher number and 

more severe grade of dural sinus anomalies in the external hydrocephalus 

group compared with the controls, hypothesizing that this could result in an 

increased venous outflow resistance possible leading to external 

hydrocephalus. 

Given the diversity of findings as mentioned, as well as associated conditions, a 

unifying pathophysiological explanation for all external hydrocephalus 

patients seems improbable. More likely, the development of excessive 

extracerebral fluid could be caused by several factors and mechanisms, 

probably in various forms of coexistence. 
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5.4 External hydrocephalus and SDH, and the connection with AHT 

If external hydrocephalus, for instance related to birth difficulties (as discussed 

above) or prematurity, is a form of chronic SDH, or could evolve into chronic 

SDH, then the risk of falsely assuming AHT in a child with external 

hydrocephalus is obvious. What would further imply that this could be the 

case?  

1) more children than expected with alleged AHT would have signs of 

preexisting external hydrocephalus;  

2) more children than expected with alleged AHT would have a history of birth 

difficulties or prematurity; and  

3) the age and sex distribution of children with alleged AHT would show a 

typical occurrence around 3 months of age and a male preponderance, as seen 

in external hydrocephalus.  

As shown in paper 7 and by Andersson et al. (169), all these three implications 

are seen. First, many infants with suspected AHT due to a finding of chronic 

SDH have neuroimaging signs of external hydrocephalus (enlarged 

subarachnoid spaces) and increased head circumference (169). Second, infants 

with alleged AHT are more likely to have been born prematurely than expected 

(170). Whether alleged AHT is associated with birth difficulties is not known. 

Third, the chronic SDH group of alleged AHT infants showed a male 

preponderance and age distribution (around 3 months of age) quite similar to 

external hydrocephalus (169). 

SDH in infants is often considered a sign of AHT (171). Especially in 

macrocephalic children, this interpretation is very uncertain, and may lead to 

false accusations – and verdicts - of abuse. A close monitoring of head 

circumference, attention to birth problems, and a general awareness of the 

possibility that a perinatal SDH may develop into external hydrocephalus and 

chronic SDH, is important. This again should lead to early and rapid 

neuropediatric evaluation and neuroimaging in susceptible children. 
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5.5 Neuroimaging 

5.5.1 External hydrocephalus characteristics 

Although our population-based studies (papers 1-4) were not based on 

renewed neuroimaging, the condition external hydrocephalus depends on 

neuroimaging findings. Especially what one would consider an enlarged 

subarachnoid space is poorly defined. Furthermore, as pointed out by 

Andersson et al. (169), what is regarded as normal values may differ between 

ethnic groups. 

The majority of patients had some degree of ventricular dilatation at time of 

diagnosis. This corresponds well with earlier studies, but has not been 

published at a population level before. On a longer term, it seems from our 

results that the excessive extracerebral fluid resolves earlier than the 

intraventricular fluid. In accordance, Maytal et al. reported that ventricular 

dilatation was a later finding than enlarged subarachnoid spaces (84). One 

might suspect that the ventricular dilatation could be a sign of a slightly 

increased ICP in these patients. In our study however, we found no correlation 

between the degree of ventricular dilatation and clinical findings. Whether 

ventricular dilatation was associated with head circumference growth rate 

could not be elicited from our data. 

Haws et al. did a large, retrospective study of external hydrocephalus children 

diagnosed with ultrasound (124). They concluded that further neuroimaging 

with CT/MRI was unnecessary in patients with no neurologic deficits. 

However, 30.5 % of their tested children had developmental delay at last 

clinical follow-up (mean age 3.6 years). 

Advanced MRI technology using diffusion tensor imaging technique has shown 

that external hydrocephalus children have different periventricular white 

matter diffusion compared with normal children (172). As with other external 

hydrocephalus findings, this seemed to normalize over time. 



67  

 

As for future research, a study correlating clinical and developmental outcome 

with neuroimaging development over time, could yield valuable information 

regarding long-term effects of external hydrocephalus. 

5.5.2 Chronic SDH characteristics 

In infants with SDH, and hence potential AHT, the possibility of an underlying 

external hydrocephalus should be kept in mind. In infants with acute SDH and 

skull fracture, but with no known trauma, AHT could be suspected, although 

birth trauma may also be the cause (173). In children with neuroimaging 

findings of CVT, chronic SDH, HII, and stretched bridging veins, other causes 

than AHT seem just as likely (papers 6 and 7), and investigation should be 

conducted accordingly. Especially CVT, as thoroughly discussed in paper 6, has 

wrongfully been regarded as a sign of bridging vein rupture caused by a 

trauma. The evidence for this, however, is lacking. 

 

5.6 Clinical presentation 

5.6.1 Macrocephaly 

A large or rapidly increasing head circumference was the leading cause for 

referral in our cohort. In all patients, this took place during the first seven 

months of life. This corresponds well with earlier studies (7, 36). For some of 

the children, this abnormal growth rate continued beyond 12 months of age, 

signifying a long-lasting increased ICP. Whether this group of infants is more 

susceptible to long-term sequela remains unknown, but could be a subject for 

future research. Indeed, the very speed at which the heads grow during the 

entire infancy is still unexplored. Could a very fast head circumference growth 

rate predict the need for a shunting procedure? Intuitively, one might expect a 

rapid rate to be associated with a higher ICP, hence higher risk of neurological 

damage. The head size in itself, however, did not correlate with motor delay in 

the long-term follow-up by Yew et al. (38). 



 68 

 

2.5 % of infants are macrocephalic (≥ 97.5th percentile). As the annual average 

of live births in the health regions during the study period was 44,225 (paper 

1), we would expect the number of macrocephalic children to be 1106 per year. 

We thus found that around 1.5 % of macrocephalic children have external 

hydrocephalus. This is much lower than previously published (see chapter 

1.2.3) (16, 30, 39, 40). One reason for this could be that our study is 

population-based, not based on hospital or department patients with an 

increased likelihood of pathology. Furthermore, we chose to exclude 

premature infants and patients with comorbidities. Finally, the inclusion 

criteria in the mentioned radiological studies are based on strict neuroimaging 

findings, a dimension lacking in our study.  

5.6.2 Other signs and symptoms at presentation 

Some of the signs and symptoms found in external hydrocephalus are typically 

seen as signs of increased ICP, such as vomiting, irritability, sunset gaze, and 

tense fontanels. Other typical symptoms are seizures and delayed psychomotor 

development. As presented in chapter 1.7, a delayed psychomotor development 

is a very common finding in external hydrocephalus throughout the literature. 

Recently, Maruccia et al. confirmed this using a standardized evaluation tool 

(Bayley-III) on their patients (174). In four out of 21 (19 %) term infants, a 

neurodevelopmental (gross motor) delay was found at presentation. Moreover, 

they found that premature infants with external hydrocephalus had 

significantly higher risk of neurodevelopmental (fine and gross motor) delay 

than term infants. 

 

5.7 Long-term consequences 

Many children and adolescents with external hydrocephalus during infancy 

seem to do well. However, subtle neurocognitive difficulties and various social 

and developmental problems are seen in a non-negligible number of patients. 

Although our patients were evaluated using standardized tests, some 

uncertainty remains. The border between normal and delayed will obviously be 
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difficult to outline in the individual patient, and will probably fluctuate some 

over time. Furthermore, as a child may be regarded developmentally within 

normal limits, it is hard to know whether he or she could have developed even 

“better” under more ideal circumstances.  

5.7.1 Cognitive function 

Our patients performed poorer than the normative mean on several cognitive 

domains such as verbal IQ, attention span, executive function, psychomotor 

speed, and motor speed and coordination. Similarly, Muenchberger et al. 

found reduced attention span and psychomotor speed in their follow-up of 

adolescents with prior external hydrocephalus (24). Late emerging verbal 

problems have also been described earlier. Yew et al. found a late occurring 

verbal delay in six of their 99 patients on long-term follow-up (38).  

Eight of our 142 patients were labeled with ‘mental retardation’ (paper 4). 

Laubscher et al. also reported mental retardation in eight of their 74 patients 

(89). The term mental retardation is quite unspecific, and difficult to compare. 

As six of our patients with later mental retardation were treated with a 

shunting procedure during infancy, it could point to a more serious 

preoperative condition, possibly with a higher ICP. 

5.7.2 Quality of life 

The children scored themselves above the normative mean on all aspects of 

health-related quality of life. Yew et al. found a slightly lower quality of life 

compared with normal children, but better than hydrocephalic patients (38). 

We found that the parents scored their children lower (worser quality of life) 

than the normative mean, and significantly so for the domain school 

functioning. This discrepancy between children/adolescents and parents could 

reflect variations in interpreting the questions, or reduced self-awareness of 

the child.  

5.7.3 School 

The reported learning disabilities, cognitive problems and social behavioral 

issues in our cohort (papers 2 and 4) points to a general vulnerability for 
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school problems in children with external hydrocephalus, as reported by the 

parents through the quality of life questionnaire. Our results correspond well 

with Muenchberger et al., who reported rather severe school problems for 

some of their patients (24).  

5.7.4 Autism spectrum disorder 

Five patients in our study were diagnosed with autism spectrum disorder. 

Recently, Shen and colleagues did two surveys where they followed groups of 

infants with repeated MRI scans (175, 176). The children who later developed 

autism had significantly greater extracerebral fluid, and an early detection of 

fluid (around 6 months of age) was associated with a more severe autism. The 

authors conclude that external hydrocephalus could be an early marker for 

autism spectrum disorder. Indeed, macrocephaly is known to occur in 15-35 % 

of autistic children (177), which is well above what is seen in the normal 

population. Abnormally accelerated head growth during infancy has also been 

suggested as an early sign of risk of autism spectrum disorder (178). 

5.7.5 Why is there a developmental delay? 

Can a temporary increased ICP have neurological consequences beyond the 

immediate symptoms? Indeed, ‘critical periods’ in brain development have 

been identified, especially in the visual cortex (179, 180). Development is 

thought to occur stepwise, as the plasticity of the brain can be seen as a cascade 

of events where genetical, intrinsic and extrinsic factors have various effects 

depending on the time of development (181, 182). Learning outside this time 

window is possible, but probably more difficult. 

Furthermore, CSF studies in other types of hydrocephalus have showed signs 

of tissue damage (possibly due to increased ICP) such as apoptosis (183), 

altered metabolism (184), inflammation (185), and reduction in 

neurotransmitters (186). 

The head size itself has previously been suggested as a reason for 

developmental delay, making the infant unable to control its head during 

movement (33).  
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5.8 Treatment 

The word ‘benign’ often used alongside external hydrocephalus underline the 

traditional view that the condition is self-limiting and without negative long-

term consequences. Hence, the condition is rarely treated. In our population, 

quite a few patients have been treated, mainly surgically with a 

ventriculoperitoneal shunting procedure. The operated children scored lower 

than the non-operated children on some of the neuropsychological tests. The 

main problem concerning the evaluation of this finding is the fact that it is a 

retrospective survey, which gives a high risk of selection bias. It is reasonable 

to assume that children treated with surgery had a more serious condition 

initially. In general, children with ventriculoperitoneal shunts report lowered 

quality of life (187). Especially patients who require revision surgery are prone 

to this, although this was not found in our study. 

A prospective, randomized intervention trial of external hydrocephalus is 

probably unethical. However, as discussed in the prior section, maybe a 

detailed subgrouping based on neuroimaging, head circumference and other 

clinical signs could be helpful in detecting the infants most vulnerable to 

developmental problems, hence most likely to benefit from treatment. 

The recent research into aquaporins responsible for CSF homeostasis could 

open up new possibilities for targeted regulation of CSF secretion, and hence 

ICP management (188, 189). 

 

5.9 Strengths and limitations 

This project has investigated the condition known as external hydrocephalus in 

infants. Some strengths of the study are: 

• The patient group is larger than previously published, representing 

around 75 % of Norway’s total population, and is based on mandatory 

infant check-ups. 
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• The follow-up time is longer than most other external hydrocephalus 

studies. 

• The neuropsychological assessment is thorough and systematic. 

• The combination of neuropsychological results, quality of life evaluation, 

and clinical and psychosocial information gives a more comprehensive 

picture of the long-term effects of the condition. 

• The population-based design for both study populations (papers 1-4 and 

paper 7) give good predictions of incidence and other epidemiological 

data. 

• These epidemiological data are used to explore the relationship between 

external hydrocephalus and SDH. 

• It gives new insight into head circumference development and 

radiological change in children with external hydrocephalus. 

• The alleged AHT cases were based on a national register, covering 25 

consecutive years. 

The study has its limitations. Quite many patients/families identified with 

external hydrocephalus were not included in the neuropsychological testing 

(around 40 %), partly due to lack of time, and partly due to reluctance to 

participate. For the 71 that did not answer the quality of life-questionnaires 

(self-report or parent report), 17 patients were reported by their physicians to 

have relevant developmental or social problems. Whether or not our study 

group is biased in some direction for this reason is possible, but difficult to tell. 

A classification bias is also possible. First, head circumference registration 

sheets vary with nations and ethnic groups and are occasionally revised. The 

macrocephaly cut-off point also varies between earlier studies, from the 90th to 

the 98th percentiles (14, 16), meaning that a large head in Norway is not 

necessarily defined as a large head in another country. Second, no strict 

radiological criteria exist for external hydrocephalus. This applies when 

comparing our results with others, but it is also a possible internal bias in our 

study. We have used the original radiological interpretations (made by an 
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unknown number of different radiologists), without the possibility to secure 

‘inner’ consistency. 

The comparison of operated and non-operated patients is also susceptible to a 

selection bias. External hydrocephalus children with more ‘dramatic’ 

preoperative clinical signs and symptoms (e.g., very large heads, vomiting, 

sunset gaze, etc.) were probably more often selected for surgery. The 

distinction between external hydrocephalus and communicating 

hydrocephalus is difficult in a retrospective study as this. Some clinicians 

would probably define shunted external hydrocephalus patients in the latter 

group. However, as shown in paper 1 (Table 2), clinical signs of increased ICP 

were found in external hydrocephalus patients both with and without enlarged 

lateral ventricles. 

In some of the older cases of alleged AHT in the national registry study, the 

neuroradiology was lacking. Furthermore, CVT can be difficult to differentiate 

from subarachnoid blood clots on CT and could thus be underdiagnosed. 

However, no systematic bias is expected. 

  



 74 

 

  



75  

 

6 Conclusions 

 

• External hydrocephalus is a neuropediatric condition with an incidence 

of about 0.4 per 1000 births, and with a marked male preponderance. 

• Mean age at symptom debut (increased head circumference) is 3.4 

months. 

• Although most children do well, based on neuropsychological tests and 

quality of life evaluation, a non-negligible number of children report 

subtle neurocognitive and social problems. Especially school functioning 

seems problematic in external hydrocephalus children. 

• There is no evidence that treating external hydrocephalus with 

ventriculoperitoneal shunting improves long-term outcome. 

• Perinatal SDH could be a common initial cause of both external 

hydrocephalus and chronic SDH, based on similar neuroimaging, 

epidemiological and pathophysiological findings. This is important in 

the managing of infant SDHs, which are often considered to be AHT. 

• Existing knowledge does not support the hypothesis that 

neuroradiological signs of bridging vein thrombosis correlate with 

rupture of bridging veins, for instance through shaking/abuse. 

• A preexisting external hydrocephalus is common in infants with alleged 

AHT. It should be carefully considered in all such cases as SDH can 

develop without trauma in external hydrocephalus.  
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7 Further perspectives 

 

Our study as well as previous ones have shown that especially school 

functioning is difficult for some external hydrocephalus children. Awareness 

and if needed early educational intervention from parents and teachers could 

prove imperative for some of these children. A new, similar study as ours, but 

done prospectively, would give a more precise picture of long-term outcome as 

some biases are ruled out. 

Larger and longer lasting studies on the significance and development of 

perinatal SDH is important for further insight into the possible development of 

external hydrocephalus and chronic SDH. 

Larger, radiological studies could yield more information about the association 

between the amount of extra-axial fluid and long-term outcome. 

Hypothetically, a certain craniocortical width cut-off, head circumference 

growth rate, or other clinical criteria, could separate patients at risk of 

developmental problems from those who are not. 

The association between autism spectrum disorder and external hydrocephalus 

should be further investigated. An increased awareness about this connection 

could possibly lead to earlier intervention in high-risk patients.  
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abstract

BACKGROUND: Benign external hydrocephalus is defined as a rapidly increasing head circumference (occipitofrontal
circumference) with characteristic radiological findings of increased subarachnoid cerebrospinal fluid spaces on
neuroimaging. The incidence of benign external hydrocephalus has not been previously reported, and there is no
available information on the ratio of benign external hydrocephalus in the population of hydrocephalic children.
METHODS: This study is retrospective and population-based study, geographically covering two health regions in
the southern half of Norway with a total mean population of 3.34 million in the ten-year study period, constituting
approximately 75% of the Norwegian population. Children with a head circumference crossing two percentiles, or
greater than the 97.5th percentile, and with typical imaging findings of enlarged frontal subarachnoid spaces with
or without enlarged ventricles were included. Children were excluded if they had a history of head trauma,
intracranial hemorrhage, central nervous system infection, other known causes of hydrocephalus, or were born
preterm defined as birth before 37 weeks of gestation. RESULTS: A total of 176 children fitting the criteria were
identified, giving an incidence of 0.4 per 1000 live births. One hundred fifty-two (86.4%) of the patients were male,
and mean age at referral was 7.3 months. Increasing head circumference was the main reason for referral in
158 (89.8%) patients and the only finding in 60 (34.1%) patients. Thirty-seven (21%) children had normal ventricles
on imaging; the remainder had increased ventricular size. The incidence of pediatric hydrocephalus in Norway is
reported to be 0.75 per 1000 live births, thus benign external hydrocephalus accounts for approximately 50% of
hydrocephalic conditions in this population. CONCLUSIONS: The incidence of benign external hydrocephalus was
found to be 0.4 per 1000 live births in this population.

Keywords: benign external hydrocephalus, incidence, hydrocephalus, epidemiology, head circumference, macrocephaly
Pediatr Neurol 2017; 73: 36-41
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Introduction

Hydrocephalus is a relatively common neuropediatric
condition; the incidence is reported internationally as 0.36
to 0.75 per 1000 live births. In Norway the incidence has

been found to be 0.75 per 1000 live births.1 The most
up-to-date definition of hydrocephalus was agreed upon
internationally in 2010 and states that “Hydrocephalus is a
condition characterised by a dynamic imbalance between
the formation (production) and absorption of spinal fluid
that results in an increase in the size of the fluid cavities
within the brain and, in some situations, in an expansion of
the spaces outside the brain, with or without an increase in
the size of the ventricles.”2

Benign external hydrocephalus (BEH) is a subgroup of
hydrocephalus, which mainly occurs during infancy. It is
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defined as a rapid increase in head circumference (HC),
measured as occipitofrontal circumference (OFC), combined
with enlarged, usually frontal, subarachnoid cerebrospinal
fluid spaces on neuroimaging and normal or onlymoderately
enlarged ventricular system.3,4 For a review of the condition,
see Zahl et al.5 A rapidly increasing HC or a large head a are
most commonlywhat brings the infants tomedical attention.
Frontal bossing, dilated scalp veins, and a tense fontanel have
also been described, as well as irritability, hypotonia, and
developmental delay, most commonly gross motor delay;
language delay is also seen. The developmental delay and
hypotonia have been found to be generally transient, usually
normalizing over a period of one to four years.4-7 Neuro-
imaging findings generally also normalize over a few
years.

8
The disease has been regarded as benign and self-

limiting and is rarely treated.9-12

The incidence of BEH has not been previously reported,
and there is no available information on the ratio of BEH in
the population of hydrocephalic children. We aim to
determine the incidence of BEH in the general pediatric
population. We will also discuss clinical and neuroimaging
findings in the BEH population.

Materials and Methods

This study is a retrospective and population-based study, geograph-
ically covering two healthcare regions in the southern half of Norway
with a total mean population of 3.34 million in the 10-year study period,
constituting approximately 75% of Norway’s mean population of 4.44
million during the same period. The annual average of live births in the
health regions during the study period was 44,225.13

Norway is a sparsely populated country with a public three-level
hierarchical hospital structure, with local community hospitals as the
primary referral centers. Most counties have a central hospital with a
pediatric department as a secondary referral center. At the top, there are
four university clinics with a neurosurgical department, each serving a
geographically well-defined health region consisting of several counties.

Within the Norwegian medicolegal system infants have to be seen at
regular intervals at an outpatient mother-and-child health center.
Instructions with the legal authority of law are given by the Norwegian
health authorities; these regulate the activities of the health centers.
Consequently, it is mandatory for the parents to bring the child to the
local health center at certain intervals. Norwegian recommendations are
that the HC should be measured routinely at each regular visit to the
health center during the first year of life. According to these instructions,
all children with a rapidly increasing HC should be referred to a
specialist; for all practical purposes, all these children end up being
referred to and evaluated by the collaborating pediatric and neurosur-
gical departments in the regional hospital.

Rapidly increasing HC is defined as crossing two percentile curves on
the HC registration sheet, which is based on Norwegian reference values.

Diagnosis and treatment of the pediatric population in our two
regions were undertaken in the two regional neurosurgical departments,
Oslo University Hospital (Rikshospitalet) and Haukeland University
Hospital in Bergen. These two departments were responsible for the
pediatric neurosurgical service in the South-Eastern and Western
regions, respectively. Medical records at the two centers were searched
for relevant hydrocephalus diagnoses in the 10-year period from January
1, 1994 to December 31, 2003.

From the medical records information about age, gender, clinical
symptoms and signs, HC, and neuroimaging findings were recorded for
each patient.

Inclusion criteria included OFC crossing two percentiles or more, or
OFC greater than 97.5th percentile in the first year of life, and typical
neuroimaging findings. Children diagnosed after one year, but where
diagnostic clinical information from primary care existed before age
12 months, were also included in the study population (seven children,

4%). All the included children had been examined with neuroimaging
modalities allowing measurement of the subarachnoid/subdural space.
For most children who were referred from a lower level institution, the
neuroimaging was attached the referral documents andmergedwith the
regional hospital’s files.

Children were excluded if any of the following were identified:
history of head trauma, intracranial hemorrhage, central nervous system
infection, other known causes of hydrocephalus, or prematurity defined
as birth before 37 weeks of gestation.

The project was approved by the Regional Ethics Committee, the
Norwegian Social Science Data Service, and the Norwegian Directorate of
Health.

Results

Overall epidemiological results

A total of 176 children with BEH were identified in the
10-year period in the two regions. This finding gives an
incidence of 0.4 per 1000 live births (95% confidence
interval, 0.34 to 0.46).13 The incidence of pediatric hydro-
cephalus in Norway during the approximate same period
was 0.75 per 1000 live births.1 Thus the incidence of BEH is
approximately half that of all primary hydrocephalus in a
pediatric setting.

At birth, the patients had a slightly larger HC than in the
normal distribution (Figure). At referral, this deviation was
naturally much more marked, with most patients having an
HC greater than the 97.5th percentile.

There was a marked male preponderance in the BEH
population; 152 (86.4%) were boys. The corresponding
figure for all hydrocephalic children is 74% in the reasonably
matched population of Zahl et al.1 Approximately 51% of live
births in Norway are boys.13

Symptoms and clinical findings

The mean age at referral for investigation by specialist
care was 7.3 months (range 1.5 to 23 months, median
7 months). There was no difference in referral age between
genders. The main reason for contact with the health
service was a large and/or rapidly increasing OFC detected
during the routine measurements at the public health

FIGURE.
The graph shows that the head circumference (HC) for the study popula-
tion did not deviate much from the normal distribution at birth and that
the HC increase had occurred between birth and referral (mean age
7.3 months). BEH, benign external hydrocephalus.
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clinics (158 patients, 89.8%). Another three patients had
increasing OFC listed as an additional finding; thus a total of
91.5% of childrenwere referred with increasing HC as one of
the findings. In 68 (38.6%) children a large and/or rapidly
increasing HC was the only finding at referral. Other
symptoms and clinical findings are listed in Table 1. There
was no gender difference with regards to symptoms or
signs. Twenty-eight (15.9%) children had one or more
findings that could be related to increased intracranial
pressure (ICP) (sunset gaze, vomiting, lethargy, irritability,
bulging/tense fontanels, and/or splaying of sutures).

Neuroimaging

As increased subarachnoid space was used as a diag-
nostic criterion, this was present in all patients. There was
no grading used by reporting neuroradiologists.

A total of 37 (21%) children had normal ventricles
according to reporting neuroradiologists; the remainder
had some degree of ventricular enlargement. The degree of
ventricular enlargement was subjectively graded as mild
(39.6%) or moderate (11.5%), or was simply stated to be
increased without any attempts at grading (48.9%). There
was no statistically significant difference when clinical
findings were compared with ventricular enlargement
(Table 2).

Treatment of BEH

In total, 49 (27.8%) of the children with BEH were
treated surgically. Ventriculoperitoneal shunting was the
most common surgical procedure in 44 (89.8%) patients.
Other treatment options were endoscopic third
ventriculocisternostomy in three patients, whereas one
patient each was treated with subduroperitoneal or

lumboperitoneal shunts. Of the 28 children who had one
or more signs or symptoms that could be related to
increased ICP, 14 children were surgically treated. This
group of surgically treated patients constitute 28.6% of the
49 treated patients; thus 71.4% of the treated patients had
no symptoms or signs of raised ICP. A slightly lower
proportion of the surgically treated children had normal
ventricular size (18.4%); however, this is not statistically
significant (P ¼ 0.69).

Discussion

In this population-based study, we found the incidence
of BEH to be 0.4 per 1000 live births, constituting approxi-
mately 50% of all children diagnosed with hydrocephalus.
The incidence of BEH in a population has not been previ-
ously reported. There are therefore no numbers for direct
comparison with our findings. As will be discussed subse-
quently, establishing an exact, generally valid BEH
incidence is hampered by several factors: methods for
detecting infants at risk, as well as the differing clinical and
radiological criteria from one study to another.

The patients in our study were identified through
medical record searches in the two regional hospitals where
children fitting the criteria of BEH should all be referred to
following the national guidelines at local health centers.
Thus we cannot be certain that some children may not have
been identified or referred appropriately. However, with
Norway having mandatory health center visits in infancy
and firm guidelines for the referral of children fitting the
criteria, we believe the numbers of missed children to be
low, well within the range of the 95% confidence interval.

Previous attempts at establishing BEH incidence

Hamza et al.10 found BEH in 13 of 81 patients (16%) with
macrocrania in a group of children diagnosed with
low-densityfluid collections on computed tomography (CT).
Kendall and Holland14 also investigated CT images and
found enlarged cerebrospinal fluid spaces of no known eti-
ology in 14 of 500 CT image sets (2.8%). One retrospective
reviewof incidentalmagnetic resonance imaging findings in
a tertiary pediatric center found external hydrocephalus in
0.6% of imaged children.15 This study and other studies16-20

also include infants born prematurely (12% to 52%); in
these studies, however, the definition of prematurity differs
with a cutoff point of between 35 and 38weeks of gestation.
One study21 excluded premature children, as we have
done, but they did not include epidemiological data. Many
publications do not mention whether preterm infants are
included.6,11,17,22-24

TABLE 1.
Symptoms and Signs at Referral

Symptoms and signs* Number (176) %

Increased occipitofrontal
circumferency

161 91.5

Frontal bossing 37 21
Delayed development 31 17.6
Distended veins 29 16.5
Large heady 20 11.4
Abnormal/asymmetric head shape 19 10.8
Large/bulging fontanel/suture

diastasis
16 9.1

Hypotonia/head lag 13 7.4
Sunset gaze 10 5.7
Vomiting/retching 7 4
Other eye signsz 6 3.4
Crying 5 2.8
Hypertonia/hyperreflexia 4 2.3
Seizures/seizure-like activity 3 1.7
Torticollis 2 1.1
Lethargy 2 1.1
Irritability 2 1.1
Reflux 1 0.6
Poor weight gain 1 0.6
Dysmorphic facial features 1 0.6

* More than one per child.
y Subjective term from patient records.
z Includes poor vision, nystagmus, strabismus, not fixing and following.

TABLE 2.
Ventricular Size and Clinical Findings at Referral

Ventricle
Size

Increased intracranial
pressure*

Other Noney Sum

Normal 6 (16.2%) 18 (48.6%) 13 (35.1%) 37
Enlarged 22 (15.8%) 62 (44.6%) 55 (39.6%) 139
All patients 28 (15.9%) 80 (45.5%) 68 (38.6%) 176

* Includes sunset gaze, vomiting, lethargy, irritability, bulging/tense fontanels,
and splaying of sutures.

y Increased occipitofrontal circumference and/or large head only.
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One article16 included only children with normal or only
mildly dilated ventricles. Infants with signs of raised
ICP,11,16,19 abnormal neurological examination,25 or develop-
mental delay10,19 are also sometimes excluded, which implies
that the authors must have regarded BEH as a condition that
cannot yield such symptoms. It also means that the studies
cannot be easily and soundly compared.

Clinical criteria for the BEH detection and diagnosis

Mean referral age in our study is 7.3 months (range 1.5 to
23 months). This study compares well with other studies
where referral age or age at diagnosis ranges from 6.5 to
8.9 months.6,16,18,20 The age at which infants are diagnosed
is determined by several factors. One such factor is the onset
of clinical symptoms and signs. Many children present with
an increase in HC, often with few, if any, other clinical
findings. Early detection because of increased HC is
probably facilitated by routine measurements. Thus one
may expect such routines to influence the detection of the
condition. The most commonly reported symptoms and
signs apart from increased head OFC that lead to
investigations and ultimately the diagnosis of BEH are
seizures,26-28 delayed psychomotor development,27,28 and
signs of increased ICP such as tense or large fontanels.27

Pediatric hydrocephalus is more common in the male
population; this is even more so for the subgroup of
hydrocephalic children with BEH. In various studies, the
male preponderance ranges from 52% to 80%.4,6,12,18-21 In
our study, the gender distribution is even more skewed,
with 86.4% boys. Study populations are, however, generally
small compared with our study, some have less than 10
patients included, making direct comparison difficult.6,7,29

From our results, we find that for those where OFC at
birth was registered (153), the OFC was slightly higher
than in the normal population at birth, with 71.9% having
an HC greater than fiftieth percentile, 20.3% greater than
the ninetieth percentile, and 9.2% greater than the 97.5th
percentile. This finding compares well with Halevy et al.16

who found an average at birth at the fifty-eighth percentile
and the results of Hellbusch17 who found that most had
OFC between the fiftieth and the ninety-eighth percentiles.
Laubscher et al.18 found that 12 of 21 patients (57%) of
their group with dilated pericerebral subarachnoid space
had an HC of greater than the ninetieth percentile at birth.
Thus there is a trend toward larger OFC at birth in children
who later develop BEH, but still most of the children with
BEH had HCs within the normal range at birth. At diag-
nosis the HC distribution had become much more skew-
ered in the BEH population. In our study, 65.9% of children
had an OFC greater than the 97.5th percentile (mean age
7.3 months). This finding compares well with 50% greater
than the ninety-eighth percentile at a mean age
seven months in Hellbusch’s study and mean OFC at the
79.5th percentile at a mean age 5.8 months (Halevy
et al.).16 The present study is the largest to date showing
this relatively dramatic increase in HC from birth to
diagnosis.

BEH can also be diagnosed due to excessive head growth
alone, even if the OFC still is within the normal range. In
Norway, rapidly increasing HC is defined as crossing at least
two percentile curves on the national HC registration

charts.1 There have also been published examples of BEH in
microcephalic children.30

Throughout theworld there are different percentile charts
in use, our Norwegian population was studied using the
growth charts that were introduced in the 1980s.31,32 Many
use the World Health Organization charts, which are based
on data from Norway, Brazil, Ghana, India, Oman, and the
United States. However, they have been shown to be at
variance compared with national or regional OFC growth
references.33-36 As these studies have shown, the use of
standard OFC charts that are not based on regional/national
populations may cause variations in the registered incidence
of hydrocephalus, including BEH.

In the studies of BEH, the cutoff value used in the diag-
nosis of macrocephaly varies from the ninetieth to the
ninety-eighth percentile4,10,14,17,18,25,37; in our study, we
have used the 97.5th percentile as the cutoff point. As
discussed previously, the use of different percentile charts
and differing cutoff values will certainly have impact on the
incidence of BEH in a population.

Radiological criteria for the BEH diagnosis

In this study, the children were examined with
ultrasound, CT, or magnetic resonance imaging. Many were
investigated with more than one imaging modality. In most
instances, the subarachnoid space is simply reported as
increased by the neuroradiologist, with no exact measure-
ments given. Several studies on the different imaging
modalities have been done to evaluate what the normal
range of subarachnoid space is in infants. The three most
common measurements evaluated are sinocortical width
(SCW), craniocortical width (CCW), and interhemispheric
distance (IHD). SCW was introduced by Govaert et al.38 and
is defined as the shortest distance between the lateral wall
of the triangular superior sagittal sinus and the surface of
the adjacent cerebral cortex. The CCW is the shortest
vertical distance between the calvarium and the surface of
the cerebral cortex, whereas the IHD is defined as the
widest horizontal IHD. Measurements are taken on coronal
views, at the level of the foramen of Monro.39,40 These
distances vary with the infant’s age with an increase in
normal subarachnoid space during the first year of life,
peaking at approximately seven months, with a gradual
decrease thereafter.40,41 Depending on the imaging
modality chosen, the age of the child and the selection of
study populationwith regards to OFC, the upper limit above
which the CCW is likely to be abnormal, ranges from 4 mm
to 10 mm.4,23,39,41,42 The corresponding ranges for SCW are
2 mm to 10 mm and for IHD 6 mm to 8.5 mm. However, no
validated normal values exist and thus the cutoff values
may differ between radiologists. As the increased sub-
arachnoid space is one of the diagnostic criteria for the
diagnosis of BEH, this has implications for whether a child is
diagnosed with BEH; thus the incidence in a population
depends to some degree on the cutoff value used by radi-
ologists. This lack of uniformity also applies to the present
study, as the definitions of abnormal distances most prob-
ably varied between the describing radiologists.

Lateral ventricle size is generally defined as normal or
only moderately enlarged in BEH. However, this definition,
which is stated in many publications, does not seem to be
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supported by findings in those same publications where
reported ventricle size ranges from normal to gross
dilatation. The degree of dilatation of lateral ventricles has
been found to be roughly proportional to the width of the
frontal subarachnoid space.21 Ventricular dilatation, when
it occurs, also seems to be a later finding than enlarged
subarachnoid spaces.43

BEH versus idiopathic communicating hydrocephalus

BEH and other forms of idiopathic communicating
hydrocephalus may very well be part of a spectrum of
hydrocephalus,3,27 and a clear distinction between the two
is difficult to make in a retrospective study such as this one.
One clear limitation of this study is that we cannot, at least
in our group of treated children, be certain of this distinc-
tion between BEH and communicating hydrocephalus, as a
proportion of the patients had signs and symptoms of raised
ICP and/or enlarged ventricles. However, patients with
communicating hydrocephalus are generally believed to be
in need of surgical treatment, and most patients in our
study with signs or symptoms of raised ICP and/or ven-
tricular dilatation did not receive any surgical treatment.

The present study is the first to describe the incidence of
BEH in a relatively large and well-defined population, with
the limitations discussed previously. As most of the
included children were detected by a mandatory regime of
repeated routine HC measurements, we believe the figures
reported here to be fairly representative.

Conclusions

BEH is the most common hydrocephalic condition in
young children; it is also one of the least studied, which
might be attributed to its assumed benign course. Our
findings suggest that the incidence of BEH is approximately
half the incidence of primary pediatric hydrocephalus in
reasonably comparable populations. Because of the lack of
studies of this condition, there is also no clear knowledge of
diagnostic criteria or the correct treatment, if any. We
suggest that the routine well-child clinic may help identify
this group of patients. Any child found on routine follow-up
to have a rapidly increasing OFC, or macrocephaly, should
be referred on to the nearest pediatric department for
clinical examination and imaging.

Data from other populations, and data including sub-
groups such as premature infants, would be helpful to
validate our epidemiological findings in BEH.

This study was supported by a grant from the Grieg Foundation, Bergen, Norway.
S.M.Z. was supported by a PhD grant from the Western Norway Regional Health
Authority, project no. 911439.
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a b s t r a c t

Background: Benign external hydrocephalus has an incidence of about 0.4 per 1000 live births. It affects
infants and is characterized by an increasing head circumference and typical neuroimaging findings.
Previously published studies on benign external hydrocephalus often contain groups of few and selected
patients.
Methods: This is a follow-up of a recently published article reporting the incidence of benign external
hydrocephalus. This retrospective and population-based study covers two large health regions in Nor-
way, over a 10-year period (1994 to 2003). Infants with increasing head circumference, combined with
typical radiological findings of enlarged subarachnoid spaces, were included. Information about head
circumference development, neuroimaging findings, and birth delivery methods, as well as demographic
details, was retrieved from the hospital medical records.
Results: A total of 176 children with benign external hydrocephalus were included, 86.4% being boys. At
birth, the head circumference was close to normal. Mean age for when the head circumference reached
abnormal values, i.e., crossing two percentiles or reaching the 97.5 percentile, was 3.4 months; none was
older than seven months. Around four of five children had dilated lateral ventricles in addition to
enlarged subarachnoid spaces. The neuroimaging findings tended to normalize after age 12 months.
About half of the patients ended up with head circumferences at or above the 97.5 percentile.
Conclusions: Most infants with benign external hydrocephalus are born with a normal head circumfer-
ence that increases too fast and reaches abnormally high values before age six months. This age and
gender distribution is very similar to that described for infant subdural hemorrhage.

© 2019 Elsevier Inc. All rights reserved.

Background

Benign external hydrocephalus (BEH) is a relatively common
pediatric condition with an estimated incidence of about 0.4 per
1000 live births and with a marked male preponderance.1 This
condition occurs during infancy and is characterized by a rapidly
increasing head circumference (HC) combined with typical neu-
roimaging findings of increased subarachnoid cerebrospinal fluid

spacesdespecially overlying the frontal lobesdand normal or
enlarged ventricles.2-7 For an extensive review of the condition, see
Zahl et al.2

Many other terms have been used for this or similar conditions,
such as “subdural effusion,”8 “subdural hygroma,”9 “extra-
ventricular obstructive hydrocephalus,”10 “benign subdural collec-
tions,”11 “benign enlargement of the subarachnoid spaces,”12,13

“primitive megalencephaly,”14 and macrocephaly.15 The condition
is referred to as BEH in the following discussion.

The main sign leading to medical attention is increasing HC,
although other symptoms and signs have been reported, such as a
tense anterior fontanel,16,17 dilated scalp veins,3 irritability,6,18 gross
motor delay,12,19 and seizures.20,21

* Communications should be addressed to: Zahl; Department of Ear, Nose and
Throat Aalesund Hospital; Aalesund N-6026, Norway.
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FIGURE 1. Norwegian head circumference registration sheets used at the time of the study. Hodeomkrets ¼ head circumference, shown in centimeters along the Y axis. The X axis
shows the age in months. Black arrows mark the age one month. (A) An infant boy with gradually increasing HC after birth, with rapid growth around age three months, thereafter
stabilizing at a high percentile. (B) This boy had a fairly late HC growth spurt, most rapidly around the age five to six months. Of notice is also a significant decrease in HC in the first
two months, possibly due to a temporary head swelling after birth. (C) Infant boy referred at age 5.5 months. The HC chart shows rapid growth even at an early age (before
two months). The color version of this figure is available in the online edition.
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In addition to reporting the incidence of BEH, our previous
population-based study showed that the HC was close to normal at
birth and that increased or enlarging HC was the main cause for
referral.1 We also found that approximately one-fifth of the chil-
dren had normal ventricles on neuroimaging, whereas the
remainder had increased ventricular size at diagnosis.

The aim of this study is to explore in detail when the head
growth becomes abnormal, by collecting information frommedical
journals and HC growth charts. In addition, we report some infor-
mation about radiological outcome.

Methods

This is a retrospective and population-based study, covering two
well-defined health care regions in Norway with a mean total
population of 3.34 million during the 10-year study period from
1994 to 2003; this constitutes about 75% of Norway's mean popu-
lation during this period. Norway has a regionalized public health
care system; within this system only two regional neurosurgical
departments (in Oslo and Bergen) dealt with all pediatric neuro-
surgical conditions in these two regions. Medical records at these
centers were searched for relevant hydrocephalus diagnoses. In-
formation about age, gender, symptoms, clinical signs, neuro-
imaging, and HC development were collected for each patient. The
radiological data are based on the radiologists' original reports;
hence this is not a retrospective imaging study.

Inclusion criteria included HC above the 97.5th percentile or an
HC crossing two or more percentiles during the first year of life,
together with neuroimaging findings typical of BEH. Children with
histories of head trauma, intracranial hemorrhage, central nervous
system infection, other known causes of hydrocephalus, or pre-
maturity (born before 37 weeks' gestation) were all excluded.

For further information about the study and selection methods,
see Wiig et al.1

The study was approved by the Regional Committee for Medical
Research Ethics.

Results

A total of 176 children (152 boys and 24 girls) matched the in-
clusion criteria for BEH during the study period; 44 (25 %) of the
children required a ventriculoperitoneal shunt.1

Onset of sign was defined as the age at which the infant's HC
curve crossed two percentiles or exceeded the 97.5 percentile.
Detailed data for HC development were available for 107 children.
Figure 1 shows the HC registration sheets for three infants.

Mean age of sign onset was 3.4 months (median 3.0 months,
range 0 to 7.0 months). Mean age of onset for girls was 2.9 months
(n ¼ 14), and for boys, 3.5 months (n ¼ 93). None of the 107 infants
had sign debut after age seven months (Fig 2). The mean age for
referral to our hospitals was 7.3 months, and the main reason for
health service contact was a large or increasing HC.1

Twenty-one children (11.9 %) were delivered by Caesarean sec-
tion, and two children had assisted deliveries (forceps and vacuum
extraction). Thirteen children (7.4 %) were twins, but in no cases did
the other twin develop BEH. Most of the twins (i.e., 11 of 13) were
boys; unfortunately, we do not know the gender of the sibling
twins.

For 28 of the 176 patients we had no information regarding the
development of HC or radiology apart from what was found at the
first hospital consultation. For the remaining children follow-up
information existed to a varying degree.

Neuroimaging: follow-up

Detailed information about radiology findings before age
12 months existed for 123 of the patients. They were all found to
have excessive extracerebral fluid; 100 of these also had dilated
ventricles (exact size not described). Figure 3 shows the magnetic
resonance imaging of one of our patients with BEH.

For 77 infants we found reports on neuroimaging follow-up
beyond age 12 months. In 57 of these, increased subarachnoid ce-
rebrospinal fluid spaces were persisting, and 47 also had dilated
lateral ventricles. Eight children had dilated lateral ventricles only,
and in 12 patients the intracranial radiological findings were
described as normal. Mean age at the final radiological examination
for those who were followed-up beyond age 12 months was
21.7 months (median 18 months, range 12 to 104 months).

For 66 children we had information about neuroimaging both
before and after age 12 months. Figure 4 gives a flow chart showing
the development of radiological findings in these patients. As we
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FIGURE 2. Bar graph showing sign onset, i.e., when the infants' HC became abnormally
large. Onset was defined as the age at which the infant's HC crossed two percentiles or
exceeded the 97.5 percentile. No patient had sign onset after age seven months. Please
note that a small fraction of the infants showed an increased HC at birth or shortly
thereafter. Detailed information about HC development was available for 107 of the
patients (n ¼ 107).

FIGURE 3. Magnetic resonance image of a 6.5-month-old boy (the same as in Fig 1A),
referred because of increasing head circumference. The image shows enlarged frontal
subarachnoid spaces, moderately increased lateral ventricles, and a widened frontal
interhemispheric fissure.
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did not have access to the actual imagesdonly the radiologists'
interpretationsdno exact numbers of size changes are available.

Head circumference: follow-up

For 106 childrenwe had information about the HC development
after age 12 months. Mean age at the final HC measurement for
these children was 28 months. Of these children, 55 (52%) had a
final HC at or above the 97.5 percentile. The mean age for the final
measurement for these infants was 26 months. For the majority of
these 55 children, the HC percentile stayed the same or decreased,
whereas for 13 (24 %) the HC percentile continued to increase after
age 12 months.

Discussion

This study is a follow-up and extension of our article from 2017,1

based on the same population and study group.
Themajority of patients had dilated lateral ventricles in addition

to excessive extracerebral fluid on neuroimaging. This corresponds
with earlier publications. Although we do not know when the
excessive fluid begins to accumulate in each patient, it appears
reasonable to assume that this coincides with the HC increase, i.e.,
sometime before age six months. For the long-term radiology, our

results suggest that the excessive extracerebral fluid disappears
earlier than the excessive intraventricular fluid.

In our selection of patients, we chose to exclude patients born
prematurely or with a diagnosis of intracranial hemorrhage. We
believe this was a mistake, as prematurity has been showed to be
associated with BEH22 and BEH is known to be complicated by
subdural hematoma (SDH).23,24 Thus these exclusions probably
deprived us of valuable information about BEH in these groups of
infants. Exact numbers for the excluded patients are not available.

Our results show that at least half of the patients will end up
with large heads beyond infancy.We know from our previous study
that HC at birth was close to normal.1 As shown in Fig 2, the in-
crease in HC typically occurs during the first six months of life, with
a mean age of 3.4 months for sign onset. The mean age at referral
for investigation by specialist was 7.3 months.1 Thus the mean in-
terval from sign debut to specialized medical evaluation was about
four months.

This age distribution of BEH is strikingly similar to the distri-
bution of infant SDH, which has a peak incidence during the first
fewmonths of life.25-27 This also seems to be the case with themale
preponderance (86.4% boys), a gender distribution similar to that of
infant SDH.25-28 These similarities in age and gender distribution
may not be coincidental, as BEH is a known risk factor for devel-
oping SDH.13,29,30 It is also somewhat intriguing that infants

FIGURE 4. Flowchart that groups infants with neuroimaging both before and after age 12 months, according to the original radiologist's analysis. Number of patients mentioned
below the description.
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diagnosed with abusive head trauma show an almost identical age
and gender distribution to the one found for BEH.31,32

Financial support: S.M.Z. was supported by a PhD grant from the
Western Norway Regional Health Authority, project no. 911439.)
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Abstract
Introduction Benign external hydrocephalus (BEH) is characterized by too rapidly increasing head circumference in infants,
combined with typical neuroimaging findings. Psychomotor developmental delay is typically seen during the first few years of
life; after that, the children’s development assumedly normalizes. However, little is known about the long-term effects of BEH.
Methods In this retrospective population-based study, children diagnosed with BEH during the years 1994–2003 in Southern
Norway were asked to participate. Included patients (age 8–18 years old) and their parents answered the PedsQL questionnaire.
The patient’s family physicians contributed by giving information from medical records, with special emphasis on developmen-
tal, cognitive, and social function.
Results One hundred seventy-six children were identified with BEH. One hundred three patients and 86 parents completed the
PedsQL questionnaire. Supplemental medical information for 142 of the patients was received, mainly from their family
physicians. Children and adolescents with BEH score themselves better than the normative mean on health-related quality of
life, while the parents score their BEH children within the normative mean, except for the school functioning subgroup, where
they score significantly lower. Various developmental, physical, and social problems are reported, like mental retardation, speech
problems, epilepsy, motor impairment, psychiatric disorders, and cognitive difficulties. Among these patients, there is a discrep-
ancy in some areas between the child-reported and parent-reported quality of life.
Conclusions Children and adolescents who were diagnosed with BEH during infancy generally do well. However, for some
patients, there appear to be various developmental, social, and cognitive problems, and they seem to struggle more in school than
their healthy peers.

Keywords Benign external hydrocephalus (BEH) . Quality of life . Neuropsychology . Psychosocial function . Macrocephaly .

Outcome studies

Introduction

Benign external hydrocephalus (BEH) is a condition in infants
with an incidence of about 0.4 per 1000 live births [30]. It is
defined as a rapid increase in the head circumference, typically
around the age of 6 months [32]. Radiologically, three neuroim-
aging features characterize the condition: enlarged subarachnoid
spaces—especially overlying the frontal lobes, normal or mod-
erately enlarged ventricles, and a typical widened frontal inter-
hemispheric fissure [2, 13]. Many other symptoms are described,
all shared with Bordinary hydrocephalus,^ e.g., frontal bossing,
dilated scalp veins, hypotonia, and developmental delay.
However, these symptoms have been regarded as transient, to-
gether with neuroimaging findings. Hence, the condition has
been described as being benign, and therefore rarely treated.
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Many other terms have been used for the same and similar
conditions, such as subdural hygroma/effusion/collection [4,
10, 22], primitive megalencephaly [11], or benign enlarge-
ment of the subarachnoid spaces—BESS [15, 27]. For sim-
plicity, the condition will be referred to as BEH in this article.

Few articles have been published on long-term effects of
BEH [11, 16, 17]. Only one of these included children who
were shunted [16]. Generally, children and adolescents with
BEH show subtle neurocognitive difficulties, but the results
do vary. Muenchberger et al. reported problems for some pa-
tients, especially in school [17]. Laubscher et al. found one
patient with mental retardation and several children who were
clumsy or delayed in language at school age follow-up [11].
One study found that children with BEH report slightly re-
duced quality of life [31].

This article is a follow-up and extension of our study from
2017 [16]. We present follow-up information from the pa-
tient’s family physicians regarding different problems and di-
agnoses considered relevant, together with self-reported, and
parent-reported health-related quality of life.

Methods

This is a population-based retrospective study of children di-
agnosed with BEH during infancy. Medical records of all
children referred to two Norwegian university hospitals dur-
ing the study period (1994–2003) were reviewed and consid-
ered for inclusion. These hospitals are the only referral centers
for neurosurgery for about 3.34 million people (75% of
Norway’s population). For a thorough and relevant descrip-
tion of Norway’s health system, see Wiig et al. [30]. Only
children with BEH (increased or increasing head circumfer-
ence and typical neuroimaging findings) were included.
Inclusion criteria were head circumference greater than the
97.5th percentile or crossing two percentiles during the first
year of life, and typical neuroimaging findings. From the med-
ical records, information about age, gender, clinical symptoms
and signs, neuroimaging, treatment, and follow-up were col-
lected. The patients and their families were invited by a letter
to join the study.

Exclusion criteria: a history of head trauma, intracranial
hemorrhage, CNS infection, prematurity (birth before
37 weeks of gestation), and other known causes of
hydrocephalus.

Consenting patients and parents filled out the Pediatric
Quality of Life Inventory (PedsQL) questionnaire. PedsQL
is a health-related quality of life measurement tool with good
reliability and validity [28], translated and validated for use
also in Norway [21]. It generates a total score and further
consists of four subscales: physical function, emotional func-
tion, social function, and school function. We present raw
scores as means and compare them with the normative mean

[21]. To be clinically significant, scale score is 70 or lower [9].
Results are presented as raw scores and compared with nor-
mative data when available.

In Norway, all inhabitants have been registered with a fam-
ily physician that provides primary health care and receives
reports from medical specialists involved with their patients.
We contacted the family physician of every included patient
and received medical records. Information from the records
about the patient’s health, with an emphasis on developmen-
tal, cognitive, and social status, was collected and categorized.

The study was approved by the Regional Committee for
Medical Research Ethics.

Results

One hundred seventy-six children were identified with BEH
during the 10-year period. One hundred fifty-two (86.4%)
were boys. For further demographic details, see Wiig et al.
[30]. Forty-nine (27.8%) of the children received surgical
treatment for their hydrocephalus, but information about spe-
cific surgical indication was not available for each individual
patient. For further information about differences in outcome
for treated versus untreated patients, see Mikkelsen et al. [16].

Eighty-eight teenagers (age 13–18 years) and 15 children
(age 8–12 years) answered the PedsQL questionnaire. Eighty-
six parents completed the corresponding parent version of
PedsQL. Table 1 shows the PedsQL scores from the parent
(proxy) and self-report questionnaires. They are compared
with the normative means [21] using a one-sample t test. For
the parent reports, only the school score was significantly
lower than the normative mean, while the other subscores
and total score were lower but not significantly so. The self-
reported total scores and all subscores were significantly
higher than the normative mean.

When differing between children and teenager PedsQL
scores and their respective parents, the results were no differ-
ent from those reported in Table 1. This applies to both total
score and subscores.

For a total of 142 (81%) of the patients, we received med-
ical information from their family physicians. We also re-
ceived follow-up hospital records for some of the patients.
For 38 of these 142 patients, clinically relevant problems were
reported. Table 2 summarizes this and shows the correspond-
ing parent- and self-reported PedsQL with mean total scores
for those patients where these were available. The number of
patients is small, but in general, the parent scores are lower
than the self-reported scores, and some scores are also lower
than the clinical cutoff score. For the remaining 104 patients
(of 142), the physicians/hospitals reported no relevant
problems.

Information regarding the 71 patients who did not answer
the quality of life questionnaire (self-report nor parent-report)
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was also explored. Thirty-seven were reported by physicians
and hospitals to have no relevant problems. For 17 patients, no
supplemental information existed. For the rest (17 patients),
various problems were described, as reported in Table 2.

Discussion

The purpose of this study was to investigate the long-term
effects of BEH. Mikkelsen et al. reported that children with
BEH show subtle neurocognitive difficulties [16]. Our study
population includes some of the same patients. Most children

with BEH seem to do quite well during late childhood and
adolescence, yet some children report difficulties.

As shown in Table 1, BEH children score within the nor-
mative values on the total score on health-related quality of
life. Only school-functioning scores were significantly lower
than the normative mean, but only by parent reports. In gen-
eral, the children and adolescents score themselves above the
normative mean, and the parents score their children slightly
below the normative mean. The results were not different
when children (8–12 years) and adolescents (13–18 years)
were analyzed separately. It seems that the parent scores better
reflect the clinical conditions.

Table 1 Self- and parent-reported health-related quality of life using the
PedsQL questionnaire. Means are compared with normative means using
a one-sample t test (level of significance p < 0.05). For the parent reports,

school score is significantly lower than the normative mean. For the self-
reports, both total score and all subscores are significantly higher than the
normative mean

One-sample t test

PedsQL parent report N Mean (SD) Min-max t (df) p Normative mean [21]

Total score 86 83.39 (17.31) 33.70–100 −1.45 (85) 0.150 86.10

Physical health 86 88.83 (16.45) 31.25–100 0.00 (85) 0.998 88.83

Emotions 86 79.83 (20.62) 15.00–100 −0.07 (85) 0.945 79.98

Social 86 83.97 (23.56) 0.00–100 −1.61 (85) 0.112 88.05

School 84 78.27 (20.11) 30.00–100 −4.87 (83) 0.000 88.97

PedsQL self-report N Mean (SD) Min-max t (df) p Normative mean [21]

Total score 103 89.85 (9.20) 57.61–100 5.04 (102) 0.000 85.29

Physical health 103 93.60 (8.46) 56.25–100 2.98 (102) 0.004 91.12

Emotions 103 85.70 (14.66) 40–100 5.92 (102) 0.000 77.15

Social 103 93.98 (9.27) 60–100 6.42 (102) 0.000 88.12

School 102 83.70 (14.47) 40–100 3.96 (101) 0.000 78.02

Table 2 For 142 patients, we received medical information from
physicians and hospitals. Thirty-eight of these reported problems/
conditions (often more than one) are shown in this table. The table also

shows the corresponding PedsQL scores for those patients where we had
this information and the amount of shunted patients

Reported problems No. of
patients

Percent of
reported patients

No. of
shunted patients

Mean PedsQL self-report
score (N)

Mean PedsQL parent report
score (N)

Delayed speech 13 9.2% 6/13 84.1 (5) 75.4 (5)

Social behavioral problems 12 8.5% 7/12 85.1 (6) 57.6 (8)

Motor impairment 11 7.7% 5/11 81.0 (6) 75.4 (5)

Mental retardation* 8 5.6% 6/8 94.0 (2) 40.6 (3)

Concentration problems 8 5.6% 2/8 81.5 (7) 75.4 (5)

Cognitive deficits 7 4.9% 4/7 83.4 (4) 48.4 (2)

Epilepsy 7 4.9% 3/7 81.0 (4) 67.6 (5)

ADHD/ADD 6 4.2% 2/6 72.8 (2) 53.3 (3)

Autism spectrum disorders 5 3.5% 1/5 57.6 (1) 57.4 (4)

Anxiety and depression 5 3.5% 0/5 83.7 (3) 68.1 (3)

Dyslexia 4 2.8% 3/4 90.2 (3) 79.9 (2)

*The eight patients with mental retardation are also contained in other groups: speech problems (four of the eight mentally retarded patients); motor
impairment (four patients); epilepsy (two patients); autism spectrum disorders (two patients); cognitive deficits (two patients); social behavioral problems
(three patients)
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As found in our previous study [16], the only functional
area BEH patients seem to struggle on a long-term basis is in
school although they do not seem to perceive that themselves.
Whether this discrepancy is due to a deficient self-knowledge
in children or parental bias towards Bexpected^ problems re-
mains uncertain. There was no difference in PedsQL scores
when differing between children and adolescents, and the cor-
responding parent scores. This observation shows that increas-
ing age not necessarily implies a more Brealistic^ view on the
quality of life.

The divergence in the PedsQL score for school functioning
should be the target for future research, for instance with a
prospective longitudinal study of this patient group.

Physician-reported problems are shown in Table 2. Some
report rather serious conditions, often more than one per child.
These patients have no other known causes for their problems.
We have no established control group; hence, it is difficult to
draw conclusions.

Mental retardation

The overall prevalence of mental retardation in a Norwegian
population study was 6.2/1000 [24]. One previous study de-
scribes mental retardation in eight out of 74 patients with BEH
and/or megalencephaly [11]. Six of the eight patients with
mental retardation in our material had been treated with a
shunt. This could reflect a slightly different clinical condition,
with more pronounced symptoms leading to shunt surgery,
possibly due to a higher ICP, and hence, a larger risk of serious
brain damage (mental retardation). Mental retardation is a se-
rious condition that brings about several symptoms. For that
reason, some of these patients will also be reported in other
groups: speech problems (four of the eight mentally retarded
patients); motor impairment (four patients); epilepsy (two pa-
tients); autism spectrum disorders (two patients); cognitive
deficits (two patients); social behavioral problems (three
patients).

Speech problems

The delayed speech was reported in quite a few of our pa-
tients, this has been described in earlier studies, but usually
in one or very few patients [3, 8, 19]. Yew et al. reported that
six of their 72 patients had verbal deficits detected late during
follow-up and not at diagnosis [31]. Unfortunately, we have
insufficient information about the degree or duration of speech
problems in our study group.

Motor impairment

Motor impairment/clumsiness was seen in around 6% of pa-
tients where we had reliable health information. Additionally,
we found that 14 out of the 133 children (10.5%), who later

had normal motor development, showed a temporary delay in
motor skills typically before 3 years of age. This corresponds
well with earlier studies [2, 17, 31]. Delayed gross motor
function is described also on a long-term follow-up [8, 18,
19]. For the patients where we also had the quality of life
reports, the PedsQL physical subscores did not differ signifi-
cantly from total score, or between patients and their parents.

Epilepsy

Epilepsy is reported in some patients. Both seizures during
childhood and abnormal electroencephalograms have been
reported in infants with BEH [5, 20]. To our knowledge, no
earlier studies have reported this as a permanent long-term
finding in older children. We do not know the severity of
epilepsy in our patients, but the incidence seems higher than
in the general population [26].

Autism spectrum disorders

Autism spectrum disorder was found in five of our patients (all
boys). This seems to be a higher incidence than in the general
Norwegian pediatric population [25]. The authors of a recent
study, using repeated magnetic resonance imaging scans, pro-
pose that extra-axial fluid that persists from infancy and be-
yond 12–24 months of age could be a possible biomarker for
the early detection of an autism spectrum disorder risk [23].
Our results may support this possibility.

Psychiatric disorders

Psychiatric disorders like ADHD (six patients) and anxiety and
depression (five patients) have rarely been reported before, prob-
ably because very few studies have a long enough follow-up for
such symptoms to appear. Muenchberger et al. describe one pa-
tient with depression and two with panic attacks, one of them is
also diagnosedwith hyperactivity [17]. The overall prevalence of
mental disorder for this age group in Norway is about 7% [7].
Whether or not our patients were formally diagnosed by special-
ists are unknown. Based on this and our limited number of pa-
tients, we have no reason to suspect that BEH is an important risk
factor for developing psychiatric disorders.

Learning disabilities

Some patients display various learning/cognitive problems
(Table 2). To our knowledge, only two studies have reported
school functioning in children with BEH. Muenchberger et al.
found that eight of 15 patients had to repeat grades or attend
special classes [17]. Laubscher et al. found that 11 of 12 chil-
dren had a normal school outcome [11]. The PedsQL results
presented earlier support the belief that BEH is associatedwith
a higher risk of problems in school.
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Social behavioral problems

Social behavioral problems are commonly reported (Table 2).
Although unspecific, it seems to have a significant impact on
the quality of life, as reported by parents. When looking at the
five patients with reported social behavioral problems where
we have PedsQL scores from both patients and parents, four
of five parents report significantly lower values on the
PedsQL social subscores than their children (difference range
15–55). It seems that children with social behavioral problems
have reduced self-awareness regarding this. As mentioned
earlier, three of these patients were found to be mentally re-
tarded.

When looking at patients with reported PedsQL scores of
less than 70, i.e., indicating clinically significant problems for
whom supplemental information exists, the medical reports
confirm various developmental, cognitive, and social
problems.

This study has its limitations. A high number of patients
(41%) and parents (51%) did not answer the quality of life
questionnaire. This was explored by looking at patients where
we did not receive PedsQL answers but did receive supple-
mental information from family physicians or hospital medi-
cal records, and we found quite a few patients with various
problems (as reported in Table 2). This shows that our report-
ed PedsQL scores probably are unnaturally high, as conditions
like these most likely will cause lower quality of life scores. It
is possible that some parents with concern about their child’s
development and well-being have preferred not to answer the
quality of life questionnaire, and children with difficulties and
problems find it too painful. The reason for the difference
between child self-reports and parent proxy-reports is debated.
It has been demonstrated that levels of agreement can be af-
fected by child age and development, domains investigated,
and the parent’s own quality of life [6].

Another limitation is our decision to exclude prematurely
born infants and children with subdural hematomas.
Prematurity is a risk factor for developing BEH [1, 8].
Subdural hematoma is a known complication to BEH, even
without a head trauma [12, 14, 29]. In retrospect, we believe
this deprived us of patients who could have enlightened our
knowledge about long-term effects.

Conclusions

Patients with BEH generally seem to do well as they grow
up. They report a normal quality of life except for school
functioning were some of the children seem to struggle
more than their peers do. In addition, various medical,
social, and cognitive problems are reported for some of
the patients.
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1  | BACKGROUND

Benign external hydrocephalus (BEH) is the term widely used for 
a neuropaediatric condition with intracranial, extra‐axial fluid col‐
lections. Most often the condition is defined as a combination 
of a clinical macrocephaly that is increased or rapidly increasing 
head circumference, and typical neuroimaging findings of enlarged 

subarachnoid or subdural spaces, especially over the frontal lobes, 
prominent interhemispheric fissure, and normal or slightly enlarged 
lateral ventricles.1 The distinction between subarachnoid and sub‐
dural spaces may be difficult, especially on CT imaging, but often 
also on MRI.

Given the criterion of a clinically detected large head and/or 
pathologically accelerated growth, together with the neuroimaging 

 

Received:	22	May	2019  |  Revised:	29	September	2019  |  Accepted:	21	October	2019
DOI:	10.1111/apa.15072		

R E V I E W  A R T I C L E

Examining perinatal subdural haematoma as an aetiology of 
extra‐axial hygroma and chronic subdural haematoma

Sverre Morten Zahl1  |   Knut Wester2,3 |   Steven Gabaeff4

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution‐NonCommercial‐NoDerivs	License,	which	permits	use	and	distribution	in	
any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
©	2019	The	Authors.	Acta Paediatrica	published	by	John	Wiley	&	Sons	Ltd	on	behalf	of	Foundation	Acta	Paediatrica.

Abbreviations:	BEH,	benign	external	hydrocephalus;	SDH,	subdural	haematoma;	CSF,	cerebrospinal	fluid;	MRI,	magnetic	resonance	imaging.

1Department	of	Ear,	Nose	and	
Throat,	Aalesund	Hospital,	Aalesund,	
Norway
2Department of Clinical Medicine 
K1,	University	of	Bergen,	Bergen,	Norway
3Department	of	Neurosurgery,	Haukeland	
University	Hospital,	Bergen,	Norway
4Clinical	Forensic	Medicine,	Healdsburg,	
CA,	USA

Correspondence
Sverre	Morten	Zahl,	Department	of	Ear,	
Nose	and	Throat,	Aalesund	Hospital,	
N‐6026	Aalesund,	Norway.
Email: sverre.zahl@gmail.com

Abstract
Aim: Benign external hydrocephalus (BEH), hygroma and chronic subdural haema‐
toma are extra‐axial fluid collections in infants. MRI studies have shown that almost 
half of all new‐borns have perinatal subdural blood, generally referred to as subdural 
haematoma	(SDH)	or	perinatal	SDH.	Epidemiologically	there	are	striking	similarities	
between	chronic	SDH	and	BEH	in	infants.
Methods: Discussion	of	pathophysiological	mechanisms	for	BEH	and	chronic	SDH,	
based on existing literature.
Results: Perinatal	SDH	is	common,	and	we	hypothesise	that	this	condition	in	some	
infants develop into extra‐axial fluid collections, known as hygroma, BEH or chronic 
subdural haematoma. The mechanism seems to be an intradural bleeding that creates 
an	obstructive	layer	preventing	normal	CSF	absorption.	The	site	where	the	bleeding	
originates from and those areas enveloped in blood from the primary damaged area 
are prone to later rebleeds, seen as ‘acute on chronic’ haematomas. With steady pro‐
duction	of	CSF	and	the	blockage,	increased	intracranial	pressure	drives	the	acceler‐
ated skull growth seen in many of these children.
Conclusion: Perinatal	 SDH	hampers	CSF	 absorption,	 possibly	 leading	 to	BEH	 and	
chronic	SDH,	with	a	high	risk	of	false	accusations	of	abuse.	Close	monitoring	of	head	
circumference could prove vital in detecting children with this condition.

K E Y W O R D S

subdural haematoma, infants, hygroma, child abuse, head circumference, false accusations of 
abuse
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findings, the only population‐based epidemiological study indicates 
an incidence of extra‐axial collections of about 0.4 per 1000 live 
births.2	 Such	 extra‐axial	 fluid	 collections	 are	 probably	 more	 fre‐
quent in infants than that, especially during the first months of life 3; 
however, if their head circumference does not reach defined abnor‐
mal values, these infants will not fit the strict criteria above and will 
probably remain undetected in spite of potential evolving pathology. 
Thus, epidemiological studies with a clinically detected large head 
as a prerequisite will only reveal the tip of the iceberg. Many chil‐
dren whose head circumference has grown more than two standard 
deviations of percentile growth may have significant hygroma that 
is never studied. If the head circumference does not reach values 
qualifying for macrocephaly, their condition will not even be noted 
as	potentially	pathologic.	 Since	 the	era	of	 advanced	neuroimaging	
began (CT and MRI), several articles about this condition have been 
published, as reviewed elsewhere.4 Quite different names have 
been used in the literature; a collection of the most common terms 
is found in Table 1.

The word ‘benign’ reflects the traditional and possibly mis‐
leading opinion that the condition is self‐limiting and produces 
only temporary, mild or no symptoms and is without long‐last‐
ing problems. Recently published long‐term follow‐up studies, 
however, show that some patients have various developmental, 
social and cognitive problems,5‐7 including psychomotor delay.8 
Additionally,	 much	more	 severe	 conditions	 have	 been	 reported	
in association with such subdural fluid collections, above all, ep‐
ileptic seizures,9‐18	 subdural	 haematoma	 (SDH),8,10,12‐14,16,19‐28 
increased intracranial pressure 29 and in others apparent life‐
threatening	 events	 (ALTE).30	 Seizures	 and	 SDH	 are	 quite	 often	
described in the same patients. In addition, MRI diffusion shows 
white matter changes in BEH infants,31 and an association be‐
tween BEH and later development of autism spectrum disorder 
has also been suggested.32 Thus, the term ‘benign’ appears to be 
misleading.

BEH	is	already	considered	to	be	a	risk	factor	for	developing	SDH	
10,20,23; the larger the subdural fluid collections, the more likely it 
is	that	it	will	be	associated	with	or	even	cause	an	SDH.33 BEH and 
SDH	have	both	been	considered	a	form	of	subdural	collection,	and	as	
shown in Table 1, the terms have sometimes been used interchange‐
ably. When apparent prior BEH is complicated with acute haemor‐
rhage into the collections, this complex of findings is in radiology 
reports	often	referred	to	as	‘acute	on	chronic	SDH’;	a	term	that	may	
more accurately reflect the aetiology of the hygroma as related to 
chronic	SDH.

A	subdural	collection	containing	blood	elements	in	an	infant	
is in itself enough to raise suspicion of child abuse, especially if 
the carers cannot provide what is regarded an acceptable and 
plausible trauma history.34 If the subdural blood is caused by a 
spontaneous leakage of blood, see below, there is no trauma his‐
tory	to	tell.	Several	authors	have	pointed	to	the	risk	of	a	sponta‐
neously	occurring	SDH	in	an	infant	with	BEH	being	misdiagnosed	
as	abusive	head	trauma	 (AHT).12,16,35	A	recent	article	describes	
the legal and social consequences of such diagnostic mistakes in 
detail.36

SDH	in	infants	without	an	acceptable	history	of	trauma	is	likely	
to	 be	 associated	 with	 AHT/NAT	 (nonaccidental	 trauma,	 formerly	
known	 as	 shaken	 baby	 syndrome—SBS).	However,	without	 a	 valid	
scientific basis for assuming such a causal relation,37 other possible 
causes and associations are important to explore. The aim of this 
article is to examine more closely the possible connection between 
birth‐related	SDH	(perinatal	SDH)	during	infancy	and	the	develop‐
ment of extra‐axial fluid collections, not as ‘benign’ collections, but 
as	chronic	SDH,	as	discussed	by	Gabaeff,38 on the basis of several 
observations.39,40 In the following, different aspects of this will be 
presented.

2  | SDH AT BIRTH—PERINATAL SDH

SDH	 following	 difficult	 births	 have	 been	 recognised	 for	 a	 long	
time.41‐43	For	the	last	decade,	it	has	been	known	that	subdural	blood	
is common in about half of ‘normal’ vaginally delivered or unsched‐
uled caesarean sections, preceded by labour, in new‐borns.39

The	first	hint	of	birth‐related	SDH	or	perinatal	SDH	came	from	
Looney	 et	 al	 in	 2007	using	 early	MRI	 technology.44	 A	 follow‐up	
MRI study in 2008 by Rooks et al,39 using more up to date MRI 

Key notes
•	 A	 perinatal	 haemorrhage	 is	 very	 common,	 especially	 if	

birth is complicated.
• We hypothesise that some infants with perinatal subdural 
haematoma	 (SDH)	 will	 develop	 benign	 external	 hydro‐
cephalus	(BEH)	or	chronic	SDH.

•	 Lack	of	attention	to	this	development	will	likely	result	in	
false accusations of abusive head trauma.

TA B L E  1   These different names have been used in the literature 
for the same or similar conditions

Benign/idiopathic external hydrocephalus1,78

Benign familial macrocephaly79

Benign infantile hydrocephalus80

Benign subdural collections62

Benign extra‐axial fluid/collections40,81

Benign extracerebral fluid collections82

Benign communicating hydrocephalus83

Benign enlargement of the subarachnoid spaces84

Subarachnoid	fluid	collections85

Chronic subdural hygromas86

Pericerebral	fluid	collection87

Idiopathic macrocephaly7

Chronic subdural haematomas88

Subdural	effusion89
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technology, unpredictably, astonishingly and reliably showed that 
46%	 of	 101	 asymptomatic	 term	 neonates	 had	 a	 perinatal	 SDH	
after ‘normal’ deliveries. In 18% of the 101 infants, a follow‐up 
MRI	was	performed	at	3	months	of	age.	All	but	one	showed	reso‐
lution	of	the	haematomas.	One	of	these	infants	had	a	large	rebleed	
after 26 days in a nonabuse context, with another MRI at 5 months 
showing	resolution	of	the	SDH,	however,	with	a	remaining	prom‐
inent subarachnoid space.39 While this case cannot predict the 
frequency	 of	 perinatal	 SDH	 leading	 to	 chronic	 SDH,	 it	 does	 re‐
fute what we believe is the false assumption: that all birth‐related 
bleeding (at least 1 million in 4 million births annually in the United 
States)	resolves	without	complications.

Abnormal	or	complicated	labour	increases	the	risk	of	intracra‐
nial haemorrhage,45,46	with	SDH	being	the	most	common	type	of	
bleeding.47,48 Many new‐borns with subdural haemorrhages are 
asymptomatic 49 or insufficiently symptomatic to arouse medical 
attention.

Supporting	data	in	another	study	showed	53	cases	of	nontrau‐
matic	death	in	children	with	mean	age	9	weeks,	70%	had	blood	or	
hemosiderin in orbit tissues and subdural compartments; according 
to the authors, it was ‘...likely a consequence of the birth process’.50 
Vinchon	et	al	reported	16	infants	with	spontaneous	SDH,	9	of	them	
had a history of complicated labour and 12 children had macrocra‐
nia.35	In	still	another	report,	intradural	haemorrhage	and	SDH	were	
found in nontraumatic cases of child death, most commonly in in‐
fants under 1 month of corrected age.51 In a large, population‐based 
study	of	infants	with	SDH,	perinatal	SDH	(diagnosed	the	first	week	
of life) was associated with obstructed labour, emergency caesar‐
ean section, assisted vaginal delivery, asphyxia, and preterm birth, 
amongst others.52

Even	if	perinatal	SDH	seems	to	resolve	in	some	cases,	the	restor‐
ing rate and grade is unknown. Evidently, in many infants a haema‐
toma will persist for weeks and months, and some, if large enough, 
may become permanent retracted clots infused with scar tissue and 
fragile with respect to rebleeding. We believe that extra‐axial blood 
in these subdural collections and the dural capillary bed can obstruct 
CSF	 reabsorption,	 thereby	 maintaining	 the	 subdural	 collections.	
Once	obstructed,	the	fluid	exerts	a	pressure	on	the	skull,	resulting	in	
an increasing head circumference. Both the origin of the intradural 
bleeding and, in extreme cases, the stretching of bridging veins be‐
yond	their	tensile	capacities,	caused	by	the	chronic	SDH,	can	result	
in rebleeds into this persistent subdural collection (see below).

3  | EPIDEMIOLOGY OF SDH AND BEH

In a population‐based study, the incidence of BEH was around 0.4 
per 1000 live births, with a male preponderance of 86.4%.2 Median 
age at symptom debut (usually increasing head circumference) was 
3.4 months.53

Another	 study	 had	 similar	 findings	 with	 an	 incidence	 of	 SDH	
during	 infancy	 of	 around	 0.17	 per	 1000	 live	 births,	 and	 a	 male	

preponderance	 of	 64.7%.52	 Median	 age	 in	 this	 Swedish	 register	
study was 3.5 months for infants older than 1 week.

Yet another study found a similar annual incidence of 0.24 for 
SDH.54 The gender distribution for this whole study group (0‐2‐year‐
olds)	was	65%	boys,	and	the	average	age	at	diagnosis	was	17	weeks	
(approx.	4	months).	Zaben	et	al	performed	a	review	of	infants	diag‐
nosed	with	 SDH	 following	 forceps‐assisted	delivery	 in	 that	 study;	
where gender was specified, 11 out of 14 patients were boys.46

It	 is	clear	that	 there	 is	a	discrepancy	 in	 incidences	of	SDH	and	
BEH, compared with for example Rooks et al.39 We believe it may 
be explained by Rooks et al describing only asymptomatic subdural 
blood in new‐borns, whereas the other studies look at only symp‐
tomatic infants that come to medical attention because they have 
developed a clinical condition.

According	to	these	population‐based	studies	of	BEH	and	SDH,	
there are striking similarities between these two conditions, both in 
age and gender distribution. The male preponderance was evident 
even	in	the	earliest	publications	on	SDH,	as	was	the	age	distribution	
with a peak incidence during the first 6 months of life.43,55 The simi‐
lar	gender	distribution	of	BEH	and	SDH	with	a	marked	male	prepon‐
derance has been noted before.36,56 In general, boys, presumably 
with larger heads than girls, have a higher risk of neonatal morbidity 
and mortality.57	A	large	foetal	head	circumference	in	itself	 is	asso‐
ciated with complicated labour.58 Historically, a thorough article by 
Ingraham and Matson from 1944 also contains other interesting 
observations,	for	example	that	SDH	should	be	suspected	in	infants	
with an earlier ‘triad’, totally different from the content of the pres‐
ent version of the term: failure to thrive, increasing head circumfer‐
ence and a history of difficult labour.43

4  | NEUROIMAGING AND FLUID 
CHAR AC TERISTIC S

As	shown	in	Table	1,	the	terms	BEH	and	SDH	are	sometimes	used	
interchangeably, also in recent publications.59	Some	articles	include	
fluid	analyses	from	these	subdural	collections,	reporting	both	CSF‐
like fluid and ‘mixed density’ fluid with variable protein concentra‐
tion (Table 2).

With mixed density fluid, the neuroimaging appearance is often 
described as BEH initially. However, with similar findings in the con‐
text	of	acute	blood,	the	space	is	then	referred	to	as	chronic	SDH.	In	
these cases, the term ‘acute on chronic’ appears to replace BEH and 
is common in radiology reports.

Furthermore,	 the	 presence	 of	 hygroma,	 mixed	 density	 fluid	
and inflammatory membranes (neomembranes) is diagnostic cri‐
teria	 for	chronic	SDH.	The	 layering	of	blood	and	the	appearance	
of blood on CT and during drainage can be used to estimate the 
frequency of rebleeding and the age of blood. This remains an on‐
going issue, with researchers still trying to find a common termi‐
nology, as these age estimates remain important due to the legal 
aspects	of	suspected	AHT.60
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5  | PATHOPHYSIOLOGY

The pathophysiology behind BEH might roughly be summarised in 
the following assorted hypotheses.

The most common hypothesis is that the accumulation of fluid is 
caused by immature arachnoid granulations during the first months 
of	life	not	being	able	to	absorb	CSF.61 Why the arachnoid granula‐
tions mature so late remains unknown, but this seems to be a normal 
biological event.

Another	hypothesis,	presented	by	Robertson	and	colleagues	 in	
1979,	is	that	subdural	fluid	somehow	obstructs	CSF	reabsorption.62 
They	 suggested	 that	 the	 subdural	 fluid,	 although	 primarily	 CSF,	
often with particulate matter seen in the fluid, acts like a mechani‐
cal	block,	preventing	CSF	from	reaching	the	arachnoid	granulations.	
This condition subsequently dilates the adjacent subarachnoid chan‐
nels, which would be seen on CT as wide cerebral sulci and promi‐
nent interhemispheric fissures.

Prior	to	the	maturation	of	the	arachnoid	granulations,	the	intra‐
dural	capillary	bed	appears	to	carry	the	load	of	reabsorbing	CSF.63‐65 
Channels	pass	 through	the	dural	border	 layer	and	conduct	CSF	to	
venules	they	are	in	contact	with	in	the	capillary	bed.	As	arachnoid	
granulations mature late, the dura appears to be more important in 
CSF	absorption	during	this	period,	as	discussed	by	Oi	et	al.66

A	common	hypothesis	on	the	association	between	BEH	and	SDH	
is that bridging veins traversing the subdural/subarachnoid space/
hygroma are stretched with enlarged extra‐axial collections, increas‐
ing the risk of venous rupture, either spontaneously or following 
minor trauma.27 Images of actual bridging veins in autopsy photos, 
however,	call	this	into	question	(Figure	1).	The	phenomenon	of	blood	

oozing from the veins’ entry points is commonly observed during any 
craniotomy (eg by the second author); just manipulating the bridging 
veins at their dural entry points with a blunt instrument is enough to 
cause oozing of blood without the vein being torn. This blood could 
be leaking from the adjacent dural capillary bed.

With	perinatal	SDH,	blood	envelopes	the	structures	within	the	
dural capillary bed, obstructing its absorption capability. The reab‐
sorption,	 which	 is	 constant	 and	must	 occur	 to	 complete	 the	 CSF	
‘circulation’, then has to operate at higher pressure. This increased 
pressure causes the skull bones to be pushed out and the hygroma 
forms as the virtually noncompressible brain continues to grow at 
a normal, steady rate. When the arachnoid granulations mature at 
8‐12 months of age, the dural capillary bed no longer performs this 
function,	ICP	decreases	and	accelerated	head	circumference	growth	
stops. Thereafter, brain growth drives skull growth.67

Recent	research	further	indicates	that	SDH	can	be	initiated	by	a	
minor intradural bleeding, possibly originating from venous plexuses 
in the capillary bed. This creates a thin film of blood in the subdural 
space,68 which, if sufficient, then overflows internally through the 
dural border cell layer and separates the arachnoid from the dura 
forming	SDH	between	them.

Neomembranes	 are	 often	 seen	 on	 imaging	 and	 autopsies	 as	 a	
result of an inflammatory response from leaked blood.68 These 
neomembranes are loose collections of scar tissue and capillar‐
ies	 that	 encase	 the	 prior	 haematoma.	 The	 SDH	 complications	 are	
then more susceptible to rebleeding either episodically or in small 
amounts, as Ito et al showed.69 Clinically, we have noticed anaemia 
to be present, months after birth, during abuse workups and this 
raises	suspicion	about	daily	rebleeds	of	1‐2	mL/d.	This	may	support	

TA B L E  2  Published	subdural	fluid	analyses.	The	list	is	not	necessarily	exhaustive

Authors No of patients Fluid appearance/characteristics

Kasinathan et al59 1 Haemorrhagic	fluid	with	elevated	proteins	(2.6	g/dL)	and	predominant	lymphocytic	pleocytosis	(200	
cells/dL)

Briner & 
Bodensteiner90

2 Patient	1:	Dark	yellow	fluid	with	a	protein	content	of	2	g/dL.	RBC	count	7000/cu	mm.	Patient	2:	
Straw‐coloured	fluid,	with	protein	content	0.4	g/dL.	RBC	count	700/cu	mm

Chazal et al29 2 Patient	1:	Protein	concentration	1.2	g/dL.	Markedly	decreased	prealbumin	level	(0.9%).	Patient	2:	
Protein	1.0	g/dL

Alvarez	et	al1 1 Normal	CSF	values

Kumar91 4 Resembled	CSF	on	biochemical	and	cytological	examination	except	for	cell	counts.	The	cell	counts	
on tap ranged from 2 to 15 per mm3

Nogueira	&	Zaglul92 4 1	negative.	Normal	CSF	in	small	amount	in	2	patients.	Xanthochromic	fluid	in	small	amount	in	1

Neveling	&	Truex93 4 Results	were	‘negative’,	probably	considered	similar	to	CSF

Roshan et al 94 4 CSF	was	normal	(whether	this	was	spinal	CSF	or	from	the	enlarged	SAS	is	unknown)

Wilms et al95 6 Mean	protein	content	was	1.4	±	0.8	g/dL

Barlow61 1 ‘Subdural	tap	through	the	fontanelle	was	dry’

Ment et al 84 3 ‘No	subdural	fluid	was	demonstrated	in	any	of	the	three	patients	in	whom	the	subdural	space	was	
examined’

Palmer	&	Albert96 6 1 patient with ‘motor oil’ appearance
5	patients	with	xanthochromic	and/or	CSF‐like	fluid

Zouros	et	al97 5 ‘Haemorrhagic fluid’ was found in all patients

Aoki	et	al98 3 Protein	concentrations	of	984	mg/dL;	2800	mg/dL;	and	2610	mg/dL
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perinatal	SDH	as	 the	primary	bleeding	event,	especially	without	a	
prior history or evidence of major postnatal trauma.

A	 unifying	 pathophysiologic	 theory	 may	 in	 our	 opinion	 be	 a	
birth‐related	bleeding	that	disrupts	the	CSF	absorption	in	the	dural	
capillary bed by hampering absorption of the continuously produced 
CSF,	and	 that	 together	with	blood	products	and	 inflammatory	de‐
bris in the hygroma, creates a subdural collection, prone to cause 
rebleeding. There are growth factors in old haematomas that have 
been shown to induce neovascularisation in the parietal haematoma 
membrane; these pathological vessels bleed easily,70‐73 and there are 
other factors that disturb normal coagulation or cause fibrinolysis in 
subdural haematomas.69,74‐76

This dysfunction exists as long as the subdural capillary bed is 
the	main	absorbing	 route.	As	 the	arachnoid	granulations	gradually	
mature during the latter half of the first year, subdural collections 
and hence the head circumference gradually normalise. There is 
reason to believe that infants prone to a particularly difficult labour 
and/or	instrumentation	are	susceptible	to	larger	perinatal	SDHs,	and	
probably also a more complicated perinatal period. In a study of mac‐
rocephalic neonatal care survivors, hygroma evolved in about 40%, 
and presence of extra‐axial fluid was associated with an increased 
risk of developmental delay.40

6  | SUMMARY

Perinatal	SDH	is	a	common	condition	in	new‐borns,	creating	a	tem‐
porary	dysfunction	in	CSF	absorption	in	the	dural	capillary	bed	dur‐
ing infancy. The five main consequences of this are as follows: (a) 
an obstructing layer of fluid/blood creating a subdural collection; (b) 
neovascularisation and rebleeds from the original bleeding site intra‐
durally and subdurally in the previously damaged area; (c) in extreme 
cases with wide hygromas, stretching of bridging veins that may 
bleed spontaneously or after minor trauma; (d) a subtle increase in 
ICP	resulting	in	increased	HC	and	temporary	developmental	delay;	
(e) a variety of apparent life‐threatening events that precipitate med‐
ical intervention.

This theory on the formation of subdural collections, combined 
with	the	similar	demographics	of	BEH/hygroma	and	SDH,	leads	us	
to	theorise	that	these	conditions	in	fact	are	the	same.	Perinatal	SDH	
creates a subdural collection with or without visible blood (hence 
the	terms	BEH,	hygroma,	chronic	SDH,	or	with	acute	blood,	 ‘acute	
on	chronic’,	etc).	A	complicated	 labour	clearly	 increases	the	risk	of	

this development. Rebleeds from damaged areas that are neovas‐
cularised or new bleeds from bridging veins insertion points create 
acute	SDHs,	often	seen	as	acute	blood	or	mixed	density	collections	
within the hygroma.

Firstly,	we	propose	that	BEH	is	a	form	of	chronic	SDH.	Secondly,	
the	cascade	of	events	following	the	perinatal	SDH	can	lead	to	both	
chronic	and	recurrent	acute	SDH	(often	both).	In	infants,	the	finding	
of	acute	SDH	leads	to	suspicion	and	accusation	of	child	abuse.	The	
implications of our theory may have huge legal consequences. We 
fear	that	many	cases	of	infant	SDH,	with	any	amount	of	acute	blood,	
in the context of extra‐axial dural collections or not, have been mis‐
diagnosed as abuse.

A	possible	first	step	in	avoiding	this	could	be	to	follow	otherwise	
healthy children with rapidly/exceedingly increasing head circumfer‐
ence closely. Both incremental increases in head circumference that 
surpass two standard deviations after birth, and/or an absolute head 
circumference above the 95th percentile should be used to identify 
this form of neuropathology.77 Especially, infants with a history of birth 
problems including meconium staining, latching problems, positional 
discomfort, instrumented deliveries, prematurity, multiple births or a 
significant decrease in head circumference in the week after birth fol‐
lowed by accelerated growth should be imaged and monitored closely 
by a paediatric neurologist. Clinically, vomiting, transient change in 
feeding or sleeping patterns, intermittent fussiness and changes in 
behaviour are neurologic symptoms in infants that are often misdiag‐
nosed as gastrointestinal problems. The identification of potentially 
problematic,	and	progressive,	perinatal	SDH	involves	a	high	index	of	
suspicion, facilitating early neurosurgical intervention when necessary.

Most importantly, an increased awareness about the magnitude 
of	babies	with	perinatal	SDH	and	the	high	risk	of	false	accusations	of	
abuse is the essential first step.
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F I G U R E  1   Two autopsy photos 
showing	bridging	veins.	In	A	there	is	some	
visible blood at the dural entrance. In B 
one may observe three bridging veins 
stretched extensively

A B
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1  |  INTRODUC TION

Diagnosis of bridging vein thrombosis in infants has become more 
common in recent years. Controversy has arisen as to whether the 

diagnosis of thrombosis can be used as a marker for traumatic bridg‐
ing vein rupture. Specifically, the radiological diagnosis of thrombosis 
has been suggested as a marker of abusive head trauma (AHT), the 
so‐ called lollipop or tadpole signs on magnetic resonance imaging 
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Abstract
Aim: Thrombosis of bridging veins has been suggested to be a marker of bridging vein 
rupture, and thus AHT, in infants with subdural haematoma.
Methods: This is a non‐ systematic review based on Pubmed search, secondary refer‐
ence tracking and authors’ own article collections.
Results: Radiological studies asserting that imaging signs of cortical vein thrombo‐
sis were indicative of traumatic bridging vein rupture were unreliable as they lacked 
pathological verification of either thrombosis or rupture, and paid little regard to 
medical conditions other than trauma. Autopsy attempts at confirmation of ruptured 
bridging veins as the origin of SDH were fraught with difficulty. Moreover, micro‐
scopic anatomy demonstrated alternative non‐ traumatic sources of a clot in or around 
bridging veins. Objective pathological observations did not support the hypothesis 
that a radiological finding of bridging vein thrombosis was the result of traumatic rup‐
ture by AHT. No biomechanical models have produced reliable and reproducible data 
to demonstrate that shaking alone can be a cause of bridging vein rupture.
Conclusion: There is no conclusive evidence supporting the hypothesis that diagnos‐
tic imaging showing thrombosed bridging veins in infants correlates with bridging vein 
rupture. Hence, there is no literature support for the use of thrombosis as a marker 
for AHT.

K E Y W O R D S
abusive head trauma, bridging veins, cerebral venous thrombosis, child abuse, subdural 
haematoma
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(MRI) or computed tomography (CT).1– 3 Bridging veins are part of 
the superficial cerebral venous system, draining blood from the cer‐
ebral cortex into the large intradural venous sinuses. The cortical 
veins traverse the subarachnoid and dural compartments and act 
as the ‘bridge’ between the intracranial venous circulation and the 
systemic circulation of the dura.4 When haemorrhage into the sub‐
dural compartment is found, damage to the bridging veins is often 
assumed to be the cause, and therefore, inspection of the veins on 
imaging has played an increasingly important role in the diagnosis of 
suspected AHT.

In this review paper, we will briefly study the embryology, 
anatomy and clinical significance of bridging veins, then critically 
appraise the existing literature on pathology, radiology and biome‐
chanics regarding thrombosis as a marker of ruptured bridging veins.

2  |  METHODS

This was a non‐ systematic review of literature regarding the vari‐
ous aspects of bridging veins, especially concerning AHT. The review 
was based on non‐ structured search in PubMed, secondary refer‐
ence tracking and the authors’ own article collections. No publica‐
tion date limit was chosen, but search ended on 20 November 2020. 
Articles in English, German and French were considered. Important 
search terms were as follows: abusive head trauma; shaken baby 
syndrome; cortical vein thrombosis; bridging veins; and/or subdural 
hematoma, among others.

3  |  RESULTS

3.1  |  Bridging veins

3.1.1  |  Embryology

The early connective tissue which later forms the meninges contains 
a vascular meshwork that evolves into a more distinct vasculature 
as the brain and skull grow. Initially, the plexus of embryonic ves‐
sels divides into deep and superficial layers; the superficial layer be‐
comes the dural vessels while the deeper layers invest the brain to 
become the leptomeningeal vessels. This primitive network of ves‐
sels separates into a distinct venous drainage pattern through the 
gradual process of venous cleavage. During this process, the num‐
ber of brain‐ to‐ dural venous connections is reduced: many of the 
veins connecting these early layers are resorbed while a few grow 
in length and width to become the bridging veins which are more or 
less fully developed by the end of the first trimester.5

While the bridging veins are formed early, the venous structures 
of the dura undergo modifications throughout gestation and early 
life. These adjustments in the intradural network are necessary to 
accommodate the rapid cerebral growth during this period. The con‐
figuration of the intradural blood vessels and dural venous sinuses 
continues to evolve throughout the first year of life, and the major 

dural sinuses do not attain their adult configuration until well after 
birth.6,7

3.1.2  |  Anatomy

As reviewed by Mortazavi et al.8 the bridging veins are typically 
found in three anatomical regions: cerebellar, temporal and ante‐
rior frontal cortical bridging veins. From a surgical point of view, 
the bridging veins pose a risk for venous infarction if disrupted or 
damaged. As personally experienced by the senior author [KW] dur‐
ing craniotomy, any manipulation of the bridging veins easily causes 
oozing of blood from the dura, at the entry points of the veins.9,10 As 
the bridging veins appear unharmed, this bleeding likely comes from 
the dural capillary bed.

In a post‐ mortem radiological study, Ehrlich et al.11 found an 
average of 17 bridging veins (range 9– 31) on the brain, reportedly 
either few of wide diameter or many smaller ones. Cases were all 
ages ranging from two months to 96 years, with a mean age of 
around 50 years old. However, a thorough autopsy study of infants 
found a mean of 54.1 bridging veins per case.12 Why the reported 
numbers vary so much remains unknown, but method of investiga‐
tion (dissection), age and cohort sizes could play a role.12 In infants, 
the mean bridging vein diameter in a series was 0.93 mm (range 
0.05– 3.07 mm).12

The wall of the bridging vein consists of collagen bundles ar‐
ranged circumferentially, elastin fibres and smooth muscle cells.13,14 
The bridging veins enter the superior sagittal sinus (SSS) in various 
ways; some, typically found posteriorly, enter at retrograde angles,15 
meaning the blood flows in an anterior direction before entering the 
SSS. Han et al.16 found that most bridging veins (97%) entered the 
SSS in this direction, so one would expect that forces in the postero‐ 
anterior direction would be particularly likely to cause stretching 
tension on these bridging veins. Vignes et al.17 found that the lumen 
of the bridging veins narrowed at the junction with SSS, with abun‐
dant smooth muscle cells in the vein wall, resembling a sphincter. 
Physiological narrowing of this sphincter when intracranial pres‐
sure (ICP) is increased has been demonstrated in human and animal 
studies.18,19

Key Notes

• This is a non‐ systematic review of the literature regard‐
ing the hypothesis that thrombosis of bridging veins is a 
marker of abusive head trauma.

• The hypothesis lacks pathological verification, has not 
been verified biomechanically and does not consider 
other aetiologies of bridging vein thrombosis.

• There is no evidence for the claim that radiologically de‐
tected thrombosis is a marker for bridging vein rupture, 
and hence, abusive head trauma.
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The dural portions of the bridging veins are thought to be par‐
ticularly fragile compared with the subarachnoid portion, giving rise 
to the belief that a bridging vein would rupture preferentially into 
the dural compartment rather than into the subarachnoid space.2 
Though Yamashima and Friede describe very variable wall thickness 
in the subdural part of the bridging veins (10– 600 µm, vs. 50– 200 µm 
in the subarachnoid part), their data are drawn from frontal bridging 
veins from only four adult patients aged 53– 85 years. Moreover, the 
authors did not directly address the precise dural anatomy; there 
is no true subdural space in which to measure the wall thickness of 
bridging veins; rather the subdural compartment is a dissection phe‐
nomenon created after disruption of the 8‐ micron thick tissue layer 
(dural border cell layer) between the fibrous dura and the arachnoid 
barrier membrane.

3.2  |  Ruptured bridging veins

Ruptured bridging veins are often assumed to be the cause of SDH 
in infants.14,20 In AHT, the presumed tear is believed to be caused by 
blunt trauma to the head, shaking or a combination of the two.20,21 
Indeed, presumed rupture of bridging veins has become an impor‐
tant criterion of AHT.2,22,23 Rupture of bridging veins can be investi‐
gated from different perspectives by neuroimaging, by autopsy and 
by biomechanical studies:

3.2.1  |  Neuroimaging

A case report of two infants with suspected AHT‐ related SDH re‐
ported the use of susceptibility‐ weighted imaging (SWI) in MRI.24 
Signal loss was found on SWI, thought to represent clot forma‐
tion on bridging veins. No signs of venous infarction were found. 
Whether these findings were verified, by surgery or autopsy, was 
not reported.

Choudhary et al.25 used MR venography to study 45 children 
with assumed AHT based on a retrospective chart review. In 31 
(69%) of the children, they found a mass effect on venous sinuses 
and cortical veins from the nearby hematoma or swollen brain. They 
also coined the term ‘lollipop sign’, to describe an imaging finding 
which they thought was due to a disrupted vein with an associated 
blood clot. The lollipop sign was found in 20 (44%) of the children in 
their study. Based on the pre‐ existing assumption of abuse, the au‐
thors concluded that the finding of susceptibility artefact associated 
with the veins on MRI in the setting of a subdural fluid collection 
could be viewed as ‘evidence of direct trauma to the veins’. They 
found it unlikely that the venous susceptibility could have been a 
thrombosis unrelated to trauma. Known causes of cerebral venous 
thrombosis in children are many, including infections, perinatal com‐
plications, haematological disorders and dehydration.26,27 Trauma is 
reported as a rare etiological factor.28

Hahnemann et al.1 investigated 29 cases of SDH or subdural hy‐
groma in infants with assumed AHT, using CT and MRI. In 11 cases 

(40%), they found radiological signs of bridging vein thromboses. In 
eight of these patients, neuroimaging showed a structure thought 
to represent a thrombus partly outside of and partly inside a torn 
bridging vein. It had an oval to round body and a bent tail; hence, the 
‘tadpole sign’ was described.

A more recent MRI study reported a remarkable mismatch be‐
tween primary MRI diagnoses of bridging vein thrombosis, the tad‐
pole sign, on the axial images compared with coronal high‐ resolution 
SWI.29 The authors concluded that the tadpole sign on axial images 
did not reliably predict thrombosed veins. Instead, they proposed 
that the signal alteration indicated a traumatic deformation of the 
vessel, basing their conclusion on ‘vessel wall irregularities’ de‐
tected on the coronal SWI. The limitations of their study included 
small sample size, lack of pathologic correlation, possible artefacts 
induced by volume averaging effects and the fact that altered SWI 
signal cannot differentiate between slow flow and thrombosis.

Adamsbaum and Rambaud reported several cases of allegedly 
confessed AHT with subdural haematomas and thrombosed bridg‐
ing veins visible on both CT and MRI.2 The authors state that 
thrombosed bridging veins as seen on neuroimaging are evidence 
of ruptured bridging veins, which in turn must be caused by a 
head trauma, in itself suggestive of AHT. The images in that article 
showed hypodense fluid collections within the subdural compart‐
ment. Whether or not the confessions of abuse were consistent with 
the presence of chronic SDH or correlated with the ages of the SDH 
on scan was not reported. None of the images in their paper show 
large volume acute SDH, hyperdense on CT, and the authors did not 
attempt to explain why no significant acute bleeding was present 
despite the assumption that recent trauma had caused an acute 
rupture of multiple macroscopic bridging veins. Our Figure 1 shows 
what an SDH following acute bridging vein rupture can look like, as 
confirmed by surgery.

F I G U R E  1 Left‐	sided	subdural	haematoma	(arrow)	in	a	7‐	month‐	
old child as seen on computed tomography. Surgery confirmed 
rupture of an ipsilateral frontal bridging vein
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Similar doubts arise regarding an article from Ronning et al.3 
They reported 99 infants with SDH, most of them with assumed 
AHT, fewer with accidental head trauma. The authors found that 
most children with AHT had parasagittal vertex clots on CT, thought 
to represent thrombosis, whereas very few of the children with 
accidental trauma had this CT sign. The images presented in the 
article, however, do not show SDHs, but rather subdural fluid/hy‐
groma. Furthermore, no pathological investigation or explanation is 
presented, and evidence on which the diagnosis of abuse rests is 
not given.

A survey on diffusion‐ weighted MRI found four patients with 
venous infarction in relation to assumed ruptured bridging veins in 
33 children with alleged AHT.30 The authors did not consider the 
possibility that the thrombosis and venous infarction may have been 
unrelated to trauma.

Orman et al.31 published MRI findings of an infant (Figure 7 in 
their article) with typical neuroimaging findings compatible with be‐
nign external hydrocephalus (BEH). These figures purportedly show 
‘hypointense bridging vein thromboses’ without discussion of the 
chronicity of the findings or whether a predisposing condition in‐
creased the risk of damage to the vein resulting in thrombosis with‐
out significant trauma.

To summarise, several neuroimaging studies report signs of ap‐
parent thrombosis which are presumed to reflect traumatic damage 
to the bridging veins. Three problems, however, emerge from these 
studies: first, as the findings are based solely on radiological inves‐
tigations, the physiological/pathological correlates remain obscure. 
Even if imaging does show thrombosis, bridging vein rupture is not 
proven, and the studies do not discuss how a ruptured vein would 
result in a large subdural fluid collection (rather than a large collec‐
tion of acute blood). Second, the fundamental assumption in AHT 
cases, that the presence of SDH in children reliably indicates that 
they were shaken or beaten, is controversial. As reviewed by Lynøe 
et al.32 the scientific evidence behind the shaken baby syndrome/
AHT theory is very limited. Third, statements such as thrombosis is 
‘evidence of direct trauma’ create an impression of certainty imply‐
ing high‐ quality evidence behind these findings. None of the stud‐
ies describe how they have excluded other conditions or diseases, 
which are more common than trauma as aetiology of bridging vein 
thrombosis (Figure 2).

3.2.2  |  Pathology

Several surveys have investigated deaths of infants with SDH. 
Identification of the source of subdural bleeding at autopsy is 
commonly recognised as technically difficult, as the bridging veins 
are easily damaged during the procedure of opening the skull and 
dura.12,33

Cheshire et al.12 reported 48 autopsies of small children (<2 years 
of age) where the bridging veins were studied. Of these children, 
three were classified as AHT cases where the bridging veins seemed 
engorged with congested blood, and when they were pressed from 

the outside, they did not blanch. The significance of this observation 
is not discussed. These veins were not examined microscopically, 
hence, thrombosis could not be confirmed, nor were the dural si‐
nuses examined to explain the cause of congestion. The authors also 
found fewer bridging veins in autopsies of children with assumed 
AHT than in children with no known head trauma. Whether this was 
due to elastic recoil of small calibre broken veins or veins being ob‐
scured from view by the presence of SDH could not be determined.

When comparing microscopic appearances of dura from 50 in‐
fants without head trauma with three infants with suspected AHT, 
Geddes et al.34 found intradural haemorrhage in 72% of the non‐ 
trauma cases. They hypothesised, based on the findings of both in‐
tradural and subdural haemorrhage in the suspected AHT cases, that 

F I G U R E  2 (A	and	B)Magnetic	resonance	imaging	(MRI)	of	a	
26‐ day‐ old infant with small volume subdural haematoma and fluid. 
Seizures developed in the hospital and MRI showed clotted cortical 
veins (arrows) and evolving non‐ haemorrhagic infarction. Abuse 
was initially suggested, but after full evaluation, the charges were 
dismissed and the child returned to the parents

(a)

(b)
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this could be caused by a cascade reaction of hypoxia, plus brain 
oedema, increased intracranial and central venous pressure, finally 
leading to bleeding from intradural and bridging veins because of 
immaturity and hypoxia‐ related vascular fragility. Although intrigu‐
ing, this theory primarily shows that several experts in the field have 
realised that the origin of bleeding into the subdural compartment is 
uncertain. Indeed, the publication of this hypothesis ignited a rather 
intense debate, demonstrating the profound disagreement.35– 37 The 
striking finding of intradural haemorrhage in 72% of infants with‐
out head trauma is important to keep in mind.34 Subsequent studies 
have confirmed that intradural bleeding is a common finding in very 
young infants who undergo autopsy and is associated with hypoxic‐ 
ischaemic insult.38

When a cerebral vein is thrombosed from any cause, it is dis‐
tended by a clot and the vessel upstream/proximal of the clot be‐
comes dilated, tortuous and varicose. The cellular reactive changes 
in the vein wall include proliferation of endothelial lining cells which 
grow into the clot within the lumen and begin to form new vessels 
as part of the process of recanalisation. Also, in the early stages, 
the vein wall becomes leaky, and it is possible to identify red blood 
cells passing between the cells of the vein wall (diapedesis) leading 
to haemorrhage into the surrounding tissues, which in the case of 
cortical veins leads to subarachnoid bleeding (Figure 3). Diapedesis 
from thrombosed dural veins can lead to intradural bleeding. This 
small volume haemorrhage may explain the radiological observation 
of tadpoles and lollipops and does not depend on traumatic tearing 
of the vein wall, but is the result of venous congestion.

In her review of bridging veins in AHT, Rambaud described his‐
tological investigation of ruptured bridging veins.39 She found sur‐
rounding inflammation, siderophages indicating bleeding, partial or 
total thrombosis, and neovascularisation. According to her, dating 
of the trauma should be possible by examining the thromboses, al‐
though she did not explain how this timing could be done. Again, a 
statement such as ‘bilateral bridging vein rupture confirms violent 
shaking’ is unsupported by evidence. No clear aetiology for trauma 
is presented in the cases described in the article, and she did not 
consider natural causes of venous thrombosis.

Radiological autopsy
Some authors have reported results of post‐ mortem radiological 
investigation of bridging veins.11,23,40 Maxeiner23 used a method 
where he injected contrast into the SSS in an attempt to produce 
retrograde filling of the cerebral bridging veins. If contrast appeared 
on X‐ ray outside bridging veins, an assumption of premortem trau‐
matic tearing of the veins was made. In his study of infant bridging 
vein rupture, he found ‘typically no significant subdural bleeding de‐
spite multiple bridging vein ruptures in the majority of these cases’.41

Stein et al.40 described a technique using direct injection into 
the SSS through the posterior fontanel in infants who died non‐ 
traumatic deaths. Using this method, the authors successfully 
injected contrast into the sagittal sinus in 8 of 11 infants and deter‐
mined that it may provide useful information regarding potential 
bridging vein ruptures. Neither Maxeiner nor Stein et al controlled 
for injection pressures, addressed post‐ mortem autolysis as a 

F I G U R E  3 (A)	Macroscopic	view	of	a	large	mass	of	varicose/dilated	veins	with	surrounding	subarachnoid	blood	and	local	bridging	vein	
thrombosis (white arrows). A section from the area marked with a white box is shown in 3B). (B)Thrombosed vein (V) in the subarachnoid 
space with surrounding subarachnoid haemorrhage (haematoxylin and eosin stain). (C)Same vein as in B). A defect in the vein wall is seen in 
the lower left (smooth muscle actin stain, counterstained with haematoxylin and eosin). (D)Higher magnification of vein wall stained with 
smooth muscle actin (muscle cells are brown, red blood cells are blue). Red blood cells are seen passing between the muscle cells of the vein 
wall (diapedesis) (smooth muscle actin stain, counterstained with haematoxylin and eosin)

(A)

(C) (D)

(B)
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potential contributor to bridging vein disruption after injection or 
accounted for the presence of the intradural plexus, which would 
fill with retrograde injection of the sinus. Filling of the plexus 
would give the impression of contrast outside the sinus and bridg‐
ing veins which could consequently be mistaken for rupture of the 
veins.

Neither method has been widely adopted.

3.2.3  |  Biomechanics

Through the years, several researchers have tried to investigate the 
physical properties of bridging veins and their role in SDH formation. 
Animal studies, finite element studies and cadaveric studies have all 
been published.

Ommaya et al found that bridging veins ruptured in rhesus 
monkeys subjected to angular acceleration (shaking), but later 
stated that these forces were too strong to be achieved by manual 
shake.42,43 In a classical study, Duhaime et al.44 used infant‐ like 
dolls with attached accelerometers and subjected them to vari‐
ous shaking and impact episodes. Based on tolerance limits from 
primates, they found that shaking alone would not create enough 
force to cause SDH, suggesting that blunt impact to the head was 
necessary to generate such damage. Their technique was later re‐
fined in a study with similar results,45 but was critically reviewed 
and questioned by others.46 As stated by Jones et al in 2015, ‘no 
study has to date demonstrated that shaking alone, without an 
associated impact, exceeds the injury thresholds associated with 
SDH’.47 A recent physics calculation found that a low‐ level fall 
yielded greater angular acceleration to a 6‐ month‐ old infant than 
shaking.48 Similarly, one article, using a doll model, found that the 
head movements during normal play in an infant were similar to 
previously published studies on violent shaking in a model, and 
that shaking movements could not reach angular accelerations re‐
garded as necessary for SDH.49

Roth et al.50 created a finite element head model and found 
that the bridging veins underwent equal maximum strain for shak‐
ing and impact, concluding that both inflictions could cause SDH. 
However, this study has several limitations: it is not a validated 
model, the parameters are not from infants, bridging veins are 
modelled as linear springs which lack viscoelastic properties and 
the modelled impact can be compared with a short fall of half a 
metre.

In several studies, human cadaver heads have been subjected 
to occipital impacts creating various rotational strains.51– 53 Based 
on post‐ test findings, the authors suggested threshold levels of ro‐
tational accelerations and velocities causing bridging vein rupture. 
Similar studies have also been performed in adult rhesus monkeys,54 
although the reliability of extrapolating such findings to human in‐
fants has been challenged.55 The main finding in these studies is that 
quite substantial acceleration forces are required to damage the 
bridging veins, forces that are reliably created by an impact, but not 
by shaking alone.

Recent reviews have concluded that thresholds, based on exper‐
iments or models, used to assess shaking trauma are of low quality 
and questionable use.56,57

Zhu et al.58 conducted a combined autopsy and modelling study 
of 137 bridging veins from six adults. Based on bridging vein diam‐
eters and angles relative to the SSS, they calculated that venous 
thrombosis would occur more easily in wider bridging veins >1.2 mm, 
and when angles at the entry points were small (<65°).

One model found that the junction between the bridging veins 
and the SSS is stiffer than the bridging veins themselves, making 
this part particularly fragile and prone to rupture.59 This is question‐
able, considering the previously mentioned finding of a reinforced, 
sphincter‐ like junction.17 Monea et al.60 did mechanical testing 
(stress‐ strain) of this junction and found quite variable results, both 
between individuals and within the same individual.

Although biomechanical models may seem useful, the multi‐
tude of models and the variable results make it difficult to form 
any definitive conclusions on the role and behaviour of bridging 
veins in SDH formation in general, and in trauma cases specifically. 
Results from cadaver studies are problematic due to the use of 
non‐ vital tissue already undergoing autolysis and simplistic exper‐
iment setups. Finite element studies can provide results from var‐
ious traumas, but depend on very accurate values of for instance 
anatomy, geometry and tissue characteristics.61 Even the intrigu‐
ing use of cadavers to confirm the biomechanical predictions from 
a finite element model62 carries the risk of creating a model based 
on properties not found in real‐ life vital tissues. Biomechanical 
properties of different tissues are largely unknown, and the re‐
ported values differ. However, biomechanical studies are still use‐
ful as they allow us to compare different situations and traumas, 
for instance shaking versus a short fall.

3.2.4  |  Neurosurgical	considerations

Some surgical approaches to the brain involve sacrificing bridging 
veins. A study of 63 paediatric patients showed no signs of venous 
infarction on MRI following interhemispheric transcallosal surgical 
procedures that involved ligature of bridging veins.63 A recent study, 
however, found changes in ICP, motor and sensory function, and 
histological changes, for instance haemorrhage, in mice following 
venous infarction induced by cutting bridging veins.64 The changes 
peaked at around 12 h after surgery and seemed to resolve within 
48 h.

In another animal study, an artificial increase in ICP led to dila‐
tation and decreased blood flow velocity in cerebral bridging veins, 
suggesting a compensatory increase in resistance to outflow.18

4  |  DISCUSSION

The tearing of bridging veins is considered an important criterion for 
the diagnosis of AHT. Furthermore, thrombosis of bridging veins has 
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been suggested as a surrogate for traumatic rupture and a certain 
diagnostic sign of shaking.1,2,22

When reviewing the existing literature in this field, there are 
some overarching issues that need to be addressed.

First, many studies, both biomechanical and from autopsy, are 
based on adult patients, not young infants. Considering the rapidly 
developing cerebral venous system in foetuses and neonates, the 
direct comparison between adult and infant bridging veins should be 
done with caution.

Second, studies on infants with SDH and alleged AHT are most 
often based on assumed or suspected head trauma, not witnessed or 
proven. The true mechanism behind each case is therefore obscure, 
and reliance on the presumption of abuse gives rise to circularity 
and an inherent unreliability in the subsequent conclusions drawn 
from that data.

Third, there is a growing understanding of the birth process 
as an important contributor to intracranial haemorrhages in 
newborns. A difficult birth is a known risk factor for developing 
SDH,65,66 but even in normal deliveries and with asymptomatic 
term neonates, an MRI study found that almost half of the infants 
had SDH.67 Bridging vein rupture, as seen on neuroimaging, is 
very rarely identified in these babies and dural bleeding from the 
vast intradural venous plexus is a more likely source. The degree 
to which birth‐ related SDH may affect later findings and symp‐
toms is still unknown.

Indeed, an important part of diagnostic evaluation of any pa‐
tient is to consider all possible differential diagnoses. This becomes 
even more important in cases of suspected AHT, where allegation 
of abuse and legal proceedings has significant consequences for the 
infants and their families. Many conditions are recognised as causes 
of SDH in infants, such as infections, malformations, and metabolic 
and coagulation disorders.68

Benign external hydrocephalus (BEH) is also a known risk fac‐
tor for developing SDH.69– 74 It has been assumed that the widened 
subarachnoid space in BEH would stretch the bridging veins, mak‐
ing them more vulnerable to rupture, even with minimal trauma. 
Surprisingly, a finite element study showed a dampening effect of 
the enlarged subarachnoid space, claiming that BEH would not be a 
risk factor for developing SDH.75 The article, however, has one major 
limitation, namely that the bridging veins were not assumed to be 
stretched in the case of widened subarachnoid spaces. Disagreement 
still exists as to whether BEH is a risk factor or not.76,77 A recent re‐
view investigated the similarities between SDH and BEH, and pre‐
sented a unifying theory of pathophysiology behind these subdural 
collections78

Few neuroimaging studies have reported findings of ruptured 
bridging veins, except the ones reviewed above. Findings such as 
the tadpole or lollipop signs lack pathologic verification of bridging 
vein injuries. Nevertheless, the authors of the article describing the 
tadpole sign claim that bridging vein thrombosis is an excellent in‐
dicator of AHT in SDH cases.1 Similarly, it is stated that parasagittal 
vertex clots may be a novel predictor of AHT.3 A neuroimaging sign 
of bridging vein thrombosis may simply reflect either slowed flow 

or venous thrombosis from natural disease unrelated to trauma and 
cannot be considered pathognomonic for venous injury or trauma.

A limitation of our review is that no systematic literature search 
was undertaken. However, there are only limited numbers of arti‐
cles relevant to our specific question: is bridging vein thrombosis a 
marker of AHT? We believe that our study of the field has allowed us 
to make a thorough, albeit not systematic, review.

5  |  CONCLUSION

As for neuroimaging, whether a venous injury can be identified, if 
it really exists, and whether it is caused by a trauma, remains un‐
certain. As for pathology, neither autopsy nor other examinations 
can prove that bridging vein ruptures or thromboses are caused 
by AHT only. As for biomechanics, the multitude of models is not 
able to show how and which traumas may lead to bridging vein 
rupture.

The subject of SDH and AHT in infants is a sensitive matter with 
strong feelings and opinions. This makes it even more important to 
maintain a high degree of accuracy and verifiability in the field. This 
review points to an alarming lack of evidence behind the investiga‐
tion and interpretation of thrombosed bridge veins.
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