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ABSTRACT

Background. Recently, two immunoglobulin A (IgA)
nephropathy-prediction tools were developed that combine
clinical and histopathologic parameters. The International
IgAN Prediction Tool predicts the risk for 50% declines in the
estimated glomerular filtration rate or end-stage kidney disease
up to 80months after diagnosis. The IgANephropathy Clinical
Decision Support System uses artificial neural networks to
estimate the risk for end-stage kidney disease. We aimed to
externally validate both prediction tools using a Norwegian
cohort with a long-term follow-up.
Methods. We included 306 patients with biopsy-proven pri-
mary IgA nephropathy in this study. Histopathologic samples
were retrieved from the Norwegian Kidney Biopsy Registry
and reclassified according to the Oxford Classification. We
used discrimination and calibration as principles for externally
validating the prognostic models.
Results. The median patient follow-up was 17.1 years. A
cumulative, dynamic, time-dependent receiver operating char-
acteristic analysis showed area under the curve values ranging
from 0.90 at 5 years to 0.83 at 20 years for the International
IgAN Prediction Tool, while time-naive analysis showed an
area under the curve value at 0.83 for the IgA Nephropathy
Clinical Decision Support System. The International IgAN
Prediction Tool waswell calibrated, while the IgANephropathy
Clinical Decision Support System tends to underestimate risk
for patients at higher risk and overestimates risk in the lower
risk categories.
Conclusions. We have externally validated two prediction
tools for IgA nephropathy. The International IgAN Prediction
Tool performed well, while the IgA Nephropathy Clinical
Decision Support System has some limitations.

Keywords: external validation, IgA nephropathy, machine
learning, prediction models, prognostic tool

INTRODUCTION
Immunoglobulin A nephropathy (IgAN) is a common cause
of end-stage kidney disease (ESKD) worldwide [1]. Most
patients with IgAN are diagnosed as young adults based on
clinical findings of microscopic hematuria and proteinuria,
followed by a kidney biopsy, which is mandatory to confirm
the diagnosis [2]. The clinical course is highly varied, with
some patients rapidly progressing to ESKD, while the kidney
function in other patients remains preserved [2, 3]. Clinical
features, such as a reduced estimated glomerular filtration rate
(eGFR), proteinuria, and hypertension, are known risk factors
for progression to ESKD [3, 4]. The Oxford Classification,
which is an IgAN histopathologic model that was established
in 2009, combines four histological lesions associated with
adverse outcomes: mesangial hypercellularity (M), endocapil-
lary hypercellularity (E), segmental glomerulosclerosis (S), and
tubular atrophy/interstitial fibrosis (T) [5, 6]. Crescents (C)was
added to the model in 2016 [7].

Currently, there are no effective treatments for IgAN;
however, several ongoing clinical trials are bringing hope for
new therapeutic agents [8–10]. This development underscores
the importance of accurate prediction tools that can aid
clinicians in selecting patients for inclusion in studies and
identifying patients that could benefit from future treatments.

Two IgAN prediction tools have recently been devel-
oped, both of which combine clinical and histopathologic
parameters. Barbour et al. developed the International IgAN
Prediction Tool (IIGAN-PT), which is a Cox proportional
hazards model designed to predict the risk for 50% declines
in the eGFR or ESKD up to 80 months after diagnosis
[11]. This tool is derived from a multiethnic cohort, and
it is available at https://qxmd.com/calculate-by-qxmd. The
newly updated Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines encourage clinicians to use this tool with
their patients [12]. External validation studies show that the

© The Author(s) 2022. Published by Oxford University Press on behalf of the ERA. This is an Open Access article distributed under the terms of the Creative
Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and
reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/advance-article/doi/10.1093/ndt/gfac225/6651690 by U

niversity of Bergen Library user on 04 N
ovem

ber 2022

https://doi.org/10.1093/ndt/gfac225
https://orcid.org/0000-0003-0341-1190
https://orcid.org/0000-0001-6637-5743
mailto:yngvarhaaskjold@gmail.com
https://qxmd.com/calculate-by-qxmd
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com


KEY LEARNING POINTS

What is already known about this subject?
• Two prognostic models for immunoglobulin A (IgA) nephropathy, the International IgAN Prediction Tool and the IgA
Nephropathy Clinical Decision Support System have recently been developed.

• The International IgAN Prediction Tool has been externally validated in cohorts limited by short follow-up time. The IgA
Nephropathy Clinical Decision Support System has yet to be externally validated.

What this study adds?
• External validation of both models using a cohort with long follow-up time.
What impact this may have on practice or policy?
• External validation of predictionmodels in different cohorts is necessary before themodels are put into widespread clinical
use.

• The International IgAN Prediction Tool might be used to predict kidney survival beyond 80 months.
• The IgANephropathyClinical Decision Support Systemhas some limitations, especially when predicting time to end-stage
kidney disease.

tool performs well, but these studies are limited by short
follow-up times [13–15].

Schena et al. developed the IgA Nephropathy Clinical
Decision Support System artificial neural network model
(ANNmodel), which uses ANNs to estimate the risk for ESKD
up to 10 years after diagnosis [16]. The tool combines two
models: a classifier model to predict the risk of ESKD and
a regression model to predict the time to ESKD. The ANN
model was derived from a European cohort, and it is available
at https://igan.poliba.it. It has yet to be externally validated.

External validation of prognostic models is of great im-
portance because it ensures that the models perform well
in different cohorts before they are put to use in clinical
practice [17, 18]. Therefore, the aim of this study was to
validate the IIGAN-PT and ANN model using a Norwegian
cohort of patients with IgAN that was retrieved from the
Norwegian Kidney Biopsy Register. The follow-up period for
this cohort was up to 28 years, which is longer than the
respective derivation cohorts for each prediction tool. A longer
time frame such as this is important for evaluating a slow-
progressing disease such as IgAN.

MATERIALS AND METHODS
Study population
In this study, we included 306 patients from a cohort

previously used to address the prognostic value of the Oxford
Classification [19]. The patients all had IgAN, proven by
biopsy, before 2010, an initial eGFR level above 30 mL/min/
1.73 m2, and histopathologic specimens that were available
for reanalysis according to the Oxford Classification. The
patient data were retrieved from theNorwegian Kidney Biopsy
Registry (Bergen, Norway), which, since 1988, has compiled
morphologic, clinical, biochemical, and immunologic data
from patients in Norway subject to a kidney biopsy. Treatment
data at the time of biopsy were obtained retrospectively from
patient records. The clinical data collected during follow-up
were obtained from patient records and the Norwegian Renal
Registry, which is located at Rikshospitalet in Oslo, Norway.

Table 1. Parameters included in the prognostic models

IIGAN-PT (Barbour et al. [10]) ANN model (Schena et al. [15])

eGFR Creatinine
Systolic blood pressure Systolic blood pressure
Diastolic blood pressure Diastolic blood pressure
Proteinuria Proteinuria
Age Age
Race ACE inhibitor/ARB
ACE inhibitor/ARB Sex
M M
E E
S S
T T
Immunosuppression C

Immunosuppression

ARB, angiotensin receptor blocker; ACE, angiotensin-converting enzyme.

The observation period was defined as the time between the
diagnostic kidney biopsy and ESKD, death, or the end of April
2020.

This study was approved by the Western Norwegian
Regional Committee for Medical and Health Research Ethics
(Reference no. 2018/2130), and study participation was based
on informed consent. The research was done according to the
Declaration of Helsinki.

Histopathologic studies
Biopsy slides were retrieved from the Norwegian Kidney

Biopsy Register and reclassified according to the Oxford
Classification (MEST-C score) [5–7] by an experienced renal
pathologist who was blinded to the clinical data.

Variables and outcome predictors
We collected the same clinical and histopathologic data that

were used to develop the two prediction tools evaluated in this
study [11, 16]. The clinical and histopathologic parameters for
both tools are summarized in Table 1. The primary outcome
when evaluating the IIGAN-PT was a composite outcome
of 50% decline in eGFR or ESKD, while ESKD was the
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primary outcome in the evaluation of the ANN model. In
both derivation studies, ESKD was defined as eGFR less than
15 mL/min/1.73 m2 {chronic kidney disease [CKD] stage 5},
start of dialysis, or receipt of a kidney transplant. Because
reporting for CKD stage 5 only recently became routine in
the Norwegian kidney registry, however, we defined ESKD
as the start of dialysis or receipt of a kidney transplant.
The prognostic index for IIGAN-PT was calculated using
the reported formula from the derivation study. Because no
formula are provided for the ANN model, we derived the
predicted outcome probabilities by plotting the data from the
validation cohort into the online tool and further used them as
a prognostic index in the validation analysis [18].

Statistics
We evaluated discrimination and calibration as principles

for the external validation of the prognostic models, as
described by Royston and Altman [20]. The ANN model was
evaluated in two steps: first evaluating the predicted binomial
outcome of ESKD, and then evaluating the precision of the
time-to-event estimate for the cases with an outcome.

Discrimination
We used a time-dependent receiver operating characteristic

(tdROC) analysis to evaluate the prognostic performance of
IIGAN-PT; we used a time-naive ROC analysis for the ANN-
model. We used the ‘timeROC’ R package (R Foundation
for Statistical Computing, Vienna, Austria) [21] to evaluate
the cumulative prognostic performance at key time points of
interest. The discrimination ability of each model was also
assessed using the concordance index. We calculated the
calibration slopes for the models by performing regression on
the prognostic indexes in the current validation data set [22].
The prognostic indexes were categorized into risk groups by
the cut points Royston and Altman recommended (16th, 50th,
and 84th centiles) [20]. Kaplan-Meier survival curves for risk
groups were drawn for both models.

Calibration
Weevaluatedmodel calibration by drawing calibration plots

for censored survival data for the IIGAN-PT model, com-
paring the predicted with the observed survival probabilities
in calibration plots at 5, 10, 15, and 20 years. Survival plots
comparing mean survival predictions from the Cox model
and observed Kaplan-Meier survival estimates in risk groups
were drawn for the IIGAN-PT model. We assessed model
calibration for theANNmodel by drawing a binomial outcome
calibration plot, then comparing observed and predicted
outcomes [20].

Other statistical considerations
We evaluated the proportional hazard assumptions by using

the Schoenfeld test of residuals and by drawing a log-hazard
plot for the IIGAN-PT. A Bland-Altman plot was used to

evaluate the ANN-model’s ability to predict time to ESKD,
comparing predicted time to event with observed time to
event.

All the data were analyzed using the R software package,
version 4.0.3.

RESULTS
Clinical and histopathologic characteristics
In total, 306 patients from an all-Norwegian cohort were

included in this study. A total of 234 of the patients were male
(76.5%), and the mean and median patient follow-up periods
were 16.5 years and 17.1 years, respectively. Themean age at the
time of the biopsywas 37.4 years. Themean eGFR at the time of
the biopsywas 78.4mL/min/1.73m2, and themeanproteinuria
level was 1.7 g/day. Renin-aldosterone-angiotensin system
(RAAS) inhibitors were used frequently (70.9%), while only
6.5% of the patients received immunosuppressants. During
the study period, 61 patients (20%) reached ESKD, and 17
patients died before reaching ESKD or end of follow-up. The
baseline characteristics from our cohort as well as those of the
derivation cohorts (as reported by Barbour [11] and Schena
[16]), are shown in Table 2.

Discrimination
The calibration slope for IGAN-PT was 0.79 {95% confi-

dence interval [CI], 0.68–0.97; P = .03; for H0, slope = 1}.
Conversely, the calibration slope for the ANN-model was
1.64 {95% CI, 1.22–2.07; P < .001; for H0, slope = 1},
indicating potential local issues regarding calibration and
discrimination for both models. The tdROC analysis showed
that IIGAN-PT had excellent discrimination abilities at
5 years, with an area under the curve (AUC) value of 0.90
in predicting renal survival. The discriminatory ability of
the tool declines over time, with an AUC value of 0.83 at
20 years. Time-naive ROC analysis of the ANNmodel showed
good discriminatory abilities, with an AUC value of 0.83 for
predicting ESKD. The concordance index was 0.80 for IIGAN-
PT and 0.83 for the ANN model for predicting renal survival
and ESKD, respectively. All values are summarized in Table 3.
A direct comparison of the discriminatory abilities of IIGAN-
PT and the ANN-model models is not appropriate because
the two models are evaluating different end points and the
concordance index and AUC values have been derived from
different analyses.

Calibration
The calibration plots for censored survival data evaluating

the IIGAN-PT model show overall acceptable alignment to
observed renal survival probabilities, but it does tend to
underestimate risk at 5 years and overestimate risk at 20 years
for the patients with the highest observed risk (Fig. 1a). The
survival plots comparing mean survival predictions from the
Cox model and observed Kaplan-Meier survival estimates in
risk groups show that accumulated over time, the Cox model
slightly overestimates the risk for the patients in the most
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Table 2. Baseline characteristics

Characteristics Validation cohort IIGAN-PTa ANNmodela

Patients, n 306 2781 948
Follow-up (years), median (IQR) 17.1 (12.9–21.3) 4.8 (3.0–7.6) 7.42 (4.2–11.2)
Follow-up (years), mean (SD) 16.6 (7) NA NA
Age at biopsy (years), median (IQR) 35.0 (25.0–46.0) 35.6 (28.2–45.4) NA
Age at biopsy (years), mean (SD) 37.4 (14) NA 40.6 (14)
Male sex, n (%) 234 (76.5) 1608 (57.8) 685 (72.3)
Race
Caucasian, n (%) 306 (100) 1167 (42) 948 (100)b
Japanese, n (%) 0 (0) 569 (20.5) 0 (0)
Chinese, n (%) 0 (0) 1021 (36.7) 0 (0)
Other, n (%) 0 (0) 22 (0.8) 0 (0)
MEST score
M = 1, n (%) 103 (33.7) 1054 (38.0) 307 (32.4)
E = 1, n (%) 81 (26.5) 478 (17.3) 108 (11.4)
S = 1, n (%) 168 (54.9) 2137 (77.0) 710 (74.9)
T1 = 1, n (%) 32 (10.5) 686 (24.7) 194 (20.5)
T2 = 2, n (%) 2 (0.65) 128 (4.6) 44 (4.6)
Crescents 70 (22.9) 953 (34.3) NA
C = 1, n (%) 61 (19.9) NA 86 (9.1)
C = 2, n (%) 9 (2.9) NA NA
Creatinine (μmol/L), median (IQR) 90.0 (74–114) 92.0 (70.7–123.8) NA
Creatinine (mg/dL), median (IQR) 1.02 (0.84–1.29) NA 1.20 (0.96–1.70)
eGFR (mL/min/1.73 m2), median (IQR) 79.8 (57.2–101.0) 83.0 (57.6–108.0) 67.3 (44.9–89.9)
Proteinuria (g/day), median (IQR) 0.80 (0.3–2.2) 1.2 (0.7–2-2) 1.3 (0.60–2.5)
Systolic blood pressure (mm Hg), mean (SD) 135 (17) NA 131.4 (18.6)
Diastolic blood pressure (mm Hg), mean (SD) 83 (11) NA 83.2 (10.9)
MAP (mm Hg), median (IQR) 100.0 (93.0–107.0) 96.7 (88.7–106.3) NA
MAP (mm Hg), mean (SD) 100.1 (12.4) NA 100.2 (12.4)
RAAS, n (%) 217 (70.9) 862 (32.4) 577 (60.9)
Immunosuppressants, n (%) 20 (6.5) 252 (9.1) 258 (27.2)
Clinical outcome
50% decline in eGFR, n (%) 90 (29.4) 420 (15.1) NA
ESKD, n (%) 61 (19.9) 372 (13.4) 210 (22.2)

aReported derivation cohorts. IQR, interquartile range; MAP, mean arterial blood pressure; NA, not applicable.
bEuropean cohort.

Table 3. Discrimination: the concordance index and cumulative dynamic
time-dependent ROC analysis

IIGAN-PT, AUC (95% CI) ANNmodel, AUC (95% CI)

Harrel’s C index 0.80 (0.75–0.84)a 0.83 (0.77–0.89)b
AUCc NA 0.83 (0.77–0.88)
5-year AUC 0.90 (0.85-0.0.94) NA
10-year AUC 0.87 (0.82–0.92) NA
15-year AUC 0.86 (0.80–0.91) NA
20-year AUC 0.83 (0.75–0.89) NA

aTime-dependent concordance index.
bTime-naive concordance index.
cTime-naive ROC analysis.

severe risk group and underestimates the risk for patients in
risk group 1 (Fig. 2). Kaplan-Meier curves were drawn for both
models, showing probability for primary end points in four
different risk groups (Fig. 3).

The calibration plot for the ANN model, which com-
pares predicted and observed risk regardless of time points,
as intended by the model’s design, shows no significant
miscalibration in most groups. The ANN model, however,
underestimates risk for patients in the highest risk group and
overestimates risk in one of the groups with intermediate risk.
There is also a tendency to overestimate risk in the lower risk
categories, but there are fewer events in these categories to base

the estimates on, and precise estimation of the calibration in
these groups would require additional patients (Fig. 1b). The
ANN model’s ability to predict time to ESKD (Fig. 4), with a
cutoff at 50% given by the online tool, achieves a specificity of
78%, but the sensitivity is only 41%.

Assumption of proportional hazard for IIGAN-PT using
the Schoenfeld test of residuals yielded a significant P-value
(P < .001), indicating a violation of the proportional hazard
assumption. This finding was confirmed by a log-hazard plot
showing a significant decline in the hazard ratio over time for
the IIGAN-PT prognostic index.

In patients for whom the ANN model predicted ESKD, the
model also supplied time-to-event estimates. In the 25 patients
for whom the model correctly predicted ESKD, the model
overestimated the time to event by 2.5 years on average, with
9.5 years and −14.5 years as the upper and lower limits of
agreement, respectively, shown in a Bland-Altman plot (Fig. 4).

DISCUSSION
We have externally validated two new IgAN prognostic tools:
IIGAN-PT, which was developed by Barbour et al., and the
ANNmodel, which was developed by Schena et al. IIGAN-PT
was well calibrated and showed good discriminatory abilities
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FIGURE 1: Calibration plots. (A) Plot comparing observed and predicted for renal survival in the IIGAN-PT at 5 (a), 10 (b), 15 (c), and 20 (d)
years. (B) Plot comparing observed and predicted risk for the primary end point (ESKD) in the ANNmodel.
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FIGURE 2: Comparison of the observed survival (blue lines) with
mean predicted risk (black lines) from the IIGAB-PT.

for the first 10 years. The ANN model had good discrimina-
tion, but it has some local calibration issues, underestimating
risk for patients with higher risk and overestimating risk for

patients in the lower risk categories. Its ability to predict time to
event in cases with predicted and actual ESKDwas insufficient.

Before the current study, IIGAN-PT had been validated
only at 80 months, and it is derived from a cohort with a short
follow-up time; therefore, clinicians have been advised not to
use the tool to predict prognoses at later stages [23].

IIGAN-PT is derived from a multiethnic cohort, while
the ANN model included only European patients in their
study cohort. The patients included in the present study were
recruited from an all-Norwegian cohort; therefore, it will be
important to validate both tools for different ethnic groups
[23]. IIGAN-PT has previously been externally validated in a
Chinese cohort and a combined Chinese–Argentinean cohort
[13, 14], and the results from those studies are similar to the
results reported herein.

There are some major differences in the development of
the two models. The primary end point for IIGAN-PT is a
composite end point of the first occurrence of a 50% decline
in eGFR from baseline or ESKD, while the ANN model uses
a hard end point, such as ESKD. Barbour et al. argue that a
50% decline in eGFR is a widely accepted surrogate end point
[11], while Schena et al. suggest that one should use ESKD as
an end point in a slow, progressive disease such as IgAN, where
patients can have a permanent reduction in eGFR greater than
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FIGURE 3: Kaplan-Meier curves for primary end points. (A) 50% decline in eGFR or ESKD for IIGAN-PT and (B) ESKD for the ANNmodel.
Patients are divided into four risk groups: <16th, 16th–50th, 50th–84th, and >84th centiles.

50% for many years [16]. Notably, both prediction models
included patients with eGFR less than 30 mL/min/1.73 m2 in
their derivation cohorts, but the ANN model also included
15 patients (1.5%) with an eGFR less than 15 mL/min/
1.73 m2 as well as active lesions, such as crescents, which
could influence the performance of the ANN model in our
validation cohort. The exclusion of patients with an eGFR
under 15 mL/min/1.73 m2 and C lesions by IIGAN-PT limits
the tool’s ability to identify patients with acute kidney failure
and active lesions that could be responsive to treatment with
glucocorticoids.

Both the IIGAN-PT and ANN model include well-known
risk factors for disease progression to ESKD, such as eGFR,
blood pressure, proteinuria level, and histopathologic param-
eters. They also include the use of immunosuppressants and
RAAS inhibitors [3]. Barbour et al. chose to add race to
their model and leave out crescents, arguing that crescents are
strongly associated with race, and race is a more prominent
predictor of ESRD [23]. We have previously described that
even though crescents are independently a strong predictor for
progressive decrease in renal function [24], adding C to the
MEST score does not significantly improve its prognostic value
[19]. Notably, the ANN model includes sex as a prognostic
factor, which is supported by a recent study describing male
sex as a risk factor for IgAN [25].

The IIGAN-PT and ANN models include 12 and 13
different variables, respectively. Even though the tools are
available online, clinicians still must provide both clinical and
histopathologic data to use them. As described previously,
we found that the MEST score alone performed well as a
prognostic model [19]. This finding could indicate that some
clinical parameters, such as blood pressure, proteinuria, and
eGFR, fluctuate, which makes them, to some extent, less
accurate than histopathologic parameters, given a represen-
tative biopsy specimen. Histopathologic finding are isolated
observations, however, and repeated biopsies have been shown
to improve the prediction of ESKD in IgAN [26]. Further,
recent studies have found proteinuria and eGFR slope to be the

most important clinical variables in the evaluation of IgAN in
clinical trials [27, 28].

In our cohort, only 6.5% of the patients received immuno-
suppressive treatment, which is lower than expected given the
high rate of E lesions among the patients [7]. Additionally, S
andT lesionswere less frequent in our validation cohort, which
could be the result of including only patients who had an eGFR
over 30mL/min/1.73m2 in the study, as this inclusion criterion
may have excluded patients with a poor prognosis. Conversely,
a larger proportion of the patients in our cohort received RAAS
inhibitors, indicating that these patients were treated according
to the KDIGO guidelines from 2012 [29]; therefore, they could
be seen as representative, even though many of the biopsies
were performed at an earlier stage [13, 14].

There are some methodological concerns when validating
clinical decision tools. It is recommended that the prognostic
index be derived from the regression formula from the
derivation study [20], but it has been suggested that one
should consider using the estimated risk score derived from
the online tool if this score is the value intended for clinical
use [18].

In the present study, we used the original formula when
evaluating IIGAN-PT, while the ANN-model was evaluated
by using risk scores derived from the online tool because no
regression formula was available. This should be kept in mind
when comparing the results from the study.

The use of machine learning (ML) could represent a
paradigm shift for IgAN prognostic modeling because it
combines genetic, proteomic, imaging, metabolic, and mi-
crobiome data with clinical and histopathologic information
[30]. Two models have recently been developed based on
different combinations of clinical and histopathologic data:
A random forest model was developed by Liu et al. in
2018, and a model based on eXtreme Gradient Boosting
(XGBoost) was developed by Chen et al. in 2019 [31, 32].
Proponents of ML models postulate that they may yield
superior predictive performance over conventional regression
models by capturing complex, nonlinear variable relationships
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FIGURE 4: Bland-Altman plot describing time to event, as suggested by the ANNmodel, compared with observed cases.

in some data sets [33], and some models have provided more
accurate prediction estimates than conventional statistical
regressionmodels [34, 35].MLmodels are prone to overfitting,
however; thus, validating the external performance of these
models is crucial for determining whether promising results
from a local data set are applicable to external data and,
therefore, could have potential as a clinical prediction tool.
Unfortunately, external validations of prediction models are
scarce for both conventional regression and ML models
[18, 36]. The application of the ANN model for predicting
outcomes using only a few explanatory variables is also
questionable because it is not clear that the ML model would
achieve better performance than a conventional regression
model and important information regarding the explanatory
variables such as the variable coefficients is not available.
It seems more appropriate to use ML modeling in high-
dimensional data, where conventional regression models fail.
In this study, the Cox model seems more appropriate for the
prediction task because it handles time-to-event data.

Predicting future events is challenging; because of various
innovations, treatment, and health care standard improve-
ments, developing prediction models for future adverse events
is like attempting to hit a moving target. The ambition of any
prediction model should be to identify individuals who are
at high risk of an adverse event because this would provide

accurate prognostic information that would enable clinicians
to offer individually tailored treatments to their patients and,
hopefully, change the course of the poor prognostic predictions
themodelmakes. Thus, successfully applied predictionmodels
are not required to precisely predict what will happen; rather,
they should yield probability estimates of what could happen.

Precise prognostic tools are of great importance for a
heterogenous disease such as IgAN. Several IgAN prediction
models have been developed over previous decades, but none
of them has been put into widespread use [3, 31, 32, 37–42].
Currently, multiple ongoing clinical trials [8, 9] emphasize the
significance of robust prognostic tools for selecting patients
to participate in studies as well as those who will be eligible
for specific treatments at a later stage. Schena et al. recently
showed that their ANNmodel could be beneficial formatching
patients to therapies [43], while Barbour et al. found through
simulations that IIGAN-PT can be used to select patients
specifically for immunosuppression treatments [44]. One
must also not forget the value of identifying low-risk patients,
which could prevent unnecessary treatments with potentially
negative side effects and thus reduce health care costs.

The main limitations of this study are the retrospective
study design, small sample size, and homogenous ethnicity.
This study benefits from a long follow-up time compared with
previous validation studies, however.
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CONCLUSION
We have externally validated IIGAN-PT, developed by
Barbour et al., and the ANN model, developed by Schena
et al. IIGAN-PT performed well, and clinicians can use it
to predict the risk of a 50% decline in eGFR from baseline
or ESKD for patients with IgAN. It should not be used,
however, for risk prediction in patients with an eGFR under
15 mL/min/1.73 and active lesions. The ANN model has
acceptable discrimination but tends to underestimate risk for
patients with higher risk and overestimate risk in the lower
risk categories when predicting risk of ESKD. Notably, the
model’s ability to predict time to ESKD is insufficient in this
validation cohort.
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