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ABSTRACT 

 

Artificial satellites are objects or a body that are stationed in the orbit of another 

object. The purpose of artificial satellites includes monitoring, information transfer, 

studying a different planet, space exploration, and fulfilling many other modern-day 

needs. For the increased demand, the number of artificial satellites revolving around 

the earth is also increasing. Due to cost efficiency, bulk manufacturing capability, 

and ease to launch in the orbits, small satellites are the topic of interest. Reaction 

wheels are widely used in the attitude control system of small satellites. Unfortu-

nately, reaction wheels failure restricts the efficacy of a satellite, and it is one of the 

many reasons that lead to premature abandonment of the satellites. In larger satel-

lites, there is room for mechanical redundancy to increase service reliability, so an 

onboard health monitoring system is in demand to ensure seamless performance by 

minimizing the risk factor of the sudden failure of a small satellite. This study ob-

serves the measurable system parameter of a faulty reaction wheel to estimate the 

remaining useful life of the reaction wheels. In this research, a data-driven approach 

is for the fault prognosis of the satellite reaction wheel. The measurable system pa-

rameters from the satellite reaction wheel are not directly related to the health of the 

system. So, the proposed method involves three stages to achieve the goal. In the 

first stage, the necessary observable system parameters are identified, and their fu-

ture state is predicted based on historical data using a long short-term memory re-

current neural network. A health index parameter is defined and estimated using a 

multi-variate long short-term memory network in the second stage. In the third stage, 

the remaining useful life of the reaction wheel is estimated based on historical data 

of the health index parameter and a threshold. The approach is very efficient de-

pending on the fault severity and can be used in on-field scenarios. The approach is 

robust up to a certain degree of noise, disturbance, and missing data. 
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𝒯𝑑  Other disturbance 

𝒯𝑐  Control torque applied by the momentum exchange device 
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𝑡  Time  

 

 

 



 

1 

 

1 CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

In modern days, small satellites are our subject of interest for their low manufacturing cost, 

ease to launch into orbit, and the capability to deliver the same outcome as their large 

counterparts. Reaction wheels (RW)s are an integral part of the attitude control system 

(ACS) of a small satellite to have control over the rotation of its axes. To perform the 

designated task, a satellite needs to have accurate control over its direction. Though the 

RWs are very efficient, they are very prone to failure, and for a small satellite, that can lead 

to a disaster resulting in complete failure of the satellite. As there is not much room for 

mechanical redundancy in a small satellite to enhance the reliability and useful lifetime, 

one needs to increase the analytical redundancy as an alternative solution. If we monitor 

the degradation of performance in the attitude control system properly and estimate the 

remaining useful life (RUL) of the system, we can avoid a potential disaster and downtime 

of the service. Often, the cause of mechanical failure in RW is inadequate bearing lubrica-

tion and uneven frictional torque. This fault can be monitored from motor torque variation. 

In this study, we develop a data-driven fault prognosis model to predict the RUL of a faulty 

RW onboard satellite. 

Many studies are found in the field of condition-based monitoring (CBM) and prognostics 

health monitoring (PHM). However, only a few are dedicated to satellite reaction wheels. 

Studies show a 200% growth in microsatellites launches in the last five years [1]. It draws 

attention to develop a data-driven approach that can take the measurable sensor data as 

input and return the expected remaining useful life of the system under incipient fault. 

Developing a model-based prognostic method for a complicated system is very difficult as 

it requires a lot of system information. The prognosis of satellite RWs is a modern-day 

problem and there are a few model-based studies [2]–[8] found that address this topic with 

limited success. So, data-driven techniques are getting popular for less dependency on the 

system information.  

. 
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1.2 Literature Review 

 

 

Figure 1. Major fault prognosis methods. [9] 

 

Many data-driven studies are found in the field of prognosis, but only a handful of them 

([2], [10]–[12]) are directly related to the fault prognosis of RW in ACS onboard satellites.  

The authors in [3] have proposed a model-based approach to predict the RUL of an RW 

onboard satellite. The authors claim the model performs considerably well in the prediction 

of RUL with the error ranging from 1.5 to 13 percent, but the prediction interval shows the 

uncertainty in prediction increases with time.  

The authors in [13] have developed a two-step data-driven approach using the Kolmogo-

rov-Smirnov test, self-organize map, and an unscented Kalman filter (UKF) for bearing 

fault prognosis. In step one, the authors model the degradation process by learning the 

degradation. In the second step, degradation data and UKF is combined to predict the RUL. 

However, the method requires a significant amount of training data to perform meaning-

fully. In [14], the authors developed and implemented a multi-scale extended Kalman filter 

(EKF) using real motor data from an RW in satellite to predict RUL. In the process, the 

motor’s dynamic behaviour is expressed by an ordinary differential equation, and the au-

thors use the damping co-efficient as a health indicator.  

Some statistical model-based and data-driven approaches for machine fault diagnosis and 

prognosis are discussed in [15]. The authors in [16] defined and combined three goodness 

metrics of correlation, monotonicity, and robustness of the rolling element for degradation 
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feature selection during the RUL prediction. In [17], the authors have used wavelet packet 

transform and an artificial neural network for rolling element RUL prediction. Both pro-

posed methods can be used for any similar system, and the outcome and robustness can be 

improved if the model can be trained with data from multiple systems.  

In [18], the authors have used experimental data and suggested a condition monitoring 

technique for bearing life enhancement and preventing torque inequality by controlling the 

lubrication process. The authors propose a method using support vector machine (SVM) 

regression in [19] for wear assessment of cutting tools and calculation of RUL. The pro-

posed method is based on feature extraction, and it requires adequate training data for the 

model to predict meaningfully. The method uses a combined feature found by dimension-

ality reduction and uses it as a health index (HI) parameter. In the end, the HI parameter is 

mapped to a non-linear regressor for RUL prediction.  

In [20], variational mode decomposition (VMD) and long short-term memory (LSTM) re-

current neural networks (RNN) are used for the prediction of rotary machinery health. The 

authors in [21] have used a Feedforward artificial neural network (ANN) with a Marquardt 

training algorithm to predict the RUL of a bearing. The proposed ANN model uses time, 

and measurements of Weibull Hazard rates of root mean squared (RMS) and kurtosis from 

its present and previous points as input and returns normalized life percentage as output. 

The authors in [22]–[26] have studied and implemented different available techniques for 

the prognosis of rotary machinery. Different stages of CBM and PHM are mentioned in 

these articles, such as data collection, feature selection, state prediction using ANN. The 

authors have summarized several contemporary works in prognosis till the date of publi-

cation of their research. 

In [27], the authors mentioned an intelligent technique for the CBM and PHM of the com-

mon rotary component in a system. In this process, vibrational data from the sensor is used 

as an input, and feature extraction is carried out using a sparse auto-encoder. The authors 

used a moving average filter before feeding the data to the model.  The model returns an 

auto-encoder correlation-based rate (AEC) as output, and AEC is used to understand the 

condition of the rotary machinery. A method for CBM of rotary machinery using vibration 

data and the sound of working conditions is also mentioned in [28].   
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In [29], the authors used the Fourier transform and an auto-encoder to identify high-level 

features for PHM of rotary machinery. The model predicts the RUL with reasonably good 

accuracy, but the model performance degrades with noise. The model can be used in a 

similar scenario of PHM in any system, where vibration analysis is used. In [30], the au-

thors have studied acoustic emission, vibration data, acoustic technique, the shock pulse 

method, thermal and wear debris monitoring for CBM of mechanical and electrical devices.  

The authors in [31] have proposed a multidimensional technique using SVM and particle 

filter-based method for PHM of rotary machinery. The mentioned approach is claimed to 

be better in estimating RUL than the methods using data from single sensors. On the con-

trary, the model complexity in [31] is higher, making it unsuitable for complex systems 

that require a faster response. 

Some statistical model-based and data-driven approaches for CBM and PHM are briefly 

discussed in [32]. The authors in [33]–[35] have used the COVID-19 data set of infected 

people to predict the peak during the wave of infection and estimated time to reach that 

state. The authors have used different state-of-the-art machine learning techniques for the 

regression analysis in these papers. 

LSTM is an effective RNN for regression analysis and feature selection. The fundamentals 

and different applications of the LSTM model are discussed in [20], [36]–[40]. The authors 

of [11] have proposed a two-step prognosis technique for satellite RW and carried out a 

state parameter prediction. The authors used an auto-regressive integrated moving average 

(ARIMA) model, and an LSTM network for state parameter prediction and the best accu-

racy obtained by each model has a normalized root mean squared error (NRMS) 0.138 and 

0.04, respectively. 

In this study, a novel comprehensive three-step data-driven approach for the prognosis of 

the satellite reaction wheel is proposed to address the limitation in literature as discussed 

above. In the first step, state parameter prediction is carried out. In the second step, the 

health index parameter is defined and predicted. Finally, in the third step, with the help of 

historical data and a threshold, the RUL of an RW in the attitude control system onboard 

satellite is estimated. 
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1.3 Contributions of This Work 

Contributions of this work are listed and described below: 

[CONTRIBUTION 1] Developing a new three-stage data-driven prognostic technique us-

ing long-short term memory (LSTM) recurrent neural network (RNN). The accuracy 

achieved in prediction of health index (HI) parameter is normalized root mean squared 

(NRMS) error (0.01~0.02), and the accuracy in prediction of remaining useful life (RUL) 

is 1% ~ 2.5%. 

1.4 Problem Definition 

Reaction wheels were first introduced in automobiles to conserve momentum and provide 

smooth power output. The same idea can be used for many purposes. In a satellite attitude 

control system, the reaction wheels are used for a different purpose. Particularly in small 

satellites, RWs are used to rotate the satellite on its axis. It is done using an electric motor 

to rotate the RW to obtain an equal and opposite momentum to rotate the satellite in the 

opposite direction. Multiple RWs can be assembled in different configurations to gain 3-

axis attitude control. As a result, the method became very popular for cost-efficient satellite 

manufacturing and service. However, the reaction wheel as a mechanical device does not 

have a long lifespan, and in the case of small satellites, there is not much room for mechan-

ical redundancy to improve reliability. Furthermore, installing an increased number of RWs 

in satellites increases the weight and launch cost, which contradicts the key financial aspect 

of small satellites. To overcome this problem, proper CBM and PHM techniques can be 

used to increase service reliability as they will nullify the service downtime due to RW 

failure by providing an estimated RUL of the system. 
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Figure 2 Different stages of the prognostic model for an RW 

This study aims to predict the remaining useful life of a reaction wheel under incipient fault 

using a data-driven approach. To achieve this goal, a three-step process is proposed. Figure 

1 illustrates the flow of the proposed three-step process followed during the prognosis of 

RW in this study. The main components of RW that are prone to failure are bearing and 

electrical motor. The developing fault can be monitored by motor torque (𝑘𝒕) and bus volt-

age (𝑉𝑏𝑢𝑠). Neither of the bus voltage or motor torque data is available from the sensor 

readings. The available essential sensor readings are wheel speed (⍵𝑚), motor current (𝐼𝑚), 

and torque command voltage 𝑉𝑐𝑜𝑚𝑚.  

The mathematical relation between system states motor current 𝐼𝑚, RW speed ⍵𝑚 and HI 

parameter motor torque coefficient (𝑘𝑡) is expressed in Equation (1), and the relationship 

is highly nonlinear. Figure 3 represents Bialke’s ITHACO type A reaction wheel. The sys 

tem parameters and constants for the ITHACO Type-A reaction wheel by Goodrich mod-

elled by Bialke are listed in Table 1. Due to the nonlinearity in the mathematical relation, 

numerical simulations are used to generate accurate input data. A detailed description of 

Bialke’s high fidelity reaction wheel model can be found in [41]. 

The nonlinear RW model can be mathematically expressed as follows [42]: 

𝐼�̇� = 𝐺𝑑𝜔𝑑[𝑓3(𝜔𝑚, 𝐼𝑚) − 𝑓5(𝜔𝑚)] − 𝜔𝑑𝐼𝑚 + 𝐺𝑑𝜔𝑑𝑉𝐶𝑜𝑚𝑚 

�̇�𝑚 =
1

𝐽𝑤
{𝑓1(𝜔𝑚) + 𝑘𝑡𝐼𝑚[𝑓2(𝜔𝑚) + 1] − 𝜏𝑣𝜔𝑚 − 𝜏𝑐𝑓4(𝜔𝑚) + 𝜏𝑛𝑜𝑖𝑠𝑒}  

(1) 

In which, 

           
   ,    ,    

            
     

             
          

       
               
               

           
      

   +1 ,    +1 ,

      +1
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Figure 3. Bialke’s ITHACO Type A reaction wheel model. [41] 

 

𝑓1(𝜔) = 𝐶𝑠𝑖𝑛 (
𝑁𝑡

2
𝜔𝑚) 

𝑓2(𝜔) = Bsin(3𝑁𝑡𝜔𝑚) 

𝑓3(𝜔𝑚, 𝐼𝑚 , 𝑉𝑏𝑢𝑠) =
𝑒𝑥𝑝[−𝑎𝑉(𝜔𝑚, 𝐼𝑚 , 𝑉𝑏𝑢𝑠)]

1 + exp[−𝑎𝑉(𝜔𝑚, 𝐼𝑚, 𝑉𝑏𝑢𝑠)]
𝑉(𝜔𝑚, 𝐼𝑚 , 𝑉𝑏𝑢𝑠) 

(2) 



 

8 

 

𝑓4(𝜔) =
1 − exp(−𝑎𝜔)

1 + exp(−𝑎𝜔)
 

𝑓5(𝜔) =
𝑘𝑠[𝜔𝑚 −𝜔𝑠𝑓4(𝜔)]

2
{

1

1 + exp[−𝑎(𝜔𝑚 − 𝜔𝑠)]
+

1

1 + exp[𝑎(𝜔𝑚 + 𝜔𝑠)]
} 

𝑉(𝜔𝑚, 𝐼𝑚 , 𝑉𝑏𝑢𝑠)

= 𝑘𝑓 [𝑉𝑏𝑢𝑠 − 6 −
1

1 + exp(−𝑎𝐼𝑏𝑢𝑠)
(1 + 𝑅𝑖𝑛𝐼𝑏𝑢𝑠)

−
1 − exp(−𝑎𝑘𝑒𝜔𝑚)

1 + exp(−𝑎𝑘𝑒𝜔𝑚)
𝑘𝑒𝜔𝑚]

 

 

Table 1 – ITHACO Type A reaction wheel model system parameters 

Parameter Value 

Coulomb Friction (𝜏𝑐) 

Viscous Friction (𝜏𝑣) 

Drive gain time constant (𝜏𝑑) 

Ripple Torque (B) 

Temperature (𝑇) 

Cogging Torque (C) 

Torque Noise Frequency (𝜔𝑎) 

Jitter Angle (𝜃𝑎) 

BEMF (𝐾𝑒) Nominal 

Motor Torque Const. (𝑘𝑡) 
Bus Voltage (𝑉𝑏𝑢𝑠) Nominal 

Bridge Resistance (𝑅𝐵) 

Driver Gain (𝐺𝑑) 

Number of Motor Poles (N) 

Input Filter Resistance (𝑅𝐼𝑁) 

Quiescent Bus Power (𝑃𝑞) 

Driver Bandwidth (𝜔𝑑) 

Voltage Feedback Gain (𝑘𝑓) 

Over-speed Circuit Gain (𝑘𝑠) 
Maximum Wheel Speed (𝜔𝑠) 

0.002 Nm 

3.84×10-4 Nm/rad/s 

0.245 

0.22 

23° C 

0 

0.2 rad/sec 

0.05 rad = 3 degrees 

0.029 V/rad/s 

0.029 Nm/A 

8 V 

2 Ω  

0.19 A/V 

36 

2 Ω 

3 W 

9 rad/s 

0.5 V/V 

95 

680 rad/s 

 

There are five building blocks (𝑓1−5) inside Bialke;’s    model.  here, 𝑓1 and 𝑓2 capture 

the motor disturbance, 𝑓3 accounts for EMF torque-limiting block, 𝑓4 addresses analytical 

approximation of the sign function, and 𝑓5 stands for the speed limiter block. A detailed 

explanation of these blocks and Equation (1), & (2) can be found in [42]. 
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The goal of this research is to develop a comprehensive data-driven model for the prognosis 

of satellite RW. The relation between the states and the HI parameter is highly nonlinear 

[42]. Therefore, in the first stage of this work, forecasting the future data (RW speed 

(⍵𝑚𝑡+1
), motor current (𝐼𝑚𝑡+1

), torque command voltage (𝑉𝑐𝑜𝑚𝑚𝑡+1
)) using a forecasting 

model and the available measurements (RW speed (⍵𝑚𝑡
), motor current (𝐼𝑚𝑡

), torque com-

mand voltage (𝑉𝐶𝑜𝑚𝑚𝑡
)). In the second stage of the proposed approach, the HI parameter 

is defined to be 𝑘𝑡 and employed a degradation model to find forecasted states for this 

parameter using the degradation model and historical and available measurements from the 

system. Finally, in the third stage of the proposed approach, a threshold for the HI param-

eter (𝑘𝑡) is established from the historical data and compared with the data found in the 

second stage to predict the RUL 

Based on previous studies by [7], [43], [44] on electrical motors degradation behaviour for 

a similar system, the degradation of system health is related to 𝑘𝑡 is considered to be ex-

ponential growth or decline. This can be mathematically modeled as [45] 

𝑘𝑡 = 𝑎𝑒−𝑏𝑡  (3) 

Wherein, a and b are the model parameter to be estimated and t is the respective time. A 

detailed explanation of  the degradation model for 𝑘𝑡 can be found in [2]. This logic is used 

for developing an RW model with induced incipient fault for data acquisition to use in this 

research for developing a data-driven fault prognosis method for an RW. 

Limitation and assumptions made in this research are as follows:  

• During this research and analysis simulator generated data is used. 

• The prognostic model is developed based on Bialke’s high fidelity RW model. 

• The threshold for health index parameter is selected at 30 percent of the nominal 

value as in [2] 
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1.5 Outline 

The rest of this document is structured as follows: 

In chapter 2, the theoretical background for satellite RW fault prognosis is presented. The 

detailed methodology to solve this problem is in chapter 3. Next, in chapter 4, a case study 

is presented with the implementation of the proposed methodology for the evaluation of 

the model. Then, in section 5, results are presented and discussed. Finally, in chapter 6, a 

conclusion and remarks for future works and applications are provided. 
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2 CHAPTER 2 

THEORETICAL BACKGROUND 

In this chapter, some theoretical backgrounds are provided that are necessary to support 

the proposed scheme for this thesis.  

2.1 ARIMA 

ARIMA is a mathematical model specially designed for regression of complex and non-

stationary time series. The ARIMA model can be mathematically written as 

𝑦�́� = 𝑐 +𝜙1𝑦𝑡−1́ + ⋯+ 𝜙𝑝�́�𝑡−𝑝 + 𝛳1ɛ𝑡−1 + 𝛳𝑞ɛ𝑡−𝑞 + ɛ𝑡  (4) 

where 𝑦𝑡
′ is the series after differentiating 𝑦𝑡, and it can be done more than multiple times. 

The prediction contains both the lagged values of 𝑦𝑡 and lagged error. The model is known 

as ARIMA (p, d, q) model. The relationship between p, d, and q can be expressed as 

 

(1 − 𝜙1𝐵 −⋯− 𝜙1𝐵
𝑝)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + (1 + 𝛳1𝐵 +⋯+ 𝛳𝑞𝐵

𝑞)ɛ𝑡  (5) 

where (1 − 𝜙1𝐵 −⋯− 𝜙1𝐵
𝑝) , (1 − 𝐵)𝑑𝑦𝑡  and 𝑐 + (1 + 𝛳1𝐵 +⋯+ 𝛳𝑞𝐵

𝑞)ɛ𝑡  are ex-

pressed as p, d, q, respectively. p is the order of the autoregressive part (lag order), d is the 

degree of first differencing involved and, q is the order of the moving average 

2.2 LSTM 

 

Figure 4. LSTM network architecture. Adapted from [46] 

LSTM is a specially designed RNN that can address long term dependency issue that exists 

with conventional RNN. LSTM was first proposed by Hochreiter and Schmidhube [36]. 

Currently, there are many versions of the LSTM network available. However, the LSTM 

network used in this study is adapted from [47]–[50]. LSTM has a chain-like structure 

similar to all other standard RNNs; however, the repeating module in LSTM has a different 
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structure with interactive layers. The components of each block inside an LSTM network 

are shown in Figure 5. 

 

Figure 5. A chain-like structure of an LSTM network. Adapted from [50], [51] 

LSTM networks work with memory blocks instead of neurons where the memory blocks 

are connected through layers. Each block in Figure 5 takes a sequence of input, and a sig-

moid function determines the activation of gates inside the block. Equation (6) represents 

a sigmoid activation function. The first step inside an LSTM network block is a forget gate 

to decide which information to dispose of from the cell state. Equation (7) mathematically 

represents a forget gate. The next step has two parts. The input gate layer decides which 

values will be updated in the first part, as shown in Equation (8). In the second part, a 

tanh(∙) layer creates new values to add to the state in Equation (9). Later, these two parts 

are multiplied to update the state in Equation (10). Finally, the block decides the output in 

the output gate step. In this step, at first, a sigmoid function decides which part of the cell 

state to pass as output, using Equation (11). Subsequently, the cell state from the input gate 

passes through tanh(∙) and is multiplied with the output of the output gate, using Equation 

(12). As a result, the output gate inside the LSTM block can provide the final output for 

the block.  

𝜎(𝑡) =
1

1+𝑒−𝑡
  (6) 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (7) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (8) 

   1     +1

   1   +1  
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�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (9) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡 (10) 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (11) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (12) 

In Equations (6)-(12) , 𝑊𝑓, 𝑊𝑖, 𝑊𝐶, and 𝑊𝑜 are the weights of the forget gate, input gate, 

tanh(∙), and output gate, respectively, ℎ𝑡−1 is the output from previous block, 𝑥𝑡 is current 

time steps contribution, 𝐶𝑡−1 is the contribution of tanh(∙) from previous block at time 

step (t-1), and terms 𝑏𝑓, 𝑏𝑖, 𝑏𝐶, and 𝑏𝑜are the biases. 

LSTM network is a kind of recurrent neural network that overcomes the vanishing gradient 

problem. So, it can be used when working with difficult sequence problems in machine 

learning. LSTM network can overcome long-term dependency problems in RNN. Figure 6 

shows an illustrated view of a block inside an LSTM network. 

In LSTM, blocks are used instead of neurons, and the blocks are more effective than neu-

rons as the blocks can select whether to update the information depending on the condi-

tions. A block comprises three gates; a forget gate, an input gate, and an output gate, which 

manage the state and output of the block.  

 

Figure 6. An LSTM network. Adapted from [11], [37], [43] 
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2.3 Multivariate LSTM 

A multivariate LSTM network is an LSTM network that works with the principle of many 

to one. This network is capable of taking several different kinds of inputs and providing a 

single output. This network is very efficient in the prediction of complicated time series 

where the output of the network is dependent on multiple other conditions inherently. Fig-

ure 7 shows the structure of a multivariate LSTM network where the network is adapted to 

take three different features as input and provide a single output. 

 

Figure 7. Structure of multivariate LSTM network. Adapted from [46] 
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3 CHAPTER 3 

METHODOLOGY 

For the data-driven fault prognosis of satellite RW, an optimized machine learning method 

is developed to forecast the time-series dataset. Figure 8 shows the steps followed during 

the selection of the final model for time series prediction and the steps followed towards 

building the prognostic model for an RW. The models used during this process are auto-

regressive (AR), autoregressive moving average (ARMA), autoregressive integrated mov-

ing average (ARIMA), and recurrent neural network long-short term memory (LSTM), 

multi-variate LSTM. In Figure 8, the flowchart shows the main steps towards building the 

prognostics model for a satellite RW. 

 

Figure 8. Steps toward building the prognostic model for an RW 
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Figure 8 shows the reasonable structure blocks followed during this study to build the 

model for predicting the reaction wheel system states in a satellite attitude control system. 

The principal methodology is to choose a reasonable regression model for predicting the 

future trend and behaviour of the available system states. In this study, LSTM is selected 

to provide very accurate regression results for the reaction wheel speed dataset [11]. One 

regression model can perform superior to another depending on the dataset type and ad-

justment of model parameters. 

3.1 Data Collection and Preparation 

Generally, for data-driven prognosis approaches, the raw data to train and test a model is 

collected from the functioning hardware or a computer simulation from a digital twin of 

the hardware. The real-life data from a satellite attitude control system is not easily acces-

sible, making the data-driven fault prognosis more difficult. This is overcome by producing 

synthetic data from a computer-generated model. Bialke’s ITHACO Type-A high fidelity 

model is used, as shown in Figure 2 and formulated in Equation (1), to generate synthetic 

data and further add Gaussian white noise to the dataset to resemble the dataset from a real-

life satellite.  

For the simulation, all the variables and the assumptions are set as stated in Table 1 and 

inserted an incipient fault in the 𝑘𝑡 the module of the model. The model is run for 15000 

seconds and stored the model output taking time step 0.1 seconds. This generates 150000 

data points for each output of the model. The model outputs are, RW speed (⍵), motor 

current (𝐼𝑚), Torque command voltage (𝑉𝑐𝑜𝑚𝑚), motor torque coefficient (𝑘𝑡), and bus 

voltage (𝑉𝑏𝑢𝑠). Where ⍵, 𝐼𝑚, and 𝑉𝑐𝑜𝑚𝑚 are the measurements that are available from sen-

sor reading in case of an operational satellite and 𝑘𝑡, 𝑉𝑏𝑢𝑠 are non-measurable system pa-

rameters that we can use for RW health monitoring. The data is stored in a CSV file format 

for analyzing and building a data-driven fault prognosis model. Further added Gaussian 

white noise to the dataset to resemble the dataset from a real-life satellite. The additional 

model parameters and functions that are changed during inserting incipient fault and gen-

erating data is stored in Table 2, Table 3, and Table 4. The analysis using second scale data 

is shown in result section and sensitivity analysis and the analysis using the day and month 

scale data is added in the sensitivity analysis section. 
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Table 2 –  Additional model parameters in MATLAB model for sec-

ond scale data generation 

Parameter/ function name Parameter value /  function 

Data sampling rate 0.1 per second 

Frequency input 0.1Hz 

Simulation duration 15000s 

𝑘𝑡 incipient fault 𝑘𝑡 = 𝑘𝑡0(1/exp(t
⋆1e − 4)) 

 

Table 3 –  Additional model parameters in MATLAB model for day 

scale data generation 

Parameter/ function name Parameter value /  function 

Data sampling rate 1 per second 

Frequency input 0.01Hz 

Simulation duration 1400000s 

𝑘𝑡 incipient fault 𝑘𝑡 = 𝑘𝑡0(1/exp(t
⋆1e − 6)) 

 

Table 4 –  Additional model parameters in MATLAB model for 

month scale data generation 

Parameter/ function name Parameter value /  function 

Data sampling rate 2 per second 

Frequency input 0.01Hz 

Simulation duration 13200000s 

𝑘𝑡 incipient fault 𝑘𝑡 = 𝑘𝑡0(1/exp(t
⋆1e − 7)) 
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3.2 Missing Data Imputation and Noise Addition 

In this study, model-generated data is used, making our dataset free from impurity. How-

ever, there can be missing values, additional disturbance, or noise in the data from real-life 

sources due to errors in the sensor reading or other uncertainties. To ensure real-life impli-

cations, it is crucial to address these issues. Randomly erased data using the Python func-

tion and added Gaussian white noise to the dataset to emulate the real-world scenario. The 

per cell probability of missing value can be expressed by Equation (16). Where, P(𝑋 ∈ 𝑆) 

represents probability of X taking a value in a set, Ω is sample space, and 𝜔 is out come of 

the sample space [52]. When working with missing data, interpolation techniques are used 

to impute the missing values. In Equation (13), the interpolation function for missing value 

imputation can be found, and Equation (14) defines a white Gaussian. Where, 𝑆𝑋(𝑓) flat 

power spectral density, 𝜇𝑋 is mean, and 
𝑁0

2
 is a constant. LSTM network can also address 

the missing data issue but in this case a simple interpolation technique has proven to be 

effective enough. We calculate and express the noise quantity signal to noise ratio (SNR) 

in decibel unit quantity during the research. The function used for the calculation of noise 

level can be found in Equation (15). 

 

𝑦 = 𝑦1 + (𝑥 − 𝑥1)
(𝑦2−𝑦1)

(𝑥2−𝑥1)
  (13) 

𝑆𝑋(𝑓) =
𝑁0

2
,forall𝑓, 𝜇𝑋 = 0 (14) 

𝑆𝑁𝑅 = 20𝑙𝑜𝑔
𝑆

𝑁
 (15) 

𝑃(𝑋 ∈ 𝑆) = 𝑃({𝜔 ∈ 𝛺 ∣ 𝑋(𝜔) ∈ 𝑆}) (16) 

 

3.3 State Prediction (Stage 1) 

In this study, available measurements are the    angular speed  ω),  otor current  𝐼𝑚), 

and torque command voltage (𝑉𝑐𝑜𝑚𝑚). An LSTM network is used for the prediction of 

future measurements. The utilized LSTM network incorporates a visible input layer, a hid-

den layer comprising four LSTM blocks, and an output layer. A customized Adam opti-

mizer is used for learning rate and faster convergence. The Adam optimizer is customized 
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using a scheduler with a learning rate decay rate of 0.85 for every 10 epochs. A large initial 

learning rate helps the network learn faster and reduce computational time, but it can con-

clude to a suboptimal solution [53]. Hence, the use of a scheduler solves the problem for 

the network to learn faster and efficiently. The model is trained with 70 percent of the 

dataset and tested with the remaining of the dataset. For validation, 25 percent of the dataset 

is used. The predicted measurements are stored and used for state or HI parameter predic-

tion. However, when predicting the data after the available dataset, we need to predict 

based on the prediction in the previous time step. This causes even a minor error in the 

prediction of the first-time step to propagate through the next prediction. We assist our 

model to overcome this problem by using a reference line. The reference line is formed as 

𝑦(𝑡) = 

𝐴1 × 𝑒(𝑙𝑜𝑔(𝑏1)×𝑡) + (𝐴2 × 𝑒(𝑙𝑜𝑔(𝑏2)×𝑡)) × 𝑠𝑖𝑛(𝑓𝑚𝑎𝑥 × ⍵ × 𝑡 + 𝑝) + 𝑐  
(17) 

where, 𝐴1,𝑏1, 𝐴2,𝑏2, ⍵, p, c are all unknown constants, 𝑡 denotes time, and 𝑓𝑚𝑎𝑥 is max-

imum frequency obtained from a fast Fourier transform (FFT) of the dataset. All unknown 

constants in Equation (17) are found using a nonlinear least-square fit of the dataset to 

Equation (17). This equation is developed after analysing the true data pattern where, the 

true data has different frequences in it and by Fast Fourrier Analysis the frequencies are 

separated. The data pattern also show an exponential decline pattern and that is address by 

the first part of the equation (17).   

3.3.1 Adjusting Hyperparameters 

For any neural network, it is imperative to adjust and the model’s hyperparameter accord-

ing to the dataset. All the tuned parameters for the state prediction with the LSTM  network 

are listed in Table 5, 
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Table 5 – Tuned parameters for the state prediction with the LSTM   

Parameter Value 

Train to total data ratio 70% 

Optimizer ADAM 

Initial learning (LR) rate 0.002 

LR decrement per 10 epochs 85% 

Validation split 25% 

Batch size 128 

Degree of differencing (L_B) 16 

Number of epochs 1000 

Number of future data Prediction 100,000 

Number of total data points in each feature 150,000 

Data normalization 0-1 

Data sampling rate 0.1second 

 

3.3.2 Loss function 

For the proposed LSTM network mean squared error (MSE) loss function is used. This is 

the most commonly used loss function in neural networks. MSE loss function is very ef-

fective during the regression analysis with the neural. As the name states in this loss, func-

tion loss are calculated by taking the mean squared difference between the predicted value 

and true data. Mathematically it can be expressed as follows: 

𝐿(𝑦, �̂�) =
1

𝑁
∑  

𝑁

𝑖=0

(𝑦 − �̂�𝑖)
2 (18) 

wherein, ŷ is the predicted value and y is true data. 

3.4 HI Parameter Prediction (Stage 2) 

The main goal for our study is to predict the remaining useful life of the reaction wheel, so 

we determine the HI parameter in this stage from measurable sensor data. A multi-variate 

LSTM network is used for the calculation of HI parameter motor torque coefficient (𝑘𝑡). 
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We take wheel speed (𝜔𝑚), motor current (𝐼𝑚), and torque command voltage (𝑉𝑐𝑜𝑚𝑚) as 

inputs to train the model, and we calculate loss during training from the available motor 

torque data from the model. During training, 70 percent of the total data is used, and the 

rest are used to test the model performance. For validation, 30 percent of the dataset is 

used. A custom Adam optimizer with a decremental learning rate is used for efficient train-

ing. 

As there are different types of frequencies in the input data, we use two types of filters in 

the input data before feeding them to the model to assist model performance. For RW speed 

data, we use an exponential trend filter, and for motor current and torque command voltage 

data, we use a moving average filter. Both the filters can be found in Equations (19), and 

(20), respectively. 

𝑦(𝑡) = 𝑎 × (𝑒−(𝑏×𝑡)) + 𝑐  (19) 

𝑀𝑜𝑣𝑖𝑛𝑔𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐴1 + 𝐴2 +⋯+ 𝐴𝑛

𝑛
 (20) 

 

 

In Equation (18), unknown constants are a, b, c are required to be estimated to fit the ex-

ponential trend of the dataset. The values of unknown constants in the equation are found 

by using curve_fit function from  ython library  ci y. Initially, all the constants’ values 

are set to 1 and then using nonlinear least square optimization, the curve_fit function esti-

mates the values of the unknown constants fitting an exponential trend to reaction wheel 

speed (⍵𝑚) dataset. . In Equation (20), n is the window size for the calculation of moving 

average, and all the A terms are the values of data point. 

3.4.1 Adjusting Hyperparameters 

Adjusted hyperparameters for multivariate LSTM network during HI parameter prediction 

are listed in Table 6: 
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Table 6 – Tuned parameters for 𝒌𝒕 prediction  

Parameter Value 

Train to total data ratio 70% 

Optimizer ADAM 

Initial learning (LR) rate 0.01 

LR decrement per 10 epochs 85% 

Validation split 25% 

Batch size 24 

Degree of differencing (L_B) 1 

Number of epochs 300 

Number of future data Prediction 100,000 

Number of total data points in each feature 150,000 

Data normalization No 

Data sampling rate 0.1 second 

3.4.2 Monitoring Model’s Learning Progression: 

It is necessary to monitor the model’s loss to understand if the employed network is learn 

ing the pattern for future prediction. We monitor both mean squared error loss that is cal-

culated in the model training session and the validation loss using validation data. The 

model is learning if the loss and validation loss is converging to each other. The learning 

of LSTM network employed for state prediction in stage 1 is shown in the Figure 9, Figure 

10, and Figure 11. The learning of multivariate LSTM network for forecasting HI param-

eter can be found in Figure 12. 
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Figure 9. Graph of epoch vs loss for fitting the model to RW speed data 

 

Figure 10. Graph of epoch vs loss for fitting the model to motor current data 
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Figure 11. Graph of epoch vs loss for fitting the model to torque command voltage data 

 

Figure 12. Graph of epoch vs loss for fitting the model to forecast HI parameter 

3.5 Calculation of RUL (Stage 3) 

The remaining useful life is calculated based on the predicted value of the HI parameter 

(𝑘𝑡) and a threshold value for it. As stated in [2], [54], the threshold is based on the nominal 

value of motor torque (𝑘𝑡). If the degraded value of 𝑘𝑡 reaches 30 percent of its healthy 

state value, the system failure occurs. So, the intersection between the degradation data of 

the HI parameter and the threshold will show the point of predicted failure occurrence. The 

time window can be calculated from the present to the point of predicted failure to find out 

the RUL of the RW with incipient fault. 
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4 CHAPTER 4 

CASE STUDY: REACTION WHEEL ONBOARD SATELLITE 

4.1 Introduction 

Prognosis is an unquestionable requirement for a large portion of advanced electromechan-

ical machinery. Legitimate prognostics of a system can reduce the use of additional hard-

ware for reliability purposes and, consequently, save production expenses and assembly 

intricacies. Forecasting is certainly not a simple task when working with a lot of variables 

and uncertainties. The issue can be addressed in mainly two ways, data-driven or model-

based. A model-based technique is very accurate but only desirable if it is small and all the 

parameters are known. However, building a comprehensive model-based strategy is very 

arduous for a complex system. Henceforth, data-driven strategies are acquiring prevalence 

over the long haul. The focus of this study is to develop an optimized prognostic model for 

an RW in the attitude control system of a satellite to increase the reliability of the service.  

4.2 ACS 

The attitude control system (ACS) in an onboard satellite has two main types of compo-

nents namely, actuators and sensors. The actuators are necessary to exert forces and torques 

while sensors collect all the measurements. There are two types of sensors in ACS: active 

and passive. The passive sensors do not have any internal processors, whereas active sen-

sors contain internal processors. The common passive sensors are named in Figure 13 [55]:  

 

Figure 13. Satellite attitude control system units 
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where FSS stands for Fine Sun Sensor, CSS stands for Coarse Sun Sensor, SPS stands for 

Sun Present & Sun not Present, ES stands for Earth Sensor, MSM stands for Magnetome-

ters, GYR stands for Gyroscope,  STR stands for Star Sensor, GPS stands for Global Posi-

tioning System, RW stands for Reaction Wheel, MW stands for Momentum Wheel, MGT 

stands for Magnetorquers and CMG stands for Control Moment Gyros. 

Here, in the attitude control system, FSS and CSS measure the direction of the sun line 

accuracy. SPS informs sun is present or not present. ES measures the earth’s direction. 

    measures the direction of the earth’s magnetic field. GYR measures the inertial an-

gular rate of the satellite. The position of several stars is measured by STR. RW provides 

the torque necessary for three-axis orbit control. Constant torque is provided by MW using 

a constant speed rotary wheel. Control torque is generated by MGT. Finally, CMG is a 

gimballed RW that serves a similar purpose as RW. 

4.3 Reaction Wheel 

 

Figure 14. 16U nanosatellite bus M16P / M16P-R [1] 

Figure 14 shows a nanosatellite with RW for three-axis attitude control. A reaction wheel 

is a flywheel generally used in machinery to preserve momentum. In the case of the satel-

lite, the reaction wheel is used to rotate the satellite on its a is using  ewton’s third law of 

motion. The main components of a reaction wheel are an electronic motor, bearings, and a 

flywheel where most of its mass is located at its rim. Figure 15 shows an uncovered reaction 



 

27 

 

wheel and the disk at the top of the figure is the rotary wheel of the RW that contains most 

of its mass. The mathematical modelling of the reaction wheel that is used during this re-

search is detailed in section 1.4. Reaction wheels are most commonly used in attitude con-

trol system of a small satellite. It helps the satellite to rotate around its axises without need-

ing any propalant. Gelerally, solar power is used to drive the motor of an RW. 

 

Figure 15. Reaction wheel unit from SSDC lab at Ryerson University. [2] 

Studies [6], [56] show that for RWs, most faults happen in the bearing assembly (BA) with 

the briefest life span. Deficient or inadequate lubrication results in a faulty BA. As a result, 

the differential frictional torque will be affected. Subsequently, it should be monitored for 

changes in the system. However, it is not readily available for measurement and needs to 

be reproduced based on observable measurements in the system. 
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4.4 Reaction Wheel Assembly 

 

Figure 16. CubeSat Reaction Wheels Control System Sat Bus 4RW0 [57] 

Reaction wheel assembly can be formed and configured in different ways depending on 

the requirements and preference. In Figure 16 a standard four-wheel configuration is pre-

sented. Each actuators torque contribution to each principal axis of the spacecraft body can 

be expressed by the following equations [2]: 

[

𝜏𝑥
𝜏𝑦
𝜏𝑧
] = 𝐴𝑅𝑊 [

𝜏𝑤1
𝜏𝑤2
𝜏𝑤3
𝜏𝑤4

]  (21) 

where, 𝜏𝑥, 𝜏𝑦, 𝜏𝑧 are the torques applied to the x, y, z-direction of the satellite, respectively, 

and 𝜏𝑤𝑖
 is the resultant torque generated by each RW on its axis. A mapping matrix (𝐴) is 

used to map the two most popular configurations of setting up RW in the ACS: (1) Standard 

four-wheel configuration with three orthogonal RWs and one redundant oblique RW, and 

(2) four RWs in a pyramid configuration. The mapping matrix (𝐴) can be expressed by 

Equation (22) 

𝐴𝑅𝑊1
= [

1 0 0 −𝑐𝛽𝑠𝛼
0 1 0 −𝑐𝛽𝑠𝛼
0 0 1 𝑠𝛽

] 

𝐴𝑅𝑊2
= [

𝑐𝛽𝑠𝛼 −𝑐𝛽𝑠𝛼 −𝑐𝛽𝑠𝛼 𝑐𝛽𝑠𝛼
−𝑐𝛽𝑐𝛼 −𝑐𝛽𝑐𝛼 𝑐𝛽𝑐𝛼 𝑐𝛽𝑐𝛼
𝑠𝛽 𝑠𝛽 𝑠𝛽 𝑠𝛽

]  

(22) 
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where, ARW1
, and 𝐴𝑅𝑊2

are mapping matrix for configuration (1), and (2) respectively. 

Math function sin(⋅) and cos(⋅) are abbreviated as 𝑐(⋅) and 𝑠(⋅) respectively, 𝛼  and 𝛽 

are in-plane angles and out-of-plane angles. A detailed explanation of these matrices can 

be found in [2] 

4.5 Raw Data Collection and Preparation 

As stated in section 3.2, synthetic data is generated using a mathematical model due to the 

unavailability of data real source. Later, to imitate the data from a real source missing data 

and noise are added before training the regression model. The different features of collected 

data are shown in Figure 17 
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Figure 17. Raw dataset sample 
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4.6 Regression models for prognosis 

The available state parameters from the sensor measurements are angular speed (⍵𝑚), Mo-

tor current (𝐼𝑚), and torque command voltage (𝑉𝑐𝑜𝑚𝑚). Then as stated in section 3.4 with 

the help of a regression model the future state of these parameters is predicted. Various 

regression methods (AR, ARMA, ARIMA, LSTM) have been used to determine the best 

fit model for the prediction of state parameters, and LSTM was found to be better suited 

[11]. Then, Motor torque (𝑘𝑡) is defined as the HI parameter. Finally, with the help of 

second regression model (multi-variate LSTM) and the state parameters angular speed 

(⍵𝑚), Motor current (𝐼𝑚), and torque command voltage (𝑉𝑐𝑜𝑚𝑚) the future data of HI pa-

rameter is predicted as detailed in section 3.5.  
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5 CHAPTER 5 

RESULTS AND DISCUSSION 

The dataset is generated using a computer simulation in MATLAB, and the simulation is 

carried out on a dell computer with an Intel® Core™ i7-4790 CPU with a processing power 

of 8GHz, Intel® HD Graphics 4600, and 8 GB of RAM. For forecasting future system 

measurement data, an LSTM network from Python library Keras is used, and for state pa-

rameter prediction, a multi-variate LSTM network is employed. The LSTM network em-

ployed for forecasting system measurement is known as vanilla LSTM. This network has 

an input layer, a visible layer, a hidden layer with four LSTM blocks, and an output layer. 

The input layer of this network takes three-dimensional array as input, where the first di-

mension is the batch size, second dimension is the time step, and the third dimension is 

number of units in one input sequence. The employed multivariate LSTM network HI pa-

rameter prediction takes multiple features as input and returns a single output. In this case, 

the network takes ⍵𝑚 , 𝐼𝑚 , 𝑉𝑐𝑜𝑚𝑚 as input and returns HI parameter 𝑘𝑡 as output. The tuned 

hyperparameters for the LSTM network used in stage 1 can be found in Table 5 and in the 

Table 6 the tuned hyperparameters for multivariate LSTM network are listed. 

5.1 State Prediction (Stage 1) 

In this stage, with the use of a suitable regression model, we predict the future state of the 

available measurements, angular speed (⍵𝑚), Motor current (𝐼𝑚), and torque command 

voltage (𝑉𝑐𝑜𝑚𝑚). Multiple methods are employed for state prediction to find out the best fit 

method to predict the future state available measurements. Among the method, the results 

from an ARIMA model and an LSTM network are discussed in this section as they provide 

very promising regression accuracy for the time series dataset.  

5.1.1 State Prediction with ARIMA model 

Figure 18 true reaction wheel data is plotted against time. From the diagram, it is visible 

that the time series is nonstationary. So, a differencing order of 1 is selected to make the 

dataset stationary for the ARIMA model to learn the pattern. Understanding true data pat-

terns is important as it helps to make an initial guess for the ARIMA model hyperparame-

ters, lag order (p), degree of differencing (d), and order of moving average (q). A detailed 

explanation of this parameter can be found in section 2.1. Figure 18 also shows that for this 
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particular dataset there is a significant change in magnitude of the y-axis value till 40 sec-

onds then the RW speed seems to be stabilizing. So, it makes the job of splitting the dataset 

into train and test segments very tricky. 

In order to find a suitable lag order p, an autocorrelation graph is plotted in Figure 19. 

Where in the graph we can see a positive correlation for the first 430 (approximately) lags. 

The plot also shows that the decrement is very significant for the first 250 lags. However, 

selecting a higher lag order increases computational complexity, and it also does not always 

provide a better result. In practice, for this dataset, taking a lag order value greater than 5 

does not yield any result as the model fails to converge in the available computational 

resources. Hence a lag order of 2 is selected. The model accuracy results in Table 8 also 

justify the fact of choosing smaller lag order. 

 

Figure 18. True RW speed data plotted against time 
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Figure 19. Autocorrelation vs lag order of the dataset 

To resemble the data from real sources, white Gaussian noise is added to the dataset as 

shown in Figure 20. In the figure red, blue, and black line represents the noisy dataset after 

addition of white Gaussian noise, the true data, and added noise respectively. Here, the 

added noise has a signal-to-noise ratio of 51.84 dB and the signal-to-noise ratio is calcu-

lated as detailed in section 3.2.  
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Figure 20. Adding white gaussian noise to the RW speed dataset 

 

Figure 21. RW speed data (test segment) prediction with ARIMA model 

In Figure 21, the predicted test data and true test data of the RW speed dataset are plotted 

against time. The blue and red line represents true test data and predicted data respectively. 

Here test dataset length is 34% of the total data. The predicted data clearly follows the 

pattern of the true dataset and the obtained error for this setup is NRMS 0.167  
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In Table 7 the error of test data prediction with ARIMA model and relative train set ratio 

of test dataset (TSROTD) is listed. The accuracy of the model is listed as the normalized 

root mean squared error of the model prediction in the test dataset of RW speed data. Even 

though the accuracy is promising, but it is not enough for a regression model where higher 

precision is required. 

Table 7 – Impact of training set size on the accuracy of the model 

TSROTD NRMS of Test Prediction 

66% 0.167 

75% 0.188 

85% 0.138 

To get the best prediction result, the ARIMA model parameters p, d, q values need to be 

adjusted properly. A detailed explanation of these ARIMA model parameters can be found 

in section 2.1. In Table 8 the ARIMA model accuracy concerning the respective p, d, q 

values is listed. The accuracy is calculated as a mean squared error (MSE) and normalized 

root mean squared error (NRMS) of the prediction in the test dataset of RW speed data. 

Table 8 – MSE and NRMS respective to p, d, q values in ARIMA 

𝒑, 𝒅, 𝒒 MSE NRMS 

5,1,0 0.006 0.176 

2,1,0 0.006 0.178 

2,1,2 0.006 0.167 

2,1,1 0.006 0.175 

1,0,1 0.006 0.175 

5,1,1 0.006 0.174 

5,1,0 0.006 0.175 

2,0,2 0.006 0.171 

1,1,1 0.006 0.174 

2,0,0 0.006 0.184 
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5.1.2 State Prediction with LSTM Network 

Figure 23 shows predicted reaction wheel speed  ω) states. The magnified a is in Figure 

234 shows a staircase effect in train and test predictions. However, the prediction success-

fully follows the sinusoidal and exponential declination of the true dataset. The model is 

tested with different sampling rates, and the model performance is robust when the model 

hyperparameters (learning rate, batch size, number of epochs, and the size of train, test, 

and validation dataset) are adjusted properly. Table  shows, for the RW speed predictions, 

the model accuracy is better for higher frequencies, and it tends to be degrading for lower 

frequencies. However, for real-life applications, the use of higher frequency has some 

drawbacks, and lower frequency is preferred due to higher penetration capability [58]. Dur-

ing other sensitivity analyses and RUL calculations in, we have used input frequency 0.1 

Hz for sensor data collection. 

 

 

Figure 22. Fitting reference line for RW speed (𝝎) prediction  

Figure 22 shows the fitted reference line that is used as a base when predicting data in 

future time step. This allows the model to deal with the conventional problem of prediction 

model divergence with time when working with a nonstationary time series. 
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Figure 23. Prediction of RW speed data 

Figure 24 shows the prediction of motor current (𝐼𝒎) data. As Figure 5 shows, the model 

almost accurately predicts the motor current. We obtain prediction NRMS error 0.01 for 

motor current data. 

 

Figure 24. Prediction of motor current data 

Figure 25 shows the prediction of torque command voltage (𝑉𝑐𝑜𝑚𝑚). The prediction in the 

figure shows that it follows the true data in the test segment perfectly and can predict future 

data with considerable good accuracy. We obtain forecasting NRMS error 0.01 for torque 

command voltage data. 
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Figure 25. Prediction of torque command voltage data 

5.2 HI Parameter Prediction (Stage 2) 

Figure 26 shows the motor torque coefficient (𝑘𝒕) predictions. As Figure 26 shows, the 

prediction very closely follows the model-generated motor torque data. We obtain NRMS 

0.02 for forecasting motor torque data. However, with the increase in time, there is a slight 

divergence from the true data. This happens because the uncertainty of the prediction in-

creases with time. When predicting much further in the future even a minor error in pre-

diction of the first time step will propagate through a time when making predictions over 

predicted data.  

 

Figure 26. Prediction of HI parameter (𝒌𝒕) 
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5.3 Calculation of RUL (Stage 3) 

Figure 27 shows the confidence interval and a threshold line for the HI parameter to deter-

mine the RUL of the RW. The confidence is very narrow, and the model has a good pre-

diction accuracy with normalized root mean squared error (NRMS) 0.02. However,  note 

that when predicting the future data, the prediction is based on the prediction of the previ-

ous time step. Therefore, the error gets propagated even if there is a minor error in predic-

tion. The prediction points out the system failure at 11,800 seconds from the beginning of 

the simulation, and the true data almost shows the same failure time in the diagram. The 

threshold is drawn from historical data. Nearly at 30 percent of the initial value of 𝑘𝑡, the 

system fails to perform properly [45] 

 

 

Figure 27. Confidence boundary of predicted HI parameter and RUL 

5.4 Sensitivity Analysis 

To perform robustly in real-life applications, the model needs to perform under different 

conditions, including variations in missing data, noise, different input frequencies in the 

data, and data sampling rate. For the proposed model, an interpolation technique is efficient 

enough for addressing the missing data issue, as shown in Table 9 and Figure 28. 
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Table 9 – Missing data imputation accuracy for RW speed data 

Each cell probability of missing value 

(%) 

Accuracy of prediction 

(NRMS) 

5 

10 

15 

20 

25 

30 

0.01 

0.02 

0.02 

0.02 

0.04 

0.05 

 

 

Figure 28. missing data imputation for 35% ratio of missing. 

The accuracy of the model is measured in a normalized root mean squared (NRMS) error 

for the test dataset. Table 10 shows that for RW speed prediction, the model accuracy is 

better for higher frequencies and tends to be degrading for lower frequencies. However, 

for real-life applications, the use of much higher frequency has some complications. We 

have used input frequency for sensor data collection during other sensitivity analyses and 

RUL calculations we have used input frequency 0.1 Hz for sensor data collection. 
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Table 10 – Model accuracy for different frequencies in the input dataset 

Frequency in the 

input dataset 

(rad/sec) 

Test NRMS 

(RW speed) 

Test NRMS 

(Motor Current) 

Test NRMS 

(Torque Com-

mand Voltage) 

1.0 

0.5 

0.1 

0.07 

0.05 

0.03 

0.02 

0.01 

0.01 

0.02 

0.01 

0.02 

0.01 

0.02 

0.02 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.02 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

Figure 29shows a noisy dataset pattern of RW speed data. White Gaussian noise is added 

to the RW speed data. The added noise amount, in this case, is 25.20 dB and it is expressed 

as a signal-to-noise ratio (SNR). The calculation process of SNR is detailed in section 3.2. 

The prediction of future RW motor speed data using noisy dataset of is plotted against time 

in Figure 30. 

 

Figure 29. Adding noise to RW speed data 
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Figure 30. Prediction of RW speed data based on noisy dataset 

In Figure 31 noisy dataset of motor, current is available. Here 68.34 dB noise is added with 

the true data of motor current. The prediction on noisy motor current  data is shown in 

Figure 32. 

 

 

Figure 31. Adding noise to motor current 
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Figure 32. Prediction on noisy motor current data 

56.44 dB noise is added with the true data of torque command voltage and the outcome of 

noisy torque command voltage data is plotted against time in Figure 33. As it is shown in 

the figure blue line is the noisy torque command voltage data. . The prediction on noisy 

torque command voltage data is shown in Figure 34. 

 

 

Figure 33. Adding noise to the torque command voltage 
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Figure 34. Prediction of torque command voltage based on noisy data  

279.69 dB noise is added with the motor torque data to form noisy motor torque data and 

the noisy data, the added noise, and the true data is plotted against time in Figure 35. As 

shown in the figure green line represents noisy motor torque data. 

 

Figure 35. Adding noise to the motor torque coefficient data 

Table 11 shows the model performance under the influence of added Gaussian white noise 

in the input data. As Table 11 shows, the model performance is very robust, and it can 

handle minor to medium noise in the input data without compromising the model accuracy. 

However, the model performance degrades with the introduction of higher noise levels in 

the input dataset. 

Table 11 – Model performance degradation for different noise level 
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Serial  

No. 

Noise in 

⍵ (dB) 

Noise in 

𝑰𝒎 (dB) 

Noise in 

𝑽𝒄𝒐𝒎𝒎(dB) 

Noise in 

𝒌𝒕(dB) 

Prediction 

NRMS 

(Test Data) 

01 

02 

03 

04 

05 

06 

07 

08 

0 

147.58 

131.36 

130.65 

92.13 

55.47 

27.75 

11.53 

0 

166.9 

150.68 

145.82 

111.45 

74.8 

47.7 

30.85 

0 

170.23 

154.01 

133.36 

114.78 

78.12 

50.40 

34.18 

0 

161.11 

144.09 

130.68 

105.65 

69.00 

41.28 

25.06 

0.02 

0.02 

0.02 

0.02 

0.04 

0.04 

0.07 

0.34 

 

Further sensitivity analysis is carried out for larger dataset with less severe incipient fault. 

The methodology for this is same as the one described in the methodology section of this 

document, and the only difference is it requires higher computational support. The tuned 

hyperparameters for HI parameter prediction and RUL estimation using day scale dataset 

is listed on Table 12 ,and for the month scale dataset listed on Table 13 

   

Table 12 – Tuned parameters and model inputs for 𝒌𝒕 prediction us-

ing day scale dataset 

Parameter Value 

Train to total data ratio 70% 

Optimizer ADAM 

Initial learning (LR) rate 0.01 

LR decrement per 10 epochs 65% 

Validation split 25% 

Batch size 128 

Degree of differencing (L_B) 1 

Number of epochs 250 

Number of total data points in each feature 1,400,000 

Data normalization No 

Data sampling rate 1 second 



 

47 

 

 

Predicted HI parameters for for day scale datases is plotted in Figure 36. The NRMS error 

in the prediction is 0.01. 

 

Figure 36. Prediction of Hi parameter using day scale dataset 

 

Table 13 – Tuned parameters and model inputs for 𝒌𝒕 prediction us-

ing month scale dataset 

Parameter Value 

Train to total data ratio 75% 

Optimizer ADAM 

Initial learning (LR) rate 0.01 

LR decrement per 10 epochs 65% 

Validation split 25% 

Batch size 256 

Degree of differencing (L_B) 1 

Number of epochs 300 

Number of total data points in each feature 6,600,000 

Data normalization No 

Data sampling rate 2 second 
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The NRMS error for prediction of HI parameter for this set up using month scale data is 

0.02. The predicted HI parameter, and the threshold is plotted in Figure 37 for calculation 

of RUL.  

 

Figure 37. Prediction of HI parameter using month scale dataset 
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6 CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

This study proposes a three-step prognosis technique for calculating RUL of the RW under 

incipient fault. A version of the recurrent neural network, LSTM, is used for predicting the 

future of the system measurements. Using a multi-variate LSTM network, we predict the 

RW health index parameter (𝑘𝒕). From the threshold of the HI, we calculate the RUL of 

the RW. The state prediction data shows, the LSTM model lands superior accuracy to 

ARIMA model. The goal of this research is to propose a complete prognostic model for 

satellite reaction wheel. So, in this research more optimization to the LSTM network is 

done to reduce the computational time and enhance the accuracy. Some sensitivity analysis 

result also show the the robustness of the model against missing data or noise challenge in 

real-life application. Other neural networks and models can be tried to solve following the 

same procedure addressed here in further extension of this study. The proposed model uses 

simulation data because of difficulty to access data from a reaction wheel in service.  

The procedure is straightforward and robust under noise, missing data, and different input 

frequencies. However, when predicting the future data, The  predictions are carried out 

based on the prediction in the previous time step. Therefore, even a minimal error in pre-

diction in the first step propagates to the next one making prediction for a larger time win-

dow unsuitable. The use of the proposed model can increase the reliability of the service 

by managing the scheduled maintenance time and reduce the possible downtime of the 

system. The proposed model has potential as it provides very high accuracy in prediction, 

and it also provides a comprehensive data-driven fault prognosis technique for reaction 

wheels, among other systems. 

6.2 Future Works 

Future works in this field can include training the model with the data from a real-life 

satellite in operation. In this study above a single fault, severity is, so there is provision for 

continuing the study to build a model that can address multiple fault scenarios with differ-

ent fault severity at a time. Improved machine learning can be employed to enhance the 

accuracy of the regression analysis for state parameters and health index parameters of the 
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reaction wheel. The proposed model can be also used as a base model to follow and develop 

fault prognosis method for control moment gyros and other similar electro mechanical sys-

tems. However, the application of proposed model directly to another system may not yield 

a good result. 

 

.  
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