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Abstract

In this thesis, we developed an algorithm to detect the correct line being read by par-

ticipants. The comparisons of the reading line classification algorithms are demon-

strated using eye-tracking data collected from a realistic reading experiment in front

of a low-cost desktop-mounted eye-tracker. With the development of eye-tracking

techniques, research begins to aim at trying to understand information from the eyes.

However, state of the art in eye-tracking applications is affected by a large amount

of measurement noise. Even the expensive eye-trackers still suffer significant noise.

In addition, the inherent characteristics of gaze movement increase the difficulty of

obtaining valuable information from gaze measurements. We first discussed an im-

proved Kalman smoother called slip-Kalman smoother, designed to separate eye-gaze

data corresponding to correct text lines and reduce measurement noise. Next, two

different classifiers are applied to be trained; one is Gaussian discriminant based while

the other is support vector machine based. As a result, our algorithm improved the

performance of eye gaze classification in the reading scenario and beat the previous

method.
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Chapter 1

Introduction

This thesis shows the procedure and advancement in the research area of eye-gaze

tracking presented by the author’s already submitted and published works. Eye-

tracking is essential for a wide range of technologies, and it is a hot research topic in

human-computer interaction. An increasingly important application in eye-tracking

is to track people’s eye movements as they read, which is the focus of our research.

With the development of eye-tracking technology, more and more accurate eye

trackers have been developed. For example, Tobii Pro eye tracker [1], and Pupil

Core eye tracker [2] are two kinds of expensive wearable high accuracy eye tracker.

However, these kinds of wearable eye trackers are expensive to be used in daily life.

Moreover, wearable devices, such as glasses, are not convenient in general use. It

is better to use the webcam itself to build the application. However, the shortage

of a webcam is that the accuracy of the webcam to detect the eye gaze movement

is poor. Instead, we choose a desktop-mounted eye tracker since this kind of eye

tracker is similar to the webcam in that they both are placed in a fixed position.

In our experiment, GazePoint GP3 [3] desktop-mounted eye tracker is chosen and

develop more applications. Even using a desktop-mounted eye tracker, low precision

eye-gaze detection is still a challenge for research because of measurement noises and

the erratic nature of the human eye. In order to go further in the application related
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to eye tracking, it is vital to increase the performance of the low-cost eye tracker.

Consequently, during my research, I spare no effort to overcome the challenge of

inaccurate eye gaze detection during reading behavior and predicting which line is

being read reliably.

1.1 Eye Tracking and Applications

Research into eye tracking has a long history. As early as 1737, Porterfield came up

with the description of eye movements [4], which opened the door to the study of

eye-tracking. Moreover, later in 1792, Wells described fast movements of eyes [5].

At present, two centuries later, more and more eye-tracking technology is appearing.

Commercial eye trackers with new technologies, such as Tobii Pro eye tracker [1] and

GazePoint GP3 [3], can detect eye gaze movement, pupil diameters, and blinks, etc.

With those advanced commercial eye trackers, applications in all kinds of fields are

beginning to develop rapidly. The eye-tracking technique can be applied to various

areas, such as Psychology, Marketing, Medical, Gaming, Automotive research, etc.

In the following subsection, different research utilized eye-tracking techniques will be

introduced to provide an intuition of the application of this technique.

Diefendorf and Dodge’s work in 1908 [6] is the first and most well-documented

in the relationship between the eye-tracking and the diagnosis of the psychology

disease – schizophrenia. Not only that, in 2010, Levy et al. [7] also stated that

eye-tracking dysfunction was the robust finding associated with schizophrenia and

provided analytical evidence. In 2014, Garcia-Blanco [8] showed that attentional

biases, which can be detected by eye-tracking technology, was a key feature of bipolar

disorder. Dmitry Lagun et al. [9] utilized eye-tracking data with the machine learning

algorithm to detect Alzheimer’s disease in 2011. Antony and Ramaswamy [10] present

the potential of using eye-tracking information to measure cognitive load in a human-

computer interaction context. Eye tracking technology also related to other mental
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disease such as autism [11], mental disorder [12], Parkinson [13], etc.

As shown above, eye-tracking has been successfully and broadly applied to the

research area of psychology these years. Furthermore, eye-tracking technology has

been wildly used in marketing research [14]. For instance, Qu et al. integrated

the questionnaires and eye-tracking information to evaluate the user experience on

an instant message APP [15]. In 2006, Chandon et al. provided a solution about

analyzing the commercial behavior of point-of-purchase by eye-tracking data [16].

The eye-tracking also played an important role in attention-based marketing [17],

which is part of the attention economy.

In recent years, research in education using eye-tracking also shows a rapid de-

velopment trend. Rayner et al. [18] tested the eye movements with two different

contexts, one in which the full text was difficult to read and the other in which the

text was clearly inconsistent. They found that the eye movements reflect the reading

comprehension sensitively. Maria et al. [19] found that eye-tracking and biometric

methods can be used to help teachers ascertain students’ attention and then take

appropriate actions to improve the teaching quality. In 2012, Meng-Jung Tsa et al.

applied eye-tracking to examine the students’ visual attention in a multiple-choice

science problem [20]. In a recent paper, Kaakinen and Johanna [21] proposed that

eye tracking can be used to study students’ engagement, teachers’ expertise, and

student-teacher interaction. And they pointed out that eye tracking is valuable for

future research in classroom context. The studies with eye-tracking in education raise

the interest in eye gaze analysis in reading behavior, which will be briefly introduced

in the next subsection.

1.2 Eye-tracking while reading and benchmarks

Inspired by the research about eye-tracking technology, some researchers began to dig

into a more specific application of eye-tracking, which is eye-tracking while reading.
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Tracking eye movement during reading has excellent potential in various fields, such as

education, marketing, psychology, etc. Though the eye-trackers significantly improve

accuracy, it is still not accurate enough to precisely track the reading progression,

especially for the low-cost eye trackers. Some of the previous research tried to increase

the performance by using a different algorithm to process the eye gaze data. One

effective way to do this is to increase the accuracy of reading progression prediction

by classifying the eye gaze into the text it belongs to.

For instance, an algorithm was proposed by Sanches et al. to align the gazes to the

correct line [22]. They utilized the Tobii EyeX eye tracker to collect the eye fixation

data while reading. After that, the vertical error between the measurements and the

true line position was calculated to align the eye fixation to the correct line. The

algorithm proposed in this paper beats the previous algorithm with 69% accuracy.

Another research related to reading line classification is made from our Human

System Lab (HSL) by Steve Bottos and Dr. Balakumar Balasingam [23]. In this pa-

per, they proposed a Kalman-filter based technique called slip-Kalman filter, which

can detect the line return and eliminate the measurement noise. They assumed the

amount of line is fixed and is already known. Then an HMM algorithm is used to clas-

sify the eye gaze data from a whole page reading procedure into corresponding lines.

Their algorithm reached an accuracy of 87.43%, which is a significant improvement

on this research topic.

Though the previous study has made a great contribution in eye gaze classification

while reading, the accuracy still has much space for improvement. Furthermore,

Steve’s study has assumed the prior knowledge of the text, such as the position and

amount of lines, is know to the line detection system, which made the algorithm

not general enough. Thus, I would like to dedicate myself to this research area and

contribute to improving the performance and making the algorithm more general.

4



1.3 Organization of the Thesis

In this thesis, we choose to use the manuscript format instead of the traditional

format. Chapter 1, 3 provides the context that has not been published or submitted

for publication. This chapter introduces the background of eye-tracking technology,

motivation of our research, and state of art. Chapter 2 is a written paper published in

the journal ”IEEE Transactions on Instrumentation and Measurement.” This paper

well reflects the work and contributions I have made in my Master’s study. Then

Chapter 3 will conclude our contribution and discuss future research in eye tracking

while reading.

1.4 Bibliography

[1] “Tobii pro eye tracker website.” https://www.tobiipro.com. Accessed: 2021-21-

07. pages 1, 2

[2] “Pupil core eye tracker website.” https://pupil-labs.com/products/core/. Ac-

cessed: 2021-21-07. pages 1

[3] “Gazepoint eye tracker website.” https://www.gazept.com/. Accessed: 2020-31-

05. pages 1, 2, 10, 26

[4] W. Porterfield, “An essay concerning the motions of our eyes. part i. of their

external motions,” Edinburgh medical essays and observations, vol. 3, no. 1737,

pp. 160–263, 1737. pages 2

[5] W. C. Wells, An Essay Upon Single Vision with Two Eyes: Together with Ex-

periments and Observations on Several Other Subjects in Optics. By William

Charles Wells, MD. T. Cadell, in the Strand, 1792. pages 2
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[6] A. R. Diefendorf and R. Dodge, “An experimental study of the ocular reactions

of the insane from photographic records.,” Brain, vol. 31, no. 3, pp. 451–489,

1908. pages 2

[7] D. L. Levy, A. B. Sereno, D. C. Gooding, and G. A. O’Driscoll, “Eye tracking
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tracking study,” Psychiatry research, vol. 215, no. 3, pp. 628–633, 2014. pages

2

[9] D. Lagun, C. Manzanares, S. M. Zola, E. A. Buffalo, and E. Agichtein, “Detecting
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algorithms,” Journal of neuroscience methods, vol. 201, no. 1, pp. 196–203, 2011.

pages 2

[10] A. W. Joseph and R. Murugesh, “Potential eye tracking metrics and indicators
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[12] M. Vidal, J. Turner, A. Bulling, and H. Gellersen, “Wearable eye tracking for
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Chapter 2

Reading Line Classification Using

Eye-Trackers

2.1 Introduction

Eye-trackers are emerging as a new form of measuring systems that estimate several

physiological features of a person, such as eye-gaze position and pupil diameter [1].

Eye-trackers used to be costly and bulky with limited applications in laboratories.

With recent advances in video sensors and embedded computing systems, low-cost,

desktop-mounted eye-trackers are being experimented for a wide variety of applica-

tions. However, improving the accuracy and performance of desktop-mounted eye-

trackers is an active research domain. In [2], a video-based eye gaze tracking method

was proposed to precisely detect the corneal reflection light and pupil. In order to get

more reliable measurements, [3–5] provide several solutions under the scope of cali-

bration. In addition, a head movement detection system is proposed in [6] in order

to eliminate the effects of head movement and improve eye-tracking accuracy.

With the development of low cost eye-tracking technology [7], research into eye-

tracking has become commonplace in wide range of applications, such as, advanced

driver assistance systems [8], human computer automation [9], robotics [10], market
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research [11], eye gestures detection [12], psychology research [13], etc. With the ad-

vances in sensing technology, computing, connectivity, and storage, it is now possible

to collect eye-tracking data at negligible cost in a wide variety of situations. Research

into eye-tracking has seen exponential growth in the past two decades. In the same

period, the accuracy of low-cost eye-trackers has also seen significant improvement [7].

Reading line classification is one of the futuristic research areas of eye-tracking that

has applications in such fields as reading comprehension analysis [14], reading interest

analysis [15], and online education [16].

Typical eye-tracker measures several parameters of the eye and its movement,

such as gaze locations, gaze fixations, pupil parameters, and eye-blink information.

Particularly, eye-gaze measurements [17] are of interest in this chapter. Eye-gaze

points have information about the mental state of the subject [18] as well as it con-

tains information about the visual interaction of the subject with their surrounding

environment [19]. Using the eye-tracker data, it is possible to know more about the

interests and experience of the subject, e.g., interests while reading a book. However,

there are significant challenges faced by today’s eye-trackers — particularly when it

comes to tracking the progression of reading — from the fact that the low-cost eye-

trackers have meager resolution compared to what is required. Consequently, there

is significant research interest related to analyzing eye-tracking while reading. In

Section 2.2, we will briefly go through these recent studies.

The purpose of this chapter is to track the progression of reading, especially the

line being read, utilizing the data collected by the Gazepoint GP3 desktop mounted

eye-tracker [20] when participants read text on a computer screen without any prior

knowledge about the content. The eventual goal of developing this technology is

to help understand the level of interaction a person had with a text passage. Such

technology will be useful to classify the reading pattern into known categories [21],

e.g., reading, skimming, and scanning. Further, an accurate reading line classification

algorithm can have more potential applications, such as online training and education,
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retail research, marketing, psychological studies, cognitive research, and testing of

reading comprehension [22]. It is also important to note that some languages are

read from left to right while others are read from right to left. The line classification

algorithm presented in this chapter is applicable to work under both scenarios.

The contributions of this chapter are as follows:

a) A slip-Kalman smoother (slip-KS) approach to pre-process the eye-gaze data so

as to reduce the measurement noise and to decouple the gaze data corresponding

to different lines. The proposed approach is found to improve the line detection

performance compared to a recent prior work reported in [23,24].

b) Application of Gaussian discriminant classifier for line detection while reading.

this chapter introduces the Gaussian discriminant approach, for the first time,

to line detection problem. Gaussian discriminant is a robust approach to clas-

sification. However, eye-gaze data, while reading, are scattered across the page,

partly due to the nature of the eye-gaze and partly due to the measurement

noise of the eye-tracker. The preprocessing approach in this chapter, using the

Kalman smoother, enabled effective application of the Gaussian discriminant

classifier and resulted in robust and computationally efficient approach to line

detection system.

c) A novel feature selection strategy for line detection algorithms. The new feature

selection strategy was tested with support vector machine (SVM) as the clas-

sifier. The new strategy used information from both x and y coordinates, and

selected feature evenly from the entire line. The resulting performance is found

to be superior to existing approaches.

d) Validation using realistic data. The performance of the proposed approaches

was evaluated using data collected from seven participants.

The proposed approaches in this chapter are significant for the following reasons:
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• The commercial (particularly low-cost) eye-trackers come with significant mea-

surement noise [25] both due to limitations of the sensors as well as the lim-

itations of the state-of-the-art eye-gaze processing algorithms. The proposed

approaches in this chapter could be used by future eye-tracker developers to

improve their outputs. Also, the proposed approaches can be useful in webcam-

based eye-gaze tracking applications [26] where the measurement noise is sig-

nificant.

• When a person reads, the eye-gaze might wander into the previous or subsequent

lines — this does not mean the person switched lines; rather, it is a feature of

the human gaze; this feature needs to be filtered out to get the correct picture

of the reading pattern. The proposed approaches in this chapter are designed

to address this.

• Previous research [23] on the same problem assumed that the number of lines

on a page and the coordinate of each line are known as prior knowledge. These

two assumptions are relaxed in the present paper, i.e., the numbers of lines and

their locations are learned during the training phase. Which means that, the

lines of text does not need to be equally spaced.

The remainder of this chapter is organized as follows: Section 2.2 briefly introduces

recent studies about eye-gaze tracking analysis while reading. Section 2.3 describes

the proposed approach in this chapter. Section 2.4 presents the results of the proposed

approach using real world data. Finally, this chapter is concluded in Section 2.5.

2.2 Related Work

In this section, a review of recent studies on reading procedure analysis via eye-

tracking technology is presented.
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2.2.1 Applications of Eye-tracking while Reading

The main research area about eye-tracking analysis while reading is reading com-

prehension. In [27], L. Copeland et. al. proposed a new performance function for

training feed-forward neural networks to predict reading comprehension based on eye

gaze data. Also, Sanches et al. [28] extracted some specific eye-gaze features and

used support vector regression model to predict participants’ percentage of correct

answers about the contents in the text. Similarly, another approach measures partic-

ipants’ comprehension ability by calculating reader ranking based on correct answer

lines recorded by eye gaze tracker and the number of correct answers given by partic-

ipants [29]. In addition to reading comprehension, some other research domains also

received significant attention to eye-tracking while reading. In [30], supervised ma-

chine learning techniques were used to detect mind wandering probes from eye gaze

and context features to analyze which features had the most significant impact. More-

over, Lara-Alvarez et al. [31] introduced an approach called counting words from lines

(COWL), which deals with the imprecision problem by associating the eye-tracking

data with points obtained from character recognition.

Various research applications of eye-tracking while reading are still at the early

stage due to the fact that accurate enough eye-gaze tracking — that is sensitive enough

to detect the line being read — still requires a separate hardware. This might rapidly

change when the eye-gaze tracking technology based on built in webcams matures [32].

Most present studies directly use the raw eye-gaze data from the eye-tracker, which

has noise and disturbance caused by the device and participants [33]. As opposed to

many existing approaches that use raw eye-gaze data to extract statistical information

of the reading behavior, the present paper focuses on improving the eye-tracking

technology itself while reading.
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2.2.2 Tracking Accuracy Improvement

Only a few prior works proposed preprocessing techniques to eye-gaze data. In [34],

an approach was proposed to correct vertical error of the gaze fixations and alignment

of estimated eye-gazes with text resulting in improved accuracy of line classification.

However, this approach only considered fixations and vertical error — in the eye

gaze context, the gaze position’s distribution has more information. In a recent

work, Bottos et al. proposed a hidden Markov model (HMM) based line detection

system (LDS) [23]. The proposed LDS was demonstrated using data collected from

one participant where the lines of text spanned the entire page (page width), and

the reading always occurred line-by-line without any repetitive reading of lines. The

proposed HMM-based LDS also assumed the number of lines as well as their locations

in a page. In order to be widely applicable, an LDS needs to be able to track without

requiring to know the number of lines on the screen and their exact locations, because

a user can easily move the location of a text (e.g., an e-book) on a computer screen.

2.3 Proposed Approach

In this section, a new approach for real-time line classification is presented. Figure 2.1

shows the workflow diagram of the proposed approach. First, the raw eye-gaze data is

sent through the slip-Kalman filter (slip-KF) [23] which separates data corresponding

to different lines. The decouple data, i.e., the data belonging to each line is then

sent through a Kalman Smoother (KS), which is employed to reduce the variance in

the filtered data. Hereafter, the above two steps, the slip-KF followed by the KS,

is referred to as the slip-KS. The slip-KS output is then rescaled to span the entire

text region. After the above preprocessing, data from few pages are used to train the

classifiers. The parameters from the classifier output are used for line classification.

The remainder of this section will detail each block in Figure 2.1.
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Figure 2.1: Procedure of whole experiment This is the diagram of the whole
Classification approach.

2.3.1 Regular Kalman Filter

Let us consider the following 4× 1 state vector

x(k) = [x(k) ẋ(k) y(k) ẏ(k)]T (2.1)

where x(k) is the x-coordinate of the eye-gaze at time step k, y(k) is the y-coordinate

of the eye-gaze at time step k, ẋ(k) is the velocity of the eye-gaze movement in the x

direction at time step k , and ẏ(k) is the velocity of the eye-gaze movement in the x

direction at time step k. The process model [35], based on the state vector introduced

in (2.1) is written as

x(k + 1) = Fx(k) + Γv(k) (2.2)

15



where vector v(k) is a 4× 1 zero-mean Gaussian noise with unity standard deviation,

F =


1 T 0 0

0 1 0 0

0 0 1 ∆T

0 0 0 1


, Γ =



1
2
∆T 2 0

∆T 0

0 1
2
∆T 2

0 ∆T


qx 0

0 qy

 (2.3)

qx and qy are the parameters of the process noise covariance Q, which can be shown

as [35]

Q = E
{
Γv(k)v(k)TΓT

}
(2.4)

=



1
4
∆T 4qx

1
2
∆T 3qx 0 0

1
2
∆T 3qx ∆T 2qx 0 0

0 0 1
4
∆T 4qy

1
2
∆T 3qy

0 0 1
2
∆T 3qy ∆T 2qy


(2.5)

After the process model, the measurement model of reading can be built as follows

z(k) = Hx(k) + w(k) (2.6)

where

H =

1 0 0 0

0 0 1 0

 (2.7)

and

z(k) = [zx(k) zy(k)]T (2.8)

is the eye-gaze measurements, which are the noisy observations of x(k) and y(k). The

2× 1 vector w(k) indicates measurement noise.
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After the definition of the state-space model comprising of (2.2) and (2.6), the

KF can be summarized through the diagram shown in Figure 2.2, where x̂(k|k) is

the estimated state vector at time k and P(k|k) is the state covariance matrix (k =

1, . . . , N , where N is the total number of gaze points). For more details of the

parameters and initializations please refer to [24].

Figure 2.2: Regular Kalman filter. Regular KF can be used to filter eye-gaze
data by selecting appropriate values for the process and measurement noise as it
is described in Section 2.3.1. However, provided that the eye-gaze is engaged in
reading, a slip-KF (see Figure 2.5) will improve the eye-gaze tracking performance
while reading.

Figure 2.3 shows the performance of the regular KF, where the red dots indicates

the measurements z(k) and the blue lines are the estimate from KF. From Figure 2.3,

it can be seen that the KF was able to follow the reading progress. However, the KF

estimates overshoot when the reading progress returns to a new line — this can be

used to detect line returns [24].

2.3.2 Slip Kalman Smoother

It was demonstrated in [24], that the slip-KF can be used to decouple the data

belonging to each line and remove the overshoot. The slip-KF is inspired by slip

gear [36], detecting the reading line return when a specific threshold is exceeded. So

the problem transfers into finding a proper indicator to detect the line return while
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Figure 2.3: Tracking eye-gaze while reading using regular Kalman filter.
The problem with the regular KF is illustrated as the backtrack over-estimation on
the left side.
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reading.

Figure 2.4: Velocity ẋ(k) (text-width)/sec of regular KF. Velocity of the x
direction is a good indicator since the line return can be distinguished very clearly
when the velocity goes to a relatively large negative value.

From Figure 2.4, the dramatic change in velocity of the x direction ẋ(k) can

be clearly seen. As a consequence, the slip-KF chooses ẋ(k) to be the indicator of

line return. The final slip-KF can be summarized as follows: When running the

regular KF, detect the unusual changes in estimated velocity ˆ̇x(k) in time step k. If

ˆ̇x(k) < vth, re-initialize the state vector x̂(k + 1|k + 1) of next time step k + 1,

x̂(k + 1|k + 1) = [zx(k + 1), v0, zy(k + 1), ˆ̇y(k|k)]T

where vth is a threshold on the x-velocity, and v0 is the initial x-velocity that usually
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is a predetermined value for different types of reading. The state covariance matrix

P(k + 1|k + 1) re-initializes to the initial state P(0|0). The remaining operations of

the slip-KF are the same as the regular KF. Figure 2.5 shows a block diagram of one

recursive step of the slip-KF.

Figure 2.5: Slip Kalman filter. The slip-KF is suitable for eye-gaze tracking while
reading. vth is the general expression of the velocity threshold.

The slip-KF approach described above is re-initialized at the start of every new

line to preset values. This would eliminate the over-shot estimates shown in Figure

2.3. However, the output of the slip-KF is still observed to contain high variance.

Thus, the slip-KS is introduced to further reduce the variance in the estimates. After

slip Kalman filtering, the entire eye-gaze data is decoupled into different lines. The

slip-KF estimates (i.e., x̂(k|k) and the covariance matrix P(k|k)) corresponding to

one line are then sent through a KS. This process comprises the slip-KS step. For

more details about KS, the reader is referred to [35].

Figure 2.6 shows the output of KS compared to that of the KF for few lines; the

smoothing results of the KS can be clearly observed in this figure. Figure 2.7 shows

the performance comparison between the two filters more clearly; the KS provides
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(a) Entire page

(b) Zoomed version

Figure 2.6: Eye-gaze tracking while reading smoothed by KS. The previous
slip-KF is able to follow the eye-gaze measurements along the line. However, the
y-coordinate still have some disturbance which will have influence on the proposed
classification algorithm. In this figure, the KS can elimate more noise on y-coordinate
than the previous slip-KF. 21



smoother gaze position estimates compared to the KF. Also, as shown in Figure 2.8,

the smoothed data from KS distinguishes the lines much more clearly.

Figure 2.7: Comparison between KF and KS results. In contrast, KS can
more effectively reduce the noise than KF. After smoothing, the process of reading
becomes clearer.

2.3.3 Classification Approach

In this subsection, we present the line classification algorithm. We tested two different

classifiers: one is the proposed Gaussian discriminant classifier, and the other is SVM-

based classifier. We will discuss each of these approaches in the remainder part of

this subsection.
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2.3.3.1 Gaussian Discriminant Classification

Figure 2.8(a) shows the y-coordinates of the gaze measurements as well as the esti-

mated y-coordinates using the KS. The data corresponding to each line is shown in

different colors. It can be observed that the KS outputs are much more concentrated

in each line than the raw observations. In other words, the KS outputs are separated

well according to each line.

Another observation from Figure 2.8(a) is that the y-coordinates are distributed

according to a Gaussian-like distribution. This observation is then used to approxi-

mate data corresponding to each line as a Gaussian distribution. Figure 2.8(b) shows

the Gaussians computed for each line from page 23 of the collected data — the top-

plot shows the Gaussian distribution with parameters computed from the raw data,

and the second plot shows the same with parameters computed from the Kalman

smoothed data. The parameters of this Gaussian distribution will be used in the

classification algorithm.

In order to evaluate our proposed approach without loss of generality, the leave-

one-out cross-validation (LOOCV) [37] approach was used. Assume we had N pages

of eye-gaze data while reading, then extract page j where j ∈ {1, 2, ..., N} to be the

test set and pages 1, 2, ..., j − 1, j + 1, ..., N were used as the training set. With this

assumption, the parameter of line i can be written as (µi, σi) where µi is the mean of

the line i y-coordinates from pages 1, 2, . . . j − 1, j + 1, . . . , N and σi is the standard

deviation of line i’s y-coordinates from pages 1, 2, . . . j − 1, j + 1, . . . , N .

Now, once all N sets of parameters (µi, σi, i = 1, 2, . . . , 25) are computed it is

ready to classify the lines in page j. The objective of the classification is as follows:

given the y-coordinate of a gaze point ŷ(k|n) the log-likelihood that the observation
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(a) Histogram of one page

(b) Gaussian distribution of one page

Figure 2.8: Distribution of y-coordinate. Both figure (a) and (b) show the dis-
tribution of different lines of one page. It can be seen from the histogram plot that
the distribution of y-coordinate is close to the Gaussian distribution. So the guassian
distirbution of classification is considered.
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might have been generated form line i is computed as follows

di = log

(
1√

2πσi
e
− (ŷ(k|n)−µi)

2

2σ2
i

)

= log

(
1√

2πσi

)
− (ŷ(k|n)− µi)

2

2σ2
i

(2.9)

where di denotes the likelihood that the gaze data ŷ(k|n) comes from line i. The

estimated line corresponding to the kth observation is then given as

class(k) = arg max
i
di i = 1, 2, . . . , 25 (2.10)

In other words, this chapter transfers this problem into a multi-classe Gaussian dis-

criminant analysis [38]. Algorithm 1 is how the classification approach, log-likelyhood

(LLH) classifier, works. However, due to the differences in the head position of par-

ticipants and other external factors of the eye tracker, each page’s distribution is not

the same. For instance, the mean of different pages’ first line is different, and the

ranges of different pages are also different. In order to overcome this distribution,

the rescale approach plays a vital role. Before the classification, the y-coordinate of

every page has to be rescaled into the same y-coordinate region, which is [0, 1], for

data preprocessing.

Algorithm 1 (Gaussian-based classifier)

Input: N pages training data
Output: estimated line class of test data

1: Select page/participant j to be the test set and others be the training set. (j =
1, . . . , N)

2: Use the training data to calculate the mean y-coordiante µ(i) and standard de-
viation σ(i) of every line

3: for k = 1:length(test data) do

LLH(k) = − (ŷ(k)−µ)2

2σ2

[∼, class(k)] = max(LLH(k))
4: end for

The classification approach, explained so far for each point, can be simply extended
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to a line-by-line classification approach as follows: Since the slip-KF records the line

return while reading, it is easy to split the measurements into different lines. After

splitting the measurements, all the measurements are labeled with a pre-estimated

line number. Then the Gaussian-based classifier is used to predict the line classes for

every measurement and a majority voting is applied to assign a line number for each

separated line.

2.3.3.2 SVM Classification

The second type of classifier is implemented using SVM. A built-in multiclass-SVM

classifier available in Matlab is used for this. The SVM classifier required an equal

number of data points from each line, whereas the number of measurements can

differ based on a person’s reading behavior. Hence, it is important to choose a

proper feature selection approach. In this chapter, we utilize the x-coordinate to

implement a feature selection approach to pick the most representative data from

each estimated line. We divide each estimated line data into 40 equal length bins by

x-coordinate and randomly extract ten measurements from each bin. Then assemble

the measurements selected from different bins in order from left to right. Each line

will have 400 measurements’ y-coordinate as its feature. Finally, the features are

fed to train the SVM model. The SVM-based approach also employs LOOCV to

guarantee generality.

2.4 Evaluation and Results

2.4.1 Data Collection Procedures

In this section, two datasets are used to evaluate our proposed algorithm. Firstly,

we use the data from [23] to demonstrate the proposed method, which has 25 pages

of data from one participant (a male in his twenties). Eye gaze data were collected

utilizing Gazepoint GP3 [20] a desktop mounted eye-tracker at a sampling rate of 60
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Hz. Text used to be read is a passage taken from a publicly available copy of Moby

Dick by Herman Melville. As shown in the left part of Figure 2.9, the eye-tracker

is placed at the bottom of the computer screen (a 1920×1080 PC screen) and the

recorded position of eye-gaze data while a person reads one page of text consisting of

25 lines is shown on the right. After the eye-tracker was set up, the participant sat in

front of the screen and went through a calibration process for the eye-tracker. The eye-

tracker software offers a 9-point calibration and 5-point one; the participant was asked

to select the former. During the 9-point calibration, the eye-tracker interface displays

bright circle markers at nine random positions on the screen and the participant was

asked to look at them. If the calibration fails (this happens when the participant

does’t track the displayed markers), the participant will be prompted to redo the

calibration step. Once the calibration is done, the participant remained seated at the

same position and proceed to the reading step. During the reading, the participant

was required to press the space key to reveal a single text line. Each keystroke will

only show one line, starting from line 1 at the top of the screen and ending at line

25, and will hide the previous line. In this way, every time the participant finished

reading one line, he pressed the space key to display the next line — this allowed to

record the ground truth. The x and y coordinate of the eye-gaze measurements will

be used as the input raw data to do the anlaysis.

In order to further validate the algorithms, we collected more data from six addi-

tional participants in the same experimental setup as above. These six participants

(5 males and 1 female all in their twenties) are Chinese international students at

University of Windsor. This time, the participants read only ten pages. Then, we

combined these six data with the first ten pages of the prior data. Eventually, we had

two datasets, the first dataset had one participant reading 25 pages and the second

one had seven participants reading 10 pages each, respectively.
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Figure 2.9: Experiment Setup. Participants will sit in front of the monitor where
the text for reading will be displayed in full-screen mode (shown on the left). This
geometry causes a vertical measurement bias that is discussed in Section 2.4. The
distribution of one page collected eye-gaze measurements is shown on the right.

2.4.2 Evaluation Metrics

The classification error for page p is defined as

ep =

count
t=Np
t=1

(
Ŝp(t) 6= Sp(t)

)
Np

× 100 (2.11)

where Ŝp(t) denotes the estimated line number, Sp(t) denotes the true line number

(ground truth), and Np denotes the number of data points from page p. The average

error across all pages, eavg was then computed as,

eavg =

∑N
p=1 ep

N
(2.12)
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where N denotes the number of pages. The classification accuracy is then defined as

Line Detection Accuracy (in %) = 100− ep (2.13)

In the remainder of this section, the classification accuracy of various approaches are

presented.

2.4.3 Classification Results

Figure 2.10(a) shows the prediction accuracy of the proposed classification approach.

The line detection accuracy is computed by averaging the percentage of correct clas-

sification from all 25 pages. For comparison, the line detection from Slip-KF based

estimates and Slip-KS based estimates are shown in the same plot. Further, the

performance of the HMM-based line classifier [23] is also shown on the same plot.

It can be noticed that the proposed Gaussian classification approach combined with

slip-KS is better in performance than the previous HMM approach. Further, the

proposed approach has the advantage that it is able to instantly classify a given gaze

point measurement after training the classifier, whereas the HMM approach, as it is

implemented in [23], requires data from the entire page before the (Viterbi based)

classification algorithm can start.

Figure 2.10(b) shows the prediction accuracy of the line-by-line classification ap-

proach. From this figure, the Gaussian-based classifier and the SVM-based classifier

on the slip-KS approaches both outperform the HMM approach.

It can be observed that the performance of the Gaussian classifier, just with the

KF outputs, is very poor. It is due to the fact that the performance of the Kalman

filter is in such a way that the variance (particularly, in the y-direction) is not that

reduced after filtering. This can be observed from Figure 2.7. When the smoothing

is applied, the variance significantly reduced, resulting in reduced overlap of the line

distribution and much-improved classification performance.
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(a) Point-by-point Accuracy

(b) Line-by-line Accuracy

Figure 2.10: Classification Accuracy. In (a), the proposed point-by-point (or
measurement-by-measurement) line classification is compared with that of the HMM
approach in [23]. In (b), different line-by-line classification accuracies are compared.
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Figure 2.11 shows the averaged accuracy of the proposed classification scheme on a

line-by-line basis. It can be noticed that, except for the first line, the line classification

accuracy increases from top lines towards the bottom ones. The placement of the eye-

tracker (at the bottom of the screen) influences the above pattern in accuracy. The

outlier in the first line is probably due to classification bias for initial line observation.

Figure 2.11: Demonstration of eye-tracker bias. The eye-tracker is placed at the
bottom of the screen (see Figure 2.9) as such the classification accuracy can be seen
to increase with the line number (top line on the screen is denoted 1 and the line
number increases from top to bottom).

Table 2.1 shows the performance comparison of different algorithms analyzed in

this chapter. In order to compare the performance against the previous approach in

[23], the same dataset as in [23] was used for Table 2.1. Compared to the classification

based on slip-KF, the slip-KS based classifier has a much higher mean accuracy and
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Table 2.1: Accuracy comparison

Mean Standard Deviation
SVM + slip-KS (line-by-line) 97.92% 4.63%
Gaussian + slip-KS (line-by-line) 95.74% 5.68%
Gaussian + slip-KS (point-by-pont) 89.15% 6.79%
Gaussian + slip-KF (line-by-line) 69.38% 27.73%
Gaussian + slip-KF (point-by-pont) 65.21% 21.15%
HMM (page-by-page) 87.43% 4.03%

a smaller standard deviation which shows the benefit of data preprocessing using the

slip-KS compared to that of slip-KF. Another advantage of the proposed approach

is that the data does not need to be in a specific order, which means the accuracy

will not be affected if the observation is measured while reading an arbitrary line of

text on the screen. The average accuracy of the point-by-point classification based

on KS is up to 89.15%. Moreover, for the ling-by-line classification approach, the

average accuracy is much higher than the point-by-point, which is up to 95.74%,

much higher than the HMM approach proposed in [23]. Last but not least, the SVM

based approach reach the highest accuracy 97.92% with the standard deviation 4.63%.

The data collection procedure described in Section 2.4.1 is repeated for six addi-

tional participants with the exception that, this time, each participant read 10 pages.

Figure 2.12 shows the comparison of classification accuracy for all seven participants.

Initial experimentation with data from all seven subjects showed great variation in

performance. As a result, it was decided to combine two adjacent lines together be-

fore the classification analysis. It is suspected that the observed variation might have

been based on whether a participant is a native speaker who is fluent in English or

not. This needs to be analyzed in detail using a separate study and is left as fu-

ture work. As for the eye-tracking while reading, the Gaussian discriminant classifier

shows a higher accuracy of 79.3% compared to the SVM accuracy at 72%. The SlipKS

approach proved to be an important component for both classifiers.
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Figure 2.12: Classification performance for all seven participants.
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2.4.4 Real-time analysis

In this subsection, some details are provided to understand the different algorithms

analyzed in this chapter for their performance for real-time implementation.

It is reported that the average reading speed of a native English speaker is 4.06

words per second; for fast readers, the reading rate is 7.66 words per second [39].

In order to be used in real life applications, the response time of the reading line

classification algorithm should be less than the time it takes to finish reading a line. In

the experimental setup of this chapter, there were 150 characters per line. According

to statistics provided in [40], the average length of words in English is 4.7 characters.

Based on these, the baseline latency of the experiment is defined as

T (baseline) =
characters per line

length of words× reading rate

=
150

4.7× 4.06
= 7.86 sec.

For each algorithm, the latency is computed as

T (algorithm) = Tp + Tf + Tc (2.14)

where Tp is the pre-processing time (SlipKS), Tf is the time taken for feature ex-

traction (SVM only), and Tc is the time taken for classification. Table 2.2 shows the

baseline latencies as well as the latencies of each algorithm considered in this chapter

on a personal computer (i5-8500 CPU). It can be noticed that, latencies of all the

approaches considered in this chapter are less than that of the two baselines. Fur-

ther, the Gaussian based classifiers show significantly low latency compared to other

classification approaches.
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Table 2.2: Latency analysis (Line-based)

Classification approach Average Latency (seconds)
T (baseline) - normal reading 7.86
T (baseline) - fast reading 4.166
T (SVM+ slip-KS (line-by-line)) 1.844
T (Gaussian + slip-KS (line-by-line)) 0.034
T (Gaussian + slip-KF (line-by-line)) 0.033

2.5 Conclusions and Discussions

In this chapter, a novel slip Kalman smoother (slip-KS) based classification approach

was developed to predict line being read, on a real-time, point-by-point or line-by-line

basis, while reading. The proposed approach is presented as a novel slip-KS, which can

detect the line returns and obtain less-variant measurements corresponding to each

line being read. With the Kalman smoothed estimates, two different classification

approaches, one based on the support vector machines (SVM) and the other bases

on Gaussian discriminants, are employed to classify smoothed gaze observations into

possible text lines. Both of the proposed classification approaches can be used to

predict the line being read in real-time. Both the SVM classifier and the Gaussian

discriminant classifier show significant improvement in prediction accuracy compared

to the previous approach, and the SVM classifier performs best on the line-by-line

classification. However, the disadvantage of the SVM classifier is that it can not

work in a point-by-point fashion. Both of the proposed approaches are less reliant

on the continuity of lines while reading, making them more attractive in practical

applications.

The present work opens several avenues for future research. Testing the proposed

algorithm using data from multiple and diverse participants (e.g., different ages, dif-

ferent educational backgrounds, gender, different native languages) is one of them.

Further, the proposed algorithm needs to be tested on more realistic reading settings

(different head/body positions of the participants, different number of lines per page,

multiple columns, etc.). Finally, the proposed approach needs to be demonstrated
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using built in webcam of a computer for suitability in a wide ranging applications.
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Chapter 3

Thesis Conclusion

To sum up, I have presented two different real-time classification approach to classify

the eye gaze point to the correct line being read. These two classification approaches

are based on the novel preprocessing algorithm – slip-KS, one of the most valuable

contributions to this thesis. Firstly, the participants’ eye gaze measurements while

reading the given text were collected by Gazepoint GP3 eye tracker. Secondly, the

slip-KS is proposed to track the line return and smooth the eye gaze data. After that,

the smoothed data is fed to the classifier to classify the data to the corresponding

line. Finally, the newly proposed SVM-based algorithm can reach 97.92% accuracy

on the old data and 72.63% on the new data from seven different participants. The

Gaussian-based algorithm has 95.74% on the old data and 79.25% on the new data.

Both of these two kinds of classifier beats the previous approach on classification

performance. It is also worth mentioning that both algorithms are satisfied with

real-time requirements, which is significant for daily application development.

There are several limitations of my master’s research. First of all, the amount

of participants in the experiment is not large enough. And not all participants were

native English speakers. Future research needs to examine the differences in reading

pattern between native and non-native speakers. It is also worth to mention, different

people have different reading pattern, which will lead the distribution of the gaze
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data to be different. More participants needs to be involved in our experiment to

evaluate the robustness of our algorithm. What’s more, the reading line classification

algorithm is only suitable for the line-by-line reading scenario, but it provides good

ideas for future research. The algorithm needs to be improved to a more general

reading pattern – including reading, skimming, scanning, and reading back.

For further research, the algorithm should be developed for the web-cam-based

situation instead of using professional eye-trackers. Once the web-cam-based device

can detect the line being read, many applications can be used for general use. In

addition, with the development of the neural network, the research for reading line

prediction can try to build a specific neural network for this kind of task, which can

change the pipeline proposed in this paper into an end-to-end algorithm and make it

better to develop and reproduce.
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