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ABSTRACT 

Acoustic localization plays a pivotal role in underwater vehicle systems and marine 

mammal detection. Previous efforts adopt synchronized arrays of sensors to extract some 

features like direction of arrival (DOA) or time of flight (TOF) from the received signal. 

However, installing and synchronizing several hydrophones over a large area is costly 

and challenging. To tackle this problem, we use a single-hydrophone localization system 

which relies on acoustic signal processing methods rather than multiple hydrophones. 

This system takes modal dispersion into consideration and estimates the distance between 

sound source and receiver (range) based on dispersion curves. It is shown that the larger 

the range is, the more separable the modes are. To make the modes more distinguishable, 

a non-linear signal processing technique, called warping, is utilized.  

Propagation model of low-frequency signals, such as dolphin sound, is well-studied in 

shallow water environment (depth D<200 m), and it was demonstrated that at large 

ranges (range r>1 km), modal dispersion is utterly visible at time frequency (TF) domain. 

We used Pekeris model for the aforementioned situation to localize both synthetic and 

real underwater acoustic signals. The accuracy of the localization system is examined 

with various sounds, including impulsive signal, sounds with known Fourier transform, 

and signals with estimated source phase. Experimental results show that the warping 

technique can considerably lessen the localization error, especially when prior knowledge 

about the source signal and waveguide are available. 
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CHAPTER 1 

Introduction 

Covering more than 70% of the surface area of the earth, oceans have far-reaching impacts on 

the humans’ life. They influence weather and climate, provide us food resources, and contain 

renewable energy. Underwater acoustics applications have been emerged to better understand the 

oceans and harness their unlimited potentials. These applications can be regarded as a remote 

sensing problem, where underwater acoustic signals reflected and emitted at a distance are 

detected and monitored [1]. Underwater acoustic applications can be broadly classified into four 

major categories: detection, classification, localization, and tracking.  

In this thesis, we focus on localization application that aims to estimate the location of the object 

of interest based on sonar (sound navigation and ranging) system. Signal processing is the corner 

stone of the sonar systems as it converts underwater acoustic signals into navigation and ranging 

information. These systems typically consist of an array of sensors (called hydrophones) 

converting acoustic pressure underwater to an electrical voltage. Like a microphone that senses 

acoustic waves in air, a hydrophone captures sound signals in the water. To improve localization 

performance, most of sonar systems rely on multiple hydrophones that are configured in 

geometric patterns. Since installing several hydrophones on the seabed over a large area is an 

expensive and time-consuming task, single-hydrophone processing methods for sound source 

localizing have received much attention in recent years [2][3][4]. However, single sensor source 

localization is a challenging task, which requires not only specific acoustic signal processing 

techniques but also accurate knowledge of the underwater environment. This thesis is aimed at 
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leveraging non-linear signal processing methods and wave dispersion model for underwater 

sound source localization. 

1.1 Underwater Acoustics Applications 

Underwater acoustic signal processing has a wide range of application, ranging from military to 

civilian [5].  Underwater vehicle (UV) navigation, fish and marine mammal finding, underwater 

communication, underwater environment study, are some of applications of underwater 

acoustics. 

From a signal-processing perspective, underwater acoustics applications can generally be 

categorized into four groups: detection, classification, localization, or tracking.  

 Detection can be considered as a binary hypothesis test, determining if a received signal is

the signal of interest or if it is simply background noise. Marine mammal presence based on

the received sound is an example of detection.

 Classification is a multiple hypothesis test which aims to assign a detected signal to a finite

set of classes. For example, different types of whales can be classified according to their

sounds.

 Localization can be regarded as an estimation problem that endeavors to find the location of

the object of interest. In the localization application, for instance, we are interested to find out

the position of a whale according to the received sound by the hydrophone.

 Tracking is combination of estimation and prediction. In other words, we not only interested

in the location of the object of interest, but we want to know its location in the future. For

example, from location and speed of a whale, its location at some time in the future can be

predicted by the tracking algorithm.
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1.2 Objectives and Motivations 

This thesis is aimed at localization problem in the underwater environment based on sonar 

system. That is to say, the main objective of this research is to estimate the location of a sound 

source based on modal propagation and dispersion model in underwater environment.  

Most traditional methods in ocean acoustic rely on multiple hydrophones which require to be 

synchronized to measurements of relative arrival times between these sensors. Moreover, array 

of sensors installation to cover large areas is awkward and expensive. These challenges 

motivated us to deploy an acoustic signal processing that entail only one hydrophone for 

localizing. To achieve this goal, however, advanced signal processing methods as well as 

accurate information about sound propagation in the test environment are needed. 

1.3 Challenges 

Single-hydrophone processing method for sound source localization is a challenging task, as it is 

based on mathematical models. Unlike sensor array methods which require simple calculations 

to measure time of arrival (TOA) [6] or direction of arrival (DOA) [7], a single-hydrophone 

acoustic system requires non-linear signal processing methods to decompose multipath 

information from the received signal. The extracted hidden features will be used by other 

algorithms to localize the transient sound source. The second challenge is that prior information 

about the environmental through which the sound propagates should be available. To address this 

issue, we assume the underwater environment is shallow water (D<200m), and emitted sound 

has low frequency (f<500Hz). This is due to fact that under above conditions, acoustic 

propagation can be accurately modeled using normal mode theory and modal propagation [8]. 
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1.4 Contributions 

(1) In this thesis, we used non-linear signal processing techniques to localize an underwater

sound signal. Since this approach is model-based and exact characteristics of underwater 

environment should be known beforehand, different waveguides were examined. We studied two 

different shallow water model, Pekeris model, and underwater waveguide with reflective 

boundaries.  

(2) Different underwater sound signals had been used to verify the localization system. In this

study, we utilized both synthetic and real-world signals. These signals can be categorized into 

three groups: impulsive signal, signal with known waveform, and signal with unknown 

waveform. For each type, different preprocessing techniques was used to filter the modes more 

accurately. 

(3) The localization accuracy was studied under different circumstances. For example, the effect

of number of modes, noise strength, and waveguide parameters had been studied. 

1.5 Outline of Thesis 

The structure of this thesis is as follows: 

 Chapter 2 explains different types of underwater localization systems. It describes the

underwater waveguide, Pekeris model, and sound propagation phenomenon in it. This

chapter also mathematically presents fundamental concepts like group and phase

velocities which cause modal dispersion.

 Chapter 3 reviews acoustic signal processing methods. Various time-frequency signal

representation approaches, such as Gabor transform, wavelet transform, and spectrogram
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will be described in this chapter. Finally, warping technique that is the corner stone of 

this thesis will be explained. 

 Chapter 4 reviews signal processing based acoustic underwater localization methods.

Data-driven and model-based methods will be explained in detail.

 Chapter 5 explains the proposed dispersion-based acoustic source localization. The

effect of warping technique on different signals will be explored. We will also illustrate

dispersion curve estimation, and modal filtering. Finally, range estimation based on the

comparison between calculated and estimated dispersion curve will be explained.

 Chapter 6 presents experimental results and discusses the effect of different parameters

on the localization accuracy.

 Chapter 7 concludes the thesis by summarizing our contributions and making

suggestions for future research.
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CHAPTER 2 

State of the Art: 

This chapter begins by overviewing the main underwater navigation systems. Then, acoustic 

localization methods will be presented in more details, and different topologies will be 

compared. Plus, modal propagation in an acoustic waveguide will be mathematically described. 

Finally, State-of-the-art techniques for acoustic localization will be reviewed at the end of this 

chapter. 

2.1. Underwater Localization Systems 

As stated earlier, localization systems aim to estimate the position of the object of interest in its 

surrounding environment. It is worth mentioning that global positioning system (GPS), the most 

accessible technique for localization, cannot be deployed in underwater environment, because 

relatively weak GPS signals considerably attenuated and do not penetrate far distances on water. 

Therefore, underwater localization systems rely on other sensors such as compass, gyroscopes, 

camera, sonar, and accelerometer. Based on the employed sensors, uunderwater localization 

methods can typically be classified into four major groups [9].  

 The earliest and simplest localization method include Dead-Reckoning (DR) and Inertial

Navigation Systems (INS) which is based on gyroscope and accelerometer that measures

water-speed and the object of interest’s velocities according to physical laws. Although

DR/INS method is suitable for localization over long-range missions, its position accuracy

declines over time.

 To compensate the accuracy drifts of the DR/INS system, Geophysical Navigation (GN)

system has been proposed. GN rely on magnetic and gravimeter sensors and requires

geophysical maps to match it with the sensors data. Dependency on previously generated

maps and high computation for data matching are main drawbacks of this system.

 Optical systems is another common localization method. They employ camera and light

detector to obtain underwater images and recognize landmarks. Underwater environments

suffer from inadequacy of lighting, resulting in low quality images, especially in high depth

areas. These challenges severely curtail the application of optical localization systems.
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 To tackle this problem, acoustic localization systems have been emerged which rely on

sound signals. Sonar system is the most popular acoustic method that make use of acoustic

equipment such as beacon, hydrophone, and transponder to emit and receive sound signals.

While beacon emits a predefined sound signal periodically, hydrophone receives emitted

signal. Transponder can be considered as a combination of beacon and hydrophone, as it is

able to receive and emit sound signals concurrently. When transponder receives a signal with

specific frequency, it sends a signal in response.

Some take advantage of the complementary nature of the above sensors and combine them to 

minimize the localization error [10]. This technique, called sensor fusion, improves the 

localization accuracy but at the expense of higher cost. In this thesis we focus on the acoustic 

localization based on single-hydrophone method, because multiple hydrophones installation is 

relatively expensive. Consequently, to minimize the cost of the localization system, fewer 

hydrophones should be deployed. Recent work has demonstrated how a single hydrophone can 

be used to sound amplitude estimation in underwater environment [11].  

2.2. Acoustic Localization 

Acoustic signals have been used more frequently for underwater localization and communication 

as they penetrate deeper in water, compared with other signals, such radio and electromagnetic. 

Some of the acoustic-based methods are Sound Navigation and Ranging (SONAR) and acoustic 

ranging. 

2.2.1. Sonar 

Sonar is a technique that uses sound propagation for underwater vehicles navigation and 

communication. In terms of localization, sonar systems can estimate the location of object of 

interest either actively or passively. In active sonar, acoustic pulses are transmitted and their 

echoes from other objects are captured. Based on the speed of sound in water and time difference 

between transmitting and receiving sound signals, location of surrounding objects can be 

determined. In the presence of several objects, active sonar receives multiple echoes, making 

localization process more challenging. In contrast to active sonar, passive sonar makes use of 

hydrophones to listen to the generated sounds from other objects.  
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2.2.2. Acoustic Ranging 

Acoustic ranging systems have been used for underwater vehicles (UV) localization and 

navigation [12]. These systems rely on communication between an acoustic transmitter and a set 

of hydrophones, called baseline. If the sound velocity is known in underwater, the distance 

between transmitter and hydrophones can be estimated by simple geometric relationships. Based 

on the position and arrangement of acoustic equipment, acoustic ranging systems can be 

categorized into: Long Baseline (LBL), Short Baseline (SBL) and Ultra-Short Baseline (USBL) 

[9]. 

 Long Baseline (LBL)

This method uses some hydrophones, installed on the seabed and one transmitter that is fixed to 

the UV. Figure 2.1 shows LBL configuration. First, the transmitter propagates an acoustic signal. 

After receiving this signal by the active hydrophones, they transmit another signal in response. 

The distance between the UV and each transponder can be calculated, based on the time 

difference between transmitted and received sound signals. To find the exact position of the UV, 

triangulation method is used [13]. The main advantage of LBL is its high localization accuracy 

which is in the range few centimeters over a wide area. However, since transponder beacons 

should be installed on the seabed, this method is costly and time-consuming to be set up [14].  

Figure. 2.1: Long baseline localization system [9]. 
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 Short Baseline (SBL)

In SBL localization method, hydrophones are mounted far from each other on a floating platform 

like a boat (Figure 2.4). It is shown that the distance between hydrophones severely affects the 

localization accuracy; that is to say, the longer the distance, the lower the localization error. The 

baseline length is usually in the range of several meters. SBL works by measuring a relative 

position between the reference sound source and the receiving array. 

Figure. 2.2: Short baseline positioning system [9]. 

 Ultra Short Baseline (USBL)

As Figure 2.5 shows, USBL localization method is similar to SBL, but hydrophones are closely 

spaced with the approximated distance on the order of centimeter. Unlike SBL method, USBL 

measures the phase differences between received sound signals by the sensor array. Both SBL 

and USBL methods rely on a floating platform to install transponders, which is not always 

possible.  Localization accuracy of SBL depends on the dimensions of the floating platform, and 

it seemingly declines when it comes to short mothership.  
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Figure. 2.3: Ultra short baseline positioning system [9]. 

2.3. Sound Propagation Model 

Acoustic localization systems should be aware of the sound propagation mechanism in 

underwater to be able to calculate the location of the object of interest. The speed of sound in 

underwater usually varies between 1440 m/s and 1550 m/s, depending on the pressure, salinity 

and temperature of water [15]. Acoustic signals are attenuated and lose their power when 

traveling in underwater environment. Ambient noise also affects the strength of the passing 

acoustic signal. Acoustic noise is usually modeled as a Gaussian noise with power spectral 

density decaying at around 18 dB per decade [15]. The received sound frequency changes due to 

motion of either sound source or sound receiver, which is called Doppler effect. This frequency 

shift is aggravated by the low speed of the sound [16]. 

These variations in the amplitude and frequency of the sound through its propagation in the 

underwater environment makes acoustic sound analysis more tricky. To cope with this situation, 

we assume that underwater environment is a shallow water (D<200 m) and sound signal has a 

low-frequency (f<500 Hz). This is due the fact that in shallow-water, especially for long-range 

sound transmission (range r>1 km), the underwater environment can be regarded as a dispersive 

medium in which sounds with different frequencies travel with different velocities [17]. This 

frequency-dependent arrival of sound signals causes the received signal to be made of several 

components, called modes. It has been shown that under low-frequency and shallow water 

assumptions, acoustic propagation can be accurately modeled by modal propagation [18]. 

Shallow water environment can be regarded as an acoustic waveguide with multipath 
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propagation as it is highly influenced by the sea surface and the seabed reflections. Some modes 

might travel by a more direct path, and arrive sooner than modes that reflected at the sea surface 

or sea bottom. Because of the arrival of different modes of the signal at different times, the 

hydrophone receives a distorted form of the sound. Figure 2.4 shows a multipath propagation 

acoustic waveguide [19].  

Figure. 2.4: Shallow water sound propagation model [19]. 

2.3.1 Modal Propagation 

As mentioned earlier, in shallow water the sound signal is spread in time because the propagation 

velocity is dependent on the frequency and it is not equal for all modes. Assume a sound source 

𝑆(𝑓) at depth 𝑍𝑠  that transmits sound signal with frequency 𝑓 . The received signal by a 

hydrophone at depth 𝑍𝑟 at range 𝑟 is as follows [17]:  

𝑦(𝑓, 𝑍𝑠, 𝑍𝑟) = 𝑠(𝑓)𝑔(𝑓, 𝑍𝑠, 𝑍𝑟, 𝑟)  (2-1) 

Where 𝑔 is the impulse response of the shallow water environment. According to normal mode 

theory, each mode propagating dispersively and the received sound at ranges greater than 

acoustic wavelengths is the sum of several modal components. By solving the acoustic wave 

equation using the classic separation of variables method we can derive [19]:  

𝑔(𝑓, 𝑍𝑠, 𝑍𝑟, 𝑟) = ∑ 𝑎 (𝑓, 𝑍𝑠, 𝑍𝑟)𝑒 ∅ ( , )  (2-2) 

where 𝑀 is the number of modes, each having an amplitude 𝑎 (𝑓, 𝑍𝑠, 𝑍𝑟) and phase ∅ (𝑓, 𝑟). 

The speed of each mode is called phase velocity and we refer to the speed of the overall patter, 

consisting of different modes, as the group velocity. Equation (2-2) shows that only modal phase 
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and consequently mode travel time (phase velocity) depends primarily on the range (𝑟). In other 

words, modal amplitude is independent of the distance between source and receiver and only 

varies with their depth.  

Therefore, in acoustic localization application, modal phase is of paramount importance as in 

includes valuable information about the range parameter. It is shown that modal phase can be 

regarded as a separable function of two independent variables [18]:  

∅ (𝑓, 𝑟) = 𝑟𝑘 (𝑓)  (2-3) 

where 𝑘 (𝑓) is the spatial frequency of mode 𝑚, which depends on the environment, but not on 

the experimental geometry. That is to say, only environment parameters such as water depth, and 

sound speed profile affect the modal spatial frequency. Therefore, the travel time of each mode 

is: 

𝑡 (𝑓) =
∅ ( , )

=
( )

 (2-4) 

The above equation indicates that the modal travel time depends on range 𝑟 and modal group 

speed 𝑣 (𝑓). If the sound source be 𝑠(𝑓) = |𝑠(𝑓)|𝑒∅ ( ), according to equations (2-1) and (2-2), 

the received sound signal will be: 

𝑔(𝑓, 𝑍𝑠, 𝑍𝑟, 𝑟) = ∑ |𝑠(𝑓)|𝑎 (𝑓, 𝑍𝑠, 𝑍𝑟)𝑒 [∅ ( , ) ∅ ( )]  (2-5) 

So, the received phase becomes ∅ (𝑓, 𝑟) + ∅ (𝑓). According to equation (2-4), the modal travel 

times for a general received signal become: 

𝑡 (𝑓) =
[∅ ( , ) ∅ ( )]

= 𝑡 (𝑓) +
( )

 (2-6) 

where 𝑡 (𝑓) is the source time frequency law, and  𝑣 (𝑓) is the source group delay of the 

received mode m. Unlike phase delay that shows the time delay of a single mode, group delay is 

measure of amplitude distortion when multiple components with different frequencies construct 

the overall signal. In other words, while phase velocity is the speed of each mode, group velocity 

is the speed of the overall signal consists of all modes. 
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Equation (2-6) is called dispersion curve and it gives mode’s location in the time-frequency (TF) 

domain. Dispersion occurs when modals with different frequencies propagate at different speeds. 

In other words, in a dispersive medium, group velocity (𝑣 ) and phase velocity (𝑣 ) are not 

equal. Figure 2.6 shows the group and phase velocities for 𝑦(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥) signal.  

Figure. 2.5:  Dispersion curves of the first five modes [17]. 

Figure. 2.6:  . 

2.3.2. Pekeris Waveguide 

To analyze modal propagation and generate simulated signals, a simple model of shallow water 

environment, called Pekeris waveguide, will be utilized in this thesis. Pekeris waveguide has 

been used frequently to model coastal environments for acoustic signal processing [21][22]. This 

model assumes that the sound signal travels with the same speed in all directions in water 

(isocelocity property) between a perfectly reflecting surface (the sea surface) and a semi-infinite 
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isovelocity fluid basement (the seabed). Figure 2.7 shows the Pekeris waveguide. Although the 

model does not include any realistic parameters of the environment for the sake of simplicity, it 

produces accurate modal features. Having the parameters of its water column and seabed such as 

sound speed (𝐶 ), density (𝜌), and attenuation coefficient (𝛼 ), Pekeris model can precisely 

simulate the sound propagation in shallow water environment (𝐷 < 200𝑚). 

 

Figure. 2.7:  The Pekeris waveguide schematic [22]. 

By using the Pekeris model and simple numerical solvers [23], one can obtain modal travel time 

from equation (2-6) [24]. Figure 2.8 shows signal propagation phenomena, using Pekeris model. 

Figure 2.8 (a) shows the source signal that is a short broadband pulse with 0.1 s duration. Since 

modal group speed depends on frequency and source signal has frequencies within 25 Hz and 75 

Hz, it experiences dispersion in the underwater environment. As state before, in a dispersive 

medium, different modes travel with different speeds, causing the received signal to have a wider 

duration compared with the source signal. According to equation (2-6), the larger the distance 

between sound source and receiver, the wider the received signal. One can see from figure 2.8 

(b) that duration of the received signal is increased from 0.1s to 0.2s at 5 km range.  As Figure 

2.8 (c) illustrates, modal dispersion is more obvious when source/receiver range increases. At 15 

km range, three modes are distinguishable. Mode 1 arrives between t> 0s to t< 0:20 s, while 

mode 2 arrives between t > 0.15s to t < 0.40 s. There is also a third mode, barely visible after t > 

0.35 s. 
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Figure. 2.8: Signal propagation in a Pekeris waveguide.  
(a): The sound source. (b): Received signal at r=5km. (c): Received signal at r=15km. 

2.4. Summary: 

This chapter reviewed different underwater localization, and mainly focused on acoustic based 

localization. Then, Pekeris underwater waveguide and sound propagation through this channel 

were studied. Finally, modal dispersion in shallow water and dispersion curves were explained.  
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CHAPTER 3 

Acoustic signal processing 

This chapter presents different signal processing techniques required for underwater sound 

source localization. First, a linear-time-invariant system is defined because an underwater 

waveguide can be described as such a system. Then, Fourier transform that is the fundamental 

tool in signal processing is presented. Afterwards, different signal representation methods such 

as Gabor, wavelet, and spectrum will be discussed. Finally, we will present details of warping 

technique, which will be used for modal separation in this thesis. 

3.1. Linear-Time-Invariant system (LTI) 

To leverage signal processing techniques for specific applications, physical environment 

affecting signals should be characterized and analyzed. In this thesis, for instance, we aim at 

sound localization application based on signal processing techniques. For this purpose, the 

underwater environment will be described as a system with an input signal (𝑥(𝑡)) and an output 

signal (𝑦(𝑡)), as shown in Figure. 3.1. In this case, the input signal would be the transmitted 

acoustic signal, and the output is the measured echoes. In general form, systems can have 

multiple inputs (e.g., signal and noise) and multiple outputs (e.g., several hydrophones at 

multiple points). A system with transfer function 𝐻 mathematically converts the input signal to 

the output signal: 

𝑦(𝑡) = 𝐻[𝑥(𝑡)]              (3-1) 

 

Figure 3.1: System representation of a remote sound sensing application. 

For the sake of simplicity, many physical systems are assumed to be linear and time invariance 

(LTI). A system is called linear if for an input signal composed of distinct set of individual 

signals, the output will be a corresponding linear combination of the system output to each of the 

specific signals. A system is time-invariant if its characterization does not change over time. 



 

17 
 

That is to say, if an input signal is delayed by an arbitrary amount of time, the output signal 

experience an identical delay. In LTI systems, the output of any arbitrary signal can be obtained 

if the response of the system to the impulse signal is known. If the impulse response is denoted 

by ℎ(𝑡) , the output of the system to the input signal 𝑥(𝑡)  can be attained by convolution 

operator, represented by an asterisk (∗): 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏          (3-2) 

In our application, the acoustic signal 𝑥(𝑡) propagates through multiple paths in the underwater 

channel (section 2.3). If the 𝑖  path has an attenuation factor of 𝑎   and delay of 𝜏  , the received 

signal by the hydrophone located distance away would be: 

𝑦(𝑡) = ∑ 𝑎 𝑥(𝑡 − 𝜏 )         (3-3) 

The underwater waveguide can be assumed as a LTI system with the impulse response of ℎ(𝑡) =

∑ 𝑎 𝛿(𝑡 − 𝜏 ) .  

Sinusoidal signals are prevalent in underwater environment. Plus, they can simplify the input–

output relationships of LTI systems. Assume a sinusoid input signal with frequency 𝑓 . Using 

equation (3-2), the output will be: 

𝑦(𝑡) = 𝐻 𝑒 = ∫ ℎ(𝜏) 𝑒 ( )𝑑𝜏   

                                 = ∫ ℎ(𝜏) 𝑒 𝑑𝜏 𝑒 = [𝐻(𝑓 )]𝑒                    (3-4) 

The term 𝐻(𝑓) = ∫ ℎ(𝑡) 𝑒 𝑑𝑡 is the Fourier transform of the impulse response and it is 

called the frequency response of the system. The frequency response has a phase < 𝐻(𝑓 ) and an 

amplitude of  |𝐻(𝑓 )|. Therefore, equation (3-4) can be written as: 

𝑦(𝑡) = |𝐻(𝑓 )|𝑒 ( )𝑒           (3-5) 

The above equation shows that the response of a LTI system to a sinusoidal signal is another 

sinusoidal signal with the same frequency but different amplitude and phase due to system 

characteristics. 
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3.2. Fourier Transform 

Fourier transform (FT) is an informative form for signal representation and has become an 

essential part of acoustic signal processing applications. FT is a mathematical transform that 

decomposes a signal in the time domain to the sum of sinusoidal functions and describes the 

frequency content of a time domain signal. The Fourier transform of the signal 𝑥(𝑡) is: 

𝑋(𝑓) = ∫ 𝑥(𝑡)
+∞

−∞
𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡        (3-6) 

Linear operations in time domain have corresponding operations in the frequency domain, which 

are sometimes easier to perform. A standout example is convolution operation in the time 

domain that equals to ordinary multiplication in the frequency domain. Therefore, equation (3-2) 

in the time domain can be represented in the frequency domain as follows: 

𝑌(𝑓) = 𝐻(𝑓)𝑋(𝑓)       (3-7) 

After performing the desired operations, inverse Fourier transform (IFT) should be used to 

convert the obtained result back to the time domain. Equation (3-8) shows the IFT. 

𝑥(𝑡) = ∫ 𝑋(𝑓)
+∞

−∞
𝑒𝑗2𝜋𝑓𝑡𝑑𝑓      (3-8) 

The Fourier transform of 𝑥(𝑡)  is a complex-valued function of frequency, consisting of 

amplitude |𝑋(𝑓)|  and phase < 𝑋(𝑓) . The amplitude represents the relevant presence of a 

sinusoid, while the phase determines how the sinusoids should line up relative to one another to 

form the time domain signal. Both amplitude and phase of the FT have valuable information 

about the time domain signal. However, typically phase contains more information than 

amplitude. Figure 3.2 shows two 2-D signals (images) with their corresponding Fourier 

amplitudes and phases. Figure 3.3 illustrates the reconstruction process when amplitude or phase 

has been altered. If the amplitudes of the images remain the same but the phases were set to zero, 

the reconstructed images are not recognizable (Figure 3.3 (a)). On the other hand, the 

reconstructed images are still differentiable when the amplitudes were normalized to one, but the 

phases remained unchanged (Figure 3.3 (b)). Figure 3.3 is a testimony to the importance of phase 

information. It is worth mentioning that in the acoustic localization phase information is of 

paramount of importance because time delays of travelling sound signals is captured in the 
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phases of the received signals. Equation (3-9) shows that if a signal 𝑥(𝑡) is delayed by τ , its 

Fourier transform changes only in the phase. 

 

Figure 3.2: Fourier representation. 
(a): Original signals. (b): Fourier amplitudes. (c): Fourier phases.  

 

Figure 3.3: Signal reconstruction. 
(a): Remaining the amplitudes unchanged. (b): Remaining the phases unchanged.  

𝐹[𝑥(𝑡 − 𝜏)] = ∫ 𝑥(𝑡 − 𝜏)
+∞

−∞
𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡   

= 𝑒−𝑗2𝜋𝑓𝜏 ∫ 𝑥(𝑠)
+∞

−∞
𝑒−𝑗2𝜋𝑓𝑠𝑑𝑠 = 𝑒−𝑗2𝜋𝑓𝜏𝑋(𝑓)      (3-9) 
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3.3. Time-Frequency representations 

Although Fourier transform captures the entire frequency content of the signal, it does not 

provide any information about the exact moment in time when these frequencies are presented. 

This is due to the fact that all time-domain information is ignored as FT is obtained by 

integrating over all time (equation 3-6). To address this issue, time-frequency representation 

(TFR) has been emerged [25]. TFR is extremely beneficial for analyzing time-varying signals, 

containing many components with variable amplitudes and/or frequencies. Since amplitudes of 

sound modals lessen when they travel in an underwater environment, we will use TFR in this 

thesis to analyze the signals. In the following, two prevailed TFRs will be explained. 

3.3.1. Gabor Transform (GT) 

The Gabor transform, also known as the short- time Fourier transform (STFT), is one of the 

oldest linear TFRs [26]. Gabor modified the Fourier transform by introducing a new kernel to 

capture both time and frequency information. 

𝑔 , (𝜏) = 𝑒 𝑔(𝜏 − 𝑡)      (3-10) 

The function 𝑔(𝜏 − 𝑡) is centered at 𝜏 with a fixed width and it acts as a time filter to indicate 

which frequencies are present over a specific window of time (Figure 3.4). 

 

Figure 3.4: Time filtering window in Gabor transform [25]. 

The Gabor transform of the signal 𝑓(𝑡) can be calculated as follows: 

𝐺 (𝑡, 𝜔) = ∫ 𝑓(𝜏)𝑔(𝜏 − 𝑡)𝑒 𝑑𝜏     (3-11) 

where 𝑔 denotes the complex conjugate of the function 𝑔. The integration over the parameter τ 

slides the time-filtering window to obtain the frequency information at each time interval.  
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Although the GT is able to pick out time and frequency information simultaneously, it has 

several shortcomings that stem from its fixed time-filtering window. If a portion of the signal has 

a wavelength longer than the window width, GT is not able to extract the information accurately. 

The second problem of GT is the trade-off between captured time and frequency information. If 

we shrink the time-filtering window, the less frequency information would be obtained. On the 

other hand, the longer the window, the less information there is concerning time content. To 

tackle these issues, wavelet transform has been proposed. 

3.3.2. Wavelet Transform (WT) 

Unlike GT that has a fixed-size filtering window, WT has an adjustable window (parameter a in 

Figure 3.4) to extract information in the time resolution more efficiently. Bearing in mind that 

time and frequency domains have a reverse relationship, the width of window is shortened to 

extract higher frequencies at better time resolution. On the other hand, to capture the low-

frequency components of the signal, a broad scaling window can be utilized. To have a flexible 

filtering window, the following function, called mother wavelet, was introduced [26]: 

𝜓 , ( ) =
√

𝜓( )        (3-12) 

where 𝑎 and 𝑏 are real constants that control the shape of the wavelet. The parameter 𝑎 changes 

the scale and parameter 𝑏 shows translation. Figure 3.5 illustrates the effect of controlling 

parameters on the mother wavelet (𝜓 , ) shape and resulting child wavelets (𝜓 / ,  , 𝜓 / , ).  

 

Figure 3.5: Mather wavelet and two child wavelets [25]. 
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Wavelet transform of the function 𝑓(𝑡) using mother wavelet 𝜓 ,  can be calculated as follows: 

𝑊 [𝑓](𝑎, 𝑏) = ∫ 𝑓(𝑡) 𝜓 , ( )𝑑𝑡      (3-13) 

To analyze the signal at different times and frequencies, the signal is first decomposed into a 

collection of smaller signals, by changing the translating factor (𝑏). Then, the original signal is 

processed at different frequency bands, by scaling the wavelet window with the scaling 

parameter (𝑎). Figure 3.5 compares different time-frequency representation methods. One can 

see that WT presents a multiresolution representation of the signals. 

 

Figure 3.6: Different time-frequency representation methods [25]. 

(a): Time series. (b): Fourier. (c): Gabor transform. (d): Wavelet transform. 

3.3.3. Spectrogram 

Spectrogram is one of the most practical TF representations that has been used frequently in 

various applications such as sonar [27], radar [28], and speech [29] processing. It can be 

generated by Gabor transform or by a Wavelet transform. Assume Gabor transform, the squared 

magnitude of GT is called the spectrogram and is expressed as follows: 
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𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝑡, 𝜔) = ∫ 𝑓(𝜏)𝑔(𝜏 − 𝑡)𝑒 𝑑𝜏     (3-14) 

To create the spectrogram, the signal is sampled in the time domain. In other words, the signal is 

divided into sections with overlap between contiguous sections. Then, Fourier transform is 

performed to calculate the magnitude of the frequency spectrum for each section. Each segment 

corresponds to a horizontal line in the spectrogram image. By putting these time plots side by 

side, spectrogram image is obtained. As it can be seen in Figure 3.7, spectrogram better 

represents the signal as four modes are clearly visible in Figure 3.7 (b). 

 

Figure 3.7: Spectrogram representation of a signal. 
(a): Signal in the time domain. (b): Spectrogram of signal (a). 

3.4. Dynamic mode decomposition 

Dynamic mode decomposition (DMD) is a data-driven approach which is used to discover 

complex dynamical systems [26].  Assume we have a dynamical system with two sets of data. 

𝑋 =
⋮

𝑋
⋮

⋮
𝑋
⋮

⋯
⋮

𝑋
⋮

          (3-15) 

𝑋ʹ =
⋮

𝑋ʹ

⋮

⋮
𝑋ʹ

⋮
⋯

⋮
𝑋ʹ

⋮
            (3-16) 
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If 𝐹 represents the dynamics of the system, then  𝑋 = 𝐹(𝑋 ). By production the shifted data 

set (𝑋ʹ) and the Moore–Penrose pseudoinverse of the data (𝑋 ), the high-dimensional matrix A is 

obtained.  

𝐴 = 𝑋ʹ𝑋                   (3-17) 

It was shown that dynamic modes, are the eigenvectors of A, and each DMD mode corresponds 

to a particular eigenvalue of A [26]. Figure 3.8. shows the schematic overview of the dynamic 

mode decomposition algorithm.  

Consider a spatiotemporal signal 𝑓(𝑥, 𝑡) that is composed of two individual signals (modes) 

𝑓 (𝑥, 𝑡)  and 𝑓 (𝑥, 𝑡). 

𝑓(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) = sech(𝑥 + 3) exp(𝑖2.3𝑡) + 2 sech(𝑥) 𝑡𝑎𝑛ℎ(𝑥)exp (𝑖2.8𝑡) (3-18) 

According to Equation (3-18), the main signal has two modes with frequencies of 𝜔 = 2.3 and 

𝜔 = 2.8. Figure 3.9 shows the main signal and its components. 

 

 

Figure 3.8: Overview of the dynamic mode decomposition algorithm [26]. 
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Figure 3.9: A spatiotemporal signal and its modes. 
(a): The first mode 𝑓 (𝑥, 𝑡). (b): The second mode 𝑓 (𝑥, 𝑡). (c): The main signal 𝑓(𝑥, 𝑡). 

Figure 3.10 compares dynamic mode decomposition, Principal Component Analysis (PCA) [5], 

and Independent Component Analysis (ICA) [5] methods quantitatively. Spatial and temporal 

modes of the signal in Figure.3.9 (c) are extracted with DMD, PCA, and ICA methods and 

compared with their true values. According to Figure 3.10, the extracted modes by the DMD 

have the minimum error. While the PCA modes are very inaccurate, the ICA error is less than 

half the error associated with PCA. This comparison is a testimony to the DMD efficiency in 

decomposing spatiotemporal data. 

 

Figure 3.10: Comparison between different mode decomposition methods [5]. 
(a): Mode 1 temporal. (b): Mode 2 temporal. (c): Mode 1 spatial. (d): Mode 2 spatial. 

3.5. Warping theory 

Hydrophones record the received sound signals as a function of time. Due to non-linear time 

dependence, modes with higher frequency arrive later at the hydrophone. Classical methods are 

not suitable to represent signals traveling in a non-linear medium. To address this issue, warping 
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technique has been employed to linearize the modes. After mode linearization, standard time-

frequency methods, such as the spectrogram, can be utilized to represent the transformed signal. 

In other words, warping can be deployed to counteract or mitigate the non-linear effects of the 

ocean waveguide on the sound signals. To do this, the received signal should be compression or 

stretching over time. In this thesis, we aim to use warping to separate the modes more easily, 

which is a challenging task especially in short ranges where modes are highly convoluted. After 

modal separation, one mode will be filtered for sound source localization.  

For a non-liner waveguide such as ocean environment, non-linear warping should be used. In 

contrast to linear signal compression or stretching (Figure 3.11 (b) and (c)), after non-linear 

warping the frequency of the warped signal varies with time (Figure 3.11 (d) and (e)). As it is 

clear in Figure 3.11 (e), frequency of the transformed signal is higher in 3s to 4s interval than 1s 

to 2s period. One can see that amplitude of the warped signal also changes over time, because 

energy of the signal should remain constant before and after warping transformation. To this end, 

the amplitude of the compressed signal in time must be increased to conserve energy. 

From mathematical point of view, warping is substitution time 𝑡 by ℎ(𝑡) , called a warping 

function. For the original signal 𝑦(𝑡), the warped signal 𝑦 (𝑡) can be obtained by the following 

[18]:  

𝑦 (𝑡) = |ℎ (𝑡)|𝑦[ℎ(𝑡)]                 (3-19) 

The derivative of warping function is depicted by ℎ (𝑡) and the term |ℎ (𝑡)| is used for energy 

conservation. Choosing an appropriate warping function is of the paramount of importance. 

Basically, the warping function should be reversible. This property guaranties that all points in 

the warped signal match uniquely to all points in the original signal. The one-to-one 

correspondence between all points in 𝑦(𝑡) and 𝑦 (𝑡) , will enable us to perform the inverse 

warping after modal filtering to convert the mode of interest into original time domain. Consider 

a signal 𝑦(𝑡) = 𝑎(𝑡)𝑒 ( )  which has amplitude of 𝑎(𝑡)  and constant frequency of 𝑓 . 

Assume that the signal has a non-liner phase Φ(𝑡). To linearize the signal phase, the warping 

function should be the inverse of the phase function. By substituting the ℎ(𝑡) with Φ (𝑡), the 

warped signal is obtained: 
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Figure 3.11: Comparison between linear and non-linear time warping methods [18]. 
(a): Original signal.  

(b): Linear compression. (c): Linear stretching.  
(d): Non-linear compression. (e): Non-linear stretching. 

𝑦 (𝑡) = |ℎ (𝑡)|𝑎[ℎ(𝑡)]𝑒     (3-20) 

The above equation shows that the warped signal has a linear phase Φ(𝑡) = 𝑡 . It is worth 

mentioning that phase function is unknown in real-life applications and it should be estimated 

through modal propagation in the medium (see chapter 5).  
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3.6 Summary: 

This chapter started with LTI systems and Fourier transform. Different types of signal 

representation based on Gabor transform or wavelet transform are described. Dynamic mode 

decomposition and warping techniques that are required to discriminate modes for modal 

filtering were explained in detail.  
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CHAPTER 4 

Literature Review 

This chapter reviews previous efforts in acoustic underwater localization, mainly focusing on 

signal processing approaches. The State-of-the-art techniques for acoustic localization can 

broadly be divided into two main groups: data-driven methods and model-based methods (Figure 

4.1.). Data-driven approaches learn directly from data. In other words, these methods only rely 

on acoustic data and do not need any information about the waveguide to predict the location of 

the sound source. On the other hand, model-based methods should mathematically model the 

environment and its effects on the travelling signals. In the following, more details of each group 

will be presented. 

Figure 4.1: Overview of the acoustic localization techniques. 

4.1. Data-driven Methods 

Data-driven approaches aim to automatically extract implicit information from the collected data. 

The obtained knowledge can be used later for various tasks. Take source localization as an 

example; based on the known location of the sound source and recorded acoustic data by the 

hydrophones, a position is assigned to each data. This set of collected data with predefined labels 

is called training set.  

Since there is a positive correlation between accuracy of the data-driven methods and quality of 

the collected data, the process of training set preparation becomes important. It is believed that 

accuracy and reliability of these methods are proportional to quantity and quality of the training 

set. It should be noted that training data collection is a laborious and time-consuming task. In a 
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dynamic environment like ocean, for example, different factors such as pressure, salinity, and 

temperature of water affect the speed of sound [30]. So, data at various depths should be 

recorded to cover the whole gamut of water pressure and temperature. 

Data-driven methods have several shortcomings. Firstly, these methods do not have 

generalization capability. The collected data for one environment cannot be used for another 

environment, which means the data collection process should be repeated for the new situation. 

For instance, sound signals collected for localization in a confined tank cannot be utilized for an 

open space underwater. Secondly, these methods are complex and have a black-box nature. 

Therefore, it is difficult to interpret these methods to acquire physical insights.  

Data-driven methods are either supervised or unsupervised [31]. In supervised learning, the goal 

is to learn a predictive mapping from inputs to outputs using training set with known labels. In 

unsupervised learning, however, no labels are available, and the task is to extract complex and 

subtle patterns within the data. 

4.1.1. Machine Learning 

Most of the machine learning techniques are supervised learning. They are aimed at finding a 

mapping from inputs to outputs according to their training set. Take acoustic localization into 

consideration; the input is the received sound signal, captured by the hydrophone and the output 

is the position of the sound source. Various machine learning methods have been deployed for 

localization, ranging from simple methods such as nearest-neighbor classifiers and Support 

Vector Machine (SVM) to more sophisticated algorithms like Deep Neural Network (DNN) [31]. 

A machine learning-based method has been proposed for auto-detection and localization of 

targets in underwater acoustic array networks [32]. Fractional Fourier Transform (FrFT) was 

used to find the peak of the reflected linear frequency modulated (LFM) signals emitted by a 

sensor array. Based on the location of the peak, the target distance and radial velocity were 

estimated. 

In [33], AUV-aided localization for Internet of Underwater Things (IoUT) was used by a 

reinforcement-learning (RL). The hybrid network architecture consists of surface buoys, 

autonomous underwater vehicle (AUV), and active and passive sensor nodes. Two neural 
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networks were adopted to approximate the increment policy and value function in the RL-based 

localization algorithm, and minimize the sum of all measurement errors. 

Three conventional machine learning techniques, feed-forward neural networks, support vector 

machines, and random forests (RF) were trained by the received pressure collected from a 

vertical linear array to estimate source ranges in an ocean waveguide [34]. These machine 

learning techniques have also been used for acoustic localization in a confined test tank [35]. 

Furthermore, a Convolutional Neural Network (CNN) was trained by the spectrogram images of 

the received signals. 

Energy consumption of active sonar localization methods depends on the two-way travel time of 

underwater acoustic signal. Reinforcement learning was employed to improve the accuracy and 

energy efficiency of such system by optimizing the beacon selection policy without relying on 

the channel model between the beacon and the target [36]. 

Deep convolutional denoising autoencoder was used for moving targets detection and tracking. 

Reflections of an active acoustic emitter were used for training the neural network in order to 

minimize power resources in offshore monitoring platforms [37]. In [38], DNN was proposed for 

localizing unknown nodes in underwater wireless sensor networks (USWNs), and its 

performance was compared with SVM, and generalized least squares (GLS) in terms of 

localization accuracy and efficiency. 

4.1.2. Direct Regression 

Since the output space is continuous and structured in the source localization application, 

regression methods have also been used for this purpose. Regression analysis aims to discover 

the relationships between the outcome variable and independent variables, called features. In the 

case of sound localization, for example, the outcome variable is the position of the sound signal, 

and the features are received sound signals.  

The potential of regression methods for underwater source localization in fluctuating ocean was 

studied in [39]. Two regression models, a kernel regression, and a piecewise linear regression, 

have been used for this purpose. Train and test data sets had been collected in tank conditions 

and they used to reproduce fluctuating environments in closed and well-mastered settings.  
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In [40], source localization is regarded as a supervised learning regression problem, and it was 

solved by generalized regression neural network (GRNN). By using several snapshots, the 

normalized sample covariance matrix (SCM) was formed and used as the input of the GRNN. 

After training the neural network, the source position was estimated directly from the normalized 

SCM with GRNN.  

Performance of regression and classification neural networks for single-source direction-of-

arrival estimation was compared in [41]. The output space was described based either on the 

angular distance between spherical coordinates or on the mean squared error between Cartesian 

coordinates. It was shown that regression on Cartesian coordinates is generally more accurate, 

except when localized interference is present.  

SVM can also be used for regression. The regression version of SVM, called support vector 

regression (SVR), was utilized for head-related transfer functions (HRTFs) based sound source 

localization [42]. A virtual listener based on SVR was proposed to substitute the human listener, 

and it was trained by a small training set, obtained by sampling uniformly a subject's HRTFs 

across directions. Experimental results showed that the virtual listener achieves human-level 

localization accuracy. 

Unknown physical parameters of the acoustic environment were estimated by Gaussian process 

regression (GPR) and used for acoustic source localization in an acoustic sensor network (ASN) 

[43]. The estimated distance is then used by an ASN with known relative node positions for 

acoustic source localization. A sparse Gaussian process regression was deployed to adjust the 

amount of shared data between the sensor nodes to meet the network constraints.   

4.1.3. Probabilistic Pattern Recognition 

Unlike conventional pattern recognition methods that only give the most likely class for the 

given input, a probabilistic classifier provides the probability distribution over a set of classes. 

To tackle weaknesses of the sonar image such as speckle noises and low-resolution images, a 

probability-based framework was proposed in [44] to recognize consecutive sonar images. 

Particle filtering and Bayesian feature estimation were used to repeatedly estimate the continuity 
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and feature of objects in sequential images. These probability methods enabled the system to 

repeatedly predict and update the status of the object of interest by a stochastic method. 

In [45], two probabilistic neighborhood-based data collection algorithms were proposed to 

acquire marine environment information using three-dimensional underwater acoustic sensor 

networks (3D UASNs). They used probabilistic acoustic communication model instead of the 

traditional deterministic acoustic communication model to compensate decreased successful 

information delivery probability.  

A probabilistic neighborhood location-point covering set-based data collection algorithm was 

proposed for UASNs [46]. To optimize the data collection latency, the proposed algorithm 

initially generates a space lattice set to establish the probabilistic neighborhood location-point 

covering set for data collection. Then, an autonomous underwater vehicle traverses only location 

points in the constructed covering set with a hierarchical grid-based obstacle avoidance strategy. 

In [47], Bayesian process was used to obtain probabilistic direction estimation for source 

localization using multiple underwater acoustic sources. First, target acoustic signals were 

extracted and identified based on frequency bands of each source. Then, time difference of 

arrival of two hydrophones was utilized to localize the underwater acoustic sources. Finally, the 

direction angles acquired from various locations of the vehicle were used to perform extended 

Kalman filter based localization of underwater acoustic sources. 

Underwater localization using wireless acoustic communication signals was performed by 

probabilistic pattern recognition in eigenspace of principal components analyses (PCA) [48]. The 

scheme was based on fingerprinting and included training and predicting stages. It was assumed 

that if the projected features have Gaussian probabilistic distributions, probabilistic pattern 

recognition of projected features in PCA space can be used for localization. 

4.2.Model-Based Methods 

Localization can be regarded as the estimation process that concerns with the sound source 

coordinates. Estimation methods can be divided into parametric and nonparametric classes. 

Nonparametric estimation is aimed at finding the value of the estimate, without considering 

probability distributions parameters such the mean and variance. A good illustration for 
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nonparametric estimator is bearing estimation using a line array. On the other hand, parametric 

estimator assumes a probability distribution with fixed set of parameters that generates sample 

data. The goal of parametric estimator is to find these parameters of the signal or parameters 

describing the medium. It is worth mentioning that most well-known localization methods are 

parametric. Inverse problem is one of the parametric methods that aims at extracting some 

information of the medium (such as ocean sound speed, density) from the received signal. After 

estimating the medium property and determining sound propagation mechanism in it, acoustic 

ranging can be performed through the following methods. 

4.2.1. Time Difference of Arrival (TDOA) 

Time difference of arrival is based on the time of arrival (TOA), the time difference between 

transmission and reception of a sound signal. For accurate measurement, sound source and 

receiver should be synchronized with each other to be aware of the exact starting time of the 

sound generation [50]. TOA measurement also requires distance-related information between a 

source and receivers which can be obtained by the inverse problem approach. 

Being time-synchronized with the source, the receiver calculates the delay upon receiving the 

acoustic signal. Then, the range is estimated by multiplying the sound speed in the medium by 

the TOA. The range estimation results in a circular locus of possible source positions with the 

receiver at the center. To pinpoint the location of the source in a 2D space, at least three receivers 

are required; the position of the source is at the intersection of three circular locus. 

Cross correlation between received and reference signals was used to measure TOA for 

localization inside a confined test tank, using an array of 4 hydrophones [51]. To improve the 

TOA estimation and consequently precision of the localization system, pseudo-random binary 

sequences modulated in Binary Phase Shift Keying (BPSK) was proposed [52].  

Synchronization error between sound source and receiver brings about ranging inaccuracy. To 

mitigate this error, time difference of arrival method has been proposed [50] which is based on 

pairs of spatially separated hydrophones. One of hydrophones is considered as the master 

(reference), while the remaining are the slaves (auxiliary). Only time synchronization between 

auxiliary sensors is needed in this method. In the 2D case, the possible location of a source for 
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each TDOA is given by a hyperbolic line of position in which the focal points of the hyperbola 

are the positions of the two receivers used in the TDOA computation.  

Cross-correlation is one of the most common methods to measure TDOA [53]. Multiple surface 

beacons have been used to obviate the need for time synchronization between the surface 

beacons and underwater source [54]. The underwater node receives the positioning messages 

from surface beacons belonging to the same grid and calculates its location by itself using these 

messages and the corresponding arrival times. Modified versions of TDOA localization method 

were presented to address the problem of variable received positioning messages at one epoch. 

To improve estimation bias and accuracy, TDOA method was combined with bearing-angle-of-

arrival (BAOA) measurement that shows the direction from which the signal is received. To 

increase the accuracy in the presence of large noise, an iterative constrained weighted least-

squares method was presented in the TDOA/BAOA method [55].  

4.2.2. Time of Flight (TOF) 

To have asynchronized sound transmitter and the receiver, TOF method has been proposed. 

However, in TOF method, nodes should be able to send and receive acoustic signals 

simultaneously. First, the transmitter emits a sound signal. Upon receiving this signal, the 

receiver sends another sound signal in response. Finally, the transmitter calculates the distance 

according to the round-trip-time [51].  

Time of flight and received signal strength (RSS) measurements were combined for underwater 

acoustic sensor network (UASN) localization in inhomogeneous underwater medium [56]. First, 

transmission loss for acoustic wave propagation was measured. Then, an oversampled matched 

filter-based method for RSS measurement was proposed in asynchronous transmitter–receiver 

scenario. Finally, an iterative localization algorithm was obtained. The authors improved their 

method [57] by developing an Array-RSS localization method based on an iterative algorithm 

using the RSS parameter of the beamformer output. 

4.2.3. Matched Field Processing 

Match field processing (MFP) aims to find range and depth of the sound source when the 

propagation model, source frequency, ocean depth, and seabed characteristics are known. It 
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should be noted that if the model parameters are inaccurate, viable and precise solution cannot be 

obtained. To estimate the location of the sound source, the vertical hydrophone array provides a 

vector of measurements of the true field. Then, the model estimates these measurements for a 

given set of source coordinates. By finding the maximum of the magnitude squared of the 

normalized inner product of true and estimated vectors, the solution can be obtained [49]. In 

other words, MFP matches received array data to a dictionary of replica vectors for source 

localization. 

Since number of replicas far exceeds the number of sources, the solution set is sparse. To cope 

with sparsity problem, the matched field problem was reformulated as an underdetermined, 

convex optimization problem [58]. Compressive sensing (CS) uses a row-sparsity constraint to 

estimate the optimum unknown source amplitudes using the replica dictionary.  

Mismatching between the received acoustic field and its model and its effect on source 

localization was considered in [59]. Different approaches to increase the stability of the 

algorithms for source position estimation were also reviewed [59].  

Performance of conventional MFP for underwater acoustic source localization has been 

improved by utilizing multiple arrays [60]. It was assumed that relative calibration between 

arrays is known, so further information was captured from variation in received signal amplitude 

between arrays. More information extracted from phase variations also incorporated into 

conventional MFP when arrays were synchronized. 

4.2.4. Multiple Signal Classification 

Multiple signal classification (MUSIC) is an algorithm for parameters estimation from recorded 

signal measurements. This method provides high-resolution signal estimation by isolating signal 

and noise subspaces. Signal can be separated from noise because the algorithm assumes that the 

number of components is known in advance. Although some efforts have been done to estimate 

the number of components from autocorrelation matrix of the signal, previous knowledge about 

the number of components curtails MUSIC algorithm application.   

MUSIC was implemented on an autonomous underwater vehicle in [61]. An array of four pre-

calibrated hydrophones was utilized for geometry-dependent MUSIC computation, which 
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improved acoustic localization accuracy. A modified version of the algorithm, called normal-

mode based MUSIC, was introduced to make DOA estimation in shallow water less biased [62].  

Performance of the conventional MUSIC under an extremely low SNR environment was 

enhanced by assimilating Jordon canonical matrix in the covariance matrix for the reconstruction 

of data [63]. 

In [64], MUSIC algorithm was proposed for locating small inclusions buried in a half-space, 

using the far-field theory. The locating method was based on measuring the scattering amplitude 

at a fixed frequency. Another variant of MUSIC, called mixed polarization MUSIC (MP-

MUSIC) algorithm, was proposed in [65] and signal polarization was taken into consideration. 

MP-MUSIC is suitable for underwater localization as it provides space position with low 

computational time. 

4.3.Summary: 

This chapter reviewed state-of-the-art underwater source localization methods. Both data-driven 

and model-based methods were covered in this chapter. 
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CHAPTER 5 

Dispersion-based Acoustic Source Localization 

In this chapter, a signal processing based acoustic underwater localization method will be 

presented. It should be noted that this method relies only on one hydrophone, and adopts warping 

approach as a non-linear signal processing method to make modals in the received sound signal 

more separable. After converting the sound signal into time-frequency domain and applying 

warping, modes are filtered. By comparing the estimated modal dispersion curve from the 

received signal and the one obtained from the environmental model, the location of the sound 

source can be estimated through an iterative optimization method. 

5.1 Discrete Warping  

Chapter 3 described warping theory to linearize the signal phase. Warped modes with linear 

phases can be more easily separated. To implement warping with a computer, however, discrete 

version of warping should be implemented.  

Assume a continuous signal 𝑦(𝑡) in  [𝑡 , 𝑡  ] interval. The discrete version of the signal, 

𝑦[𝑘], can be obtained by sampling at a frequency of  𝑓 . According to the Nyquist rate theory 

[66], to have a distortion-free discrete signal, sampling frequency should be twice the highest 

frequency of the signal. Denoting the warping function with ℎ(𝑡), sampling frequency of the 

warped signal is: 

𝑓 =
( )

           (5-1) 

where ℎ  is the inverse warping function. The discrete version of the warped signal is: 

𝑦 [𝑘] =
( )

𝑦[ℎ(𝑡 )]           (5-2) 

where 𝑡 =   and ℎ(𝑡 ) = (𝑡 + 𝑡 ) . .  𝑡  is the travel time of the fastest mode which equals 

to  𝑡 = , where 𝑟 is the distance between sound source and receiver, and 𝐶  is the speed of 

sound in the water. 
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The discrete version of the unwarping signal is obtained by inverse warping as follows: 

𝑦 [𝑛] =
( )

 𝑦 [ℎ (𝑡 )]       (5-3) 

with 𝑡 = 𝑡 + , ℎ (𝑡 ) = (𝑡 − 𝑡 ) . . 

Assume an ideal waveguide with perfectly reflecting seabed and sea surface in which sound 

speed is constant in water. The received signal phase is proportional to Φ(𝑡) ∝ 𝑡 − 𝑡   [67]. It 

is obvious that for this phase function, the warping function would be ℎ(𝑡) = 𝑡 + 𝑡 . One can 

see that for finding the appropriate warping function, 𝑡  is required. Since 𝑡 = , the exact 

values of range (sound source/receiver distance) and water sound speed should be known. 

However, the range parameter is the parameter of interest and it is unknown. Fortunately, the 

warping algorithm is not very sensitive to these parameters, so one can choose typical values for 

range and sound speed to obtain relatively accurate results. Figure 5.1 shows sensitivity of the 

warping algorithm to these parameters. A sinusoidal wave was warped with 𝑟 = 10𝑘𝑚, 𝑐 =

1500𝑚/𝑠. The signal is then unwrapped with different parameters.  

For the next experiment let us assume that the true value of the range was 𝑟 = 10𝑘𝑚 but we set 

𝑟 = 15𝑘𝑚 as the initial value. As figure 5.2 shows, although warping signals are different for 

different ranges (figure 5.2 (b)), unwarping signals are almost identical (figure 5.2 (a)). 

Therefore, it is not necessary to know the exact value of the range to use warping, and a rough 

estimation would be enough. 
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Figure 5.1: Sensitivity of warping and unwarping algorithms to range and sound speed parameters. 
(a): Original signal and signal after warping with 𝑟 = 10𝑘𝑚 and unwarping with 𝑟 = 11𝑘𝑚. 

(b): Original signal and signal after warping with𝑐 = 1500𝑚/𝑠 and unwarping with 𝑐 = 1600𝑚/𝑠. 

Figure 5.2: Sensitivity of warping algorithm to range parameter. 
(a): Unwarping signals with 𝑟 = 10𝑘𝑚 and 𝑟 = 15𝑘𝑚. 
(b): Warping signals with 𝑟 = 10𝑘𝑚 and 𝑟 = 15𝑘𝑚. 

5.2. Impulse Signal Warping 

The warping function should be able to work with different signals. Among them, impulse signal 

plays a pivotal role in system identification as systems are generally described by their impulse 

response, the system output when an impulse signal is presented as its input signal. As stated in 

Chapter 2, the output of a linear time-invariant (LTI) system to any input is a function of the 

input and the impulse response. From mathematical point of view, an ideal impulse function is a 
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function that is zero everywhere but at the origin, where it is infinitely high. However, producing 

an ideal impulse signal is not possible in practical applications. Therefore, a pulse that is short 

enough compared to the impulse response is regarded as an impulse signal. Figure 5.3 shows a 

train of impulse signal, including 10 impulsive signals. A good illustration of the train of impulse 

signals is AUV localization in which the AUV generates beep sounds repeatedly.  

Figure 5.3: A train of impulse signal. 

Since an impulse signal has a short time duration, selecting the time origin, the arrival of the 

fastest mode, becomes more important. Assume a noisy underwater environment with sound 

speed of 𝑐  in water and 𝑐  in seabed. If the distance between sound source and receiver be 𝑟, 

the first signal arrives at 𝑡 =  to the hydrophone. However, the sound arrives sooner to the 

hydrophone from seabed medium since 𝑐 > 𝑐 . This signal is highly attenuated which makes it 

difficult to be differentiated from the noise. Figure.5.4 shows the impulse response of the 

environment. Different time origins corresponding to the true starting values are shown with 

vertical lines between 6s and 7s.  Early time origin, accurate time origin, and late time origin are 

indicated in figure 5.4 with (a), (b), (c), respectively. The spectrograms of the warping signals 

with different time origins are depicted in figure.5.5. 
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Figure 5.4: Uncertainty in the time origin. 

 

 
Figure 5.5: Spectrograms of different warping signals. 

(a): Overall signal. (b): Signal with early time origin.  

(c): Signal with accurate time origin. (d): with late time origin. 



 

43 
 

According to figure 5.5 (b), although early time origin results to four horizontal warped modes, 

the modes are not perfectly separable.  The accurate time origin brought about four separable 

modes with minimum overlaps (figure 5.5 (c)). Modes are also completely distinguishable in 

figure 5.5 (d), but the first mode was missed. It is obvious that time origin setting is important, 

and this process should be performed in a manner to maximize modal separability without losing 

the fast mode.  

5.3 Known Signal Warping 

Most of the natural sound signals are not impulsive. For general acoustic sound signals 

localization other preprocessing steps should be performed to improve the warping performance. 

If the Fourier transform of the signal, 𝑠(𝑓),  is known, we can use this information to counteract 

the effect of frequency variations due to the source signal. This process is called deconvolution 

and it can be performed by dividing the environmental filtering effect (Equation 2.2) by 𝑠(𝑓). 

Figure. 5.6 (a) shows a modulated FM signal in time domain which its frequency decreases over 

time. Spectrogram of this signal is shown in figure. 5.6 (b). Figure 5.6 (c) and (d) depict time 

domain and spectrogram of the signal after being affected by the environment. 

As it is obvious in figure 4.6 (d), modes are very convoluted, and it is not easy to segregate them. 

However, by source deconvolution, one can easily separate the modes (figure. 4.7 (b)). This 

technique is useful when some knowledge about the sound source is available. For instance, we 

know about the sound signal of a ship in advance, and this information can be used for the 

received signal deconvolution. 
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Figure 5.6: Spectrograms of different warping signals. 

(a): Overall signal. (b): Signal with early time origin.  

(c): Signal with accurate time origin. (d): with late time origin. 

 

 
Figure 5.7: Effect of source deconvolution on warping. 

(a): Signal warping without deconvolution. (b): Signal warping with deconvolution.  

 



 

45 
 

5.4 Unknown Signal Warping 

In most of the real-life scenarios, signal deconvolution is not applicable as accurate knowledge 

about the source signal is not available. A good illustration is underwater mammal localization 

which their acoustic signals vary from one type to another one. When it comes to unknown 

signals, we can modify the phase of the received signal based on the estimation of the source 

signal phase: 

𝑦 (𝑓) = 𝑦(𝑓)𝑒 ( )      (5-4) 

The above equation is called phase compensation. The compensated signal (𝑦 (𝑓)) is obtained 

by multiplying the original received signal (𝑦(𝑓)) by the estimated phase of the source signal 

(Φ (𝑓)). Warping will be performed on the compensated signal. To estimate the Φ (𝑓), the 

arrival of the first mode, which is less affected by dispersion, can be manually selected. 

 
Figure 5.8: Effect of phase compensation on warping. 
(a): Original signal. (b): Warping the original signal. (c): Compensated signal. (d): Warping the Compensated signal. 
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Comparing the warped signals in figure 5.8 (a) and (b), one can see that modes are separable 

after phase compensation. The phase compensation technique is not very sensitive to the phase 

estimation. As figure 5.9 shows, modes can be separated under different phase estimations. 

Therefore, warping is an effective method even when little information is available about the 

source. 

4.4. Modal Filtering 

As stated before, due to dispersion, a signal hydrophone receives several distinct arrivals 

components, called modals. Modal filtering aims to extract individual modes from the received 

signal, and it is a critical preprocessing step in the acoustic localization. After extracting one 

mode, it can be used to estimate the location of a sound source by comparing relative arrival time 

and amplitude of the mode with the corresponding parameters of a hypothetical mode generated 

by the propagation model of the underwater environment. 

To have an efficient filtering, warping technique is deployed to separate the modes by converting 

them into horizontal lines in the TF domain. For this purpose, prior information about the sound 

source should be leveraged to perform preprocessing steps such as time origin selection, signal 

deconvolution, and phase compensation, which bring about better modal separation. 

After warping the received signal, a mask should be defined to indicate which mode should be 

extracted from the spectrogram of the signal. Working in the TF domain, the mask is a 2D area 

which defines the region of interest. While value of 1 is assigned to the region under the mask, 

other TF regions are set to 0. Figure 5.10 shows the received signal and the mask for filtering the 

second mode. 

It should be noted that the mask is applied on the Short Time Fourier Transform (STFT) of the 

signal and not on its spectrogram. 

𝑀(𝑓, 𝑡) = 𝐹(𝑓, 𝑡)𝑆(𝑓, 𝑡)        (5-4) 

where 𝐹(𝑓, 𝑡) is filter, 𝑆(𝑓, 𝑡)  shows the signal, and 𝑀(𝑓, 𝑡) is the selected mode. Figure 5.11 

depicts different modes extracted by the filtering process. 
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Figure 5.9: Warping robustness to the source signal phase estimation. 

Left column: Received signal and different phase estimations, shown with a solid line.  
Right column: Corresponding warped signals. 
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Figure 5.10: Filtering mask. 

(a): Received signal. (b): Second mode selecting mask. 

 

 
Figure 5.11: Filtering process. 

(a): First mode. (b): Second mode. (c): Third mode. (d): fourth mode. 
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5.6 Dispersion curve estimation 

As mentioned in chapter 2, the TF position of a given mode is called the dispersion curve, and it 

is obtained by equation 2.4. According to this equation, the modal travel time depends on the 

distance between sound source/receiver and modal group speed. An approximate closed-form 

expression for dispersion curves can be obtained from the modal propagation equation [24]. 

Instead of analytical methods, numerical simulations can be used to find dispersion curves [11]. 

Figure 5.12 shows the dispersion curves obtained from the Pekeris waveguide. Each dispersion 

curve has a specific point where the curve bends sharply. This point is called the Airy phase and 

indicates the last modal arrival. Consider the second mode in figure 5.12, the Airy phase is about 

40Hz. Signals with lower frequency than the Airy phase propagate through the seabed and arrive 

faster. Since the seabed attenuates these signals, they are not usually visible in real applications. 

  

Figure 5.12: Theoretical dispersion curves of the first four modes. 

To verify the accuracy of the propagation model, the dispersion curves are superimposed to the 

spectrogram of the received signal. Figure 5.13 shows that dispersion curve of each mode 

matches with the location of the corresponding mode in the TF domain. 

After filtering one mode which is a mono-component signal, the group delay of the extracted 

mode (equation 2-4) can be measured from the first order moment [68]: 

𝑡 (𝑓) = ∫ 𝑡 × 𝑡𝑓𝑟(𝑡, 𝑓)𝑑𝑡      (5-5) 
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 where 𝐸 is the energy of the signal and 𝑡𝑓𝑟(𝑡, 𝑓) is the time-frequency representation of the 

signal. It is worth mentioning that the first order moment represents the average arrival time of 

the spectrogram of the filtered mode. 

Figure 5.14 compares theoretical dispersion curve obtained by modal propagation and estimated 

dispersion curve obtained by warping technique. As it can be seen, theoretical and estimated 

dispersion curves are well-matched over mode frequency range. For example, for the first mode, 

the two curves completely overlap each other in the interval of 15Hz to 50Hz (figure 5.14 (a)). 

However, between 50Hz and 80Hz, the two dispersion curves are a little bite mismatched. The 

error stems from the interference between modes which could not be rejected completely by the 

filter. On can see that theoretical and estimated dispersion curves are completely different at 

below Airy phase frequencies. This is due to fact that propagation through seabed is not modeled 

in the warping. For more accurate localization, dispersion curves should be restricted to the 

frequency band of interest (figure 5.15). 

 
Figure 5.13: Estimated dispersion curves of the first four modes. 
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Figure 5.14: Comparison between theoretical and estimated dispersion curves. 
(a): First mode. (b): Second mode. (c): Third mode. (d): fourth mode. 

 

 

Figure 5.15: Modal dispersion curve restriction. 
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5.7 Rang Estimation 

Range estimation aims to find the optimum value of the distance between sound source and 

receiver. After estimating modal dispersion curves, this information can be used to estimate the 

location of the sound source. To this end, theoretical dispersion curves (obtained from Pekeris 

model) and estimated dispersion curves (acquired from average arrival time of the mode) will be 

compared with each other. We will use an iterative approach to match theoretical and estimated 

dispersion curves over different parameters. The best match with minimum error shows the 

optimum location of the sound source and other parameters of interest. 

Let us assume that sound signals propagate through Pekeris waveguide which has several 

parameters such as sound speed, density, and attenuation coefficient for both water and seabed 

(see Chapter 2).  In real life applications, most of sea parameters are well-known [11]. For the 

sake of simplicity, we suppose that only seabed sound speed is un-known. Since source group 

delay of the received mode 𝑚 is 𝑡 (𝑓) = 𝑡 (𝑓) +
( )

 (equation 2-6), the distance between 

sound source/receiver (𝑟) effects the dispersion of the extracted mode. Therefore, two un-known 

parameters (𝑟, 𝑐 ) can be estimated through an iterative optimization algorithm [67]: 

[𝑟, 𝑐 ] = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ ∑ ([𝑡 (𝑓) − 𝑡 (𝑓)] − [𝑡 (𝑓, 𝑟, 𝑐 ) − 𝑡 (𝑓, 𝑟, 𝑐 )]) (5-6) 

where 𝑡  and 𝑡  are the estimated and theoretical group delay of the 𝑖  mode, respectively. 

The main reason for using group delays differences of modes 𝑚 and 𝑛 is to obviate the need to 

know the source time frequency law (𝑡 (𝑓)) which gives us information about how the source 

signal was modulated.  

5.8 Depth Estimation 

Like range estimation, an iterative approach is used for source depth estimation. Since amplitude 

of the received signal is proportional to the source depth (equation 2-2), amplitude of each mode 

is estimated from the received signal and it is compared with those obtained from the theoretical 

propagation model. To find the best matching between estimated and theoretical modes 

amplitudes, source depth parameter varies over a predefined range to generate different signal 

modes. The depth for which the similarity between estimated and theoretical amplitudes reaches 

maximum is considered as the estimated source depth. 
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The process of extracting modal components from the received signal is the same for range 

estimation [11]. First, warping transformation is applied on the received signal to attain warped 

signal, which is easier to extract modes from it. Then, TF filter is designed to extract the desired 

mode from the spectrogram of the warped signal. Finally, the inverse warping is performed to 

transform the filtered mode to the original domain. 

After modes extraction, mean over frequency domain are computed, called mode excitation 

factors (𝐶). The mode excitation factors are then normalized: 

𝐶 = ∑ 𝐶 (𝑧 ) = 1              (5-7) 

When the mode excitation factors are extracted and normalized, the comparison between 𝑚  

mode excitation factor obtained from theory (𝐶 ) and the estimated one (𝐶 ) is made [69]: 

𝑍 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ (𝐶 (𝑍 ) − 𝐶 (𝑍 ))      (5-8) 

 It should be noted that unlike range estimation in which optimization is performed over different 

modes (equation 5-6), optimization is performed over the same modes in equation (5-8). This is 

due to the fact that after finding the optimum range through equation (5-6) and fixing it, modes 

do not change when source depth varies.  

Figure 5.16 shows the overall flowchart of the acoustic localization technique based on modal 

filtering. Next section focuses on the experimental results. 
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Figure 5.16: Overall flowchart of the proposed acoustic localization technique. 
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5.9 Summary: 

This chapter explained how warping can be applied more effectively on different signals. When 

some information about the source signal is available, warping can bring about more separable 

modes. Time origin setting, signal deconvolution, and phase compensation used for this purpose. 

Then, modal filtering was explained. Finally, range and depth of the source signal were 

estimated based on dispersion curves. 
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CHAPTER 6 

Experimental Results 

This section presents the evaluation results of the dispersion based acoustic underwater 

localization method. This method relies on an acoustic waveguide model to simulate sound 

propagation. In this thesis, we used Pekeris model which has been used frequently for shallow 

underwater applications. Different types of synthetic and real acoustic signals such as impulsive, 

non-impulsive signals with and without source signal knowledge will be used for the localization 

algorithm evaluation. We will also study the robustness of the localization method against 

various parameters like noise, waveguide factors, and warping function variables.  

6.1. Localization using synthetic data  

Although different datasets are available for underwater acoustic processing [70] [71], they 

cannot be used for localization application, because range and depth information of the sound 

source are not provided. These datasets are mostly deployed for detection and classification of 

marine species (dolphin and mammal) and marine vehicles (ship and boat sounds). 

To overcome this problem, this synthetic data sets, generated and propagated by an underwater 

waveguide, have been utilized [69][72]. We use the Pekeris model (see chapter 2) with the 

following parameters to create sound signals. Figure 6.1 shows the experimental configuration. 

(i) water column depth: 100 m; 

(ii) sound speed velocity in water: 1500 m/s; 

(iii) sound speed velocity in sediments: 1600 m/s; 

(iv) water density: 1000 kg/m3; 

(v) sediment density: 1500 kg/m3. 
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Figure 6.1: Experimental configuration. 

The distance between source and receiver is 10 km. The received signal and its spectrogram are 
shown in figure.6.2 (a) and (b). It is obvious the received signal has 4 modes. Calculated and 
estimated dispersion curves are represented in figure.6.2 (c). Calculated dispersion curves 
(obtained from Pekeris model) are shown with circles, while estimated dispersion curves 
(obtained from the received signal) are shown with solid lines. As it can be seen, these curves are 
well-matched, so we expect an accurate range estimation. Figure.6.2 (d) shows the range 
estimation error, which is minimum at 9.4 km which is close to the true value (10 km). 

 

Figure 6.2: Sound signal localization. 
(a): The received signal in time domain. (b): Spectrogram of the received signal. 

(c): Calculated and estimated dispersion curves. (d): localization error. 
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6.1.1. Number of Modes Effect  

Number and order of modes affect the localization accuracy, because the proposed method 

compares calculated and estimated dispersion curves over different modes (equation 5-6). 

Firstly, we explore the relationship between number of modes and range accuracy. According to 

Table.6.1, by increasing the number of modes, range estimation becomes more accurate. 

Secondly, importance of each mode is studied in Table.6.2. As it can be seen, the algorithm is 

not very sensitive to the mode couples.  

Table 6.1: Results of range estimation for different number of modes. 

Modes Estimated Range (km)  Error (%) 

1,2 9300 7 

1,2,3 9500 5 

1,2,3,4 9600 4 

 

Table 6.2: Results of range estimation for mode couples. 

Modes Estimated Range (km)  Error (%) 

1,2 9300 7 

1,3 10600 6 

1,4 10600 6 

2,3 9500 5 

2,4 10700 7 

3,4 9300 7 

 

6.1.2. Noise Effect  

Underwater environment has various disturbances that affect traveling sound signal, called 

underwater acoustic noise. Such noises may have natural sources (such as rain and wind) or 

manmade sources (like shipping). Underwater acoustic noise is often modeled as white noise 

[73]. Figure 6.3 shows the effect of white noise on the modal separation and consequently on the 

range estimation accuracy. 
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Figure 6.3: Noise effect on the modal separation. 
(a): Sound signal without noise in TF domain. (b): Warped signal in (a). 

(c): Contaminated signal with low noise (SNR=16 dB). (d): Warped signal of (c). 
(d): Contaminated signal with high noise (SNR=12 dB). (e): Warped signal of (d). 
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One can see that by reducing signal to noise ratio (SNR), modes distinction and separation 

become more challenging. For instance, when SNR is 12 dB, modes overlap each other, both in 

the original TF domain (figure 6.3 (e)) and warping domain (figure 6.3 (f)). Range estimation 

error as a function of noise strength is shown in figure 6.4. It is obvious that range estimation 

error declines sharply when SNR increases from 1 dB to 25 dB. This is due to the fact that noise 

is dominate in the signals with SNR less than 25 dB. When the signal is very good (25 

dB<SNR<40 dB) or excellent (SNR>40 dB), range error converges to 7%. 

 
Figure 6.4: Noise effect on range estimation error. 

6.1.3. Range Effect 

The proposed acoustic localization method is based on dispersion phenomena which brings about 

separate modes. As it was explained in chapter 2, the longer the range, the more dispersion, and 

consequently the more separable modes. Therefore, in short ranges, modes are convoluted, and 

cannot be filtered properly. One can see in Figure.6.5 (a) that in short ranges (less than 1 km), the 

first three modes overlap, and the fourth mode is attenuated. This contributes to high error rate. 

When the distance between sound source and receiver is more than 5 km, modes are clearly 

distinguishable. Figure.6.6 indicates how range estimation accuracy precipitously declines at 

short ranges where dispersion is low.  
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Figure 6.5: Effect of source/receiver distance on range estimation error. 
(a): Received signal at 1 km range. (b): Received signal at 2 km range. 

 (c): Received signal at 5 km range. (d): Received signal at 10 km range. 

 

 
Figure 6.6: Range estimation error as a function of source/receiver distance. 
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6.1.4. Waveguide Parameters Effect  

As mentioned earlier in section.6.1, sound propagation depends on underwater waveguide 

parameters. We assumed that water sound speed (𝑐 ) and water depth (𝐷) are well-known, while 

seabed sound speed (𝑐 ) is unknown. Other parameters such as water and seabed densities 

(𝜌 , 𝜌 ) are assumed to be known and fixed. In this section, sensitivity of the localization 

algorithm to the waveguide parameters is investigated. Experimental results show that range 

estimation is mainly influenced by the water sound speed, and other parameters do not affect the 

results. Figure.6.7. shows how range estimation error varies with the water sound speed 

variations. One can see that estimation error is minimum at 𝑐 = 1550  which is close to the 

true value of 𝑐 = 1500 . Experimental results show that range estimation is not sensitive to 

other waveguide parameters. 

 
Figure 6.7: Range estimation error as a function of sea sound speed.  

True value of sea sound speed was 1500 m/s. 

6.1.5. Waveguide Model Effect 

In the previous sections we used Pekeris waveguide to model sound propagation in a shallow 

water. In this section, other models will be used to explore the effect of waveguide models on the 

accuracy of the localization algorithm.  

First, MATLAB Phased Array System Toolbox was employed to simulate a shallow water channel. 

This toolbox provides algorithms and applications for the design, simulation, and analysis of 
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sensor array systems in sonar applications. The sound source was modeled as an isotropic 

projector with phased.IsotropicProjector command. A multipath channel was created by 

phased.IsoSpeedUnderwaterPaths and phased.MultipathChannel to transmit the signal 

between the sound source and receiver. To have the same number of modes, 4 propagation paths 

was defined, including the direct path and reflections from the top and bottom surfaces. Because 

of the multiple propagation paths, the received signal is a superposition of multiple signals, 

which resembles the multi-modal signal in the Pekeris model. Table.6.3 compares the Pekeris 

and Multipath models performance. As it can be seen, the multipath model error is always more 

than the Pekeris model. This can be justified by the fact that in the multipath model, sea surface 

and seabed are highly reflective. In other words, sound propagation through seabed was 

neglected in this model.  

Table 6.3: Compares between the Pekeris and Multipath models. 

True Range 

value (km) 

Estimated Range Value (km) 

Pekeris Multipath 

8000 7520 7000 

9000 8500 8050 

10000 9600 9100 

12000 11300 11040 

15000 14100 13800 

20000 18800 18600 

 

6.2. Localization using real data  

Performance of the localization algorithm was investigated by using synthetic sound signals in 

the previous section. This section aims to use real underwater sound signals to evaluate the 

localization algorithm. Three different groups of signals will be used for this purpose, an 

including impulsive signals, a signal with known waveform, and an unknown frequency 

modulated signal [67].   

6.2.1. Impulsive Sound Localization 

First, a gunshot sound that is an impulse signal is used for localization. Sound of some marine 

mammals such as North Pacific right whale can be regarded as an impulse signal. Figure.6.8 (a) 
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shows the signal in time domain, and its corresponding spectrogram is depicted in figure.6.8 (b). 

Four modes are completely visible in the spectrogram. One can also see ambient noise with 

frequency less than 20 Hz. As it was mentioned in Section.5.2, time origin selection step that 

determines the arrival of the fastest mode is important for impulsive sound warping. Figure.6.9 

(a) shows the warped signal with wrong time origin selection (t=0.1s), resulting in bended modes 

in TF domain, which is difficult to be separated. After adjusting the time origin to t=0.3s, all 

modes are converted to horizontal lines in TF domain (Figure.6.9 (b)). We assume that water 

depth is 50m and water sound speed is 1450m/s. Figure.6.10 (a) shows that calculated and 

estimated dispersion curves are well-matched, expecting accurate localization estimation. As it 

can be seen from Figure.6.10 (b), localization error reaches the minimum at 9 km, which is close 

to true value (8.4 km). 

 
Figure 6.8: Impulsive signal in real world.  

(a): Time domain representation. (b): Spectrogram of the signal in (a). 

 
Figure 6.9: The effect of time origin selection on warped signal.  

(a): Wrong time origin selection. (b): Accurate time origin selection. 
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Figure 6.10: Localization result for real impulsive signal. 

(a): Calculated and estimated dispersion curves. (b): localization error. 

6.2.2. Known Sound Localization 

In this experience, a real underwater sound with known waveform is employed. The signal can 

be regarded as an impulsive signal (t=0.05s), contaminated by several bubble pulses (figure.6.11 

(a)). The received signal at r=4.8 km is shown if figure.6.11 (b). Since we assumed that 

waveform for the source signal is known in advance, signal deconvolution is performed on the 

received signal (section.5.2). Figure.6.12 shows the effect of deconvolution on the warped signal. 

By comparing figure.6.12 (c) and figure.6.12 (d), one can see that after deconvolution and 

warping modes can be filtered more easily. In the next step, the effect of deconvolution is 

explored on the localization accuracy. According to figure.6.12 (a) calculated and estimated 

dispersion curves are not well-matched, resulting to inaccurate range estimation of r=3.3 km 

which is not fully consistent with the true value r=4.8 km. After deconvolution (figure.6.12 (b)), 

dispersion curves overlap, yielding to r=5.1 km. 
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Figure 6.11: Real world signal in time domain.  

(a): Source signal. (b): Received signal. 

 
Figure 6.12: Received signal in TF domain.  

(a): Received signal without deconvolution. (b): Received signal with deconvolution. 
(c): Warped signal of (a). (d): Warped signal of (b). 
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Figure 6.13: Calculated and estimated dispersion curves.  

(a): Dispersion curves without deconvolution. (b): Dispersion curves with deconvolution. 
 

6.2.3. Unknown Sound Localization 

As the last experiment, we aim to localize a bowhead whale based on its sound [67]. Figure.6.14 

shows the received signal and its corresponding spectrogram. Three modes are utterly visible in 

the TF domain. Since waveform of emitted sounds of this type of species is unknown, phase 

compensation (section 5.3) is used instead of signal deconvolution. To do so, phase of the source 

signal is estimated from the first mode. Figure 6.15 (a) shows the manually selected TF law of 

the source used for phase compensation. After this preprocessing step, spectrogram of the signal 

looks like an impulse response (figure 6.15 (b)). The effect of phase compensation on the warped 

signal is also investigated in figure.6.15. One can see that first and second modes extensively 

overlap when phase compensation is not performed (figure 6.15 (c)). However, after phase 

compensation modes are completely separable (figure 6.15 (d)), resulting to better localization 

performance. Calculated and estimated dispersion curves are shown in figure.6.16 (a). These 

curves have mismatch which reduces the localization accuracy. According to figure.6.16 (b), 

range estimation error is minimum at 16.5 km that is close to 14.1 km ± 1.8 km recorded by 

other sensors. If phase compensation is not performed, localization estimation was 12.5 km.  
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Figure 6.14: Dolphin sound signal.  

(a): Time domain representation. (b): Spectrogram of the signal in (a). 
 

 
Figure 6.15: Effect of phase compensation on a real signal.  

(a): Estimated TF law of the source signal. (b): Spectrogram of the signal after phase compensation. 
(c): Warped signal without phase compensation. (d): Warped signal with phase compensation. 
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Figure 6.16: Localization result for a dolphin signal. 

(a): Calculated and estimated dispersion curves. (b): localization error. 

6.3. Summary: 

This chapter presented experimental results. Both real and synthetic signals were utilized for 

acoustic sound localization. Effects of different parameters on the localization accuracy were 

explored. 
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CHAPTER 7 

Conclusion 

7.1. Summary 

This thesis focused on sound source localization in shallow water. The proposed system was 

based modal dispersion mechanism, which is more visible in large ranges. Unlike conventional 

systems, only one hydrophone was adopted in this thesis. Warping technique was utilized to 

make arriving modes more distinguishable for modal filtering. After the modes were filtered 

manually, dispersion curves could be estimated more easily. To find the location of the sound 

source, the estimated dispersion curves were compared with calculated counterparts, obtained 

from the waveguide model. The range value with minimum error was regarded as the optimum 

estimation.  

7.2. Conclusion 

This thesis investigates the potential of acoustic signal processing methods for underwater source 

localization in shallow water. The experimental results show that warping technique can obviate 

the need for multiple-hydrophone systems, which are costly and difficult to set up. Although we 

used a simple, the Pekeris model, to study sound propagation, experimental results demonstrated 

that this model can accurately localize both synthetic and natural sounds in an isovelocity 

environment. These promising results can pave the way for utilizing other nonlinear signal 

processing techniques for source localization in other environments such as deep oceans or 

confined spaces. However, we found that lack of information about the propagation mechanism 

or sound source can lead to high errors. 

7.3. Future work 

The following functionalities can be added in the future: 

 Performing localization in challenging environments. In this thesis we focused on shallow 

water environment in which sounds propagates with the same velocity in all directions. In 

deep water, however, sound speed varies with depth of water, causing modes to overlap 

more. Similarly, in a confined space with highly reflective boundaries, reflection of a slow-
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moving mode may receive sooner than a fast mode. These situations bring about crossing 

modes in the TF domain, and warping technique fails to separate them. Other signal 

processing algorithms should be used to address these challenges. 

 Localizing continuous signals. Relying on the modal separation, we only studied signals with

limed time duration. Although most of natural sounds like marine mammals’ sounds are

transient, broadband signals produced by vehicles such as ships should also be considered. In

these cases, fast mode of the succeeding signal may arrive sooner than the slow mode of the

preceding signal. Prior know-how of the sound generator can mitigate this issue.

 Using multiple non-synchronized hydrophones. Synchronization of hydrophones in an array

of sensors is not a trivial task. The received signal of each hydrophone can be warped

individually to obviate the need for synchronization. Multiple non-synchronized hydrophone

array may yield more accurate results.

 Testing with more natural sounds. In this work only a few real sound signals emitted by

dolphins were used for localization. This is due to the fact that pinpointing the location of

these species is tricky. In contrast, the true position of man-made signals can be obtained by

global positioning system (GPS).
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