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Abstract

Knowledge Graph (KG) represents the real world’s information in the form of triplets (head,

relation, and tail). However, most KGs are generated manually or semi-automatically, which

resulted in an enormous number of missing information in a KG. The goal of a Knowledge-

Graph Completion task is to predict missing links in a given Knowledge Graph. Various

approaches exist to predict a missing link in a KG. However, the most prominent approaches

are based on tensor factorization and Knowledge-Graph embeddings, such as RotatE and

SimplE. The RotatE model depicts each relation as a rotation from the source entity (Head)

to the target entity (Tail) via a complex vector space. In RotatE, the head and tail entities

are derived from one embedding-generation class, resulting in a relatively low prediction

score. SimplE is primarily based on a Canonical Polyadic (CP) decomposition. SimplE

enhances the CP approach by adding the inverse relation where head embedding and tail

embedding are taken from the different embedding-generation classes, but they are still

dependent on each other. However, SimplE is not able to predict composition patterns

very well. This paper presents a new, hybridized variant (HRotatE) of the existent RotatE

approach. Essentially, HRotatE is hybridized from RotatE and SimplE. We have used the

principle of inverse embedding (from the SimplE model) in a bid to improve the prediction

scores of HRotatE. Hence, our results have proven to be better than the native RotatE. Also,

HRotatE outperforms several state-of-the-art models on different datasets. Conclusively,

our proposed approach (HRotatE) is relatively efficient such that it utilizes half the number

of training steps required by RotatE, and it generates approximately the same result as

RotatE.
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Chapter 1

Introduction

Knowledge Graph (KG) represents the real world’s information in the form of triplets (head,

relation, and tail). However, most KG are highly incomplete. Knowledge Graph Completion

(KGC) aims to automatically infer missing facts by exploiting information already present

in a KG. In this thesis, We explore the problem of learning representations of entities and

relations in KG for predicting missing links. A promising approach for KGC is embedding-

based. This thesis presents a new, hybridized variant (HRotatE) of the existent RotatE

and SimplE approach.

1.1 Background

A graph [1] is a structure used to represent the information. A graph consists of two sets:

nodes (vertices) and edges (line or arcs). Each edge connects to a pair of nodes and can

be described as a relation between those nodes. This relation can either be undirected or

directed [2]. For example, if a graph is created to illustrate the friendship between two

different people, then the edges will be undirected because it represents that two people are

friends; on the contrary, if the graph represents how users follow each other, then the graph

will be directed. Figure 1.1(a) represent the directed graph. In this case, edge(B,A) 6=

edge(A,B). While Figure 1.1(b) represents the undirected graph. In this case, edge(B,A) =

edge(A,B).

1
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(a) Directed Graph (b) Undirected Graph

Figure 1.1: Example of the directed and undirected graph

Graphs can be either homogeneous or heterogeneous [3]. In a homogeneous graph,

all the relations represent the same type, and all the nodes also represent the instant of the

same type. For example, in a social network of people and their connection, nodes generally

represent the people, and edges generally represent the connection between two nodes. In

a heterogeneous graph, the nodes and edges can be of several types. For example, in a

bibliography network, nodes represent the different things like paper, author, institution,

etcetera, and edges also represent the different relations like cited by, written by, etcetera.

Figure 1.2(a) illustrated the directed homogeneous graph while Figure 1.2(b) illustrates the

heterogeneous graph where distinct color represents the distinct type of nodes or edges.

(a) Homogeneous Graph (b) Heterogeneous Graph

Figure 1.2: Example of the homogeneous and heterogeneous graph

Multigraph is the graph form that contains multiple edges between the same pair of

nodes. These multiple edges indicate the different types of relations. They may contain
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the self-loops also. Most of the multigraphs are heterogeneous graphs. KG is the directed

heterogeneous multi graph where each relation is associate with pair of entities [4].

1.1.1 Knowledge Graph

Sir Tim Berners-Lee introduced the Semantic Web [5], with the aim of providing a com-

mon framework for sharing, analyzing, and reusing data across applications, enterprises,

and community boundaries. Initially, the Semantic Web aimed to facilitate integration

and combination of data collected from different sources by defining standard formats for

exchanging data on the web. In recent years, it has become more helpful in describing

how data can relate to real-world entities. With the development of the Semantic Web,

knowledge graphs have often been associated with linked open data projects, focusing on

the relationships between concepts and entities [6, 7].

Knowledge Graph (KG) term was introduced by Google in 2012 [8]. After that, KG term

began to be used in many domains frequently. The KG does not have a formal definition.

In a broader perspective, KG can be described as very large semantic networks integrat-

ing different and heterogeneous information sources to represent a deep understanding of

domains of discourse.

In general, KG is a graph variant that holds data in the form of triplets comprising a

head, a relation, and a tail (where heads and tails are referred to as subject\source and

object\target entities). To refrain from defining a formal definition, we can outline the

desired characteristics of a KG.

• Primarily, KG describes real-world information in the form of triplets: (head, relation,

and tail).

• The possible classes as well as the relations existing between entities of a KG are

defined in a schema.

• A KG permits potential interrelations between arbitrary entities.

• A KG can be employed in a wide variety of topical domains.
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Figure 1.3: Example of knowledge graph

Figure 1.3 represents the example of Knowledge Graph, where entities (head and tail)

are represented by the icons and relationships are represented by the edges. The fact ’Person

likes a movie’ can be represented as a triple (Person, likes, Movie).

1.1.2 Knowledge Graph Completion

Since most of the KGs are generated manually or semi-automatically, a large number of

implicit entities and relationships may not have been found. Thus incompleteness becomes

a problem in almost all KGs [9]. For example, 71% of people do not have a birthplace in

the Freebase dataset [10]. Link Prediction (LP) [11, 12] is the problem of predicting the

existence of a link between two entities in a network [13]. LP is used in various areas,

including social network analysis, recommendation systems, protein-protein network, and

many others [14, 15]. LP algorithms can predict these missing links. This problem is widely

known as the Knowledge Graph Completion (KGC) problem.

The objective of KGC is to eliminate the problems associated with incompleteness and

sparsity of KGs by finding missing instances and connections in order to improve KGs

efficiency. KGC completes the graph structure by predicting missing links (entities or

relation), and finding new facts and etcetera. This KGC algorithms widely applied in many

applications such as question answering, Natural Language Processing (NLP) task [9]. KGC

problem can be described as these three kinds of tasks.
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• predicts the tail entity from the head entity and their relationships, such as (Delhi,

capitalOf, ? );

• predicts the head entity from the tail entity and their relationships, such as (?, capi-

talOf, India );

• predicts the relationship from the head and tail entity from the triplet, such as (Delhi,

?, India).

Thus, from any two elements given in a triple and the third element, can be predicted.

The below Figure 1.4 illustrate the KGC problem. Where based on a ground knowledge

shown in Figure 1.3, KGC algorithm tries to predict the missing links.

Figure 1.4: Example of knowledge graph completion

1.1.3 Knowledge Graph Embedding

Node Embedding maps each node of the graph into low-dimensional embedding space.

These Embeddings provide information about the network’s node structure and its similarity

to other nodes. Generally, similar nodes are embedded nearer to each other. Since there

are multiple types of relations exist in KG, the problem of KGC is more complex than the

general social network LP problem. Thus, In the KG, every relation is also embedded in

embedding tensor.

Figure 1.5 [16] represent the embedding matrix of entities and relations. Here, every

entity is embedded in the d dimensions vector. Let M is the embedding matrix of entities.
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Figure 1.5: Illustration of knowledge graph embedding

Then every column in the matrix M indicates the embedding of the entity. The total

number of rows is equal to the dimension of the embedding d. The embedding matrix for

relation is also calculated in the same way as the entity embedding matrix. In general,

the relation embedding is used to map the head entity to the tail entity. Our proposed

approach (HRotatE) creates two embedding matrices for entities, one represents the head

entity, and another represents the tail entity. For every relation, HRotatE also generates

the two embedding matrices: relation embedding matrix and relation inverse embedding

matrix. The relation embedding matrix is used to calculate the main score for HRotatE

model while the relation inverse matrix is used to calculate the inverse score.

1.2 Problem Definition

KG comprises the sets of entities, E , and relations, R. Every record in KG can be repre-

sented via a triple of (h, r, t) such that h ∈ E is the head, r ∈ R is the relation, and t ∈ E is

the tail of each triple. ζ represents all the true triplet sets, such as (Delhi, capitalOf, India).

ζ ′ represents the false triplet sets, such as (Delhi, capitalOf, Japan).

Given KG G = (E ,R, E), where E represent the entity set and R represent the relation



7

set, KGC completes graph G by finding the missing set of triples T ′ = {(h, r, t)|h ∈ E , r ∈

R, t ∈ E , (h, r, t) /∈ T} in the incomplete KG [17].

1.3 Thesis Motivation

The KG is basically a semantic network, which is a formal description of things in the real

world and their relationships [18]. In general, the KG contains the vast number of entities

and their complex and diverse relationship with other entities [9]. Thus, any large-scale

KGs includes millions of entities and their relations. That is why any real-world KG are

too big. Since most KGs are generated manually or semi-automatically, a large number of

implicit entities and relationships are missing. Thus incompleteness becomes a problem in

almost all KGs [9]. For example, 71% of people do not have a birthplace in the Freebase

dataset [10], 94% have no known parents, and 99% have no known ethnicity [10]. This is

considerably basic information because every person has a parent and a place of birth. This

missing information affects the efficiency of the KG.

Thus, it is an important goal of general knowledge graphs to integrate more entity-

relationship information as comprehensively as possible. This problem is widely known as

KGC. This completed KG used in various applications including but not limited to Question

Answering, Recommended System, Information Retrieval, and various other domain-specific

applications. KGC can be done by various approaches for example KGC based on rule

reasoning, KGC based on probabilistic graph model, KGC based on graph calculation, and

KGC based on graph embedding and representation learning. Based on recent research,

embedding and representation approaches perform better than the others [19].

The embedding-based approach involves learning the embedding for each triplet (head,

relation, and tail), after which these learned embeddings are used to resolve prediction-

based problems within the KG. The most popular embedding-based approaches are, viz:

translation-based approach [20–22], bilinear-based approach [19, 23–25], and neural network-

based approach [26–28]. The translation-based approaches use the relative distance exist-

ing between constituent embedding vectors of the KG. These approaches are less complex

than the bilinear and deep learning (neural-network-based) approaches. Additionally, the

bilinear-based approaches employ tensor factorization with regard to the generation of em-
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bedding vectors in the KG. The neural-network-based approaches are essentially nonlinear

models that vary according to different deep learning architectures.

Each of the approaches possesses its respective strengths and weaknesses. For instance,

translation-based approaches are based on sets of logical rules which can not apply to

all kinds of properties of KGs. In this regard, earlier translation-based models are not

fully expressive. Nowadays, neural-network-based approaches perform well on different

datasets, but they are like black boxes. They are not transparent and poorly understood

in comparison to other approaches [29].

One of the best translation-based approaches is RotatE [22]. RotatE represents the

relation as a rotation between the head entity and the tail entity in the complex vector space.

RotatE calculates the score using ‖h ◦ r − t‖. In this way, RotatE can predict symmetric,

anti-symmetric, inverse, and composition patterns. In RotatE, the head and tail entities

are derived from the same embedding-generation class. However, we cannot treat head and

tail entirely differently because both are still entities. CP [30] address both entities entirely

independent of each other, and as such, does not perform very well. SimplE[19] addresses

this problem by adding the inverse relation where head embedding and tail embedding are

taken from the different embedding-generation classes but are still dependent on each other.

This research proposes a novel hybridized framework of the existing approach RotatE and

SimplE, that uses different embedding generation classes or different embedding spaces for

each entity (head and tail). Our proposed approach improves the score of the existing KGC

approach RotatE.

1.4 Thesis Statement

The objective of this research is to create a novel hybridized approach that can perform

better in the KGC task. We aim to improve the existing KGC algorithm such that it

performs better on various datasets and it also runs efficiently.

Our proposed approach (HRotatE) is based on RotatE [22] and SimplE [19]. As our

model (HRotatE ) is directly derived from the RotatE. It utilizes all the characteristics of

RotatE. HRotatE uses two different embedding generation classes to generate head and tail
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embedding vectors. That gives the advantage to HRotatE in comparison to the RotatE.

However, the head and tail are still part of entities. Thus, by inspired by SimplE, we

introduce the concept of inverse relation embedding in the RotatE. This Inverse embedding

function helps our model to learn efficiently, and it also improves the performance of our

approach.

In this thesis, we solve the problem of KGC which helps to predict the missing infor-

mation in the KG. The main objective of this thesis is to use different embedding vectors

for the head and tail embedding so that the algorithm can understand the KG embedding

efficiently. By doing this, we expect to improve the prediction score as well as reduce the

training time.

1.5 Thesis Contribution

This thesis addresses the KGC problem and proposes a novel hybridized variant “HRotatE

- Hybrid Relational Rotation Embedding for Knowledge Graph” of the existing approach

RotatE and SimplE. The proposed approach predicts the missing information in KG by

learning the KG embedding. KG is given as the input in the model; the model generates

the negative samples, processes the data, and makes predictions. Our key contributions can

be found in the following list.

1. We have proposed a new hybrid model for resolving the Knowledge-Graph Completion

problems.

2. We have relatively compared our approach (HRotatE) against five (5) popular bench-

mark datasets.

3. We have shown that our model (HRotatE) can achieve approximately the same accu-

racy as RotatE with just half the number of training steps required in RotatE.

4. Our model is linear, and it also outperforms several state-of-the-art models upon

benchmarking using popular KG datasets.
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1.6 Background and Notation

In this thesis, we express matrices using uppercase notation and vectors via lowercase no-

tation. We can access a particular value from the vector by its indices. For example: vk

represents the kth element of vector, v. Also, ◦ represents the element-wise multiplication

between two vectors; and · denotes the dot product between two vectors. L1 Norm is

represented by the following sign ‖.‖.

Models admit a set of parameters exactly and exclusively satisfying an inference pat-

tern if they are derived directly from that pattern [31]. This interference pattern helps the

model to understand the KG. For example: once a model learns a composite pattern, it can

reliably predict facts in the composite closure of r. In the following part, we define several

inference patterns.

Definition 1 A relation r is reflexive on a set of entities E if (e, r, e) ∈ ζ and for all

entities e ∈ E.

Definition 2 A relation r is symmetric if ∀x, y ∈ E

r(x, y) ∈ ζ ⇐⇒ r(y, x) ∈ ζ

Such a clause exhibits a symmetric pattern (e.g., Marriage, Family, Roommate).

Definition 3 A relation r is anti-symmetric if ∀x, y ∈ E

r(x, y) ∈ ζ ⇐⇒ ¬r(y, x) ∈ ζ

Such a clause exhibits an anti-symmetric pattern (e.g., Mother of, Father of).

Definition 4 A relation r is transitive if ∀ x,y,z ∈ E

r(x, y) ∈ ζ ∧ r(y, z) ∈ ζ =⇒ r(x, z) ∈ ζ
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Such a clause exhibits a transitive pattern (e.g., Brother of, Sister of).

Definition 5 A relation r1 is inverse to relation r2 if ∀ x,y ∈ E

r1(x, y) ∈ ζ ⇐⇒ r2(y, x) ∈ ζ

Such a clause exhibits a inversion pattern (e.g., Husband-Wife, Mother-Child, Father-

Child).

Definition 6 A relation r1 is composed of relation r2 and r3 if ∀ x,y,z ∈ E

r2(x, y) ∈ ζ ∧ r3(y, z) ∈ ζ =⇒ r1(x, z) ∈ ζ

Such a clause exhibits a composition pattern (e.g., My mother’s husband is my father).

Definition 7 A relation r1 and r2 are in hierarchy if ∀ x,y,∈ E

r1(x, y) ∈ ζ =⇒ r2(x, y) ∈ ζ

Such a clause exhibits a hierarchical pattern (e.g., If a person is paying taxes in Canada,

he\she is definitely working in Canada.).

Definition 8 An intersection between relation r1 and r2 define as ∀ x,y,∈ E

r1(x, y) ∈ ζ ∧ r2(x, y) ∈ ζ =⇒ r3(x, y) ∈ ζ

Such a clause exhibits an intersection pattern (e.g., Person born in and lives in India then

person is the citizen of India.).

A tensor factorization approach is called fully expressive if an entity and relation

embedding will separate true triples accurately from false triples if there exists an entity

and relation embedding for any ground-truth over all entities and relations [29].
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In this thesis, a Training Step is defined as one gradient update. For example, if we

have a batch size of 1024, then in each training step, 1024 triples shall be processed per gra-

dient update (with respect to training the model). Also, the Maximum Training Steps

determines the total/maximum number of steps required to train the model to optimal fit.

1.7 Thesis Organization

The rest of the thesis/research work is organized in the following manner.

In chapter 2, we discuss related work and literature review in the field of KGC based

on a graph embedding. The Literature Review is further divided into three subcategories:

translation-based approach, bilinear-based approach, and neural network-based approach.

In chapter 3, we introduce our proposed approach (HRotatE) to solve the KGC problem.

Basically, HRotatE is the hybridized variant of the existing approach RotatE and SimplE.

This chapter discusses step by step process of our approach and how it predicts the missing

information in KG.

In chapter 4, we explain our experimental setup and environment, which includes tools

and library used to implement our model (HRotatE), System Configuration, Dataset de-

tails, Hyper-parameters for training, detail of the statistical significant test, and detail of

evaluation metrics that used to evaluate our model.

In chapter 5, we compared our results with various state-of-the-art models. We have

conducted our experiments on five (5) different benchmark datasets. This chapter also

includes the detailed results of the statistical significance test (independent two-sample t-

test) on all the five-benchmark datasets. Additionally, we also compare our approach to

native RotatE in which our model trained with just half of the number of the training steps

required by the native RotatE model.

In Chapter 6, We conclude our research, explain the insights we gained during our

research work, and describe some of the opportunities for future work.



Chapter 2

Related Work and Literature

Review

Knowledge Graph (KG) represents the real-world information in the form of a triple con-

sisting of a head, relation, and tail. Most of the KGs are highly incomplete. Thus, the

fundamental goal of the Knowledge Graph Completion (KGC) algorithm is to complete the

missing information in the knowledge graphs. This chapter presents several state-of-the-art

models implemented to solve the problem of KGC and which are based on knowledge graph

embedding. The fundamental goal of the KG embedding-based approaches is to learn the

embedding. So, that, it can predict the missing information from it. KG is the active

research field due to the fact that it used in various real-life applications including social

networks [32–34], recommendation systems [35, 36], question answering systems [37–39],

Natural Language Processing (NLP) [40, 41], etcetera. Depending on the characteristics of

each approach, we divided the literature review in three parts: translation-based approach

[20–22], bilinear-based approach [19, 23–25], and neural-network-based approach [26–28].

2.1 Translational Approaches

Translation-based models compute embedding based on entities and relations such that

the distance between two entities is used to calculate the score function. The relation

13
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embedding is used to map the entity pairs. In general, translation-based models are better

at representing some properties of KG. However, many of them are not fully expressive.

TransE [20]: TransE model embeds each entity, e, in a vector, ve ∈ Rd; and each

relation, r, in a vector, vr ∈ Rd; where d is the size of the embedding dimension [20]. Given

a set of triple (h, r, t), TransE computes the score function via the formalism: h+ r− t such

that h, t ∈ E denote the constituent entities, and r ∈ R denotes the binding or constituent

relation. Thus, the properties of TransE are based on h+ r − t. Basically, in a given ideal

case, the summation of the head entity to the relation is close to the tail entity for any true

triple: (h, r, t) ∈ ζ. If otherwise, the summation is usually far away from the tail entity

for any false triple: (h, r, t) ∈ ζ ′. Some merits of the TransE model are, viz: simplicity,

efficiency, and it yields desirable results on several datasets. However, TransE cannot be

able to learn the symmetric relation, and it cannot capture many-to-many, one-to-many,

and many-to-one expressions too.

TransH [42]: TransH (Translating on Hyperplanes) improves upon the TransE model

by resolving the issues of reflexive/one-to-many/many-to-one/many-to-many relations [42].

TransH projects the constituent relations and entities into a hyperplane. TransH uses two

different vectors with regard to its translations such that: vector dr is relation specific, while

vector wr is for the hyperplane. For any given triple (h, r, t), TransH embeds the constituent

head and tail embeddings onto the hyperplane vector wr. This projection is denoted via:

h⊥ and t⊥. Thus, the formalism of TransH scoring is computed as: ‖h⊥ + dr − t⊥‖.

TransR [21]: In TransE [20], it uses one embedding space for its constituent relations.

However, in TransR [21], it uses distinct embedding space (relation-specific) for each relation

in a bid to improve its prediction result. TransR represents each entity as a vector ve ∈ Rd,

and model each relation as a vector vr ∈ Rk. In addition, TransR uses one additional

projection matrix, Mr ∈ Rd×d, to project each entity into a relation-specific embedding

space. For any given triple (h, r, t), TransR computes its score via the following formalism:

‖hr + r − tr‖, where hr = hMr and tr = tMr. Although, TransR resolves several pitfalls of

TransE; however, it cannot effectively capture composite relationships.

RotatE [22]: Unlike TransE, RotatE uses a rotation to optimize the score. Inspired

from ComplEx, RotatE maps the entities and relations into a complex space. In order to
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accomplish this mapping to a complex plane, RotatE uses Euler’s identity eiθ = cos θ+i sin θ.

So, the primary difference between RotatE and transE lies in the fact that RotatE defines

each relation as a rotation from the head entity to the tail entity. For any triplet (h, r, t),

RotatE does element-wise multiplication t = h ◦ r where h, r, t ∈ Cd [22].

BoxE [43]: In BoxE, relations are represented as a set of boxes or hyper-rectangles;

and entities are represented as a point in these boxes or hyper-rectangles. Every entity in

BoxE is represented via two vectors ei and bi, such that ei defines the base portion and bi

defines the translation bump. Both ei ∈ Rd and bi ∈ Rd, where d denotes the dimension

of the Euclidean space. Also, every relation r is represented by a n hyper rectangle. For

instance: r(1), ..., r(n) ∈ Rd [43]. BoxE is a fully expressive model, and it performs well on

several datasets, especially YAGO3 [44]. However, BoxE is unable to predict composition

pattern.

2.2 Bilinear Approaches

Generally, effectiveness and performance on Link Prediction (LP) tasks is desirable with

bilinear-based models in comparison to the translation-based models. By embedding entity

and relationship representations in a vector space, the semantic matching model (Bilinear

Model) can mine the possible semantic association between entities and relationships [9].

These models use relations after bilinear transformation to describe the relationship between

entities and relations, which helps to capture various interactions between data. Bilinear-

based models represent relations in the form of a d×d matrix. Each relation r is represented

via a Mr ∈ Rd×d; and each entity e is represented as a vector ve ∈ Rd. The similarity

score function is computed as a product of the relation and its associated pair of entities.

Generally, most of the bilinear-based models are fully expressive.

RESCAL [25]: RESCAL uses three-way tensor factorization and the inherent structure

of dyadic relational data. In RESCAL, every entity is represented by the vector ve ∈ Rd and

relation is represented by the relationship matrix Mr ∈ Rd×d. RESCAL scoring function

contains a full-rank relation matrix Mr ∈ Rd×d and the product of the entities (head and

tail) Mr · vec(vh ⊗ vt), where ⊗ represents the outer product of two vectors. RESCAL
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requires too much computation and relatively too many parameters. As a result, RESCAL

faces overfitting [25].

DistMult [23]: DistMult tends to reduce the complexity of RESCAL via reducing the

full-rank relation matrix to a diagonal matrix. In DistMult, embedding for each entity e is

represented via the vector ve ∈ Rd, and each relation r is represented via the vector vr ∈ Rd.

DistMult is unable to differentiate between the source entity and the target entity. In this

regard, it can not effectively predict asymmetric relations. Hence, DistMult is not a fully

expressive model.

ComplEx [24]: - ComplEX improve the DistMult by considering complex values for

relations and entities instead of their respective real values. This gives ComplEX the ad-

vantage to address the asymmetric relations. In ComplEx, each entity, e, embedding is

represented by means of real (re) and imaginary (im) parts. For example: ree ∈ Cd and

ime ∈ Cd. Likewise, each relation, r, embedding in ComplEx is represented by both real

and imaginary parts. E.g. rer ∈ Cd and imr ∈ Cd. ComplEx is not able to predict compo-

sition rules because it does not model a bijection mapping from the source node (head) to

the destination node (tail) by relation.

SimplE [19]: SimplE is based on Canonical Polyadic decomposition (CP) [30]. In CP,

entities are mapped to the vectors, he, te ∈ Rd, where h and t denotes the head entity

and tail entity, respectively. In CP, every relation is mapped to a single embedding vector,

vr ∈ Rd. SimplE [19] computes the inverse of every relation, and generates a corresponding

embedding for it, v−1r ∈ Rd. Additionally, SimplE makes the embedding of both entities

(head and tail) dependent on each other. SimplE computes its main score function via

the multiplication of the relation embedding with both head and tail embeddings. Also,

SimplE computes an inverse score function, which is the multiplication of the inverse-relation

embedding with both the head embedding and tail embedding. Thus, the score function in

SimplE is considered to be the average of the main score and inverse score.

TuckER [29]: TuckER is based on TuckER decomposition [45]. TuckER algorithm

decomposes the tensor into smaller tensors and matrices. TuckER uses one additional

tensor, W ∈ Rde×dr×de , such that de represents the dimension of each entity, e; where dr

represents the dimension of each relation, r. In each training step, TuckER encodes some
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knowledge into its core tensor, W , which is shared by all the entities and relations for the

purpose of multi-task learning. Thus, the resultant scoring function is computed via the

formalism: W × h× r × t.

2.3 Neural Network-based Approaches

In Deep Learning (DL) models, deep neural networks are used to perform the LP task. In

order to recognize significant patterns, neural networks learn parameters such as weights

and biases. Deep neural networks typically organize parameters into layers, generally in-

terspersed with non-linear activation functions. Neural network-based approaches yielded

remarkable predictive performance in recent studies. However, they are harder to train and

more prone to overfitting.

E-MLP [27]: In E-MLP, each entity e is represent by a vector, ve ∈ Rd; and each

relation r is represented by a matrix Mr ∈ R2k×m and vector vr ∈ Rm. The E-MLP model

is a two-layer neural-network model where the first layer contains the weights from matrix

Mr, and the second layer contains the weights from vector vr. The input to the neural

network is a 2-tuple, (vh, vt) ∈ R2d. ER-MLP [46] proposed an improved variant of E-MLP

model which is essentially a four-layer neural network architecture.

ConvE [26]: ConvE is a LP model based on the architecture of Convolutional Neural

Network (CNN). CNN has the ability to extract multi-scale local space features and com-

bining them to build efficient representation. ConvE uses 2D-convolution over embeddings

and multiple layers of nonlinear features to model knowledge graphs. ConvE uses very few

parameters in comparison to DistMult and several other linear models. Also, it employs

dropout and batch normalization to mitigate the effect of overfitting.

ConvKB [47]: ConvKB [47] employs CNNs to encode the concatenation of entities

and relations without reshaping. In ConvKB, each triple (head entity, relation, tail entity)

is represented by the 3- column matrix where each column vector represents an element of

the triple (head, relation, tail). After that, this 3- column matrix is passed to a convolution

layer where different filters are applied to the matrix to generate different feature maps.

In the next step, these feature maps are concatenated into a single feature vector which



18

represents the input triple [47]. The final score is calculated by the dot product between

the feature vector and the weight vector. By concatenating a set of latent feature maps,

the ability of latent features is increased. ConvKB maintains the transitional characteristic

compared to ConvE, which captures local relationships [47].

HypER [48]: - HypER uses a hyper-network model for knowledge graph completion.

Generally, in the hyper-network model, one network generates the weights for the other

network, which is useful for weight sharing across both networks. Just like ConvE, HypER

is based on a CNN, and it can be used for LP. It used a 1D convolution filter for each

relation. HypER uses hard regularization by setting most element weight tensor to zero.

Despite achieving nearly the same result as linear models, neural-network models are

highly unintuitive. They are like black boxes. They are not transparent and less inter-

pretable in comparison to the translation-based and bilinear-based models. Hence, in this

paper, we have compared our approach against a couple of neural-network-based approaches.

Table 2.1 summarizes several models and the inference patterns they capture [19, 22, 43].

The detailed proofs of this inference pattern are contained in literature [20, 22, 24, 29, 43].

Our proposed model (HRotate) inherits the properties of RotatE [24], so it can predict any

inference pattern that RotatE predicts (See Appendix B for more details).

Table 2.2 summarizes the literature review. The table contains information about the

embedding space for entities and relations, as well as scoring for each method. In table 2.2,

h, r, t represents the head, relation and tail, d is the dimension of the embedding, ◦ represents

the element-wise multiplication or Hadamard product, ei defines the base portion and bi

defines the translation bump, r(i) represent the ith number of hyper-rectangle, ⊗ refers the

outer product, Re denotes the real vector, W ∈ Rde×dr×de is the core tensor of a Tucker

decomposition, Ur denotes the linear layer, br is the bias, σ defines the sigmoid activation

function while tanh and relu defines the hyperbolic tangent activation function and Rectified

Linear Unit, ∗ denotes the convolution operation, Ω is the filter, and H denotes the hyper

network.
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Each of the aforementioned approaches possesses its respective strengths and weaknesses.

For instance, translation-based approaches are generally based on sets of logical rules which

can not apply to all kinds of properties of KGs and neural network are like black boxes.

Neural network-based approaches are not transparent and poorly understood in compari-

son to other approaches [29]. Hence, this thesis focuses on translation-based and bilinear

approaches. In the next section, we are going to define our proposed approach HRotatE,

which is based on RotatE and SimplE. We select RotatE over the other models because its

scoring function is less complex and the performance of RotatE is quite Impressive.



Chapter 3

Proposed Approach

3.1 Introduction

In this section, we have described our proposed hybrid variant of RotatE [22]. Basically,

HRotatE is a hybridization of SimplE [19] and RotatE [22] models. HRotatE uses the

inverse relation, and it computes an inverse score based on the inspiration drawn from

SimplE [19].

In RotatE, the head entity and the tail entity are mapped by Euler’s identity to a

complex vector space such that h, t ∈ Cd. The relation, r, embedding is essentially an

element-wise rotation from the head entity to the tail entity. RotatE defines the scoring

function as shown in equation 3.1:

dr(h, t) = ‖h ◦ r − t‖ (3.1)

In equation 3.1, ◦ represents an element-wise multiplication or Hadmard product, dr

is a scoring function that measures the distance between h ◦ r and t, and ‖.‖ is used for

the L1 Norm. In this way, the expectation of RotatE is as shown in equation 3.2, where

(hi, ri, ti) ∈ C and |ri| = 1 1

ti = hi ◦ ri (3.2)

1|ri| = 1 is based on the property of Euler’s identity

21
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SimplE[19] is based on a Canonical Polyadic (CP) decomposition [30]. In SimplE, the

entity set, e, is comprised of two (2) distinct embedding vectors, he, te ∈ Rd, per triplet.

Furthermore, each relation, r, is represented via two vectors: vr, v
−1
r ∈ Rd. The major

problem with Canonical Polyadic (CP) is that both entity (embedding) vectors are inde-

pendent of each other. Thus, SimplE tends to resolve this problem via the introduction of

an inverse-relation embedding function; and this aims at infusing interdependence between

the embedding vectors for the head and tail entities. For triple (ei, r, ej), SimplE defines

the scoring function as Equation 3.3

score =
1

2
(〈hei , vr, tej 〉+ 〈hej , v−1r , tei〉) (3.3)

3.2 Euler’s identity

RotatE, and our proposed approach use relation as a Rotation between the head to the tail

entity. In order to employ rotation, we used Euler’s identity [49].

eiπ + 1 = 0 (3.4)

Equation 3.4 represent the Euler’s identity, where e is Euler’s constant, i is the imaginary

number (i2 = −1), π is an irrational number (with unending digits) that is the ratio of the

circumference of a circle to its diameter. 3.1415... is the approximate value of π [50]. Euler’s

constant (e) can be defined as the base of natural logarithms that arise naturally through

the study of compound interest and calculus. The approximate value of e is 2.7182... [49].

The general motivation of Euler’s identity is comes from Euler’s equation (eiθ = cos θ+

i sin θ), which is stated that a unitary complex number can be viewed as a rotation in the

complex plane [51]. Figure 3.1 represents Euler’s formula. In the equation, when the value

of θ is equal to π, the resultant equation is known as Euler’s identity (Equation 3.4). Thus,

we embedded our entities (head and tail), relation, and relation inverse into the complex

vector space. In HRotatE, relation defines the rotation from the source entity to the target

entity, while relation inverse defines the rotation from the target entity to the source entity.

In HRotatE, we uniformly distributed r and r−1 in [-π, π]. Here, we constrain the
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Figure 3.1: Euler’s equation

modulus of each element of r ∈ Ck, i.e. , ri ∈ C, to be |ri| = 1. Thus, ri becomes in the

form of eiθr,i . Therefore, ri corresponds to a rotation by θr,i radians about the origin of

the complex plane. The same way r−1i corresponds to a rotation by θr1,i radians about the

origin of the complex plane.

3.3 HRotatE

In HRotatE, each entity, e, is represented by the two vectors, he, te ∈ Cd, and each relation,

r, is also represented by two vectors vr, v
−1
r ∈ Cd. Here, we define different embedding-

generation classes for the head entity and the tail entity. However, both entities (head

and tail) are still interdependent because of the inverse relation connecting both entities.

Essentially, these places our proposed model, HRotatE, at an edge above RotatE and other

similar models. The scoring function of HRotatE on a triple (ei, r, ej) is defined as in

equation 3.5:

dr(h, t) =
1

2
(‖(hei ◦ vr)− tej‖+ ‖(hej ◦ v−1r )− tei‖) (3.5)

Furthermore, Figure 3.2 depicts the main-score function, and Figure 3.3 depicts the

inverse-score function of HRotatE. Thus, we have used the average of both the main score,
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Figure 3.2: HRotatE calculates the main score by modeling the relation, r, as a rotation
between head, h, to tail, t, in the complex plane.

Figure 3.3: HRotatE calculates the inverse score by modeling the inverse relation, r−1,
as a rotation between tail, t, to head, h, in the complex plane.

(ei, r, ej), and inverse score, (ej , r
−1, ei). The primary advantage of our proposed model

(HRotatE) over RotatE is that, we have used different embedding-generation classes for

generating embedding vectors for the head entity and the tail entity. Hence, this allows
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HRotatE to learn more efficiently. Our proposed model, HRotatE, uses Adam optimizer

and mini-batches to train the model. In the following chapter, we demonstrate that our

model not only gives better results than the other models, but it also achieves the same

results as RotatE, with relatively much lesser training steps (half the number of training

steps), on many datasets.

3.4 Negative Sampling

The positive triples are the ground-truth triples given in the dataset. Therefore, to effec-

tively train our HRotatE model, there lies the need to generate negative samples as well

[24, 52]. In optimization, the goal is to maximize the plausibility of positive facts while

minimizing the plausibility of negative facts; in practice, this amount is applying a triplet

loss function [53]. Herein, the HRotatE goal is to reduce the score (distance) for positive

triplets and increase the score (distance) for negative triplets. New ways for generating

negative triples have been proposed in recent years, including generating negative samples

from the uniform way and generating negative samples from the adversarial way. BoxE [43]

and RotatE [22] show the advantages of adversarial sampling method over uniform method.

In this regard, herein, we used the same self-adversarial negative sampling, as employed in

RotatE [22, 52], to generate negative samples for training our model, HRotatE. In, Uni-

form Sampling, negative samples are randomly generated by corrupting the triples. The

performance of our approach on the uniform sampling is discussed in Appendix A.

Milkov et. al [52] proposed a negative sampling loss function capable of effectively

optimizing the distance-based model.

L = − log σ(γ − dr(h, t))−
n∑
i=1

1

k
log σ(dr(h

′
i, t
′
i)− γ) (3.6)

Equation 3.6 describes the loss function proposed by Milkov et. al [52], where σ is the

sigmoid function, γ is a fixed margin, and (h′i, r, t
′
i) is the i-th negative triplet. However,

the above approach performs the negative sampling uniform way. The main drawback of

uniform sampling is that, during the training process, as training progresses, some of the

samples are becomes obviously false, and this doesn’t provide any meaningful information.
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To avoid such issue, RotatE propose the self-adversarial negative sampling method. The

basic idea behind the self-adversarial negative sampling is, it samples negative triples based

on the current embedding model. Thus, RotatE used the following distribution, as shown

in equation 3.7, for the self-adversarial negative sampling:

p(h′j , r, t
′
j |{(hi, ri, ti)}) =

expαfr(h
′
j , t
′
j)∑

i expαfr(h′i, t
′
i)

(3.7)

In equation 3.7, α is used to adjust the sampling strategy. (h′i, r, t
′
i) is the i-th negative

term. the above probability (equation 3.7) is treated as the weight of the negative sample.

Hence, the final loss function for negative sampling is as computed via equation 3.8, where

σ is a sigmoid function, and γ is fixed margin.

L = − log σ(γ − dr(h, t))−
n∑
i=1

p(h′i, r, t
′
i) log σ(dr(h

′
i, t
′
i)− γ) (3.8)

The main difference between our proposed model (HRotatE) and RotatE is lies in the

scoring function. Thus, HRotatE calculates the dr(h
′
i, t
′
i) based on the equation 3.5 while,

in RotatE, dr(h
′
i, t
′
i) is calculated as per the equation 3.1.

3.5 HRotatE Algorithm

Algorithm 1: Learning HRotatE

Input: Training Set S = {(h, r, t)}

Initialize: Initialize the hyper-parameter α, γ, learning rate, hidden dimension and

generating negative samples, generating embedding class for h, r, t, r−1

Loop until the terminal condition is met == Maximum Training Steps:

Sbatch ← sample(S, b) // Sample a minibatch of size, b

he, vr, te, v
−1
r ← h, r, t // Generating Embedding vector

for (ei, r, ej) ∈ Sbatch do

score = 1
2(‖(hei ◦ vr)− tej‖+ ‖(hej ◦ v−1r )− tei‖) // calculate Score

using this equation

Update embeddings w.r.t.

− log σ(γ − dr(h, t))−
∑n

i=1 p(h
′
i, r, t

′
i) log σ(dr(h

′
i, t
′
i)− γ)
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The summarized training process for HRotatE is depicted via the Algorithm 1. The

input to Algorithm 1 is the set of all true (ground truth) triplets given in the dataset.

After that, we initialize the hyper-parameters and generate the negative samples. HRotatE

computes its scoring function using equation 3.5. Finally, HRotatE updates the embedding

using equation 3.8.

As the size of the Knowledge Graph (KG) keep growing [54], to keep up with this

growth, Knowledge Graph Completion (KGC) model must have a linear time and space

complexity. Table 2.2 illustrates the information of the space required for each entity and

relation embedding. A model with too many parameters usually tends to overfit which

resulted in poor performance.Thus, it is important to trade-off between model expressivity

and model complexity. The time complexity of the HRotatE algorithm is O(d), where d is

the size of the embedding vector. TransR [21] requires projection matrix, Mr ∈ Rd×d, which

increase the time complexity to O(d2). RESCAL [25] and E-MLP [27] have a quadratic time

complexity [19]. DistMult [23], ComplEx [24], SimplE [19], and RotatE [22] have linear time

complexities and the number of their parameters grow linearly with embedding dimension

d.

3.6 Steps of the HRotatE

In this section, we are going to explain the step-by-step procedure of the HRotate learning

algorithm. To make it simpler, we are going to explain the steps with the help of a sample

example.

Input: The training dataset is the input of the model, which contains the positive triples.

For example, triple T1 = (Sam Raimi, directed, Spider-Man (2002 film)), the example is

taken from the Yago 3-10 train dataset [44].

Output: The output of the model is the score, which is then fed into a loss function to

generate a loss and update the embedding.

Step 1: The dataset only contains the ground truth (positive triples). Thus, to learn

the embedding better, we have to generate the negative samples. Negative samples can be

generated by corrupting the head, tail, or relation entity. In HRotatE, negative samples are
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generated from corrupting either head or tail entity. For the given an example (Sam Raimi,

directed, Spider-Man (2002 film)), negative samples can be (Sam Raimi, directed, jurras-

sic park), (Christopher Nolan, directed, Spider-Man (2002 film)), (Sam Raimi, directed,

Boston United F.C.), etcetera. Let’s consider the negative triple of the triple T1 is T2 =

(Sam Raimi, directed, jurrassic park).

Step 2: The algorithm generates the embedding for each entity and relation in the

dataset. In HRotatE, we generated two separate embeddings matrices for the head and

tail entity, and two separate embeddings matrices for the relation and relation inverse

embedding. Here, we took the dimension of the embedding as five (5) to better understand

the algorithm. However, the embedding dimension is usually higher in the KG embedding.

For the triple T1 and T2, we can define embedding vectors as below.

hSam Raimi = [−0.1358,−1.1237,−0.5276,−0.8798,−0.4187]

tSam Raimi = [0.0471, 0.8367, 0.2426,−1.1717, 1.1334]

hSpider−Man (2002 film) = [−0.3826,−0.0883, 0.9972,−0.0141, 1.1319]

tSpider−Man (2002 film) = [−0.8701, 0.6348,−0.8115,−0.3820,−0.3912]

rdirected = [0.6030, 0.4455,−0.5405, 1.0803, 1.1042]

r−1directed = [−0.3722,−0.2959, 0.3670, 0.2196, 0.3715]

hjurrassic park = [−0.8928, 0.6561, 0.1231, 0.7386,−1.1642]

tjurrassic park = [−0.7527, 0.5164,−0.2676,−0.7987,−0.2568]

Step 3: In this step, the HRotatE algorithm calculates the score as per the equation

3.5. Thus, for the triple T1, the scoring equation looks like this:

ScoreT1 =
1

2
(‖(hSam Raimi ◦ rdirected)− tSpider−Man (2002 film)‖

+ ‖(hSpider−Man (2002 film) ◦ r−1directed)− tSam Raimi‖)

For the triple T2 (Negative Sample), the scoring equation looks like this:

ScoreT2 =
1

2
(‖(hSam Raimi ◦ rdirected)− tjurrassic park‖
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+ ‖(hjurrassic park ◦ r−1directed)− tSam Raimi‖)

The final score for triple T1 and T2 is calculated as follows.

ScoreT1 = [0.6708126,−1.01700835, 0.5527678,−0.15174794,−0.20552854]

ScoreT2 = [0.47800638,−1.02392417, 0.17767275, 0.59107431,−0.88571442]

Step 4: After calculating the score, the loss is calculated by the equation 3.8. Equation

3.8 can be split into two parts: positive loss and negative loss.

Positive Score = log σ(γ − ScoreT1)

Negative Score =
n∑
i=1

p(T2) log σ(ScoreT2)− γ)

Positive Loss = [−0.4965,−1.2936,−0.4339,−0.5543,−0.9082]

Negative Loss = [0.7823]

As per the illustration purpose, we took only one negative sample for the example. If

the algorithm generates more than one negative sample, the output of the negative loss will

contain multiple values in the form of a vector. After the calculation of the loss, HRotatE

transforms the positive and negative loss into 1-dimension by calculating the sum of the

values. Furthermore, the final loss is calculated by the average of both losses.

Positive Loss = −3.6866

Negative Loss = 0.7823

Loss = −1.45215

In the end, HRotatE updates the embedding with respect to the loss value. This process

is repeated from Steps 3-5 for all training steps.

In this chapter, we proposed a hybridized variant of RotatE and SimplE model. We took
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two different embedding vectors for the head and the tail entity. In addition to that, to

improve the performance model, we added the inverse relation embedding into our scoring

function. In the next chapter, we are going to discuss the experimental setup and evaluation

setting.



Chapter 4

Experimental Setup

This chapter describes our experimental setup and environment, including tools and li-

braries used to implement our model (HRotatE), System Configuration, Hyper-parameters

for training, Dataset details, and detail of evaluation measures that used to evaluate our

model.

4.1 Tools and Libraries

We have implemented our model (HRotatE) using the existing RotatE code developed

and made available by Edward-Sun 1. The up-to-date version of our code for the model,

HRotatE, proposed herein is available on GitHub 2. We have implemented our code in

Python 3.6 language [55]. The details of the used libraries are listed below.

• PyTorch 1.7.1

• NumPy 1.19.2

• SciPy 0.20.2

1https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
2https://github.com/programmingboy/HRotatE
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4.2 System Configuration

We tested our model in Compute Canada - SHARCNET Graham and Cedar cluster on

Nvidia Tesla T4 and Nvidia Volta v100L Graphics Processing Unit (GPU). Nvidia Tesla

T4 provides 16 GB of memory, while Nvidia Volta v100L provides 32 GB of memory. In

terms of the Central Processing Unit (CPU) core, Tesla T4 provides 44 CPU cores while

v100l provides 32 CPU cores.

4.3 Datasets

The proposed model is a generalized model which works well on several datasets. We have

evaluated our model (HRotatE) in five (5) benchmark datasets with several other state-

of-the-art models. Data within all five datasets are divided into three groups: train, test,

and validation. Table 4.1 summarizes the basic statistics of each benchmark dataset. The

datasets contain the data (triplets) in the form of a Comma-separated Values (CSV) file.

• FB15k: FB15k [20] dataset is a subset of a large Freebase [56] dataset which contains

real world facts. The FB15k dataset contains knowledge base relation triples and

textual mentions of Freebase entity pairs.

• WN18: WN18 [20] dataset is a subset of the wordnet [57]. WN18 dataset consists of

a collection of triplets (synset, relation type, triplet) extracted from WordNet 3.0 3.

This data set can be seen as a 3-mode tensor depicting ternary relationships between

synsets. Wordnet contains the lexical relationships between words. As part of a

large lexical database of the English language, nouns, verbs, adjectives, and adverbs

are divided into groups, also known as cognitive synonyms, with each expressing a

distinct contextual concept[57].

• WN18RR: WN18RR [26] dataset is a subset of WN18. WN18RR is derived from

WN18, with data removed to eliminate test-set leakage due to inverse relations.

WN18RR features 11 relations only, no pair of which is reciprocal.

3http://wordnet.princeton.edu



33

Table 4.1: Dataset Statistics

Dataset Entities Relations Training Validation Test

WN18 40,943 18 141,442 5,000 5,000

FB15k 14,951 1,345 483,142 50,000 59,071

WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

Yago3-10 123,182 37 1,079,041 5,000 5,000

• FB15k-237: FB15k-237 [58] dataset is a subset of FB15k. FB15k was found to suffer

from major test leakage through inverse relations, and a large number of test triples

can be obtained simply by inverting triples in the training set [58]. In order to create

a dataset without this characteristic, the FB15k-237 was introduced – a subset of

FB15k where inverse relations were removed [58].

• Yago3-10: YAGO 3 combines the information from the Wikipedias in multiple lan-

guages with WordNet, GeoNames, and other data sources. YAGO 3 taps into mul-

tilingual resources of Wikipedia, getting to know more local entities and facts [44] 4.

Yago3-10 is a subset of Yago3 [44] in which every entity has at least 10 relations.

4.4 Parameter Optimization

Optimizing the hyperparameters is a crucial step towards producing good results. This

section defines the hyperparameters that our model uses, and their values use to generate

the same result as mentioned in chapter 5.

Negative Sampling - This parameter illustrates the number of negative samples re-

quires to train our model.

Batch Size - In Machine Learning (ML), batch size refers to the number of training

examples trained in one iteration.

Learning Rate - Learning rate is a parameter that controls how much model weights

are updated based on the estimated error. Basically, it determines the step size at each

4https://yago-knowledge.org/downloads/yago-3
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Table 4.2: Best performing hyper-parameter values for HRotatE

Dataset
Negative
Sampling

Batch
Size

Learning
Rate

Dimension Alpha Gamma
Maximum

Step

WN18 32 1,024 0.00100 500 0.5 12 80,000

FB15k 128 256 0.00010 1,000 1.5 24 100,000

WN18RR 64 1,024 0.00005 500 0.5 6 80,000

FB15k-237 256 512 0.00010 1,000 1.5 10 150,000

Yago3-10 400 1,024 0.00020 500 1.0 24 100,000

iteration while moving toward a minimum of a loss function. Choosing the correct value

for the learning rate is necessary for any ML algorithm.

Embedding Dimension - The embedding dimension defines the size of the embedding

vector per entity or relation. As the size of the embedding dimension increases, it requires

more computation power.

Alpha - Alpha (α) is the parameter which used in the probability distribution for the

self-adversarial negative sampling.

Gamma - Gamma (γ) is the fixed margin used in the Loss function to differentiate

positive sample to negative sample

We have chosen the optimal value for each hyper-parameter by performing a grid search

over the scores obtained during training with respect to each dataset. In this regard, we

performed series of experiments for each dataset to find the best value for each hyper-

parameter. For the WN18 and WN18RR datasets, we have chosen 1,024 as the training

batch size, and we used a dimension size of 500 for the generation of our embedding vectors.

With regard to the WN18 dataset, we obtained optimal results using a 0.001 learning rate;

and for the WN18RR dataset, we obtained optimal results using a learning rate of 0.00005.

For the FB15k and FB15k-237 datasets, we used a relatively much higher dimension size

of 1,000 with regard to the generation of embedding vectors; and we set the learning rate

to 0.0001. For the Yago3-10 dataset, we used a learning rate of 0.0002 for training and

applied a dimension size of 500 for the generation of its embedding vectors. Details of the

hyper-parameters, with regard to each dataset, are contained in Table 4.2.
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4.5 Evolution Metrics

In any ML approach, the evolution metric plays a key part in measuring its performance.

Thus, choosing the right metric helps to learn and assess the ML model. In most cases,

accuracy is used to evaluate the performance of the Artificial Intelligence (AI) algorithms.

However, in the recommended system, or in Link Prediction (LP) system, accuracy is not

performing well because these tasks are rank-based. Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) is a type of the prediction accuracy metrics. The primary focus

of these metrics is to compare the actual value to the predicted value. Therefore, this type

of metric can be used to determine how far off the prediction value is from the actual value.

However, they are not suitable for the ranking system.

Decision support metrics such as Precision, Recall, or F1 Score are also not beneficial

for the ranking task. Decision support metrics focus on measuring how well a recommender

helps users make good decisions. However, they cover the entire dataset, not the ’Top-

N’ recommendation. Thus, we need to use Rank-Aware Evaluation Metrics such as Mean

Rank, Mean Reciprocal Rank (MRR), Hit Ratio etcetera. Mean Rank, MRR and Hit Ratio

are standard evaluation measures for these datasets. We did not employ Mean Rank herein

as an objective function because it is highly influenced by a single bad ranking [19, 43]. In

this regard, MRR has proven to be a much effective measure/metric over Mean Rank. In

this paper, we evaluate our approach using the MRR and Hit Ratio.

4.5.1 Mean Reciprocal Rank

We have used the MRR filter version, which implies that we have only used test triples in

the computation of the MRR score. To measure and compare the performances of different

models, We rank test triples (h, r, t) against all other candidate triples not appearing in

the training, validation, or test set, where candidates are generated by corrupting subjects

((h′, r, t) for all h′ ∈ E ) and objects ((h, r, t′) for all t′ ∈ E ). Basically, the MRR is

computed based on the formula shown in equation 4.1.

MRR =
1

2 ∗ |tt|
∑

(
1

rankh
+

1

rankt
) (4.1)
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In equation 4.1, tt denotes the test triples such that (h, r, t) ∈ tt. Basically, MRR is the

average of the inverse of the obtained rank. The value always ranges between 0 and 1, and

the higher it is, the better the model results.

4.5.2 Hit Ratio

In a LP, the hit ratio is the ratio of predictions for which the rank is equal or lesser than

a threshold k. It also denotes Hit@k. Generally, the value of K is 1, 3, 5, or 10. The

higher the value of Hit@k, the better the model results. As the value of k increases, the

higher the hit ratio becomes because there is a higher chance that the correct answer is

included in the prediction list. Therefore, it is important to choose an appropriate value

for k [53]. The low values of k allow differentiating models easily compared to the higher

value of k. Especially when the value of k is one (k = 1), it indicates the proportion of test

facts where the target is correctly predicted by the first attempt. MRR and Hit@1 are often

closely related, because MRR is also considers the most relevant prediction in its formula

[53]. With respect to our benchmark experiments, the objective functions employed herein

for comparative analyses are: and Hit score (Hit@1, Hit@3, and Hit@10).

4.6 Statistical Significance Test

The statistical significance test is useful in many domains to test the performance of the

model [59]. Significance Testing or Hypothesis Testing is used to test the validity

of a claim (Null Hypothesis (H0)) that is made about a population using sample data.

In the event that the null hypothesis is not true, the Alternative Hypothesis (H1) is

considered as true. In other words, first, a claim is made (null hypothesis), and then it is

tested by some random sample to check the validity of the claim. If the claim is not valid,

then the alternative hypothesis is accepted as a true hypothesis [59].

To check the hypothesis is valid or not, the Significance Level (δ) is used, which is a

threshold value for the hypothesis test. Usually, the significance level is denoted by the α.

However, we already determine the α for self-adversarial negative sampling; Thus, we use

δ for the significance level. Choosing the right value of δ is necessary for any significance
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test. If the value of δ is too big, it requires less evidence to reject the null hypothesis. If δ

is smaller, it will require more evidence to reject the Null Hypothesis.

Generally, across all domains, the standard threshold value is 5% (0.05) accepted. That

means, if an unexpected change in probability is less than 5%, then it can be concluded

that there is a difference in the behavior of the two approaches. (1 - significance layer) is

known as the Confidence Level, which indicates the confidence of the model (i.e., 95%

confidence that ’model A; performs better than ’model B’). To determine if a statistically

significant difference exists, there are various methods available such as P-value, Student’s

T-Test, Z score, etcetera [60]. We perform the Student’s T-Test to determine the statistical

significance of the HRotatE over the RotatE model.

4.6.1 Student’s T-test

T-test (Student’s T-test) is a statistical significance test that is used to compare the means of

two groups\models and determine if the difference in means is statistically significant. This

test is widely used in data analysis and statistical analysis [59]. T-Test was first invented

by ’William Sealy Gosset’ when he was working at Guinness Brewery [61]. So basically,

Student’s t-test is a method of testing hypotheses about the mean of a small sample drawn

from a normally distributed population [59]. As the sample size (degrees of freedom)

increases, the t distribution approaches the bell shape of the standard normal distribution.

Assumptions for Conducting a T-test

In order to perform a t-test, there is a need to keep the following criteria in mind [60]:

1. The data should follow a continuous or ordinal scale.

2. It is important to select the observations in data randomly.

3. The data should follow a bell-shaped curve when we plot it, i.e., it should be normally

distributed.

4. Large sample size should be taken. Larger sample size means the distribution of

results should approach a normal bell-shaped curve.
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5. Variances among the groups should be equal (for independent two-sample t-test).

Types of t-tests

The main part of performing the t-test is in computing the T Statistic, which depends on

the type of the t-test. There are mainly three types of t-test.

1. One sample t-test

In a one sample t-test, the mean of one group is compared to the mean of another

group. This mean can be a theoretical value, or the population mean. One sample

t-test following formula to compute the t-statistic [61].

t =
x̄− µ
s/
√
n

Where x̄ is the sample mean, µ is the population mean, s is the standard deviation, and

n is the sample size. The numerator is also known as a signal, and the denominator

is also known as noise. A common analogy is that the t-value is the signal-to-noise

ratio.

The numerator subtracts the null hypothesis value from the sample mean/ If the

sample mean is 12, the null hypothesis is 6, the difference, or signal, is 6. If there is

no difference between the null value and sample mean, the signal in the numerator, as

well as the value of the entire ratio, becomes zero. As the difference between the sample

means and the null hypothesis means increases, the signal’s strength increases. The

denominator measures the variability known as the standard error of the mean. This

statistic describes how accurately the sample estimates the mean of the population. In

general, a more significant number indicates a less accurate estimate due to a higher

level of random error [59].

2. Independent two-sample t-test

A two-sample t-test compares the means of two different samples \models. The num-

ber of data in each model should be equal for the comparison. This is where a two-

sample t-test is used. Here’s the formula to calculate the t-statistic for a two-sample



39

t-test [59].

t =
x̄1 − x̄2√
s21
n1

+

√
s22
n2

where, x̄1, x̄2 is the mean of sample 1 and 2, s21, s
2
2 is the sample variances, and n1, n2

is the size of the sample. With unequal sample sizes and varying variances of the two

samples, determining degrees of freedom (df) is not as straightforward as in a 1-sample

t-test. To calculate the degrees of freedom (df), Welch-Satterthwaite’s formula is used

[59].

df =
(
s21
n1

+
s22
n2

)2

1
n1−1(

s21
n1

)2 + 1
n2−1(

s22
n2

)2

The above equation can be generalize as below.

df = n1 + n2 − 2

Depending on the degree of freedom and δ, the critical value of T can be found in the

lookup table 5. This critical value of T (T-critical) is further used to determine null

hypothesis is valid or not.

3. Paired sample t-test

In the Paired Samples t-test, the means of two measurements taken from the same

individual, object, or related units are compared. These “paired” measurements can

represent things like A measurement taken at two different times, A measurement

taken under two different conditions, A Measurements taken from two halves or sides

of a subject or experimental unit. The formula to calculate the t-statistic for a paired

t-test is:

t =
µ
s√
n

Where µ is the mean of the group, s is the standard deviation of the group, and n is

the size of the group.

We have used an independent two-sample t-test approach to compare our model with

RotatE. This approach is widely used to compare the different knowledge graph models

5https://www.stat.purdue.edu/ lfindsen/stat503/t-Dist.pdf
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[62].

This chapter explained the requirement for the implementation, dataset details, detail

of the statistical significance test, and hyper-parameter setting to obtain the optimal result.

In the next chapter, we will explain our results with a statistical significance test in detail.



Chapter 5

Discussions, Comparisons, and

Analysis

In this chapter, we compare our results with various state-of-the-art models that include

the translation-based models (such as TransE, RotatE, BoxE, etc.), bilinear models (such

as DistMult, SimplE, TuckER, etc.), and the deep-neural-network based models (such as

HypER, ConvE, etc.). We conducted our experiments on five (5) different benchmark

datasets. The details of the experimental setup and hyperparameters setting are explained

in Chapter 4. Herein, we have not compared our results with ComplEx-N3[63] because [63]

it is based on 2000 embedding dimensions, which requires relatively too many parameters

to implement. We have also performed the statistical significance test (independent two-

sample t-test) on all the five benchmark dataset results. Additionally, To show the efficiency

of our algorithm, we trained our model, HRotatE, using half of the number of training steps

required by the native RotatE during its training. Thus, our comparative results indicate

that our model converged to optimum much quicker than the native RotatE.

41
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5.1 Result Analysis

5.1.1 WN18

Table 5.1 shows the detailed result of the WN18 dataset. Most of the data in this dataset are

in the form of symmetry, inverse, and anti-symmetry. So, most of the approaches perform

well on this dataset. For this dataset, HRotatE achieved its best score at Hit@10. For the

other objective functions/measures, our result is comparable to TuckER and HypER.

Table 5.1: Result on WN18

Model MRR Hit@1 Hit@3 Hit@10

TransE [20] 0.495 0.113 0.888 0.943

TransR [21] 0.605 0.335 0.876 0.940

DistMult [23] 0.822 0.728 0.914 0.936

ComplEx [24] 0.941 0.936 0.945 0.947

HolE [64] 0.938 0.930 0.945 0.949

Analogy [65] 0.942 0.939 0.944 -

TorusE [66] 0.947 0.943 0.950 0.954

SimplE [19] 0.942 0.939 0.944 0.947

ConvE [26] 0.943 0.935 0.946 0.956

RotatE [22] 0.949 0.944 0.952 0.959

TuckER [29] 0.953 0.949 0.955 0.958

HypER [48] 0.951 0.947 0.955 0.958

HRotatE 0.951 0.945 0.954 0.960

5.1.2 FB15k

Table 5.2 highlights the results of comparative analyses on the FB15k dataset. Similar to

WN18, most of the data in this dataset are in the form of symmetry, inverse, and anti-

symmetry. Our proposed model, HRotatE, outperforms all other baselines (benchmark

models) on this dataset, such that HRotatE achieves a state-of-the-art score for the MRR

and Hit@1 measures/metrics. Obviously, TransE performed worst on this dataset because

it is unsuitable for predicting links based on symmetric relations.



43

Table 5.2: Result on FB15k

Model MRR Hit@1 Hit@3 Hit@10

TransE [20] 0.465 0.297 0.578 0.749

TransR [21] 0.346 0.218 0.404 0.582

DistMult [23] 0.654 0.546 0.733 0.824

ComplEx [24] 0.692 0.599 0.759 0.840

HolE [64] 0.524 0.400 0.613 0.739

Analogy [65] 0.725 0.646 0.785 -

TorusE [66] 0.733 0.674 0.771 0.832

SimplE [19] 0.727 0.660 0.773 0.838

ConvE [26] 0.657 0.558 0.723 0.831

RotatE [22] 0.797 0.746 0.830 0.884

TuckER [29] 0.795 0.741 0.833 0.892

HypER [48] 0.790 0.734 0.829 0.885

HRotatE 0.799 0.751 0.833 0.832

Table 5.3: Result on WN18RR

Model MRR Hit@1 Hit@3 Hit@10

TransE [20] 0.226 - - 0.501

DistMult [23] 0.430 0.390 0.440 0.490

ComplEx [24] 0.440 0.410 0.460 0.510

ConvE [26] 0.430 0.400 0.440 0.520

ConvKB [47] 0.249 0.057 0.417 0.524

RotatE [22] 0.476 0.428 0.492 0.571

TuckER [29] 0.470 0.443 0.482 0.526

HypER [48] 0.465 0.436 0.477 0.522

BoxE(u) [43] 0.470 - - 0.523

BoxE(a) [43] 0.451 - - 0.541

HRotatE 0.483 0.438 0.499 0.572

5.1.3 WN18RR

WN18RR is a subset of the WN18 dataset in which the inverse relations have been deleted.

Thus, Table 5.3 illustrates the comparative results of different benchmark models on the

WN18RR dataset. Most of the data in the WN18RR dataset follows symmetry and hierar-

chical patterns. Theoretically, HRotatE cannot capture hierarchical patterns; however, it

still performs better than all other baselines (benchmark models) on the measure/metrics

of MRR, Hit@3, and Hit@10. The primary reason behind this is that RotatE captures the

composition patterns, which can be helpful to capture symmetric patterns. This is because,

in RotatE, the composition of two symmetric relations is symmetric [43]. Thus, HRotatE
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inherits this property from RotatE.

5.1.4 FB15k-237

FB15k-237 is a subset of the FB15K dataset in which the inverse relations have been deleted.

Thus, Table 5.4 shows the comparative results of different benchmark models on the FB15k-

237 dataset. This dataset contains several composition patterns. Our proposed model,

HRotatE, performs well on FB15k-237; however, TuckER still outperforms our HRotatE

model on this dataset. Thus, the primary reason behind TuckER’s outstanding performance

is that it is used as a shared parameter for multi-task learning.

Table 5.4: Result on FB15k-237

Model MRR Hit@1 Hit@3 Hit@10

TransE [20] 0.294 - - 0.465

DistMult [23] 0.242 0.155 0.263 0.419

ComplEx [24] 0.247 0.158 0.275 0.428

ConvE [26] 0.325 0.237 0.356 0.501

ConvKB [47] 0.243 0.155 0.371 0.421

RotatE [22] 0.338 0.241 0.375 0.533

TuckER [29] 0.358 0.266 0.394 0.544

HypER [48] 0.341 0.252 0.376 0.520

BoxE(u) [43] 0.318 - - 0.514

BoxE(a) [43] 0.337 - - 0.538

HRotatE 0.338 0.243 0.373 0.530

5.1.5 Yago3-10

Yago3-10 is a subset of Yago3 [44] in which every entity has at least ten relations. Table

5.5 show the comparative results of different benchmark models on the Yago3-10 dataset.

This dataset contains several hierarchical patterns. BoxE can capture hierarchical patterns

effectively. As a result, this places BoxE at an edge over other benchmark models (baselines)

on this dataset. On the Yago3-10 dataset, the BoxE model, which is based on uniform

sampling, performs better than the BoxE model, which is based on adversarial sampling.

In addition, BoxE employs data augmentation, which gives it an additional advantage.
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Table 5.5: Result on Yago3-10

Model MRR Hit@1 Hit@3 Hit@10

DistMult [23] 0.340 0.240 0.380 0.540

ComplEx [24] 0.360 0.260 0.400 0.550

ConvE [26] 0.440 0.350 0.490 0.620

RotatE [22] 0.495 0.402 0.550 0.670

TuckER [29] 0.529 - - 0.670

HypER [48] 0.533 0.455 0.580 0.678

BoxE(u) [43] 0.567 - - 0.699

BoxE(a) [43] 0.560 - - 0.691

HRotatE 0.497 0.399 0.554 0.681

5.2 Statistical Significance Test Results

The RotatE approach and the proposed HRotatE approach were tested fifteen times on

all five datasets. We recorded the Mean Reciprocal Rank (MRR), Hit@1, Hit@3, Hit@10

scores for each test. We conducted an independent two-sample t-test on a MRR score of

our approach (HRotatE) and RotatE. We plotted the normal distribution of all the test

results of the dataset. For an independent two-sample t-test, we define our hypothesis as

follows.

H0: No significant performance difference between the RotatE and HRotatE models.

H1: There is statistically significant that HRotatE performs better than RotatE.

For this test, we defines δ = 0.05, which is standard δ value for hypothesis test. As we

conducted experiment 15 times for both HRotatE and RotatE, the value of the degree of

freedom (df) becomes 28 (df = n1 + n2 − 2 = 15 + 15− 2 = 28). For δ = 0.05 and df = 28,

critical value for one-tail the t-test is t− critical = 2.048 1. We reject the Null hypothesis

(H0) in case of t − test > t − critical, which leads to accepting our alternative hypothesis

(H1) that there is a statistical significant that HRotatE performs better than the RotatE

on the given dataset

1http://www.math.odu.edu/stat130/t-tables.pdf
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5.2.1 Statistical Significance Test Results on WN18 Dataset

In WN18 dataset, RotatE achieves 0.949 mean MRR and the value of the standard deviation

is 0.00032 while HRotatE achieves 0.951 mean MRR and the value of the standard deviation

is 0.000381. We have performed the standard independent two-sample t-test on the MRR

to test our hypothesis, which resulted in the t − value = 10.91509, which is higher than

the t − critical. Thus, we rejected H0 in favor of H1. Figure 5.1 represent the normal

distribution curve of the RotatE and HRotatE model on the WN18 database.

Figure 5.1: Normal distribution of the RotatE and HRotatE model on WN18 dataset

5.2.2 Statistical Significance Test Results on FB15k Dataset

In FB15k dataset, RotatE achieves 0.797 mean MRR and the value of the standard deviation

is 0.00081 while HRotatE achieves 0.799 mean MRR and the value of the standard deviation

is 0.0006. We have performed the standard independent two-sample t-test on the MRR to

test our hypothesis, which resulted in the t − value = 7.682869, which is higher than the

t−critical. Thus, we rejected H0 in favor of H1. Figure 5.2 represent the normal distribution

curve of the RotatE and HRotatE model on the FB15k database.
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Figure 5.2: Normal distribution of the RotatE and HRotatE model on FB15k dataset

5.2.3 Statistical Significance Test Results on WN18RR Dataset

Figure 5.3: Normal distribution of the RotatE and HRotatE model on WN18RR dataset

In the WN18RR dataset, RotatE achieves 0.476 mean MRR and the value of the standard

deviation is 0.000749 while HRotatE achieves 0.483 mean MRR and the value of the stan-
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dard deviation is 0.000927. We have performed the standard independent two-sample t-test

on the MRR to test our hypothesis, which resulted in the t − value = 22.75168, which is

higher than the t− critical. Thus, we rejected H0 in favor of H1. Figure 5.3 represent the

normal distribution curve of the RotatE and HRotatE model on the WN18RR database.

5.2.4 Statistical Significance Test Results on FB15k-237 Dataset

In FB15k-237 dataset, RotatE achieves 0.336 mean MRR and the value of the standard de-

viation is 0.000508 while HRotatE achieves 0.338 mean MRR and the value of the standard

deviation is 0.000517. We have performed the standard independent two-sample t-test on

the MRR to test our hypothesis, which resulted in the t−value = 10.58801, which is higher

than the t− critical. Thus, we rejected H0 in favor of H1. Figure 5.4 represent the normal

distribution curve of the RotatE and HRotatE model on FB15k-237 database.

Figure 5.4: Normal distribution of the RotatE and HRotatE model on FB15k-237 dataset

5.2.5 Statistical Significance Test Results on Yago3-10 Dataset

In Yago3-10 dataset, RotatE achieves 0.495 mean MRR and the value of the standard

deviation is 0.00162 while HRotatE achieves 0.497 mean MRR and the value of the standard

deviation is 0.001844. We have performed the standard independent two-sample t-test on
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the MRR to test our hypothesis, which resulted in the t−value = 2.333249, which is slightly

higher than the t− critical. Thus, we rejected H0 in favor of H1. Figure 5.5 represent the

normal distribution curve of the RotatE and HRotatE model on the Yago3-10 database.

Figure 5.5: Normal distribution of the RotatE and HRotatE model on Yago3-10 dataset

5.3 Consistency in Results

We ran the experiment 15 times to ensure the consistency of our proposed approach result.

The detailed result summary is displayed in Table 5.6. Based on the small values of standard

deviation and variance of the different experiments, we can conclude that our algorithm can

generate consistent results in all four measures.

5.4 Comparison with RotatE

Our proposed model, HRotatE, is efficient in learning training parameters; and it improves

the result of the MRR by at least 0.002 in all five datasets. Moreover, it performs better

compared to state-of-the-art baselines (benchmark models) in the MRR matrix in WN18RR,

FB15k, and FB15k-237 dataset. Furthermore, we trained our model, HRotatE, using half of

the number of training steps required to train the native RotatE. Thus, HRotatE achieves
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nearly the same results as RotatE, and even higher in some datasets, with just half the

number of RotatE’s training steps. Table 5.7 shows the detailed comparison between HRo-

tatE and RotatE. We got higher MRR scores in WN18, FB15k, and WN18RR datasets

even with the half number of training steps.

This chapter examines the experimental results and comparison with state-of-the-art

models. We conducted our experiment on five (5) benchmark datasets. We have also

performed the statistical significance test (independent two-sample t-test) on all the five

benchmark dataset results. In the end, we compared our proposed model (HRotatE) to the

RotatE, where our model trained with just half the number of training steps required by

the RotatE. The result indicates that our model not only gives a better result but it also

converges faster.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We proposed a hybrid approach, namely HRotatE, to solve the Knowledge Graph Com-

pletion (KGC) problem. Various approaches exist to predict a missing link in a Knowl-

edge Graph, but the most prominent approaches are based on tensor factorization and

Knowledge-Graph embeddings. These approaches can be divided into three subcategories:

translation-based approach, bilinear-based approach, and neural-network-based approach.

The translation-based approaches use the relative distance existing between constituent

entity embedding vectors of the Knowledge Graph (KG). In this approach, entities and re-

lations are embedded into the embedding space, where the relation embedding is generally

used to map the head entity to the tail entity. Additionally, the bilinear-based approaches

employ tensor factorization with regard to the generation of embedding vectors in the KG.

The neural-network-based approaches are essentially nonlinear models that vary according

to different deep learning architectures. Each of the aforementioned approaches possesses

its respective strengths and weaknesses.

Thus, we proposed the hybridized variant of the existing approaches RotatE and SimplE

to solve the KGC problem. RotatE depicts the relation as a rotation between the head and

tail entities in the complex vector space. However, In RotatE, the head and tail entities

are derived from the same embedding-generation class. Thus, RotatE uses the same value

52
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for an entity regardless of its usage in head embedding or tail embedding. On the other

hand, the SimplE model is based on Canonical Polyadic (CP) decomposition. SimplE

enhances CP via the addition of the inverse relation, while the head entity and tail entity

are derived from different embedding-generation classes, which are interdependent. Hence,

we employed the principle of inverse-relation embedding (from the SimplE model) onto the

native RotatE model so as to yield a new hybrid resultant: HRotatE. Therefore, HRotatE

boasts of efficiency as well as improved prediction scores.

We have evaluated our model, HRotatE, against five (5) benchmark datasets. Our

approach achieves better performance on several benchmark datasets. Also, we have com-

pared HRotatE with several state-of-the-art models (inclusive of neural-network-based ap-

proaches). We also evaluated the statistical significance of HRotatE performance by con-

ducting an independent two-sample t-test on the Mean Reciprocal Rank (MRR) score of

both HRotatE and RotatE in five benchmark datasets. The statistical test showed that

there is the statistical significance that HRotatE performs better than RotatE. We have also

tested and compared our approach, HRotatE, against RotatE. We show that our model,

HRotatE, achieves approximately the same results as RotatE with much lesser (half the

number) training steps. Thus, our proposed model can converge faster than the native

RotatE model.

6.2 Future Work

In the future, we are planning to test our model on several benchmark datasets. The main

drawback of HRotatE, at the moment, is that it cannot predict hierarchical relations effec-

tively. In this regard, our HRotatE model does not perform well on the Yago3-10 dataset.

In the near future, our goal is to update the score function so that it can effectively capture

and predict the hierarchical relationship. Generally, KG represents a bilinear relationship,

and this means that every relation possesses a pair of entities. In the future, we want to test

our approach on graphs possessing non-binary relations or knowledge hypergraphs. Also, we

are working on adapting our proposed model, HRotatE, for multi-task learning. The cur-

rent HRotatE model calculates its score by computing the average of the main and inverse

scores. However, HRotatE’s performance can be improved by tuning the ratios between the
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main score and the inverse score. We leave the work of modeling the uncertainties in KGs

as our future work. Furthermore, this research can be extend to dynamic KG or temporal

KG completion problem.
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[6] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. SEMAN-

TiCS (Posters, Demos, SuCCESS), 48:1–4, 2016.

[7] Ahmet Soylu, Oscar Corcho, Brian Elvesæter, Carlos Badenes-Olmedo, Fran-

cisco Yedro Mart́ınez, Matej Kovacic, Matej Posinkovic, Ian Makgill, Chris Taggart,

Elena Simperl, et al. Enhancing public procurement in the european union through

constructing and exploiting an integrated knowledge graph. In International Semantic

Web Conference, pages 430–446. Springer, 2020.

55



Bibliography 56

[8] Amit Singhal. Introducing the knowledge graph: things, not strings. Official google

blog, 5:16, 2012.

[9] Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin Zhao, and Zongtao Duan. Knowl-

edge graph completion: A review. IEEE Access, 8:192435–192456, 2020.

[10] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and

Dekang Lin. Knowledge base completion via search-based question answering. In

Proceedings of the 23rd international conference on World wide web, pages 515–526,

2014.

[11] Bonaventure C. Molokwu, Shaon Bhatta Shuvo, N. Kar, and Ziad Kobti. Link pre-

diction in social graphs using representation learning via knowledge-graph embeddings

and convnet (rlvecn). 2020 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), pages 2173–2178, 2020.

[12] Bonaventure Molokwu, Shaon Bhatta Shuvo, Narayan C Kar, and Ziad Kobti. Node

classification and link prediction in social graphs using rlvecn. In 32nd International

Conference on Scientific and Statistical Database Management, pages 1–10, 2020.

[13] Mohammad Al Hasan and Mohammed J Zaki. A survey of link prediction in social

networks. In Social network data analytics, pages 243–275. Springer, 2011.

[14] Kumaran Ragunathan, Kalyani Selvarajah, and Ziad Kobti. Link prediction by an-

alyzing common neighbors based subgraphs using convolutional neural network. In

ECAI, 2020.

[15] Kalyani Selvarajah, Kumaran Ragunathan, Ziad Kobti, and Mehdi Kargar. Dynamic

network link prediction by learning effective subgraphs using cnn-lstm. In 2020 Inter-

national Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[16] Jure Leskovec. Node representation learning, Feb 2020. URL https://snap-

stanford.github.io/cs224w-notes/machine-learning-with-networks/node-

representation-learning.

[17] Baoxu Shi and Tim Weninger. Open-world knowledge graph completion. Proceedings

of the AAAI Conference on Artificial Intelligence, 32(1), 2018.

https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/node-representation-learning
https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/node-representation-learning
https://snap-stanford.github.io/cs224w-notes/machine-learning-with-networks/node-representation-learning


Bibliography 57
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Appendix A: HRotatE - Uniform

Sampling

As mentioned in Chapter 3, the positive triples are the ground-truth triples given in the

dataset [24, 52]. However, to train the modern efficiently, there needs to generate a negative

sample. Generally, there are two popular ways to generate the negative sample: the Uniform

way and the Adversarial Way. BoxE [43] and RotatE [22] show the advantages of adversarial

sampling method over uniform method. In this regard, herein, we used the same self-

adversarial negative sampling, as employed in RotatE [22, 52], to generate negative samples

for training our model, HRotatE. However, to show the model performance, we also tested

our approach with uniform sampling. In this section, we compare our approach with RotatE

in uniform sampling. The final loss function for uniform sampling is shown in equation 1.

L = − log σ(γ − dr(h, t))− log σ(dr(h
′
i, t
′
i)− γ) (1)

Table 1: Comparison of RotatE and HRotatE (Uniform Sampling)

Dataset Model MRR Hit@1 Hit@3 Hit@10

WN18
HRotatE 0.947 0.938 0.953 0.962
RotatE 0.946 0.937 0.952 0.961

FB15k
HRotatE 0.707 0.614 0.774 0.860
RotatE 0.699 0.584 0.789 0.872

WN18RR
HRotatE 0.474 0.428 0.492 0.593
RotatE 0.471 0.424 0.490 0.565

FB15k-237
HRotatE 0.301 0.208 0.332 0.488
RotatE 0.294 0.201 0.326 0.479

Yago3-10
HRotatE 0.454 0.357 0.502 0.645
RotatE 0.448 0.347 0.496 0.647
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Table 1 illustrates the result of the RotatE and HRotatE approach, which uses uniform

sampling to generate the negative sample. We have used the same hyper-parameters that

we used in self adversarial negative sampling. The result of uniform sampling is low, which

satisfies the claim proposed by the RotatE [22], and BoxE [43]. However, this result can be

improved by tuning the hyper-parameters.



Appendix B: Proof of the Inference

Pattern

This appendix describes the proof of inference pattern discussed in Section 1.6 and Table

2.1. First, we will illustrate that how RotatE [22] can learn inference patter. Then, we will

extend the proof to HRotatE.

Symmetry: if (ei, r, ej) and (ej , r, ei) hold, then a RotatE model makes

ej = r ◦ ei ∧ ei = r ◦ rj =⇒ r ◦ r = 1

If (ei, r, ej) ∈ ζ, then a HRotatE model makes (hei , vr, tej ) and (hej , v
−1
r , tei) positive. By,

tying the parameters of v−1r to vr, we can conclude that (hej , vr, tei) and (hei , v
−1
r , tej ) is

also become positive. Therefore HRotatE can predicts (ej , r, ei) ∈ ζ.

Anti-Symmetry: if (ei, r, ej) and ¬(ej , r, ei) hold, then a RotatE model makes

ej = r ◦ ei ∧ ei 6= r ◦ rj =⇒ r ◦ r 6= 1

If (ei, r, ej) ∈ ζ, then a HRotatE model makes (hei , vr, tej ) and (hej , v
−1
r , tei) negative. By,

tying the parameters of v−1r to vr, we can conclude that (hej , vr, tei) and (hei , v
−1
r , tej ) is

also become negative. Therefore HRotatE can predicts (ej , r, ei) ∈ ζ ′.

Inversion: if (ei, r1, ej) and (ej , r2, ei) hold, then a RotatE model makes

ej = r1 ◦ ei ∧ ei = r2 ◦ rj =⇒ r1 = r−12
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If (ei, r1, ej) ∈ ζ, then a HRotatE model makes (hei , vr1 , tej ) and (hej , v
−1
r1 , tei) positive. By,

tying the parameters of v−1r2 to vr1 and v−1r1 to vr2 , we can conclude that (hej , vr2 , tei) and

(hei , v
−1
r2 , tej ) is also become negative. Therefore HRotatE can predicts (ej , r2, ei) ∈ ζ.

Composition: if (ei, r1, eK), (ei, r2, ej) and (ej , r3, ek) hold, then a RotatE model makes

ek = r1 ◦ ei ∧ ej = r2 ◦ ei ∧ ek = r3 ◦ ej =⇒ r1 = r2 ◦ r3

If (ei, r2, ej) ∈ ζ, then a HRotatE model makes (hei , vr2 , tej ) and (hej , v
−1
r2 , tei) positive. and

If (ej , r3, ek) ∈ ζ, then a HRotatE model makes (hej , vr3 , tek) and (hek , v
−1
r3 , tej ) positive.

By, tying the parameters of vr1 to vr2 and vr3 , we can conclude that (hei , vr1 , tek) and

(hek , v
−1
r1 , tek) is also become negative. Therefore HRotatE can predicts (ei, r1, ek) ∈ ζ.

Other Models: TransE [20] is not able to predict symmetric patterns. The reason for

this is: ∀ei, ej ∈ E that satisfies (ei, r, ej) ∈ ζ, (ej , r, r − i) ∈ ζ must be true, which means

TransE makes ‖ei+r−ej‖ ≈ 0 and ‖ej+r−ei‖ ≈ 0. Thus, TransE forcefully makes the r = 0

and ei = ej , which converts the symmetric relations into reflexive relations. However, ei

and ej are different entities. Hence, they can not have the same value. BoxE[43] illustrates

that TransE and RotatE are not able to predict hierarchical patterns because they enforce

the relation equivalence.

TransH [42] cannot infer composition and inversion pattern due to their invertible ma-

trix multiplications, and its symmetric nature [22]. Due to the full-rank relation matrix,

DistMult [23] is not able to differentiate between the source entity and the target entity.

For the given triplet (ei, r, ej) and the opposite triplet (ej , r, ei), DistMult assigns the same

score for both triplets because its unable to differentiate entity in head or tail. The same

reason can be applied to the inverse relation. ComplEx [24], DistMult [23] and TuckER [45]

are not able to predict composition rules because they does not model a bijection mapping

from the source node (head) to the destination node (tail) by relation.
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