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ABSTRACT
We report on the organization and results of the first edition of
the Tool Competition from the International Workshop on Natural
Language-based Software Engineering (NLBSE’22). This year, five
teams submitted multiple classification models to automatically
classify issue reports as bugs, enhancements, or questions. Most of
them are based on BERT (Bidirectional Encoder Representations
from Transformers) and were fine-tuned and evaluated on a bench-
mark dataset of 800k issue reports. The goal of the competition was
to improve the classification performance of a baseline model based
on fastText. This report provides details of the competition, includ-
ing its rules, the teams and contestant models, and the ranking of
models based on their average classification performance across
the issue types.
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1 INTRODUCTION
This year, we organized the first edition of the NLBSE’22 tool com-
petition on automated issue report classification. The goal of the
competition was to bring together practitioners and researchers
into developing more accurate classification models for automat-
ically identifying the type of a given issue report. We focused on
issue report classification for two reasons: (1) it is an important
task for developers in the context of the issue management and
prioritization process, and (2) extensive research has been dedicated
to addressing this problem using natural language processing and
machine learning techniques.

Five teams [1–5] participated in the competition. Each team pro-
posed one or more classification models (or classifiers) trained and
evaluated on the dataset we provided for the competition [6], which
contains more than 800k issue reports labeled as bugs, enhance-
ments, or questions, extracted from the repositories of open-source
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projects. Given this dataset and the classification results of a base-
line model (based on fastText [7–9]), the participants had to design
their classifiers to outperform the baseline in detecting the correct
type of an issue (bug, enhancement, or question).

2 BENCHMARK DATASET
We provided a dataset of 803,417 issue reports extracted from
127,595 open source projects hosted on GitHub. The issues were ex-
tracted from The GitHub Archive [10] using Google BigQuery [11].
We extracted closed issues during the first semester of 2021 (from
January 1st to May 31st) that contained any of the labels bug, en-
hancement, and question at the issue closing time.

We extracted the following data attributes for each issue: its title
or summary, the issue body, the issue URL, the repository URL, its
creation/submission timestamp, and the issue author association
(e.g., owner, contributor, or member). Additionally, each issue is
labeled with one class that indicates its type, namely, bug, enhance-
ment, or question. The dataset was given in CSV format without
applying any preprocessing on the issues.

We partitioned the dataset into a training set (≈90%) and a test
set (≈10%). The distribution of (722,899) issues in the training set
is: 361,239 (50%) bugs; 299,287 (41.4%) enhancements; and 62,373
(8.6%) questions. The distribution of (80,518) issues in the test set is:
40,152 (49.9%) bugs; 33,290 (41.3%) enhancements; and 7,076 (8.8%)
questions.

3 COMPETITION RULES
The participants had to train and tune their classification models
using the training set, and evaluate the models using the test set.
The test set was used to determine the official classification results
and the ranking of the contestant models.

The participants were free to select and transform the data from
the training set as they pleased with the restriction that no new
information sourceswere utilized by themodels. In otherwords, any
inputs or features used to create the classifiers had to be derived
from the provided issues and their attributes. Participants were
allowed to preprocess, (over/under-)sample, select a subset of the
attributes, and perform feature-engineering on the training set.
The participants were also allowed to split the training set into a
model-tuning validation set.

The participants were free to apply any preprocessing or feature
engineering on the test set except sampling, rebalancing, under-
sampling or oversampling techniques.

The proposed models were evaluated based on their classifica-
tion performance on the test set. The classifiers had to assign a
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single label to an issue: bug, enhancement, or question. The classifi-
cation performance of a model is measured by the micro-average
F1-score over all three classes. Micro-averaging was chosen as the
cross-class aggregation method due to the class imbalance present
in the data. While the F1-score was used for ranking the models
and determining the winner of the competition, we also asked the
participants to report the following metrics: precision and recall
for each class. Note that micro-average precision and recall are the
same as micro-average F1-score.

We provided a Colab notebook [6] for the competition with the
specific competition instructions and rules, including the results
of a baseline model based on fastText [7–9] (see Table 1). More
importantly, this notebook aimed to facilitate participation in the
competition as it was ready to be adapted, used, and executed.

While the competition aimed to receive classifiers trained from
scratch using the provided dataset, we decided to relax this con-
straint in order to maximize participation. This means that pre-
trained and fine-tuned models were allowed to participate in the
competition.

4 SUBMITTED CLASSIFICATION MODELS
Five teams submitted one or more classifiers to participate in the
competition, as listed in Table 1. Almost all of the classifiers are
based on BERT (Bidirectional Encoder Representations from Trans-
formers) [12] and use different attributes of the issues. These models
were pre-trained and fine-tuned using a preprocessed version of the
training issues. A variety of preprocessing techniques were used to
prepare the data for training and evaluation.

Izadi [3] proposed CatIss, a fine-tuned pretrained RoBERTa mod-
el [13] that uses as input the issue text (title and body) concatenated
with the issue timestamp, author, and repository (specifically, the
owner and repository name). The processing of the issues included
removal of exact duplicate issues (performed on the training set
only), text normalization to replace content with a predefined tag
(e.g., <FUNCTION> for function names), special character removal,
and lower casing. Izadi also reported a Logistic Regression model
as an additional baseline model.

Bharadwaj and Kadam [1] proposed multiple classifiers based on
BERT (vanilla BERT [12], CodeBERT [14], and RoBERTa [13]) and
XLNet [15] to encode the issue text (title and body) as embeddings.
These embeddings are combined with embeddings obtained from
additional issue features, namely whether or not the issue was
submitted early in the project history (defined based on a threshold),
the project owner, and whether or not the issue title describes a
question. The combined embeddings are the input to classification
layers. The BERT-based models used by the authors were also
fine-tuned. The main preprocessing applied include regex-based
substitution of code snippets, URLs, usernames, and numbers with
predefined tags.

Colavito et al. [2] proposed multiple classifiers based on BERT,
which were fine-tuned for the issue classification task. These clas-
sifiers include vanilla BERT [12], ALBERT [16], and RoBERTa [13].
According to experiments made by the authors on a validation
set, RoBERTa achieved the best performance when only the issue
body and title were input to the model (experiments included is-
sue author information). Colavito et al. also included a Multilayer

Table 1: Issue classification results for bugs, enhancements,
and questions. The models are ranked by Avg.: the micro av-
erage precision/recall/F1-score over the three issue types.

Classification model Metric Bug Enh. Que. Avg.

CatIss (RoBERTa)
by Izadi [3]

Precision 0.894 0.874 0.720
Recall 0.897 0.885 0.664 0.872
F1-score 0.896 0.879 0.691

RoBERTa
by Bharadwaj & Kadam [1]

Precision 0.872 0.879 0.714
Recall 0.911 0.877 0.539 0.865
F1-score 0.891 0.878 0.614

CodeBERT
by Bharadwaj & Kadam [1]

Precision 0.883 0.866 0.693
Recall 0.894 0.891 0.551 0.862
F1-score 0.888 0.878 0.614

RoBERTa
by Colavito et al. [2]

Precision 0.875 0.871 0.767
Recall 0.898 0.874 0.559 0.859
F1-score 0.886 0.872 0.612

BERT
by Siddiq & Santos [4]

Precision 0.883 0.859 0.678
Recall 0.888 0.888 0.546 0.858
F1-score 0.885 0.873 0.605

seBERT (BERT)
by Trautsch & Herbold [5]

Precision 0.866 0.864 0.731
Recall 0.906 0.877 0.487 0.857
F1-score 0.886 0.871 0.584

XLNet
by Bharadwaj & Kadam [1]

Precision 0.879 0.853 0.706
Recall 0.885 0.890 0.534 0.856
F1-score 0.882 0.871 0.608

BERT
by Bharadwaj & Kadam [1]

Precision 0.875 0.866 0.660
Recall 0.892 0.871 0.570 0.855
F1-score 0.883 0.868 0.611

MLP
by Colavito et al. [2]

Precision 0.893 0.879 0.472
Recall 0.834 0.839 0.753 0.829
F1-score 0.863 0.859 0.581

Logistic Regression
by Izadi [3]

Precision 0.841 0.822 0.655
Recall 0.867 0.850 0.432 0.822
F1-score 0.854 0.835 0.521

Baseline (fastText)
by Kallis et al. [8, 9]

Precision 0.811 0.844 0.669
Recall 0.904 0.815 0.336 0.818
F1-score 0.855 0.830 0.447

Perceptron (MLP) model that used both textual and author infor-
mation. As before, the authors preprocessed the issues by replacing
textual elements such as images, URLs, email addresses, numbers,
and usernames with predefined tags.

Siddiq and Santos [4] proposed a BERT-based classifier, fine-
tuned using the issue title and body. Preprocessing included removal
of repeating white space characters and replacement of tabs and
line breaks with spaces.

Trautsch and Herbold [5] fine-tuned seBERT [17], a model for
the software engineering domain that is pretrained using posts
from Stack Overflow and issues/commit messages from the repos-
itories of open source projects. The model was fine-tuned using
the issue text (title and body) after preprocessing (e.g., replacement
of line breaks with spaces and removal of repeating white space
characters).
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5 CLASSIFIER EVALUATION AND RESULTS
Based on the replication package provided by each team, we repli-
cated the results reported in their papers [1–5]. Specifically, we
executed the code that each team provided, using cloud instances
equipped with a A100 GPU. Training and fine-tuning lasted up
to 14 hours and GPU memory usage peaked at 16 GB for some
replication packages.

The classification performance obtained by the proposed clas-
sifiers on the test set is shown in Table 1. First of all, we observe
that all the proposed classifiers outperform the baseline model on
average (across all the three issue types). While the classical models
(MLP and Logistic Regression) achieve higher performance, the
improvement is small (0.004 and 0.011). The improvements seem
to come from the higher performance achieved for questions. The
remaining classifiers, based on BERT, achieve a comparable average
classification performance (0.855 - 0.872) among them. CatIss is the
one with the highest overall performance (0.054 higher than fast-
Text). Compared to fastText and the other models, CatIss achieves
the highest average F1-score over the three issue types. Given that
these models are based on BERT, we conjecture that the main rea-
son for the CatIss’ superior performance is due to the additional
data processing that was applied, most notable the de-duplication
of the training issues. Additionally, it is unclear if these models
would have a notable effect in a real-life issue classification sce-
nario, given the moderate improvements with respect to fastText
and the classical models. We also note that the BERT-based models
might be resource intensive while the other models have a lower
computational overhead.

Based on the classification results, we rank the five contestant
teams as follows:

a) Izadi [3] takes the first place in the competition with their
CatIss approach (0.872 micro avg. F1-score).

b) Bharadwaj and Kadam [1] occupy the second place with
their RoBERTa and CodeBERT approach (0.865 and 0.862
micro avg. F1-score, respectively).

c) The remaining teams (Colavito et al. [2], Siddiq and San-
tos [4], and Trautsch and Herbold [5]) are placed in the third
position of the competition as their best classifiers achieved
virtually the same performance (0.855 - 0.859 micro avg. F1-
score).

6 CONCLUSIONS AND FINAL REMARKS
The NLBSE’22 Tool Competition attracted five teams that proposed
a diverse set of classification models to automatically classify issues
as bugs, enhancements, or questions. Most of these classifiers utilized
BERT, a state-of-the-art language model based on the Transformer
architecture, leveraging various information sources from the is-
sues. While most of these classifiers achieved comparable average
classification performance, CatIss by Izadi [3] performed best by
a considerable margin. Additional pre-processing to the issues ap-
pear to be the main factor for achieving such performance. We
expect that future editions of the competition would lead to more
accurate models as well as their application to additional software
engineering tasks that require the analysis and processing of tex-
tual artifacts. We plan to extend the competition with techniques

previously used for user review analysis [18–21], for classifying
code comments [22], or for the analysis of bug reports [23–25].
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