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ABSTRACT

One of the main challenges for fault detection in commercial
fleets of machines is the lack of annotated data from the faulty
condition. The use of supervised algorithms for anomaly de-
tection or fault diagnosis is often unrealistic in this case. One
approach to overcome this challenge is to augment the avail-
able normal data by generating synthetic anomalous data that
represents faulty conditions. In this paper we apply this ap-
proach to the detection of faults in the tracking system of solar
panels in utility-scale photovoltaic (PV) power plants. We de-
velop a physical model in order to augment the training data
for a deep convolutional neural network. We show that the
physics informed learning algorithm is capable of detecting
faults in an accurate and robust manner under diverse weather
conditions, outperforming a purely data-driven approach. De-
veloping and testing the algorithm with real operational data
ensures its efficient deployment for PV power plants that are
monitored at string level. This in turn enables the early de-
tection of root causes for power losses, thereby contributing
to the accelerated adoption of solar energy at utility scale.

1. INTRODUCTION

A central and very common challenge for commercial ap-
plications of machine learning (ML) algorithms for machine
fault detection and diagnosis is the lack of annotated data un-
der faulty machine conditions. This makes the task of train-
ing fully supervised fault detection and diagnosis (FDD) al-
gorithms using real operational data close to impossible (Fink
et al., 2020).

As a result, a very common approach to fault detection is
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based on training data from normal (healthy) conditions ex-
clusively. In this case, anomalies are detected as deviations
from the machine behavior expected by the normal state model
(Fink et al., 2020). The disadvantage of such models, how-
ever, is that they typically allow for anomaly detection but
do not enable diagnosis of the root cause of the anomaly.
In order to proceed towards data-driven diagnostics, a com-
bination of engineering and physical knowledge is essential
(Rausch, Goebel, Eklund, & Brunell, 2005). The benefit of
hybrid approaches, combining physics with machine learning
methods has been demonstrated in diverse application fields
and can be achieved in various manners (Karniadakis et al.,
2021). One way is by augmenting the training data based on
physical models. In PHM applications, such data augmen-
tation can be done by simulating the system behavior under
healthy conditions as well as under degraded or faulty condi-
tions, and using data from the simulation model to train ML
models.

In this paper we suggest a somewhat different hybrid ap-
proach: instead of using physical models to simulate the en-
tire system, we use it to artificially synthesize faulty data pat-
terns from existing healthy data. The synthetic fault data can
then be used to augment the real operational healthy data in
order to train a binary classifier between healthy and faulty
input data. The performance of the classifier is then tested on
operational data which includes real faults.

We demonstrate the above hybrid approach to fault detection
in utility-scale operational photovoltaic (PV) power plants.
One of the common fault mechanisms in PV plants are tracker
faults. Solar trackers are devices that orient the solar panels
towards the sun, thereby maximizing the amount of energy
produced from a fixed amount of installed power generating
capacity (Racharla & Rajan, 2017). A tracker fault usually
occurs when the tracker gets stuck at a certain orientation in-
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stead of tracking the sun.

Tracker faults can lead to a significant reduction in the power
produced by the PV strings that are mounted on the faulty
trackers. Early and automatic detection, diagnosis and lo-
calization of such faults can therefore prevent large produc-
tion losses, thereby increasing the cost-effectiveness of solar
energy and thus helping to accelerate the transition towards
renewable energy sources. Despite the potential efficiency
gains, solar tracker FDD has not yet been addressed in the
scientific literature.

ML and in particular Deep Learning (DL) algorithms have
been developed for FDD of other fault types in solar plants
(Mellit, Tina, & Kalogirou, 2018; Haque, Bharath, Khan,
Khan, & Jaffery, 2019; Mansouri, Trabelsi, Nounou, & Nounou,
2021; Pillai & Rajasekar, 2018; Triki-Lahiani, Abdelghani, &
Slama-Belkhodja, 2018). However, only very few of those al-
gorithms have reached commercial deployment. Some of the
reasons for this are related to the development process of the
algorithms. In most published researches, the algorithms are
trained and tested on synthetic data, either from simulations
(Chine et al., 2016) or from well-controlled experiments on
small or medium scale PV devices (Chen, Chen, Wu, Cheng,
& Lin, 2019; Li, Delpha, Diallo, & Migan-Dubois, 2021; Gao
& Wai, 2020). In such conditions, it is difficult to induce re-
alistic noise sources such as mixture of several fault types
and diversity of operating conditions. Moreover, synthetic
data can be generated at an arbitrary granularity level: except
for very few research works (Guerriero, Piegari, Rizzo, &
Daliento, 2017; Skomedal, Øgaard, Selj, Haug, & Marstein,
2019), all models assume data availability from single PV
panels, despite the fact that real operational data is usually
available at the level of PV-strings or even inverters, poten-
tially gathering information from hundreds or thousands of
panels. Thus, algorithms that are developed under synthetic
conditions are not directly usable for commercial deployment.
Another class of research focuses on deep learning algorithms
for FDD based on image data collected by drones (Daliento
et al., 2017). Since this is an expensive solution, requiring
designated hardware, such algorithms are rarely deployed op-
erationally.

In the following we suggest an algorithm for automatic tracker
fault detection based on operationally available power data
and use physics informed deep learning (PIDL) to augment
the data. We train a Convolutional Neural Network (CNN)
using data from an operational PV plant under various healthy
(normal) conditions. The plant is monitored at string level,
thus the input to the CNN is the measured produced power
of the single PV strings. The training data is augmented by
synthesizing faulty data from healthy data using a physical
model that accounts for the mechanism of tracker faults. As
we show below, the hybrid approach of combining available
data with physical models enables accurate fault detection on

unseen data from the operational PV plant.

The contributions of this paper are the following:

• We suggest an algorithm for tracker FD in grid-scale PV
plants that is developed and tested on data from a real
operational plant. As such, it is ready for deployment on
string-level monitored PV plants with no need for addi-
tional data acquisition.

• The algorithm combines deep learning with physical mod-
els. As a result it allows for high fidelity fault detection
even in the absence of real data under faulty conditions.
Moreover, the approach is extendable to fault classifica-
tion given physical models for more fault mechanisms in
this system.

• The physical knowledge is not used to model the entire
system under healthy conditions. Instead, it is used to
incorporate a known fault mechanism in the real opera-
tional healthy data. This PI approach is capable of cap-
turing various complex properties of the real data without
having a precise physical model for them.

• We introduce a data-driven pre-processing of the inputs
and show that it helps to prevent over-fitting to the syn-
thetic fault data. This enables tracker FD on real data
even under complex weather conditions such as cloud
coverage, without the need for additional satellite data.

• We introduce physics informed stochastic contributions
into the fault simulation model. We show that this im-
proves the performance and the robustness of the fault
detection task.

• High performance FDD with operational data is often re-
garded as a challenge, due to the strong heterogeneity
and complexity of such data. Our approach to data aug-
mentation takes advantage of this heterogeneity, using it
to diversify the training data in a physical manner.

2. METHOD

In order to bridge the gap between the extensive body of re-
search on one hand and the dilute commercial deployment
on the other hand, FDD algorithms for PV plants must rely
on real operational data. One obvious challenge here is the
scarcity of annotated data from faulty regimes. Since faults
are rare and very diverse in nature, this is a general challenge
in PHM applications aimed at detecting and diagnosing faults
in technical assets.

In this paper we tackle this problem by synthesizing data un-
der faulty conditions. The faulty data is generated by combin-
ing a physical model of the fault mechanism with available
healthy data from an operational power plant. For simplicity
we focus in the present research on a single fault type, tracker
faults. The fault occurs when a tracker stops at a fixed angle
instead of tracking the sun at any given moment. The effect
of a tracker fault is particularly easy to observe if we look
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Figure 1. Daily profiles with and without tracker faults. A plant-wide reference power production (black dotted) is compared
with the power produced by a string mounted on a faulty tracker (red solid). The normalized power (normalized by the maximal
possible power for a single string) is plotted against time during two days: (a) a day with clear sky (b) a day with a strong cloud
coverage.
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Figure 2. Daily profiles with and without simulated tracker faults. A plant-wide reference power production (black dotted) is
compared with the simulation results for the power produced by string mounted on a faulty tracker (red solid), and with a real
healthy profile used for the simulation (green dashed). The normalized power (normalized by the maximal possible power for
a single string) is plotted against time during two days: (a) a day with clear sky (b) a day with a strong cloud coverage.

at a daily power production profile of a single PV string on
a day with a clear sky (no clouds). This is shown in Figure
1(a). The solid red curve is a daily profile of a string mounted
on a faulty tracker that was stuck when oriented towards west.
The dashed line represents a reference for a healthy string.The
calculation of the daily reference power is explained below in
subsection 2.2. Figure 1(b) shows a similar scenario on a
cloudy day, demonstrating the large diversity of daily profiles
depending on the environmental conditions.

The data we use for this research is the produced power of an
operational PV plant with 624 strings. The power is available
for each string with a time resolution of 15 minutes. The en-
tire data set includes data from several years. Here we use one
year data for training the algorithms and another year for test-
ing. It is important to note that operational solar power data
displays a wide variety of phenomena such as heavy cloud
coverage, sporadic clouds over part of the plant, partial shad-

ing, as well as natural degradation, and under-performance of
random strings. A key challenge is to detect daily profiles af-
fected by tracker faults in such heterogeneous and noisy data.

In the following subsection we describe the model used in or-
der to synthesize daily profiles of PV strings that suffer from
power losses due to tracker faults.

2.1. Synthetic fault generation

Daily power profiles of strings with tracker faults are gen-
erated by corrupting daily profiles of healthy strings, mea-
sured in a large scale operational solar plant. The corruption
is done based on a physical model of a tracker, which can
be stuck at a certain tilt angle. As a result, the tilt angle of
the panels mounted on this tracker is no longer optimal at
any given moment, and the power production from the pan-
els is reduced compared to the optimum. The total produced
power of a string s depends on the irradiance absorbed by its
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PV-panels. This irradiance is composed of three components:
(i) the beam contribution G

(B)
s which is the direct sun light

reaching the panels (ii) the ground component G(G)
s , denot-

ing light that reaches the panels after being reflected off the
ground and (iii) the diffuse component G(D)

s denoting light
resulting from all other reflections. For the sake of simplicity
we assume that the diffuse component and ground reflected
component are independent of the tilt angle and approximate
the total irradiance onto a string s as

Gs = G(B)
s +G(D)

s , (1)

where G(D)
s denotes the total irradiance of all diffuse sources.

The beam component is given by the direct normal irradiance
GN reduced by cos θi where θi is the angle of incidence. The
irradiance absorbed by the panels is further reduced by small
IAM losses (array-incidence losses) which we estimate using
the Ashrae parametrization (A.F. Souka, 1966); fIAM(θi) =
1−b0(1/ cos θi−1). The beam component at incidence angle
θi is thus

G(B)
s = GN cos θi · fIAM(θi) (2)

The IAM reduction of the diffuse component is neglected. In
addition we assume that if the tracker is intact, the diffuse
component amounts to a fixed fraction of the total irradiance,
G

(D)
s = γGs. This allows us to express the total irradiance

Gs for string s which is tilted at an arbitrary incidence angle
θi as function of the expected irradiance G∗

s at the optimal
incidence angle θ∗i :

Gs =

[
(1− γ)

cos θi · fIAM(θi)

cos θ∗i · fIAM(θ∗i )
+ γ

]
G∗

s (3)

The angle θ∗i can be calculated using the python library pvlib
(William F. Holmgren & Mikofski, 2018) to implement the
NREL model for the optimal tracker tilt angle (Anderson &
Mikofski, 2020) . Thus, from a given power production pro-
file xh(t) of a normal functioning string, assuming it is opti-
mally tracked and follows θ∗i (t) at any moment t during the
day, we can generate a faulty profile xf (t) of a string which
is stuck at a fixed angle θ0 using

xf (t) =

[
(1− γ)

cos θ0 · fIAM(θ0)

cos θ∗i (t) · fIAM(θ∗i (t))
+ γ

]
xh(t). (4)

The faulty profiles for the training set are created by sam-
pling different values of θ0 out of a uniform distribution. In
this way we cover a variety of possible tracker faults. Initial
values for the model parameters b0 and γ are estimated based
on physical knowledge. The values are further calibrated us-
ing 10 samples of faulty profiles from the operational data
(that are then excluded from the test set) and fitting them by
minimizing the RMSE. This yields the estimated values of
b0 = γ = 0.05. However, as will be demonstrated below, the
model parameters do not have to be calibrated very precisely,

as they will eventually be drawn from a uniform distribution
around the estimated values in order to allow the synthesis of
various fault characteristics.

It is important to note that the method we use here allows us
to generate faulty profiles on clear days as well as on cloudy
days, since the corrupted faulty profile is expressed in rela-
tion to the expected healthy profile of the same day, irrespec-
tive of the weather conditions. In addition, using real oper-
ational power profiles as a starting point for fault synthesis
naturally covers a wide variety of realistic situations (related
to environmental or operational conditions), thus augmenting
the training data in a physical manner. Moreover, it allows
us to avoid using meteorological information such as irradi-
ance, which can suffer from inaccuracies. In other words, the
physics informed approach we introduce does not involve a
full model of the normal functioning system. Instead, it in-
corporates faults into the available operational data from the
real healthy system. This approach accounts for various com-
plex properties of the healthy data without the need for an
accurate physical model that captures all of them.

Figure 2 shows two examples of faulty profiles generated
from healthy profiles in the way described above. The profile
in 2(a) was taken under clear sky and the one in 2(b) under
cloudy conditions. The two plots show in dotted lines the ref-
erence profiles of the same day, representing healthy power
production given the daily irradiance profile. The calculation
of the daily reference power is explained below in subsection
2.2.

2.1.1. Improved fault simulation: additional power losses

A further step towards synthesizing realistic fault profiles can
be achieved by modeling a certain amount of additional power
losses in addition to tracker faults. These can result for exam-
ple from small amounts of soiling or panel degradation that
are assumed to reduce the power production by a fixed factor,

xfn(t) = Cp · xf (t) (5)

where the power factor Cp is a fraction between 0 and 1.
When synthesizing the faulty profiles xfn we draw the factor
Cp out of a uniform distribution between 0.8 and 1, in order
to model a variable small amount of performance losses. Al-
lowing for a random modification of the daily profiles helps
to augment the training data in a physics informed manner.

In Section 3 we compare the FD performance of two classi-
fiers based on different models for the synthetic faulty pro-
files, thus corresponding to two data augmentation schemes:

Model A: the faulty profiles xf (t) are generated using Eq.
4 alone to simulate tracker faults.
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Figure 3. Precision-recall curves for two physics informed
models. (a) Model A generates synthetic tracker fault data
for training. (b) Model B includes additional power losses on
top of tracker faults. The precision and recall are evaluated
on one year of operational data including healthy periods and
tracker faults. Each panel shows the results of 10 training
runs and their median (thick curve). The AUC of the median
curve is given in brackets.

Model B: the faulty profiles xfn(t) are generated using Eq.
4 followed by Eq. 5, thus simulating mixed effects of tracker
faults with additional power losses. The healthy training pro-
files are modified using Eq. 5 only. We introduce additional
stochastic elements into the entire training set by allowing
the values of the constants b0 and γ to be drawn from nor-
mal distributions around the empirical values of 0.05 when
generating synthetic faulty profiles.

2.2. CNN for fault classification

The synthetic generation of faulty profiles allows us to gen-
erate an arbitrary amount of faulty samples. As a result, the
fault detection task can be carried out by means of supervised
classification methods, trained with balanced inputs from both
classes. The synthetic faulty power profiles are used together
with real healthy profiles to train a binary classifier. The
training data is extracted from one year of operational data

of a PV plant with 624 strings. It includes 170’000 healthy
daily profiles, each one of a single string, and 170’000 syn-
thetic faulty profiles generated from the healthy profiles as
explained above.

For the classification task we use a convolutional neural net-
work (CNN) with three one-dimensional convolutional lay-
ers followed by two fully-connected layers. The convolu-
tional layers enable time-correlated feature extraction from
the time-series inputs. The network architecture was opti-
mized using a grid search on a validation data set, resulting
in 30’000 trainable parameters. The hyperparameters which
were tuned this way are the number of convolutional layers,
the number of filters and the learning rate.

The raw power data is pre-processed before feeding it into
the CNN. The pre-processing includes calculating a reference
for a healthy daily power profile for each day. The reference
profile xr(t) is calculated by taking the 0.9 quantile over all
strings in the plant at time t, such that xr = F−1(0.9), where
F (x) is the empirical cumulative distribution function. For
each daily profile x(t) we then calculate the deviation from
the reference profile,

xd(t) = xr(t)− x(t). (6)

The input into the CNN is the deviation profile xd(t) rather
than the raw daily profile x(t). This allows an accurate detec-
tion of deviation from the normal power production irrespec-
tive of the weather conditions. In subsection 3.1.1 we demon-
strate the advantage of the pre-processing step over using raw
power profiles as inputs.

3. RESULTS

To evaluate the performance of the method we use test data of
one year from the same operational PV plant used for train-
ing. During this year we manually labeled 417 daily profiles
as clearly suffering from tracker faults, and 94’333 profiles
as healthy. Other known fault types or unclear cases were
filtered out from the training and the test data.

Figure 3 shows the healthy/faulty classification performance
in terms of precision-recall plots. In panel (a) the synthetic
fault profiles of the training data were generated using simula-
tion model A, i.e without simulating additional power losses.
Panel (b) displays the results when the CNN was trained with
faulty profiles generated using model B, which includes small
additional power losses on top of tracker faults as explained
in Subsection 2.1.1. In each panel we display curves of 10
training runs along with the curve resulting from the ensem-
ble median classifier. The runs differ from each other in the
following stochastic elements: (i) random weight initializa-
tion (ii) random batch splits (iii) randomly drawn parame-
ters of the physical model which generates the faulty profiles.
This implies that the faulty training data is different in each of
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Figure 4. Performance comparison of two data-augmentation models. Four daily (normalized) power production profiles are
shown as examples for the improved fault detection performance of model B compared to model A. (a) and (b) are days with
no true tracker faults. Model A wrongly detected them as faulty with anomaly scores 0.88 and 0.95 respectively. Model B
identified them as healthy with scores 0.005 and 0.02 respectively. (c) and (d) are days with true tracker faults that were not
detected with model A (scores 0.02 and 0.09) but detect with model B (scores 0.91 and 1.0).

the 10 runs. In model B the healthy training data is randomly
modified as well. A comparison of the two panels of Fig. 3
shows that accounting for possible added power losses in the
data leads to a considerable improvement of the classifica-
tion performance with an Area Under Curve (AUC) of 0.97
with model B compared to 0.94 with model A. Even more
importantly, the classification results based on model B are
significantly more reproducible, with a lower variability over
multiple training runs, and is therefore more robust against
stochastic effects which are typical for noisy operational data.

Figure 4 displays typical examples in which model B outper-
forms model A. The red solid power profiles in panels (a) and
(b) were measured in strings with no tracker faults. The re-
duced power production observed in these strings compared
to the plant reference for the same day (black dotted curve)
results from root causes that are unrelated to tracker faults.
However, using model A these profiles obtained an anomaly
score close to 1 (in this case the classifier outputs were 0.88
and 0.95 for (a) and (b) respectively). This means that they
would be classified as ”tracker fault” with a very high confi-
dence. On the other hand, model B correctly classified them
as healthy with an anomaly score close to 0 (in this case 0.005
and 0.02 for (a) and (b) respectively).

panels (c) and (d) demonstrate the opposite case: the two red

curves correspond to strings suffering from true tracker faults
that were clearly observed using the direct tracker positions
(available in this case for labeling purposes, but not available
in all operational plants). The two profiles were classified as
healthy (anomaly scores 0.02 and 0.09 respectively) by model
A, and as faulty (anomaly scores 0.91 and 1.0 respectively)
by model B.

The four examples above demonstrate that model B, which is
trained to recognize additional power losses, can distinguish
such losses from losses due to tracker faults. It thus correctly
classifies string power profiles with such losses as ”healthy”
with respect to tracker faults, and is not likely to generate
false positives in this case. Moreover, it detects true tracker
faults even under complex conditions, i.e in cases of com-
bined losses due to tracker faults and other loss mechanisms
(e.g cloudy weather or degraded performance). These two
facts leads to a significantly improved FD performance and
increased robustness of model B compared to model A.

3.1. Benchmarking

In order to justify the most important contributions of our
physics informed model we compare the results with two bench-
marks. The first one is aimed at evaluating the importance of
the pre-processing step, in which we generate the deviation
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Figure 5. The effect of pre-processing the inputs using a daily
reference profile. The fault classification performance of two
models is evaluated in terms of their precision-recall curves.
A physics informed (PI) classifier with raw power profiles as
inputs is compared to a PI classifer with pre-processed pro-
files as inputs. The performance is evaluated on two test data
sets: (a) with synthetic faults simulated using model B (b)
with real annotated faults from operational data. Each panel
shows the results of 10 training runs and their median (thick
curves). The AUC of the median curve is given in brackets.

from a data-driven reference power profile. The second one
evaluates the significance of incorporating physical informa-
tion in the DL model.

3.1.1. Raw vs. pre-processed inputs

As inputs to the classifier CNN we use the daily difference
xd(t) between the produced power x(t) and a reference power
production xr(t), as explained in section 2.2. It turns out that
using the power production difference instead of the power
itself is an important pre-processing step prior to the train-
ing. In order to demonstrate the benefit of this step, we com-
pare two classifiers. The first one is trained to classify the
raw power production profiles x(t), without pre-processing
the data using a daily reference profile. The second one is
trained to classify xd(t), the power differences compared to

a daily reference power production calculated every day by
taking the 0.9 quantile over all strings. In both cases we
use model B for the synthetic generation of faulty profiles,
such that the only difference between the models is in the
pre-processing of the data. Figure 5 shows the results of the
comparison with and without the daily reference, which are
denoted as ”pre-processed” and ”raw inputs” respectively. In
panel (a) we compare the precision-recall curves of the two
models, evaluated on a data set with synthetically generated
tracker faults. In panel (b) the performance is evaluated using
a full year of operational data including real tracker faults.
The performance on synthetic faults shows that both classi-
fiers were trained properly to classify daily power profiles
into healthy and faulty, independent of whether the data is
pre-processed or not. However, the generalization of the two
classifiers to real faults is strikingly different: our suggested
model, using the pre-processed profiles performs almost as
well on real faults (AUC = 0.97) as on simulated faults
(AUC = 0.99). In contrast to this, the model which clas-
sifies the raw daily profiles, shows a very poor performance
on real faults, with weak reproducibility, that is, very strong
fluctuations between different training runs. This behavior
suggests that training the CNN to classify the relative power
production with respect to a plant-wide reference production
helps to avoid over-fitting to the synthetic faults, and enables
excellent generalization from synthetic to real data. A de-
tailed analysis of the results provides an explanation to this
fact: the ”raw” classifier has a hard time to distinguish power
losses due to tracker faults from power losses due to cloud
coverage, whereas the classifier of the pre-processed relative
profiles avoids this problem by accounting for cloud coverage
in the reference profile.

We conclude that using a robust data-driven method to derive
a daily power production reference, and training the CNN to
classify the relative power profiles compared to this reference
enable a highly accurate and reproducible tracker fault detec-
tion, even under bad weather conditions.

3.1.2. PIDL vs. a purely data-driven model

The augmentation of the training data based on a physical
fault model allows us to implement supervised learning in the
absence of true fault labels. A common alternative is a semi-
supervised approach also known as normal state models. In
this case a ML model is trained with normal (healthy) data
exclusively and deviations from the predicted normal condi-
tion are monitored in real time in order to detect anomalies. A
widely used normal state model is an autoencoder (AE) which
is trained to reconstruct healthy signals. At prediction time,
large reconstruction errors are associated with faulty condi-
tions, thereby serving as anomaly or fault indicators (Zhou
& Paffenroth, 2017). Such an anomaly detection algorithm
requires no data under faulty conditions, and can be trained
with healthy data only, making the physics informed fault
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Figure 6. Physics informed vs. pure data driven models. The
fault classification performance of two models is evaluated in
terms of their precision-recall curves. A purely data-driven
convolutional autoencoder is compared with a Physics In-
formed (PI) deep learning model on two test data sets: (a)
with synthetic faults simulated using model B (b) with real
annotated faults from operational data. For each model we
show the results of 10 training runs and their median (thick
curve). The AUC of the median curve is given in brackets.

synthesis obsolete. In the following we compare the pure
data-driven approach based on Convolutional AE (CAE) with
our suggested physics informed (PI) deep learning approach.
We note that we chose an AE architecture with convolutional
layers in order to compare to a model with similar feature ex-
traction layers as in the PI classifier based on a CNN. We note
that each one of the two model architectures was optimized
individually on the validation data, resulting in a similar num-
ber of trainable parameters. Based on the observation that the
pre-processed inputs improve the performance compared to
the raw signals, we train both the PI and the data-driven mod-
els with the same pre-processed input data xd(t). In this way
the two models differ primarily in the presence or absence of
physical information about the fault mechanism in addition
to the data. The CNN classifier utilizes this physical infor-
mation whereas the CAE is fed with operational data only.
This allows us to evaluate the benefit of augmenting the data

based on physical information. A detailed comparison with
other classifiers and/or other anomaly detection approaches
goes beyond the scope of this paper.

Figure 6(a) compares the precision-recall performance of the
data-driven and the PI models, evaluated on the test data set
with synthetic generated faults. The performance of the PI
model, which has been trained with data drawn from the same
distribution, is clearly better. Nevertheless, the purely data-
driven CAE model achieves a good performance on this data.
This situation is very different when comparing the perfor-
mance of the two models on the operational test data contain-
ing one year of data from both healthy and faulty trackers, as
shown in Figure 6(b). In this case the data-driven performs
poorly whereas the PI model performs almost as well as with
synthetically generated faults. This implies that supplement-
ing the data-driven model with physical information about the
fault mechanism allows the model to generalize much better
from synthetic to real faults. Moreover, the outcome repro-
ducibility of the PI model in multiple training runs is consid-
erably higher. Its higher FD performance together with its
robustness against stochastic effects make the PI model very
attractive for operational deployment.

For a practical deployment of the PI framework, an opera-
tional point along the PR curve must be selected. This amounts
to setting a specific threshold for the detection of anomalies,
which must be done irrespective of the method in use. Con-
sidering the fault detection task at hand, a threshold which
corresponds to a very high precision is often favored from a
practical point of view. Such a threshold ensures a low false
positive rate, thereby avoiding a situation in which techni-
cians are sent to a remote location unnecessarily due to a false
alarm.

In Figure 7 we compare the performance of various models at
such a high precision operational point. For each model we
fixed a classification (or fault detection) threshold that guar-
anteed a precision score of 0.99 on the test data. We then
compare the resulting confusion matrices of three models: (i)
the data driven CAE (ii) the PI model trained with faults gen-
erated with model A (iii) the PI model trained with faults
generated with model B. In panels (a)-(c) we compare the
confusion matrices of the models on a test set with synthetic
faults, where healthy and faulty profiles are equally repre-
sented. As expected, for a given precision score (correspond-
ing to a given false positive ratio) both PI models obtain a
lower fraction of false negatives (FN) than the purely data
driven model. This means that the PI models are capable of
detecting faults which are missed by the data driven model.
Interestingly, the PI model A performs better on the synthetic
faults than the PI model B, which accounts for stochastic ef-
fects in the training data. This is, however, no longer the
case when the models are tested on operational data with real
faults, see panels (d)-(f). In the latter case, the stochastic ef-
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Figure 7. Confusion matrices for model comparison. The confusion matrices for three models: (i) a purely data driven model
(ii) a PIDL model trained with faults generated using model A (iii) a PIDL model trained with faults generated using model
B. The models are compared on two test sets: a balanced test set with synthetic faults in (a)-(c) and a test set of one year of
operational data with real faults in (d)-(f).

fects inserted into model B improve the generalization capa-
bilities of this model. This is in contrast to model A, whose
performance is considerably worse when tested on real faults,
implying that this model over-fits the synthetic training data.
For a fixed precision score of 0.99, the PI model B reduces
the missed detections to FN = 25, compared to 63 with PI
model A, and 186 with the data driven model.

The test data we used in this research originates from a single
PV plant. In future research we will test the accuracy and
robustness of our approach on data from other plants, as well
as extend the outcomes to plants that are monitored at inverter
level only. Potential improvements of the simulation model
include accounting for the effect of clouds more accurately
(e.g by exploring higher values of the parameter γ which are
more appropriate for cloudy days). An obvious future goal
is the extension of this algorithm to be able to diagnose all
common fault mechanisms in utility scale PV plants.

4. CONCLUSIONS

We developed a physics informed deep learning framework
for the automatic detection of tracker faults in utility scale
PV plants. A classification CNN is fed with training data
containing real healthy daily power profiles of single strings
and augmented by synthetic faulty profiles from a physics-
based simulation of tracker faults. We demonstrate the accu-
rate and robust fault detection enabled by this algorithm on
test data from a real operational PV power plant. Moreover,
we demonstrate the importance of two key ingredients of our
approach, which allow for generalization of the task to the
operational data. The first one is a pre-processing step of the
input data, using a purely data-driven reference for normal
power production. The second one is the combination of a
physics informed model and a deep-learning algorithm. We
showed that a PIDL model significantly outperforms a purely
data-driven DL model, both in accuracy and in robustness. In
future research the approach will be extended to include addi-
tional fault types, and its validity will be tested on data from

multiple plants.
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