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Unmanned Aerial Vehicles (UAVs) are nowadays used in a variety of applications. Given the cyber-physical nature of UAVs,

software defects in these systems can cause issues with safety-critical implications. An important aspect of the lifecycle of

UAV software is to minimize the possibility of harming humans or damaging properties through a continuous process of

hazard identification and safety risk management. Specifically, safety-related concerns typically emerge during the operation

of UAV systems, reported by end-users and developers in the form of issue reports and pull requests. However, popular UAV

systems daily receive tens or hundreds of reports of varying types and quality. To help developers timely identifying and

triaging safety-critical UAV issues, we (i) experiment with automated approaches (previously used for issue classification)

for detecting the safety-related matters appearing in the titles and descriptions of issues and pull requests reported in UAV

platforms, and (ii) propose a categorization of the main hazards and accidents discussed in such issues. Our results (i) show

that shallow machine learning-based approaches can identify safety-related sentences with precision, recall, and F-measure

values of about 80%; and (ii) provide a categorization and description of the relationships between safety issue hazards and

accidents.

CCS Concepts: • Software and its engineering → Maintaining software; Error handling and recovery; Software

safety; • General and reference → Empirical studies.

Additional Key Words and Phrases: Unmanned Aerial Vehicles, Issue Management, Safety Issues, Machine learning, Empirical

study
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1 INTRODUCTION
Unmanned aerial vehicles (UAVs), also known as drones, are autonomous controlled aircrafts used to perform a

wide variety of tasks and are at the heart of the latest and upcoming advancements in various fields. Specifically,

with the continuous improvements in UAV technology, drones, either autonomous or teleoperated, are nowadays
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used in a plethora of application fields, e.g., agriculture [104], disaster management [26], archaeology [149],

delivery [32], and surveillance [12]. This is because drones offer undisputed advantages as they enable long-range

operations at relatively low costs and provide access to dangerous or hostile environments without endangering

humans [11, 176]. With the global UAV market size expected to reach 25.13 billion USD by 2027, showing a

compound annual growth rate of 12.23% compared to 10.72 billion USD in 2019 [51], UAVs usage is expected to

make a real impact on the citizens’ quality of life.

UAVs fall in the category of cyber-physical systems (CPSs), as they (i) continuously sense the changes in the

physical environment in which they are operating through sensors-based analysis [122, 179], (ii) make decisions

based on a pre-programmed logic, and (iii) take physical actions to react to the sensed changes [144, 158]. Given

the safety-critical dimension of UAVs, the aeronautical industry has constantly focused on improving the efficiency,

safety, comfort, and automation of these vehicles. Specifically, the UAV community has successfully developed

and maintained open access projects for the software (firmware) and hardware (flight controller, sensors) for

the drones, such as Ardupilot [5], PX4 [129] (i.e., widely used open-source autopilot software systems), and

Pixhawk [142] (i.e., open standards for drone hardware).

To build reliable UAV systems, developers must (i) consider the changes to the environment proactively, as

the inputs of a UAV can be dynamically fluctuating and uncontrollable depending on environmental changes,

and (ii) deal with the various configurations of hardware devices (e.g., parameters and range of values) [170].

Moreover, considering that UAV software platforms are typically designed for multiple types of hardware, such

as copters, planes, and VTOLs (Vertical Take-Off and Landings), the mapping between the various functions and

the different hardware models need to be verified by developers. Also, it is essential for UAVs that “the possibility
of harm to persons or of property damage is reduced to, and maintained at or below, an acceptable level through a
continuous process of hazard identification and safety risk management" [105].

The automated testing and the real-time monitoring of UAVs to ensure their “desired” behavior are technical

and research challenges that are still open [163, 166]. Due to the cyber-physical nature of UAV systems, it is

difficult to determine whether an autonomous system behaves as expected [121], which hinders the development

and maintenance of UAVs’ underlying software. Specifically, if one or multiple physical variable(s) are out of

their expected range for some time during a scenario, the autonomous system can enter an unexpected state [157]
leading to unexpected behavior that can be potentially harmful to humans (e.g., physical instability, rotating or
hovering in place for too long, terminating the mission immaturely, miss-calculation of positions).

For dealing with such safety-related concerns, there is an increasing interest in adopting agile development

paradigms for safety-critical systems [163], where the identification of hazards and the elicitation of safety

requirements can be performed iteratively [28]. Specifically, these paradigms expect that safety-related concerns

might emerge during the operation phase of UAV systems, provided by users/developers in the form of issue

reports and pull requests [170]. In cyber-physical contexts, developers should pay particular attention to safety-

related issues [6] and promptly react to them as they might lead to harm or damage to people, properties, or

the environment. However, especially in popular projects, tens or hundreds of issues of different types (e.g.,
signaling bugs or asking questions) and quality are reported daily [109, 138], making it hard to quickly identify

safety-related concerns.

This paper aims to provide developers with support in analyzing user-reported issues occurring in UAV

platforms, and identifying sentences describing safety-related concerns. In the last decades, researchers proposed

general-purpose automated solutions aimed at easing the issue management and fixing processes, with approaches

able to classify [100, 109, 139], and prioritize [162, 165], or summarize [39, 40] user-reported issues, and techniques

to detect potential misclassifications [3, 101] and duplications [173] of bug reports. With respect to the existing

body of work, our purpose and classification granularity is different. That is, while previous work automatically

classifies issues along different categories (e.g., bugs, enhancement, etc.), we aim to analyze individual sentences

composing the issues and recognize those describing a safety-related concern. The rationale would be to highlight

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.
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such sentences and therefore provide developers with proper support during the issue triaging and management

phase.

Also, while the sentence classification approach described in this paper would not be strictly tied to the UAV

domain, to the best of our knowledge this is the first work aimed at identifying safety-related concerns in issue

reports related to the UAV domain.

As a first contribution of the paper, we have experimentedwith several machine-learning (ML)-based approaches

previously used in the context of issue classification to evaluate whether and the extent to which such approaches

can identify safety-related sentences in issue reports. When a user or a developer is reporting an issue, every

time a sentence (or even the issue title itself) is related to safety-critical problems, such a sentence is flagged, as

well as the whole bug report. By properly classifying safety-related issues, and highlighting specific sentences

within these issues, projects can properly triage issues, e.g., by prioritizing safety-critical ones over others, and

then developers can focus on specific sentences when performing hazard analysis, i.e., the analysis of situations
or conditions that have the potential to lead to mishaps [115].

To further aid such a hazard analysis in the context of UAV systems, through a manual inspection of 273 safety

issues and pull requests reported in three different open-source UAV platforms, we propose a categorization of the

main hazards and accidents (i.e., unexpected and unwanted events that could cause injury or damage to persons,

equipment, materials, or environment) discussed in such issues. Such a categorization is complementary to the

ones proposed in recent studies concerning drones, which mainly focused on the root causes of UAV-specific

bugs [160, 170] and the uses of bounding functions in UAV systems [120].

In summary, the original contributions of this paper are the following:

• an evaluation of ML-based approaches (previously used in the context of issue labeling) when leveraged

for identifying safety-related sentences contained in user-reported issues of UAV platforms;

• a categorization of the main hazards and accidents occurring in safety-related issues reported in open-

source UAV platforms; and

• a manually-labeled dataset (available for research purposes) of 304 safety issues extracted from three

different UAV platforms hosted on GitHub.

The results of the experiments with different machine learning models for identifying safety-related concerns

in issue reports of UAV software platforms show that Random Forest (RF) obtains precision, recall, and F-measure

values of about 80%, with the model considering hardware-related keywords and text features about concrete

states (or actions) of the UAVs as the most important ones. The RF results are similar to the ones obtained by

using the default implementation of fastText (state-of-art approach for issue classification [108, 109]) in a 10-fold

validation setting. Results of our study also provide insights into the nature of UAV issues, and, in particular, we

found that in the great majority of the considered UAV issue reports, the hazardous circumstances depend on

software-related defects. The most recurrent signaled accidents are related to crashes/collisions, while, in about

40% of the cases, hazards are due to undesired behaviors occurring when the system enters failsafe mode or to

the missing inhibition of certain actions when the system is in specific states.

Replication package. Our replication package, available on Zenodo [43], contains (i) the scripts developed to

pre-process the data used for training the ML models (RQ1) and (ii) the results of the manual validation of issues

(both RQ1 and RQ2).

Paper structure. The rest of the paper is organized as follows. Section 2 briefly provides the background

knowledge about safety-critical systems and UAVs. Section 3 describes our empirical study, including the data, the

research questions, and the methodology followed to answer such questions. The achieved results are reported

and discussed in Section 4, while Section 5 reports the threats to our study’s validity. Finally, Section 6 discusses

the related work, while Section 7 concludes the paper outlining future research directions.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.
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2 BACKGROUND
This section provides background notions about (i) concepts related to safety-critical systems, and (ii) concepts

and terminologies about UAVs.

2.1 Safety-Critical Systems
In the following, we provide relevant definitions related to safety-critical systems (SCSs) that will be the subject

of our study such as the definitions of accident and hazard. At same time, we only briefly elaborate on emerging

types of SCSs, since a full coverage of background on SCSs is available in previous seminal studies [113–119].

A SCS can be considered any system (composed of hardware and/or software) whose failure may cause (i)

death or injury to people, or (ii) damage to equipment/property, or to the environment [152, 167]. Given this

definition, almost any system could be safety-critical [115]. For this reason, the key point in the safety-critical

analysis is not to ensure 100% safety, but, rather, to reduce the risk that a hazardous event occurs. In this context,

emerging SCSs can be represented by robotic systems [151], real-time systems [10], autonomous systems [178],

and more in general CPSs [141].

SCSs complexity poses challenges on scaling agile practices [45, 156] and performing requirements engineering

[126] for SCSs. Important SCS definitions related to the safety of these systems are hazard and accident. An hazard
is defined as “a set of conditions that can lead to an accident, given certain environmental conditions" [115]. For
instance, a hazard in a self-driving vehicle can be due to a sensor failing to detect an obstacle. An accident, also
referred to as a mishap, refers to “events, or series of events, that result in death, injury, occupational illness, damage
to or loss of equipment or property, or environmental harm". [115]. For instance, the hazardous event reported
above can lead to the vehicle hitting a pedestrian (i.e., accident). In this paper, we focus primarily on shed some

more light on the types of hazards and accidents affecting a specific type of autonomous system such as UAV.

2.2 Unmanned Aerial Vehicles Development Cycle

• Polynomial 
Trajectories

• Trajectory 
Optimization

Planning

Perception

• State Estimation
• Mapping

• PID Control
• Model Predictive 

Control
• Iterative Learning 

Control

Control

Sensors

ActuatorsEN
VI
RO

N
M
EN

T

HARDWARE

SOFTWARE

Fig. 1. Overview of development cycle of UAVs
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Figure 1 shows the development cycle of UAVs [140], which includes three software phases (i.e., Perception,
Planning, and Control) as well as the hardware components that interact with the environment.

The Perception phase includes state estimation [47, 50, 134, 143] and mapping [103, 136] steps. The state

estimation step enables navigation and autonomous driving of UAVs [143]. Themapping step consists of computing

obstacles distance information and, complementary to the state estimation step, it generates a 3D model of the

environment (with 3D range measurements [103]) and models unmapped areas at run-time [136].

The Planning phase consists of finding the right trajectory between a starting point and a destination,

with state-of-the-art approaches in this phase leveraging polynomial trajectories[130, 133, 148] and trajectory
optimization [49] strategies. Finally, the Control phase identifies the flight control commands to be executed by

UAVs to safely navigate the environment.

To enable the usage of UAVs in different contexts, their software is equipped with functions and checks enabling

different autonomous or teleoperated flight modes [25, 48, 140, 166]. These are enabled by the use of a Ground

Control Station (GCS), consisting of a set of hardware and software components that enable UAV operators to

communicate with/control the UAVs.

In the following, we elaborate on some of the main flight modes relevant for the conducted research:

• Position Mode: The UAV maintains a consistent location and heading, with manual control of the throttle,

which controls the vertical motion of the UAV.

• Altitude Mode: Ensures that the UAV will level and maintain the current altitude (e.g., in windy conditions).

• Manual/Stabilized Mode: This allows the operators to manually fly a UAV, with self-levels keeping the

stability of pitch axis.

• Failsafe Mode: The UAV lands safely back to the take-off point based on GPS signals (the failsafe mode is

activated when the connection between the UAV and the controller is disconnected).

• Return to Launch (RTL) Mode: The UAV returns to the home position.

• Fence Mode: It consists in geofencing an UAV, which means that the UAV flight will be restricted to a

certain area.

• Follow-me Mode: Instructs the UAV to continuously follow an object of interest (or a person).

• Hold Mode: The UAV keeps its current position.

• Return Mode: Mode used to fly a UAV to safety from a difficult path to a safe destination.

• Mission Mode: The UAV performs a predefined autonomous mission.

• Takeoff Mode: The UAV to take off to a specified altitude position and wait for further input.

• Land Mode: The UAV lands from a certain altitude position to the ground.

• Offboard Mode: The UAV will apply the position, velocity, or altitude setpoint provided over MAVLink,

i.e., a protocol for communicating with small unmanned vehicle.

3 EMPIRICAL STUDY DESIGN
The goal of our study is to analyze safety issues occurring in open-source UAV-related software. The perspective
is of researchers interested to build and improving recommender systems aimed at identifying, prioritizing, and

supporting the issue fixing and management processes for this kind of system. In particular, we (i) investigate

the extent to which automated strategies (previously used in the context of issue classification) can be used for

identifying safety-related concerns occurring in issues reported in UAV platforms, and (ii) qualitatively discuss

the types of hazards and accidents emerging from safety issues in UAV software. The study context consists of
304 safety issues sampled from three well-known open-source UAV software systems.

3.1 ResearchQuestions
Based on the aforementioned goal, our study aims at answering the following research questions:

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.
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Fig. 2. Research Approach Overview

• 𝑅𝑄1: To what extent can machine learning models automatically identify safety-related concerns
in issue reports of UAV software platforms? In this research question, we want to explore whether and

the extent to which automated strategies proposed for issue report classification purposes can help UAV

developers to recognize safety issues. Therefore, we experiment with approaches that leverage textual

analysis and ML techniques to identify safety-related sentences in the titles and descriptions of reported

issues. We argue that this may result particularly useful for the issue management process as it would (i)

allow to automatically label the issue as safety-related, and (ii) highlight the safety-related text, so that it

would be possible to properly analyze it during the issue prioritization process.

• 𝑅𝑄2: What are the main hazards and accidents emerging from safety issues reported in UAV
software platforms? For achieving a more in-depth understanding of the specific types of safety issues

occurring in drone systems, we analyze the hazards and related accidents emerging from safety-related

issues. Specifically, by performing an open coding on 273 safety-related issues extracted from three

different GitHub drone projects, containing at least one sentence describing a safety concern, we propose

a categorization of the main hazards and accidents that occur in such issues. In the first stage, our goal is

to analyze the relationship between hazards and accidents. At the same time, this would pave the way for

automated tools aimed at supporting hazard classification and resolution prioritization (e.g., based on the

possible consequences).

Fig. 2 depicts the research approach we followed to answer our research questions. Our research approach

consists of four phases. The Data Collection phase aims to build the dataset to be used for answering the given

research questions and it is described in Section 3.2. During the phase of Gold Standard Definition, sentences of
the dataset are manually annotated with safety and non-safety labels through a process of individual analysis,

review, and open discussion. This process is detailed in Section 3.3.1. The labeled sentences are then used to

train several ML techniques discussed in Section 3.3.2. Finally, in the Hazards & Accidents phase, the hazards and
the related accidents reported in the safety-related sentences are identified through an approach explained in

Section 3.3.3.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.
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Table 1. Dataset characterization

Project

# Closed # Safety-related # Closed # Safety-related

Issues Issues Pull Requests Pull Requests

Ardupilot 4,529 153 11,815 78

dRonin 691 25 1,452 37

PX4-Autopilot 5,623 3 11,195 8

Total 10,843 181 (1.67%) 24,262 123 (0.51%)

3.2 Data Collection
The study context consists of three open-source UAVs hosted on GitHub, from which we extracted 304 issues

labeled as safety-related. To identify UAV-related projects, we queried GitHub to retrieve all projects having

as topic drone and/or drones, and as main programming language C or C++, the ones predominant for CPS

development [154]. From the list, we removed fork projects, and projects not being forked, and ordered them

based on the number of forks, i.e., used as a proxy of the project’s popularity. As an outcome, we ended up with a

list of 150 candidate UAV-related projects.

Since our goal is to identify and analyze the safety-related issues occurring in UAV platforms, for each project,

we downloaded the set of labels used for tagging the user-reported issues, and filtered out all the projects that

do not have safety-related labels. After the filtering, we ended up with 3 UAV-related projects (as reported in

Table 1), for which we downloaded the whole set of closed issues and pull requests by relying on Perceval [46].

Finally, we filtered out all the issues and pull requests not being labeled with a safety-related label, ending up

with a total of 304 closed issues tagged with at least one safety label.

Table 1 reports, for each project included in our study, the total number of closed issues and pull requests, as

well as, among them how many are labeled as reporting a safety concern. Note that, two out of three projects

included in our study, i.e., Ardupilot and PX4-Autopilot, have been considered as references in other studies

dealing with UAVs [170]. Furthermore, by looking at data reporting in Table 1, even if all the considered projects

use both issues and pull requests for supporting software development and evolution, only a small percentage of

them (1.67% of issues and 0.51% of pull requests) are labeled as discussing safety properties.

For each issue and pull request having a safety-related label, we used the BEE tool [153] to structure its title

and description into sentences. While other bug trackers (e.g., JIRA or Bugzilla) provide explicit fields for issue

descriptions, the GitHub issue tracker does not, and the issue/pull request description is usually provided in the

issue’s first comment. Therefore, similar to previous work [7, 24, 108, 109, 138], here and in the remainder of the

paper, we refer to the first comment of an issue/pull request as the issue description.
As a result, the 304 safety-related issues have been decomposed into 1,916 sentences.

3.3 Analysis method
3.3.1 Definition of the Gold Standard. To check whether it is possible to classify issues (not) reporting safety-

related concerns, we need to properly identify, among the 1,916 sentences, the ones that refer to safety properties.

To do this, all authors (henceforth referred to as coders), performed a manual classification of the sentences,

considering two categories, i.e., safety-related and not.

Identifying the presence of safety concerns in a piece of text is a subjective task, e.g., interpretation of the

text might be different for different individuals or might depend on their cultural background. For this reason,

we conducted a pilot labeling study. Specifically, after having randomly sampled 10 safety-related issues in our

dataset, accounting for 49 sentences, we relied on a plenary meeting (i.e., pilot study), where, upon discussion,

each sentence was properly classified as (not) describing safety-related concerns. Once the coders reached a

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.
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common understanding of the labeling procedure, we assigned the remaining 1,867 sentences to two coders each,

i.e., an average of ≃ 747 sentences for each coder.

At the end of the labeling procedure, an open discussion was performed by adding a third coder, to check all

the sentences for which there were disagreements among the original coders (284 out of 1,867). Even if the coders

agreed in 84.8% of the cases on whether a sentence discusses a safety-related property, it is still possible that they

agreed by chance. For this reason, we computed the Cohen’s k [29] which resulted to be 0.68 (substantial). After

disagreements’ resolution, among the 1,916 sentences in our dataset we identified 837 (43.7%) discussing safety

concerns, while the remaining 1,079 did not. In other words, among the 304 safety-related issues, 274 contain at

least one sentence in the title or description describing a safety-related concern. As regards the 30 safety-labeled

issues in the original dataset that are not being classified as safety-related in our study, we found cases where:

• the description was empty and the title was not clearly reporting a safety concern, such as PR # 13926 [94]

from PX4-Autopilot entitled “navio_sysfs_rc_in: only publish input_rc if connected and all channels are
non-zero” ;

• the safety concerns were discussed in a related issue/pull request pointed out in the description, such as

PR # 1129 [78] from dRonin where the description simply reports the observed behavior, i.e., “battery
is also very low, and stack analysis confirms usage is increased” while the referred issue highlights the

in-flight reset occurring due to the low battery value; and

• the safety concerns are raised later on during the reviewing process of the issue/pull request, such as

issue # 2011 [72] from ardupilot where the first comment simply limited to describe the problem: “We
probably want to keep logging after a parachute release to capture the impact in the logs”, while only reading
the follow-up comments it is possible to acknowledge that the current behavior might lead to the arming

status being inadvertently changed.

The manual inspection of the 274 safety-related issues also revealed that one of these issues [59] aimed at

summarizing multiple and too generic hazardous circumstances when using a tablet ground station as a user

interface. For this reason, we decided not to consider such an issue when conducting the subsequent analysis (i.e.,

the identification of hazards and accidents). The labeled dataset is used as input for addressing both RQ1 and RQ2.

Specifically, the whole labeled dataset (304 issues) is used to experiment with ML models, while the 273 issues

with at least one safety-related sentence in either the title or the description are further classified to determine a

set of hazards and accidents occurring in UAV systems.

3.3.2 𝑅𝑄1: To what extent can machine learning models automatically identify safety-related concerns in issue
reports of UAV software platforms? After the definition of the golden standard, we benchmark different techniques

(proposed for issue report classification purposes) when used to automatically identify safety-related sentences

in the titles and descriptions of UAV-reported issues. The experimented techniques have been used in related

literature to work at the document level (i.e., they consider the whole text in the issue report to automatically label

it). In contrast, since we aim at specifically detecting the safety-related sentences appearing in issue reports to

help developers timely identify safety-related UAV issues and ease the inspection of such issues when performing

hazard analysis, we leveraged the aforementioned approaches to operate at the sentence level. For achieving

this goal, we considered all safety-critical (837) and non-safety-critical (1,079) sentences in our dataset, collected

through the metadata analysis explained in Section 3.3.1, and leveraged the different ML techniques, by applying

the following steps:

• Textual corpus: All the manually-labeled sentences in our dataset are used as an information base to

build a textual corpus that is used in the next steps to extract different types of textual features relevant

to the ML-based classification.
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• Bag of Words (BOW) features extraction: All terms contained in the sentences are indexed and pre-

processed applying stop-word removal (using the English Standard Stop-word list) and stemming (i.e.,
English Snowball Stemmer), to reduce the number of textual features to consider as input to the ML

techniques [9]. The outcome of this step is a Term-by-Document matrix,M, where each column represents

a sentence of our dataset and each row represents a term contained in a generic safety-critical or non-

safety-critical sentence belonging to the 304 issues/pull requests object of the study. Each entry M[𝑖, 𝑗]

of the matrix represents the weight (or relevance) of the i−𝑡ℎ term contained in the j−𝑡ℎ sentence. The

weights in the matrix are determined by using the tf-idf score [9], which allows for identifying the most

important terms occurring in the sentences. The weighted matrix,M𝑡 𝑓 −𝑖𝑑 𝑓 , represents the outcome of

this step.

• Latent Semantic Indexing (LSI) features extraction: LSI is an indexing and retrieval method that uses

singular value decomposition (SVD) to identify relationships between the terms and concepts contained

in the unstructured text [23, 123, 145]. LSI is typically used for its analysis of latent (hidden) semantics in

a text, addressing the problems of polysemy (i.e., a term having a different meaning in different contexts)

and synonymy (i.e., two or more terms denoting the same concept). Using the R package lsa, we applied
LSI (with the standard share of 0.5) to transform the Tf-idf matrix, M𝑡 𝑓 −𝑖𝑑 𝑓 , obtained as an outcome from

the previous step, in a different space, called M𝐿𝑆𝐼 , so that terms having the same meaning are mapped to

the same concept.

• N-gram features extraction: We computed n-grams [127, 175] of size 2, 3, and 4 from each sentence

in our dataset. The weights in the matrix are determined by using the tf-idf score [9], which allows for

identifying the most important n-grams occurring in the sentences. The weighted matrix, M𝑁−𝑔𝑟𝑎𝑚𝑠 ,

represents the outcome of this step.

• OB, EB, and S2R features extraction: The BEE tool [153] verifies, given a bug report, whether a sentence

describes the current and unexpected behavior (OB), the expected behavior (EB), and the steps needed

to reproduce the problem (S2R). Hence, we extracted, for each sentence in our dataset, such additional

features since it could happen, for example, that safety-related concerns may be expressed while describing

the current and undesired behavior. As a result, among the 1,916 sentences, 1,106 describe the current

behavior, 186 report the expected behavior, and no sentences are reporting the steps to reproduce the

problem. Note that, the distribution of OB, EB, and S2R in our sample is in line with previous literature

showing that bug reports very often describe the current behavior, while only 35.2% and 51.4% of the bug

reports detail EB and S2R, respectively [24].

The matrix M𝑂𝐵−𝐸𝐵 (reporting the presence/absence of OB and EB in each sentence) represents the

outcome of this step.

• Classification: We automatically identify safety-critical sentences by adopting various ML models and a

10-fold cross-validation strategy. To check whether the results are biased due to the dataset imbalance

(i.e., the majority of issues and pull requests considered in our dataset originates from ardupilot), we

also report results of a cross-project analysis, in which we use the best performing ML configurations

(identified using 10-fold cross-validation strategy) to train it on the ardupilot sentences and evaluate the

classification performance on the sentences belonging to the other two projects, i.e., PX4-Autopilot and

dRonin.

We experiment with different shallow ML techniques (using Weka
1
), namely standard probabilistic Naive

Bayes classifier, J48 decision tree, Sequential Minimal Optimization (SMO) model for Support Vector

Machines (SVM), Logistic Regression, and Random Forest.

1
http://waikato.github.io/weka/
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The rationale for the choice is to include different types of classifiers, namely, a probabilistic one (Naive

Bayes), a tree-based one (J48), a regression-based one (Logistic Regression) a black-box model that creates

a boundary between data points (SVM), and, finally, an ensemble classifier (Random Forest). These ML

techniques have been previously used for the classification of bug reports [4, 182], user review [38, 39, 139],

and other artifacts [41, 42, 146] textual content.

The ML models are fed with the following combinations of features: M𝐵𝑂𝑊 , M𝐿𝑆𝐼 , M𝐵𝑂𝑊 + M𝑂𝐵−𝐸𝐵 , and
M𝐵𝑂𝑊 + M𝑂𝐵−𝐸𝐵 + M𝑁−𝑔𝑟𝑎𝑚𝑠 . It is important to mention that we did not report other configurations of

features (e.g., M𝑂𝐵−𝐸𝐵 only), since for them we achieved poor experimental results (or no difference in re-

sults compared to other combinations of features). We decided to benchmark shallow ML techniques since,

in cases of limited training data availability, they can still produce comparable or superior results [107]

that allow an easier explainability than those generated by deep neural networks [150].

Complementary to the aforementioned shallow ML models, we experimented with fastText (by using

default values of parameters
2
), a library leveraging word embeddings as internal representation for

text classification created by Facebook’s AI Research lab. FastText is an extension of Word2Vec: while

Word2Vec, under the hood, uses words to predict words, fastText operates at a more granular level

and breaks words into several n-grams (sub-words) [19], benefiting from this information for better

representing rare and out-of-vocabulary words. FastText was successfully used for identifying the correct

labels to assign to GitHub issues [108, 109]. Recent research demonstrated that fastText is among the best

performing classifiers in issue type prediction tasks [100].

It is important to highlight that we initially used the out-of-the-box implementation of all the experimented

ML algorithms (i.e., no hyperparameters were tuned), as we wanted to first estimate the potential lower

bound in the classification performance for the different algorithms, this by experimenting with different

combinations of features (i.e.,M𝐵𝑂𝑊 ,M𝐿𝑆𝐼 , M𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 , andM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 +M𝑁−𝑔𝑟𝑎𝑚𝑠 ).

A range of different optimization algorithms can be used to achieve potentially better results with

respect to the default configuration of parameters of the ML models, with two of the most common

methods represented by Random Search and Grid Search [2, 14, 15]. Grid search is great for spot-checking

combinations that are known to perform well. Then, we experimented with Grid search as hyperparameter

optimization approach [2, 14, 15] to investigate potential optimal combinations of parameters for the

selected shallow ML models. Specifically, with Grid search we experimented with several parameters

combinations of the various ML models (for a total of around 600 experimented combinations) using a

10-fold validation setting, as summarized below:

– For the Decision Tree (J48) we covered all possible combinations of the following parameters:

∗ C (confidenceFactor): Is the confidence factor, and we experimented with values

[0.001, 0.01, 0.05, 0.1, 0.5]

∗ M (minNumObj): Is the minimum number of instances in a leaf, and we experimented with

values [1, 10, 20, 50, 100]

∗ R (reducedErrorPruning): Reduced error pruning is an alternative algorithm for pruning

that focuses on minimizing the statistical error of the tree. We experimented with the following

values [𝑦𝑒𝑠, 𝑛𝑜]

∗ S (subtreeRaising): This is a specific method of pruning whereby a whole set of branches fur-

ther down the tree are moved up to replace branches that were grown above it. We experimented

with the following values of it [𝑦𝑒𝑠, 𝑛𝑜]

– For the SMO model we covered all possible combinations of the following parameters:

2
For further details, see https://fasttext.cc/docs/en/options.html
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∗ C: Represents the complexity parameter, andwe experimentedwith the values [0.1, 0.2, 0.5, 0.8, 1,

10, 50, 100, 500, 1000]

– For the Naive-Bayes we covered all possible combinations of the following parameters:

∗ K: Use Kernel estimator, and we experimented with values [𝑦𝑒𝑠, 𝑛𝑜]

∗ D: use Supervised discretization, and we experimented with values [𝑦𝑒𝑠, 𝑛𝑜]

– For the Logistic Regressionmodel we covered all possible combinations of the following parameters:

∗ R (ridge): Is the Ridge in the log-likelihood, andwe experimentedwith values 𝑙𝑜𝑔𝑠𝑝𝑎𝑐𝑒(2,−9, 𝑛𝑢𝑚 =

25)

– For the Random Forest model we covered all possible combinations of the following parameters:

∗ I (numIterations): Is the number of trees in the forest, and we experimented with values

[5, 10, 100, 1000, 2000]

∗ K (numFeatures): Is the max number of features considered for splitting a node, and we

experimented with values [0, 10, 100, 500, 1000]

∗ depth: Is the maximum depth of the tree (0 unlimited), and we experimented with values

[0, 5, 10, 20]

∗ M (minNumObj): Is the minimum number of instances in a leaf , and we experimented with

values [1, 10, 20, 50, 100]

It is important to note that, the aforementioned Grid search setting results in the application of a 10-fold

cross-validation strategy over all experiments, with the usage of the configuration of features that achieves

the best classification performance when using the default hyperparameter configurations of the ML

models (as it is possible to see in Section 4.1). This means that the first round of experiments with default

parameters had the aim of establishing the best features’ set to train the various ML models (which is

M𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵), while the hyperparameter tuning computed with Grid search focuses on investigating

if it is possible to improve the performance using only the best features’ set.

Evaluation Metrics. To evaluate the performance of the selected ML models, we adopted well-known metrics

used to assess the performance of ML classifiers, namely precision, recall, and F-measure [8]. For this kind of

problem, the choice of such evaluation metrics is dictated by having an indication of:

• the extent to which the experimented classifiers avoid false alarms in terms of safety issues (precision);

• the extent to which the classifiers do not miss safety-related sentences (recall); and

• an aggregation of the above (F-measure).

Furthermore, as a binary classifier may perform very well on a given label and poorly on the other (e.g.,
performing worse than a constant classifier), we report the metrics for all labels (i.e., Safety and Non-Safety,
referring to the safety relevance of issues). As we perform cross-validation, precision, recall, and F-measure are

averaged over the 10 folds.

We statistically compared the performance of different classifiers using the McNemar’s exact test [128] from the

R exact2x2 package 3
. The McNemar’s test is a pairwise proportion tests. The test pairwise compares two classifiers

by analyzing proportion differences on a confusion matrix counting the number of cases where both classifiers

succeed, both fail, the first succeeds and the second fails, and vice versa. Due to multiple comparisons, the resulting

𝑝-values are adjusted using the Benjamini-Hochberg correction [13]. The McNemar’s test is complemented by

the Odds Ratio (OR) effect size measure, which is the ratio between the odds of the experimental and control

group (OR> 1 indicates that the experimental group has higher odds to succeed).

To identify the features that contribute more towards the safety sentence classification, we report feature

importance indications. We do so for the ML technique that performs better. As discussed in Section 4.1, this is

3
https://cran.r-project.org/web/packages/exact2x2/index.html
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the case of Random Forest. Therefore, we compute and report the Mean Decrease Gini (also called Mean Decrease

in Impurity), which is the standard technique to analyze feature importance for Random Forest [20, 53, 125, 164].

3.3.3 𝑅𝑄2: What are the main hazards and accidents emerging from safety issues reported in UAV software platforms?
To identify hazards and related accidents, i.e., events or conditions resulting in unexpected behavior being able

to damage people, the environment and/or the equipment, we manually analyzed the 273 issues containing at

least one sentence describing a safety concern, through a card sorting strategy [155]. Specifically, the manual

analysis has been performed by four coders (all of them are authors of the paper), guaranteeing that each bug was

classified by two different coders. Since the labeling procedure did not start with a predefined set of categories

related to hazards and accidents, even in this case, we performed a pilot study, on the same 10 issues used in

the previous pilot study, to determine a set of coding guidelines to follow during the subsequent independent

labeling procedure.

To perform the issue labeling process, we used online spreadsheets (a separate spreadsheet for each coder),

where coders could use drop-down menus to select previously identified categories or add new ones when those

did not fit. Note that, during the labeling process, the categories identified by one coder were not shared with

the others, finally resulting in 465 different categories of hazards and 43 categories of accidents. Going over the

identified categories, we found that, in several cases, different coders used different wordings for pointing out the

same hazards and accidents. Further discrepancies between some of the identified categories depended on the

different granularity levels used by the coders while reporting them. For these reasons, before the resolution

of disagreements, two coders went through the whole set of the originally identified categories and clustered

them. In the end, they obtained 20 categories describing hazards, and eight categories related to accidents. The

categories that emerged from the clustering were used to refine the original labeling results. Specifically, all four

coders leveraged such categories to properly discuss, through online meetings, the cases in which a disagreement

between them in terms of hazards or accidents occurred. Furthermore, to reduce the agreement by chance that

could have been introduced as a consequence of the clustering procedure on the original lists, we proceeded to

discuss also the cases where the original coders agreed.

To sum up, out of the 273 safety-related issues analyzed, 258 clearly mentioned the hazard, while only 115

indicated the accident occurred or which might have likely occurred. The final categorization we provide is made

up of 19 hazards and 7 accidents.

4 RESULTS
In this section, we report and discuss the results for RQ1 and RQ2.

4.1 𝑅𝑄1: To what extent can machine learning models automatically identify safety-related concerns
in issue reports of UAV software platforms?

As detailed in Section 3.3.2, we experimented with different ML classifiers, namely Naive Bayes, J48, SMO, Logistic

Regression, Random Forest, and fastText, leveraging different combinations of features. In the following, we

report and discuss our results. Note that we only report statistical comparisons where appropriate, because we

computed statistical comparisons among all possible comparisons of treatments. Detailed statistical results can

be found in the replication package.

Table 2 summarizes the results obtained when considering different ML classifiers with different combinations

of features. As shown in Table 2, Random Forest, together with fastText are the classifiers showing the best

performance in terms of precision, recall, and f-measure.

Based on the statistical comparison, Random Forest with BOW outperforms all other techniques (adjusted

𝑝-values< 0.05) with ORs ranging from 1.3 for the comparison with BOW+SMO and 2.95 for the comparison with

BOW+Logistic regression. There is no statistically significant difference when augmenting BOWwith OB/EB/S2R

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.
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Table 2. RQ1 Performance of the ML classifiers for classifying safety-related sentences

ML Processing Safety Non-Safety Weighted Avg.

Model Pr Rc F1 Pr Rc F1 Pr Rc F1

Naive Bayes

BOW 0.71 0.73 0.72 0.79 0.77 0.78 0.76 0.75 0.75

LSI 0.62 0.79 0.70 0.80 0.63 0.70 0.72 0.70 0.70

BOW+OB/EB/S2R 0.71 0.74 0.72 0.79 0.77 0.78 0.76 0.75 0.76

BOW+n-grams+OB/EB/S2R 0.48 0.96 0.64 0.86 0.19 0.31 0.69 0.53 0.45

J48

BOW 0.72 0.66 0.69 0.75 0.80 0.78 0.74 0.74 0.74

LSI 0.65 0.64 0.65 0.72 0.73 0.73 0.69 0.69 0.69

BOW+OB/EB/S2R 0.74 0.67 0.70 0.76 0.81 0.79 0.75 0.75 0.75

BOW+n-grams+OB/EB/S2R 0.74 0.67 0.70 0.76 0.82 0.79 0.75 0.75 0.75

SMO

BOW 0.76 0.72 0.74 0.79 0.83 0.81 0.78 0.78 0.78

LSI 0.78 0.72 0.75 0.80 0.84 0.82 0.79 0.79 0.79

BOW+OB/EB/S2R 0.77 0.74 0.75 0.80 0.83 0.82 0.79 0.79 0.79

BOW+n-grams+OB/EB/S2R 0.77 0.72 0.74 0.79 0.84 0.81 0.78 0.78 0.78

Logistic Regr.

BOW 0.58 0.59 0.58 0.68 0.66 0.67 0.63 0.63 0.63

LSI 0.77 0.74 0.76 0.81 0.83 0.82 0.79 0.79 0.79

BOW+OB/EB/S2R 0.59 0.59 0.59 0.68 0.68 0.68 0.64 0.64 0.64

BOW+n-grams+OB/EB/S2R 0.74 0.72 0.73 0.78 0.80 0.79 0.76 0.77 0.76

Random Forest

BOW 0.80 0.74 0.77 0.81 0.85 0.83 0.80 0.80 0.80

LSI 0.68 0.75 0.71 0.79 0.72 0.75 0.74 0.74 0.74

BOW+OB/EB/S2R 0.80 0.75 0.78 0.82 0.86 0.84 0.81 0.81 0.81

BOW+n-grams+OB/EB/S2R 0.83 0.65 0.73 0.77 0.90 0.83 0.79 0.79 0.79

fastText – 0.78 0.80 0.79 0.85 0.81 0.83 0.83 0.81 0.81

and applying Random Forest (𝑝-value=0.6). Indeed, the weighted precision, recall, and f-measure only slightly

increase from 0.80 to 0.81. We can also notice that the introduction of n-grams in the model slightly lowers

the performance to 0.79 for all metrics, yet such a difference is not statistically significant (𝑝-value=0.31). This

may happen because terms contributing toward the classification of a safety-related sentence are unlikely to be

sequences of adjacent words.

When training the classifiers using the features extracted with LSI, Logistic Regression outperforms Random

Forest: 0.79 versus 0.74 on all the evaluation metrics being considered. The difference is statistically significant

(𝑝-value< 0.01, with an OR=1.5). However, there is no statistically significant difference with BOW+Random

Forest (𝑝-value= 0.28). Hence the application of LSI in this context may not result as particularly convenient,

given that building a LSI space is typically more expensive than just creating a simple BOW model.

As regards the classifiers showing the worst performance, we found that Naive Bayes trained with all features

shows an average f-measure of 0.45, while Logistic Regression trained with BOW features has an average F-

measure of 0.63. Based on the results reported in Table 2 it is possible to conclude that, for most of the ML

classifiers, the performance tends to be already very positive when considering the BOW features, with marginal

improvements when adding OB/EB/S2R. Only Naive Bayes does not show an improvement in terms of F-Measure

results when combining different types of features. The latter might happen because the Naive Bayes classifiers

show limited improvements when increasing the number of features [138, 139].

It is important to highlight that, in general, for almost all the ML models trained with multiple features, the

performance tends to be better in identifying true negatives (i.e., issues not containing safety-related concerns).

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.
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This may happen because the dataset used for training the classifiers is imbalanced, i.e., ≃ 56% of the sentences

do not discuss any safety-related concerns.

When comparing the results obtained by Random Forest and fastText, we must mention that, as shown in

Table 2, fastText and Random Forest both achieve an average f-measure value of 0.81. It is important to highlight

that fastText achieves good performance by using a standard configuration (as detailed in Section 3.3.2), while

Random Forest, achieves similar results only when applying several pre-processing steps and experimenting with

specific sets of features. Interestingly, fastText achieves a higher recall on the Safety class, which is important to

identify safety-related issues timely during the issue management process. It is worth noticing that fastText does

not outperform the other experimented techniques by a large margin (as it happens in the context of assigning

labels to issues by considering the whole text reported [109]) achieving comparable results to the ones achieved

by the Random Forest classifier trained withM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 features.

Our dataset has two levels of imbalance: (i) the imbalance of the projects (i.e., a project has many more safety

issues than the others) and (ii) the imbalance of the number of samples in the Safety and Non-Safety classes.

These two issues are addressed in this Section (see “Imbalance handling techniques" and “Cross-project analysis"

paragraphs).

Imbalance handling techniques. To check whether the results are biased due to the imbalance of the number

of samples in the Safety and Non-Safety classes, we also report the results of imbalance handling techniques

applied to our dataset, considering the best performing shallow ML model in all our experiments, i.e., Random
Forest trained withM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 features. We then compare the results of Random Forest when using the

default configuration and its variant using imbalance handling techniques. Specifically, the imbalance handling

approach applied was conducted by performing the following steps:

(1) 242 Non-Safety sentences were randomly discarded from the dataset (i.e., undersampling), to obtain a

balanced dataset (i.e., 837 Safety sentences and 837 Non-Safety sentences).

(2) We leveraged the balanced dataset obtained from the previous step to experiment with 10-fold cross-

validation using the default configuration of Random Forest trained withM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 features.

Hence, we decided to use undersampling (and not oversampling) as the imbalance handling strategy since, as

reported in previous work [159], oversampling methods tend to generate false examples, causing classifiers

to perform well in labs but more likely to fail in practice. We follow the recommendation of such previous

work [159] that suggests avoiding oversampling methods when dealing with sensitive applications such as

security, autonomous driving, aviation safety, and medical applications. Given the projects investigated in our

study fall in the domain of aviation safety, we decided to experiment with the undersampling strategy. Table 3

reports the results achieved by (i) Random Forest when using its default configuration (trained with M𝐵𝑂𝑊 +

M𝑂𝐵−𝐸𝐵 features) and 10-fold cross-validation on the unbalanced original dataset (described in Section 3.2), and (ii)

the default configuration of Random Forest (trained with M𝐵𝑂𝑊 + M𝑂𝐵−𝐸𝐵 features) in a 10-fold cross-validation

setting by leveraging the balanced dataset obtained when applying the undersampling strategy. As we can observe

from Table 3, the performance obtained by the two variants of Random Forest are almost identical, so no major

improvements are achieved by balancing the dataset. We conjecture that this happens because our dataset does

not present a heavy imbalance in terms of the number of samples in the Safety and Non-Safety classes. Indeed, as

reported in Section 3.3.2, we have a fairly balanced set of sentences: i.e., 837 Safety sentences (representing 43.7%

of the data), and 1,079 Non-Safety sentences (representing 56.31% of data).

Cross-project analysis. As detailed in Section 3.3.2, to check whether the results are biased due to the dataset

imbalance (i.e., the majority of issues and pull requests considered in our dataset belong to Ardupilot), we

also report results of a cross-project analysis, in which we use the best performing configurations, i.e., Random
Forest trained withM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 features, and fastText. As it is shown in Table 4, for Random Forest, the

average precision and recall values decreased compared to a 10-fold setting. Consequently, the overall F-measure
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Table 3. Comparison of results of Random Forest when using M𝐵𝑂𝑊 + M𝑂𝐵−𝐸𝐵 features and 10-fold cross-validation on
imbalanced and balanced datasets.

ML Technique Precision Recall F-Measure

Random Forest without imbalance handling techniques 0.81 0.81 0.81

Random Forest with undersampling 0.81 0.81 0.81

Table 4. Cross-project Evaluation based on Random Forest using BOW and OB-EB combination of features and fastText

ML Technique Class Precision Recall F-Measure

Safety 0.63 0.37 0.46

Random Forest Non-Safety 0.69 0.87 0.77

Weighted Avg. 0.67 0.68 0.65

Safety 0.79 0.62 0.70

FastText Non-Safety 0.79 0.90 0.84

Weighted Avg. 0.79 0.76 0.77

decreases of 0.16. In particular, for the Random Forest algorithm, we observe a quite significant degradation in

the recall concerning the identification of the sentences labeled as Safety. This performance degradation could

happen because the terminology used to describe safety issues can be slightly different in Ardupilot, compared

to the other projects.

When comparing the performance of fastText in the cross-project setting and the results achieved by this model

in a 10-fold setting (see Table 2), we can observe that such performance only slightly decreased, i.e., the weighted
average f-measure in a cross-project setting is 0.77 while it is equal to 0.81 in a 10-fold setting. Specifically, in a

cross-project setting, the default implementation of fastText achieves a recall of 0.62 for the sentences in the Safety
category, suggesting that the usage of word embeddings (i.e., the features’ representation strategy leveraged by

fastText) allows to partially mitigate the problem of different vocabularies used in heterogeneous projects to

describe safety-related problems.

Feature Importance. To better understand the features that contribute more to the classification, we computed

the Mean Decrease Gini (also called Mean Decrease in Impurity) [53, 125, 164] for Random Forest, considering

BOW and OB/EB/S2R features. As shown in Fig. 3, we can find intuitive (top 20) features considered important

for the classification of safety-related sentences. Specifically, hardware-related features (e.g., motor and vehicle)
and aspects concerning concrete states (e.g., failsafe) or actions (e.g., arm and disarm) of the UAVs tend to be

considered as important features by the model. Although the keyword safety is among the top 20 relevant features,

it only appears in 48 out of 837 (less than 6%) safety-related sentences in our dataset.

Hyperparameter Optimization. As detailed in Section 3.3.2, we experimented with Grid search as hyperpa-

rameter optimization approach [2, 14, 15] to investigate potential optimal combinations of parameters for the

selected shallowMLmodels. Specifically, with Grid search, we experimented with several parameter combinations

for the various ML models. In total, we experimented with a total of around 600 combinations using a 10-fold

validation setting for the selected shallow ML models (all detailed results are shared in our replication package

along with the Python code used to run the Grid search experiments). As is shown in Table 5, for Random Forest,

the average Precision, Recall, and F-Measure values slightly increased (by about +1%) compared to its default

configuration. For most of the other models, the obtained improvements are slightly more evident in terms of
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Fig. 3. Mean Decrease Gini when using BOW and OB/EB/S2R combination of features. The top 20 features are visualized.

Precision, Recall, and F-Measure. In particular, for the J48 algorithm, we observe a +2% of improvements for all

metrics. Similarly, for Naive-Bayes we observe small improvements in Recall (+1%), Precision (+2%), and F-Measure

(+1%) values. For Logistic Regression we observe more substantial improvements in Recall (+16%), Precision

(+16%), and F-Measure (+16%) values. SMO is the only model that did not achieve any observable improvement

in terms of F-Measure. Overall, considering mainly the model having the higher values of both Precision and

Recall (i.e., values > 0.80), Random Forest and fastText are the best performing models, as observed before, with

Random Forest, slightly better in terms of F-Measure (+1%). Interestingly, after a Grid search optimization step,

all experimented ML strategies are not able to achieve more than 0.82 of F-Measure, which represents—within

the considered hyperparameter values—the upper bound of our experiments.
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Table 5. Grid search on shallow ML models using BOW and OB-EB combination of features

ML Technique Best Parameters Config. Precision Recall F-Measure

Random Forest I=1000, K=1 depth=0, M=10 0.82 0.82 0.82

J48 C=0.1, M=50, R=no, S=yes 0.77 0.77 0.77

SMO C=0.8 0.79 0.79 0.79

Logistic R=100 0.80 0.80 0.80

Naive-Bayes K=yes 0.77 0.77 0.77

RQ1 Summary: The Random Forest (RF) algorithm obtains precision, recall, and F-measure values of about 81-82%,
with the model considering hardware-related keywords and text features about states (or actions) of the UAVs as the
most important ones. Considering additional features to the BOW ones or experimenting with grid search strategies
do not substantially impact the classification performance of RF. The RF results are similar to the ones obtained by
using the default implementation of fastText in a 10-fold validation setting. FastText does not outperform the other
experimented techniques by a large margin, as it happens in the context of assigning labels to issues. Nevertheless,
fastText showed more promising results in a cross-project setting compared to RF.

4.2 𝑅𝑄2: What are the main hazards and accidents emerging from safety issues reported in UAV
software platforms?

Table 6. Hazard categories and corresponding occurrences in our dataset of 273 safety-related issues and pull requests.

Category Description Occ.

event/action allowed in

undesired states/configura-

tions

Scenarios where some events, e.g., in-flight reboot, or actions,
e.g., disable safety checks, are allowed while they should not

40 (14.65%)

undesired behavior on fail-

safe or error condition/con-

figuration

Unexpected behavior of the system in the scenarios where

failsafe operations or error conditions occur, e.g., low default

speed allowed when radio contact is lost, undesired throttle

behavior in case of gps lock

34 (12.45%)

undesired failsafe behavior

The behavior of the system to deal with a failsafe operation

does not reflect the expected one

32 (11.72%)

inadequate checks

Parameters, input data from sensors, actions and/or events

not checked before activating a specific flight-mode or before

enabling a specific action, e.g., battery status not checked

before takeoff

25 (9.16%)

improper parameter

setting/initialization/config-

uration

System-level parameters, e.g., min-throttle, not or wrongly

initialized, configured and set, e.g., improper calibration or

incorrect conversions

20 (7.33%)

Continued on next page
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Table 6 – Continued from previous page
Category Description Occ.

misleading or missing

data/measurements/reports

Data coming from external devices and sensors being noisy

or missing, e.g., wrong values in transmission channels

18 (6.59%)

missing or misleading com-

munication with pilot

Conditions and/or events not notified to the pilot, e.g., no
alert in presence of unusually high throttle output

16 (5.86%)

undesired hardware behav-

ior

Unexpected behavior, e.g., failures, of the hardware com-

ponents affecting the overall behavior of the system, e.g.,
throttle unclamped when disarmed

12 (4.40%)

action not allowed in specific

states/configurations

Scenarios where some events or actions, e.g., disarm speed

controller, are not allowed while they should

11 (4.03%)

inappropriate mode

changes/ handling

Incorrect switches betweenmodes, or inappropriate handling

of rapid mode switching

9 (3.30%)

onboard instrumentation is-

sue

Unexpected behavior in the instrumentation being available

onboard, e.g., GPS, GCS, or RC 7 (2.56%)

inappropriate safety switch

handling

The safety switch used to enable/disable the outputs to mo-

tors and servos is not handled based on what reported in the

requirements specification

7 (2.56%)

undetected failure

The system is not able to properly detect the presence of

failures in both the hardware and software components, e.g.,
undetected and unhandled airspeed blockage

7 (2.56%)

timing/timeout/ synchro-

nization issue

Inappropriate handling of synchronization across different

functionalities and timing issues when various components,

both hardware and software, must communicate

5 (1.83%)

communication failure

Two or more hardware components/devices fail to properly

communicate, e.g., data are sent when not needed/requested

4 (1.47%)

lack of control

Scenarios where it is not possible to retake control of the

system after specific conditions

4 (1.47%)

inappropriate handling for

high vibrations

The occurrence of high vibrations introducing instabilities

are not properly handled, e.g., no failsafe actions for high

vibration

3 (1.10%)

memory/stack issue

The system lacks a proper handling mechanism of the mem-

ory/stack needed to guarantee that the system behaves as

expected, e.g., to store new data coming from sensors

2 (0.73%)

battery issue

Battery voltage insufficient for arming or battery insufficient

to guarantee a full flight

2 (0.73%)
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To explore the recurrent hazards and accidents reported in UAV software platforms, and answer RQ2, we performed

a manual analysis of the 273 issues and pull-requests of our dataset containing at least one sentence describing a

safety-related concern (as described in Section 3.3.3). Specifically, based on the title and the description content,

each issue is assigned to at most one hazard and/or accident category. Upon completion of the manual inspection

and clustering procedure (see Section 3.3.3), we found 19 different categories of hazards and seven categories of

accidents reported in Tables 6 and 7, respectively, along with their occurrences.

As reported in Table 6, undesired hardware behavior [75] (4.40%), onboard instrumentation issues, such as GPS,

GCS, or RC connection lost during flight [57] (2.56%), communication failures, such as improper communication

with motors and between motors [76] (1.47%), inappropriate handling (due to either hardware or software

defects) for high vibrations [89] (1.10%), and battery-related issues [77] (0.73%) are signaled as sources of hazards

in only about 10% of the cases, meaning that, in the great majority of the considered reports, the hazardous

circumstances depend on software-related defects. Specifically, in about 40% of the analyzed issues, the reported

hazards depend on misbehaviors occurring when the system enters failsafe mode (undesired behavior on failsafe or
error condition/configuration + undesired failsafe behavior, 24.18%), or the missing inhibition of certain actions (e.g.,
reboot while in-flight [87], motor lockdown during takeoff [95], etc.) when the system is in specific states (14.65%).

Concerning hazards happening in failsafe mode, we distinguish misbehaviors depending on improper failsafe

settings [54] (i.e., undesired failsafe behavior) from unsafe actions occurring when a failsafe (or error condition)

is triggered [60] (i.e., undesired behavior on failsafe or error condition/configuration). As regards the former,

Issue # 292 [54] from ardupilot having as title “Battery Monitoring RTL Bug” states a case where there is a bug
inside the functionality handling the failsafe condition due to low battery. Specifically, “a low battery warning can
cause a permanent RTL that can[not] be overridden”. As regards the latter, instead, Issue # 697 [60] from ardupilot

clearly mentions the case where the propellers “go to 100% Full Throttle” when a radio signal loss occurs (i.e., the
failsafe condition is triggered), resulting in the vehicle flipping.

On the one hand, in ≃ 9% of the inspected reports, the risky situations are due to insufficient checks such

as Issue # 6649 [79] from ardupilot where there is a need to “check that the battery voltage is above the
ARMING_MIN_VOLT and ARMING_MIN_VOLT2 parameter values” before arming the vehicle. On the other hand,

there are 20 (7.33%) issues/pull requests discussing hazardous situations due to an improper parameter setting,

such as PR # 1516 [81] from dronin where there is the need for changing the output calibration, i.e., “offset the
minimum of the calibration range up a little bit from what we send” during disarming.

Furthermore, in ≃ 13% of the manually analyzed pull requests and issues, misleading data [65, 83] (6.59%),

or missing warnings when the system is under anomalous conditions [62, 69] (5.86%) are highlighted as risky

situations by both developers and/or end-users.

In the remaining cases, dangerous events are related to the inability to perform certain actions when the

system is in specific states [68] (4.03%), improper mode switches (inappropriate mode changes/handling [86] +

inappropriate safety switch handling [84], 5.86%), the missing detection of failures occurred [85] (2.56%), race [90]

or timing [71] conditions (1.83%), impossibility to take control [63] (1.47%), and memory size issues [70] (0.73%).

Moving the attention to the accidents generated by risky situations, as expected, crashes/collisions [64, 66] or

abnormal behaviors while in-flight [74] are the most recurrent ones. Specifically, (potential) accidents in these

categories have been indicated in more than 20% of the manually inspected issues (see Table 7). In a further 8% of

the analyzed reports, users signaled (potential) mishaps connected with problematic landing/return-to-location

operations. For instance, users experienced the automated triggering of blind [93] or hard [91] landings after

the occurrence of unexpected events, confirming that landing is among the most critical and accident-prone

phases of a UAV flight [44]. Flyaways [161] (i.e., the devices fly off from their users) are signaled in nearly 7%

of investigated issues, while stabilization/positioning accidents [88] are disclosed in less than 4% of the cases.

Finally, in less than 3% of the inspected reports, users indicated (potential) operator injuries [73] (1.83%) or takeoff

issues [58] (0.73%).

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.



894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

20 • Di Sorbo, et al.

Table 7. Accident categories and corresponding occurrences in our dataset of 273 safety-related issues and pull requests.

Category Description Occ.

crashing/collision issue The drone crashes on the ground or else collides with a an object while in-flight 35 (12.82%)

anomalous flight conduct The drone manifests anomalous behavior while in-flight, e.g., in-flight resets 23 (8.42%)

landing/rtl issue The drone has anomalous behavior while landing or returning-to-location 21 (7.69%)

aircraft lost/flown away The drone stops taking actions from the pilot and starts flying autonomously 19 (6.96%)

stabilization/orientation/

positioning issue

The drone experiences issues with positional and localization data, e.g., “you
can create congestion on the serial port to the GPS and the position data gets
delayed”

10 (3.66%)

operator injury

The unexpected behavior of the drone leads to damage to the operator, e.g.,
motors spin when connecting battery

5 (1.83%)

takeoff issue The drone experiences issues during takeoff 2 (0.73%)

To better understand the cause-effect relationships between the different hazard and accident categories, Fig. 4

reports the occurrences with which specific hazard categories (detailed in Table 6) co-occur with the different

accident categories (see Table 7). To avoid discussing relations occurring only once in our dataset, Fig. 4 only

shows the co-occurrences that took place more than once. Note that, the thickness of the lines is proportional to

the number of issues reporting, at the same time, a specific hazard (on the left) and a specific accident (on the

right).

Out of the overall 34 issues describing undesired behaviors when the system enters the failsafe mode or

encounters an error condition (see Table 6), (i) 8 (23.53%) led to landing/rtl problems, (ii) 6 (17.65%) caused crashes

or collisions, and (iii) 3 (8.82%) resulted in flyaways, e.g., PR # 8039 [82] from ardupilot stating “Prevent DCM
fallback from triggering a flyaway”. As regards the former, Issue # 1164 [61] from ardupilot reports a situation

where the undesired behavior of the drone when a battery failsafe is triggered results in an immediate undesirable

landing of the vehicles (i.e., “give the operator the possibility to calculate and configure a battery level at which it is
still safe to RTL/fly to a failsafe destination before landing” ). Issue #1234 [67] from dronin, instead, discusses a

scenario where the drone crashes as a consequence of “motors keep running at neutral throttle until the arming
timeout has expired” once a TX failsafe is triggered — “this is unsafe, as the motors will likely burn up in a crash.”

Similarly, out of the overall 32 signaled undesired failsafe behaviors (see Table 6), (i) 4 (12.50%) led to crashes

or collisions, (ii) 3 (9.38%) caused landing/rtl problems, (iii) 3 (9.38%) provoked stabilization/positioning accidents,

(iv) 3 (9.38%) induced abnormal in-flight behaviors, and (v) 3 (9.38%) co-occurred with flyaways. For instance,

Issue #374 [55] from ardupilot clearly discussed a scenario where the “copter lost around 30m of height” due
to a bug in the handling of the failsafe operation triggered by a RC-signal loss. Differently, when talking about

anomalous behavior of the UAV while in flight, PR # 16594 [96] from ardupilot reports about a situation where

it is mandatory to have “the EKF failsafe [being] trigger[ed] soon after the vehicle is armed in stabilizing (or any
other non-GPS mode) if it does [not] have a good position estimate.”
Crashes or collisions might also be due to (i) misleading data (11.43% of reported crashes/collisions) such

as “there is no filtration in the current sensor drivers, and any noise gets passed down as obstacles; this gives a
sudden jerky response by the vehicle, which may even lead to crash” [97], (ii) inadequate checks (11.43% of reported

crashes/collisions), (iii) missing inhibition of certain actions in specific states (11.43% of reported crashes/collisions)

like “allowing the operator to inhibit ADS-B avoidance below the specified altitude” so that it is possible to avoid

“crashing into trees or buildings” as described in PR # 7074 [80] from ardupilot, (iv) undesired hardware behaviors
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Fig. 4. Co-occurrences of hazard categories and accident categories.

(8.57% of reported crashes/collisions), (v) undetected failures (5.71% of reported crashes/collisions), or (vi) inability

to perform certain actions (5.71% of reported crashes/collisions).

Besides, out of the 16 issues reported as an hazard the missing or misleading communication with the pilot, 2

(12.50%) caused flyaways, and 2 (12.50%) led to abnormal in-flight behaviors, such as “add warning to user from
vehicle and ground station when user is approaching the fence [so that] it’s more obvious for the user to see the
vehicle distance from the fences” [62]. Abnormal in-flight behaviors might also arise when specific actions are

not inhibited (17.39% of the reported abnormal in-flight behaviors), or disabled (8.70% of the reported abnormal

in-flight behaviors), and in case of inadequate checks (13.04% of the reported abnormal in-flight behaviors) or

high vibrations were not properly handled (8.70% of the reported abnormal in-flight behaviors). As regards the

latter, PR # 12349 [89] from ardupilot describes a case where the inappropriate detection of high vibrations and

loss of altitude results in a vehicle climbing very quickly while it is not expected to climb at all.

Flyaways, instead, might also depend on missing, misleading, noisy data or measurements coming from the

sensors (15.79% of reported flyaways) such as “catch fly-aways caused by bad compass heading” [56] and onboard

instrumentation issues (10.53% of reported flyaways), such as “sudden bad GPS position leads to Loiter flying off
(GPSGlitch)” [57].
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Finally, landing/rtl problems might also be caused by inadequate checks (9.52% of reported landing/rtl problems).

For instance, PR # 15092 [92] from ardupilot reports a dangerous situation where “the vehicle continuously
climbs or descends at its maximum rate which at best leads to a hard landing” that is caused by a missing pre-arm

check of the EKF’s altitude estimate.

The results presented above, on the one hand provide an empirical characterization of safety issues in UAV-

related software. On the other hand, such results pave the way to research approaches aimed at supporting a

better analysis and testing of UAV software:

• Have a clear mapping of actions and events enabled or inhibited in each specific configuration or state. The
obtained results showed that, if the system performs an action in a given state, or handles an event

that should be ignored, or fails to handle an event that should be handled, then accidents can occur.

Therefore, the studied bugs urge the need for clearly specifying—e.g., through state machines—the system

behavior in different states. Moreover, given such state models, it is desirable to leverage suitable hazard

analysis approaches [10] or testing approaches [135] not only to check whether events/inputs are correctly

captured in each state, but also, through the testing of sneaky paths (i.e., unspecified transitions in a state

machine) that unexpected events do not have unintended consequences.

• Failsafe and error modes. We have seen how the improper handle of the failsafe mode may be the cause of

accidents, for example when a rotor is not stopped after an emergency landing. On the one hand, this

highlights design problems, and the need to clearly specify how the UAV should behave in such failsafe

or error mode. On the other hand, this also triggers the need for suitable state-based testing, as explained

above. More in general, such results also suggest the need to adapt or customize failsafe and error modes

for specific UAVs.

• Test of misleading data or improper parameter settings. Misleading data from communication channels

or from sensors (e.g., malfunctioning ones) may also cause unintended consequences and, ultimately,

accidents. This raises the need to use fault injection [169] and mutation testing techniques with the aim

of simulating such errors, and test whether they are correctly handled. Furthermore, this trigger the need

for customized sets of high-level mutant operators specialized for such a domain, similar to what has

been done in domains such as deep learning-based systems and embedded software [102, 106]. Last, but

not least, this triggers the development of approaches aimed at supporting the developer in the definition

of input data or state consistency check, where appropriate.

• Cause-effect analysis. The analysis of the co-occurrences between hazard and accident categories (see

Fig. 4), as well as the frequencies of reported accidents (see Table 7) can be leveraged not only to develop

approaches aimed at supporting issue triaging by predicting the likely root causes based on the accidents

and other observable elements, but, also, to prioritize test and analysis activities [17, 18], by determining

what kinds of root causes can be responsible for the most dangerous accidents.

RQ2 Summary: In the great majority of the considered reports, the hazardous circumstances depend on software-
related defects. The most recurrent signaled accidents are related to crashes/collisions, while, in about 40% of the
cases, hazards are due to undesired behaviors occurring when the system enters failsafe mode or to the missing
inhibition of certain actions when the system is in specific states.

5 THREATS TO VALIDITY
Threats to construct validity concern the relationship between theory and observation. The first type of threat

could be related to imprecision and subjectiveness in our classifications, and specifically to (i) distinguish safety-

related sentences from sentences that were not related to safety and (ii) identify hazards and accidents appearing

in safety issues. As far as the former is concerned, we first established the classification criteria to drive the
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analysis carried out by the authors individually, as explained in Section 3.3.1. To reduce the mistakes due to

subjective interpretation, each sentence was classified by two annotators, inter-rater agreement was computed,

and disagreements were resolved through a discussion involving a third rater. The most critical disagreements

were examined by all the annotators through an open debate. For the identification of hazards and accidents,

multiple annotators were involved and a process similar to the previous one was followed. In this case, we applied

an open coding strategy. The codes defined by the annotators were then clustered and through a joint discussion

discrepancies were resolved. In this case, given the exploratory nature of the coding, achieving an inter-rater

agreement was less meaningful. Instead, we discussed every single issue to avoid agreement by chance.

Threats to internal validity concern factors internal to the study that could influence our results. First, the

splitting of sentences and identification of OB, EB, and S2R may be affected by the imprecision of the used tool

i.e., BEE [153]. We mitigated this choice by manually reviewing all sentences and fixing the tool’s mistakes at

least for the splitting (while on the OB, EB, and S2R the reliability of these features depends on BEE’s accuracy).
Performances of the ML techniques used in RQ1 may depend on the setting of their hyper-parameters. We

initially leveraged default settings ofWeka, knowing that the obtained results can represent a lower bound for the

classification performances. Then, we experimented with Grid search as hyperparameter optimization approach

to investigate potential optimal combinations of parameters for the selected shallow ML models.

Threats to conclusion validity concern the relationship between experimentation and outcome. In RQ1, we used

appropriate statistical procedures (i.e., McNemar’s tests and Odds Ratio effect size) to support the comparison of

different classifiers.

Threats to external validity concern the generalizability of our findings. For RQ1, the applicability of the

classifiers to further projects may require retraining, even though we have shown the performance achieved by

the best performing models in a cross-project setting. Another concern could be the ability of the classifiers to

properly work on sentences coming from other bugs. To address this issue, we plan for future work to experiment

with the investigated approaches in the context of further CPS projects and domains. Also, while we compared five

shallow machine learning techniques of different type and fastText, it is entirely possible that other techniques

we did not consider could perform better.

For RQ2, our results—within the UAV domain—in terms of categorization of hazards and accidents may not

generalize beyond the studied projects, therefore it is entirely possible (and likely) that studying further projects

may enlarge the set of considered categories.

Threats to reliability validity concern the ability to reproduce our study. We have created a replication package,

available on Zenodo [43], containing data from the analyzed issues, as well as results from the different steps of

the manual classifications for both RQ1 and RQ2, and raw results of the ML classifiers.

6 RELATED WORK
Our work falls at the intersection between the research fields of (i) issue report classification and (ii) software

engineering for UAVs. In the following, we provide an overview of the recent literature and highlight the

contributions of our paper concerning each of the two research fields.

6.1 Issue Classification
As reported in previous research [31], for popular projects the number of pending issues constantly grows [110]

and, despite the use of labels has a positive impact on the issue management [22], they are rarely used by GitHub

developers. For this reason, researchers proposed automated approaches supporting the issuemanagement process,

with techniques leveraging machine learning [4, 16, 30], textual analysis [174], natural language parsing [41],

and summarization approaches [132, 137, 147].
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Other, complementary research directions concern the automated classification and analysis of the textual

content of issues [181] for detecting duplicated bugs [174] and predicting reopened issues [177]. In recent years,

tools have been designed to automatically estimate the issue lifetime [111, 112].

In the context of issue textual analysis, recent work [138, 172] empirically investigates the combination of ML

and textual analysis techniques to automatically predict whether issues will be not fixed, by analyzing (only) the

titles and descriptions of reported issues. Similarly, Cabot et al. [22] proposed labels to classify issues in open source
projects, and (ii) Guo et al. [98] presented an approach to determine the bugs that will be actually fixed. Finally,

Kallis et al. [108, 109] proposed Ticket Tagger, a GitHub app analyzing the issue title and description through

machine learning techniques to automatically assign labels to each issue submitted on GitHub, accordingly.

Based on a default implementation of fastText, Ticket Tagger can predict three categories of default labels: bug,
enhancement, and question. Herbold et al. [100] demonstrated that Ticket Tagger represents one of the most

effective approaches to identify issues of the bug type.

Recently, Wang et al. [171] proposed PLPI, a framework able to identify labels with similar meanings and

predict project-specific labels to address the problem deriving from the usage of custom label schemes.

Similar to previous research [138], to build the ground truth we perform a manual inspection of UAV issues.

However, we specifically focus on safety-related issues, comparing the performance achieved by different ML

approaches when used to predict safety-related sentences from user-reported issues of UAV platforms. Our

evaluation is useful to help developers timely identify the UAV issues that are likely to be safety-related. Besides,

to ease the inspection of such issues, the experimented techniques can also help highlight the specific safety-related

sentences occurring in the issue titles and descriptions.

6.2 Software Engineering for UAVs
UAVs are often mentioned as fascinating examples of self-adaptive CPSs. Software engineering for these types of

systems is an increasingly explored research field. In particular, recent efforts mainly focused on bug characteri-

zation [52], testing [1, 37, 180], and verification [27] of self-adaptive CPSs.

Another emerging area of research is related to the automated generation of oracles for testing and localizing

faults in CPSs. For instance, Menghi et al. [131] proposed SOCRaTes, an approach to automatically generate

online test oracles in Simulink able to handle CPS Simulink models featuring continuous behaviors and involving

uncertainties. The oracles are generated from requirements specified in a signal logic-based language. In a similar

effort, He et al. [99] proposed a system identification-based oracle for fault localization in CPS software.

Cleland-Huang and Vierhauser proposed SafetyScrum [28], an agile software development methodology that

augments the Scrum life-cycle with safety-related activities to incrementally track the safety status of UAV

systems. Previous research also proposed programming languages for supporting UAV-specific aspects, such as

energy awareness [124] and context adaptation [21], while Liang et al. [120] focused on how Bounding Functions

(i.e., dynamic checks inserted by developers to ensure that specific variables stay within a prescribed range) are

used in the Paparazzi autopilot software.

Different researchers proposed methods to perform safety analysis of UAV systems. For instance, Denney

and Pai [33–36] focused on different aspects of UAV safety and proposed automated approaches for creating

and maintaining safety assurance cases. Recently, Vierhauser et al. [168] presented an approach for deriving

human-interaction hazards (hazards related to human-system interactions). In particular, the authors provided a

set of domain-level hazard trees designed for the safety analysis of UAV systems.

Prior studies that most relate to ours are the ones concerning the analysis of UAV-specific software issues

reported by developers and/or end-users. In this context, Wang et al. [170] conducted an empirical study to

(i) characterize UAV-specific bugs, (ii) identify their root causes, and (iii) propose repairing strategies. They

further identified five challenges associated with detecting and fixing such UAV-specific bugs. As in our work,
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to perform the analysis, they collected issues from PX4 and Ardupilot GitHub projects. Similarly, Taylor et
al.. [160] analyzed the root causes, severity, and position in the firmware architecture of bugs occurring in these

two open-source projects. However, while Wang et al. and Taylor et al. collected the issues with the bug label

assigned, we specifically focused on safety-related issues (i.e., having safety-related labels assigned), beyond

collecting issues from a further project (i.e., dRonin). Unlike Wang et al. and Taylor et al., who focused on the

root causes of UAV bugs, we analyzed the safety-related UAV issues to present two sets of categories modeling the

main hazards and accidents occurring in the analyzed projects, beyond assessing automated strategies to support

the identification of safety-related concerns occurring in such issues. Besides, we also analyzed the frequencies

with which the specific hazard categories co-occur with the various accident categories, to better understand

recurrent cause-effect relationships.

7 CONCLUSIONS AND FUTURE WORK
Unmanned Aerial Vehicles (UAV) software systems are highly-dependable. The presence of defects in their

software can cause harmful accidents, resulting in damage to the vehicle, but also potentially harmful events for

people and the environment.

This paper contributes to the state-of-the-art by exploringways to aid developers when triaging of safety-critical

issues for UAVs. Specifically, the paper provides the following contributions:

(1) an evaluation of various Machine Learning (ML)-based classifiers, trained with different text represen-

tations and algorithms, by experimenting on a dataset consisting of 1,916 manually-labeled sentences

extracted from safety-related issues and pull requests of three popular open-source UAV platforms; and

(2) a categorization of hazards and accidents, along with their relations, obtained by performing an open

coding over 273 safety-related issues.

For what concerns the sentence classification, we found that a simple bag-of-words model with a Random

Forest classifier already achieves good classification performance, with precision, recall, and f-measure reaching

≃ 0.8. More complex models do not achieve additional benefits. Besides, we obtained a set of 19 hazard categories

and 7 accident categories. Such categories have been further analyzed and discussed (by also providing qualitative

examples) to better understand the most likely occurring accidents for the different hazard categories.

Our study can have relevant implications for both developers and researchers. For what concerns UAV developers,
our study triggers the possibility of leveraging automated approaches to support them in identifying safety-

related concerns in issue reports. Besides, the elicited hazard and accident categories highlight safety-related

specific problems that need to be carefully monitored in UAV development. For instance, to avoid hazardous

circumstances, our results underline the need for developers to have a more clear mapping of inhibited and

enabled actions/events in each specific configuration/state, beyond the need for implementing redundant checks

to detect the presence of misleading data or improper parameter settings.

For what concerns researchers, our work fosters research toward better testing and analysis of safety-related

issues in UAV development. Indeed, our study highlights the need for envisioning testing strategies that allowmore

comprehensive audits of the system behaviors in failsafe or error modes. Other researchers could also build on our

study and the provided manually-labeled data to probe further automated approaches for labeling safety-related

sentences, thus finding the best-performing strategies and settings. Our work also encourages the development of

specific tools to help UAV developers avoid safety-related recurring problems. Finally, complementary empirical

research could focus on investigating the difficulty (e.g., in terms of duration and effort) of fixing safety-related

specific UAV issues and developing tools to help developers allocate the proper resources to various types of

UAV-specific safety-related issues.

Future work aims at replicating the work in other contexts, e.g., closed-source ones, but also to experiment the

safety issue classification in domains different from UAV, also experimenting the extent to which models can be
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(partially) transferred between domains or whether they require a complete retrain because of very different

safety-related features. Also, we plan to develop further support for safety issue triaging, e.g., by leveraging natural
language processing techniques for the automated identification of hazards to better support fault localization

and fixing tasks.
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APPENDIX - EXAMPLES OF HAZARD AND ACCIDENT CATEGORIES

Table 8. Examples of Hazard Categories

Category Examples

event/action allowed in unde-

sired states/configurations

“I tried arming when not in a transition state and when in a transition
state to ensure it was rejecting the arming at the correct times”
“manualcontrol: prevent spurious disarms in altitude hold mode”
“Prevent motor movement while programming”
“Copter: jump in altitude when EKF becomes available”

undesired behavior on failsafe

or error condition/configuration

“If a radio, GCS, or battery failsafe event happens during that landing,
the vehicle should continue with the landing rather than carrying out
the failsafe action”
“Motors keep running on Failsafe if Motors spin at neutral is enabled”
“For the RC/Transmitter failsafe we need special handling while in
Auto mode. This is not the case for the battery failsafe however”
“While in AUTO flight, our quadplane suddenly decided to go into
SAFETY_DISARMED, which immediately resulted in all outputs to
motors being shut off. This brought the plane down”

undesired failsafe behavior “Hangtime stays engaged in failsafe, i.e., the hangtime is correct for
low throttle while valid signal but failsafe kicks in LPS for around 25
seconds when hangtime is set to 2 seconds”
“Copter: battery failsafe shouldn’t switch to RTL mode if we’re already
in RTL”
“Copter-3.4-dev: GPS failsafe triggers too quickly”
“Rover: shorten radio and GCS failsafe timeouts”

inadequate checks “Add servo voltage check. Needed to prevent arming with extremely
bad/questionable servo power supply.”
“We should add an attitude consistency pre-arm check to all vehicles
that checks that all active AHRS cores have consistent attitudes and if
not, display a pre-arm check.”
“We should add a pre-arm check if the terrain database allocation fails
so that the user is aware of the problem before flight”

Continued on next page
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Table 8 – Continued from previous page
Category Examples

“pre-arm check if compass1 is disabled but 2 or 3 are enabled”

improper parameter setting/ini-

tialization/configuration

“If someone uses a 3 position switch, could end up with a badly config-
ured neutral value”
“Because theMIN had been set to zero, theWPNAV_SPEEDwas reduced
to zero so while the copter switched into RTL it would not return because
of the zero WPNAV speed”
“[Fix] Fence Altitude Limit”
“Plane: TECS: NAVL1_LIM_BANK does not have an appropriate mini-
mum angle forced”

misleading or missing data/mea-

surements/reports

“as reported by several logs on the forums, there is no filtration in the
current sensor drivers, and any noise gets passed down as obstacles”
“we could read from the sensor too soon after requesting data and the
result coming back would be garbage”
“Plane: add protection against bad GPS positions”
“The air pressure can change quite rapidly result[ing] in an altitude
error of > 40m for a one hour mission. The resulting problems are
obvious, from inadvertent entry into forbidden airspace to crashes
during Auto-Land/RTL”

missing or misleading commu-

nication with pilot

“It would be great if we had a status_text message indicating that
the copter was arming. A gcs could then give an audible and visual
announcement that the arm command was accepted”
“The copter falls to the ground with no sounds, beeps, or indications”
“Copter: warn when single motors reaches throttle limits as it’s a sign
the motor is failing”
“When EKF failsafe was triggered, some users were unaware that it
was switched to LAND. ToneAlarm makes the user aware [of] the
failsafe”

undesired hardware behavior “Plane: Parachute should turn off the motor only and not disarm the
AP. Today we have triggered the parachute, the door has opened but
the parachute didn’t pull out”
“We have discovered about 38 cases where users have flown with
MPU6k accelerometer failures during flight. Sometimes this leads to a
crash”

action not allowed in specific

states/configurations

“Plane 3.2 does not allow disarmingwith rudder like copter does. I found
the arming switch totally pointless when I have ARMING_DIS_RUD=0
which is the real safety for my motor, and to be more precise, I found
Arduplane less safe than it should be by default since it will still crash
my plane if it reboots in flight because all servos are frozen waiting
for me to push the arming switch”
“GCS should strongly urge user to use switch arming with hangtime”

Continued on next page
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inappropriate mode changes/

handling

“When using Follow-me mode via the tablet, it continually sets Guided
mode waypoints [making] impossible to recover control of the craft if
the tablet remains in Follow-me”
“flight: ensure thrust mode is driven in all paths”

onboard instrumentation issue “This must be acknowledge and taken note of it in software (esp. on
what action to take ’immediately’ when the GPS count diminishes
suddenly in a matter of seconds - as this is not normal and not seen
by all but when it happens it is ALL GONE)”
“A flight log with two active GPS modules shows 23 GPS glitches in 5
minutes of flight, while GPS conditions were OK”

inappropriate safety switch han-

dling

“There is an edge case where forcing the safety switch state can fail
for an extended period of time, and then succeed forcing the arming
check that users can not opt out of to prevent it”
“Some controllers may wish to set the safety switch remotely without
the user having to physically get close to the machine and push it”

undetected failure “Copter: landing detector false-positive when slowing down in PosHold
mode. The cause was a slight motor imbalance combined with a slow-
down from fast-forward flight in PosHold mode”
“add detection of airspeed blockage and switch to non-airspeed control:
cope with water droplet blocking pitot”

timing/timeout/synchronization

issue

“Possible race conditions (they all happen between the check of exis-
tence of a topic and trying to create the node): - single instance, with
multiple advertisers during the first advertise: both advertisers see the
topic as non-existent and try to advertise it”
“This seems bad– while this timing is probably considerably helpful
in ensuring synchronization with genuine Futaba stuff and rejecting
illegitimate data, it may work against us in other cases”

communication failure “Just before the touch down, the plane lost RC link and the RTL mode
kicked in. I was no longer in control. The ardupilot software executed
an immediate right turn towards the Take off position without any
climb”

lack of control “Copter: allow pilot to forcibly retake control from GCS with TX. When
something goes wrong, it would probably be best for the pilot to be
able to reach for the TX, click a switch and be back in control”

inappropriate handling for high

vibrations

“Copter: prevent bad Z-vibrations causing rapid climb”

memory/stack issue “attitude: increase stack size to 2504 from 2200. Function will use 2440
at peak. This is a nasty one, because most attempts to dynamically
measure stack won’t cause home position update”

Continued on next page
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battery issue “After setup for my fixed wing craft I observe a problem, i.e., a glitching
of the power rails, when I connect my flight battery without connecting
USB”

Table 9. Accident categories’ examples

Category Example

crashing/collision issue “I just had a crash due to a burnt motor"

anomalous flight conduct “My son and I have experienced in-flight resets of the BrainFPV FC"

landing/rtl issue “GPS lost in position control (or RTL) lands without pilot having control"

aircraft lost/flown away “Stuck baro can lead to flyaway"

stabilization/orientation/

positioning issue

“Stabilization: Failsafe provisions don’t work properly after apparent code refac-
tor"

operator injury “Safety-Related Motors spin when connecting battery"

takeoff issue “After arming the vehicle just took off and was extremely difficult to control"

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.


	Abstract
	1 Introduction
	2 Background
	2.1 Safety-Critical Systems
	2.2 Unmanned Aerial Vehicles Development Cycle

	3 Empirical Study Design
	3.1 Research Questions
	3.2 Data Collection
	3.3 Analysis method

	4 Results
	4.1 RQ1: To what extent can machine learning models automatically identify safety-related concerns in issue reports of UAV software platforms?
	4.2 RQ2: What are the main hazards and accidents emerging from safety issues reported in UAV software platforms?

	5 Threats to Validity
	6 Related Work
	6.1 Issue Classification
	6.2 Software Engineering for UAVs

	7 Conclusions and Future Work
	References

