
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Automated Identification andQualitative Characterization of Safety
Concerns Reported in UAV Software Platforms

ANDREA DI SORBO, University of Sannio, Italy

FIORELLA ZAMPETTI, University of Sannio, Italy

CORRADO A. VISAGGIO, University of Sannio, Italy

MASSIMILIANO DI PENTA, University of Sannio, Italy

SEBASTIANO PANICHELLA, Zurich University of Applied Sciences, Switzerland

Unmanned Aerial Vehicles (UAVs) are nowadays used in a variety of applications. Given the cyber-physical nature of UAVs,

software defects in these systems can cause issues with safety-critical implications. An important aspect of the lifecycle of

UAV software is to minimize the possibility of harming humans or damaging properties through a continuous process of

hazard identification and safety risk management. Specifically, safety-related concerns typically emerge during the operation

of UAV systems, reported by end-users and developers in the form of issue reports and pull requests. However, popular UAV

systems daily receive tens or hundreds of reports of varying types and quality. To help developers timely identifying and

triaging safety-critical UAV issues, we (i) experiment with automated approaches (previously used for issue classification)

for detecting the safety-related matters appearing in the titles and descriptions of issues and pull requests reported in UAV

platforms, and (ii) propose a categorization of the main hazards and accidents discussed in such issues. Our results (i) show

that shallow machine learning-based approaches can identify safety-related sentences with precision, recall, and F-measure

values of about 80%; and (ii) provide a categorization and description of the relationships between safety issue hazards and

accidents.

CCS Concepts: • Software and its engineering → Maintaining software; Error handling and recovery; Software

safety; • General and reference → Empirical studies.

Additional Key Words and Phrases: Unmanned Aerial Vehicles, Issue Management, Safety Issues, Machine learning, Empirical

study

ACM Reference Format:

Andrea Di Sorbo, Fiorella Zampetti, Corrado A. Visaggio, Massimiliano Di Penta, and Sebastiano Panichella. 2022. Automated

Identification and Qualitative Characterization of Safety Concerns Reported in UAV Software Platforms. ACM Trans. Softw.
Eng. Methodol. , (July 2022), 36 pages.

1 INTRODUCTION
Unmanned aerial vehicles (UAVs), also known as drones, are autonomous controlled aircrafts used to perform a

wide variety of tasks and are at the heart of the latest and upcoming advancements in various fields. Specifically,

with the continuous improvements in UAV technology, drones, either autonomous or teleoperated, are nowadays

Authors’ addresses: Andrea Di Sorbo, University of Sannio, Benevento, Italy, disorbo@unisannio.it; Fiorella Zampetti, University of Sannio,

Benevento, Italy, f.zampetti@unisannio.it; Corrado A. Visaggio, University of Sannio, Benevento, Italy, visaggio@unisannio.it; Massimiliano

Di Penta, University of Sannio, Benevento, Italy, dipenta@unisannio.it; Sebastiano Panichella, Zurich University of Applied Sciences, Zurich,

Switzerland, panc@zhaw.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

1049-331X/2022/7-ART $15.00

https://doi.org/

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

This is the accepted version of an article published in ACM Transactions on Software Engineering and Methodology. The final version of record is available in
the ACM Digital Library at https://doi.org/10.1145/3564821

https://doi.org/
https://doi.org/10.1145/3564821

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

2 • Di Sorbo, et al.

used in a plethora of application fields, e.g., agriculture [104], disaster management [26], archaeology [149],

delivery [32], and surveillance [12]. This is because drones offer undisputed advantages as they enable long-range

operations at relatively low costs and provide access to dangerous or hostile environments without endangering

humans [11, 176]. With the global UAV market size expected to reach 25.13 billion USD by 2027, showing a

compound annual growth rate of 12.23% compared to 10.72 billion USD in 2019 [51], UAVs usage is expected to

make a real impact on the citizens’ quality of life.

UAVs fall in the category of cyber-physical systems (CPSs), as they (i) continuously sense the changes in the

physical environment in which they are operating through sensors-based analysis [122, 179], (ii) make decisions

based on a pre-programmed logic, and (iii) take physical actions to react to the sensed changes [144, 158]. Given

the safety-critical dimension of UAVs, the aeronautical industry has constantly focused on improving the efficiency,

safety, comfort, and automation of these vehicles. Specifically, the UAV community has successfully developed

and maintained open access projects for the software (firmware) and hardware (flight controller, sensors) for

the drones, such as Ardupilot [5], PX4 [129] (i.e., widely used open-source autopilot software systems), and

Pixhawk [142] (i.e., open standards for drone hardware).

To build reliable UAV systems, developers must (i) consider the changes to the environment proactively, as

the inputs of a UAV can be dynamically fluctuating and uncontrollable depending on environmental changes,

and (ii) deal with the various configurations of hardware devices (e.g., parameters and range of values) [170].

Moreover, considering that UAV software platforms are typically designed for multiple types of hardware, such

as copters, planes, and VTOLs (Vertical Take-Off and Landings), the mapping between the various functions and

the different hardware models need to be verified by developers. Also, it is essential for UAVs that “the possibility
of harm to persons or of property damage is reduced to, and maintained at or below, an acceptable level through a
continuous process of hazard identification and safety risk management" [105].

The automated testing and the real-time monitoring of UAVs to ensure their “desired” behavior are technical

and research challenges that are still open [163, 166]. Due to the cyber-physical nature of UAV systems, it is

difficult to determine whether an autonomous system behaves as expected [121], which hinders the development

and maintenance of UAVs’ underlying software. Specifically, if one or multiple physical variable(s) are out of

their expected range for some time during a scenario, the autonomous system can enter an unexpected state [157]
leading to unexpected behavior that can be potentially harmful to humans (e.g., physical instability, rotating or
hovering in place for too long, terminating the mission immaturely, miss-calculation of positions).

For dealing with such safety-related concerns, there is an increasing interest in adopting agile development

paradigms for safety-critical systems [163], where the identification of hazards and the elicitation of safety

requirements can be performed iteratively [28]. Specifically, these paradigms expect that safety-related concerns

might emerge during the operation phase of UAV systems, provided by users/developers in the form of issue

reports and pull requests [170]. In cyber-physical contexts, developers should pay particular attention to safety-

related issues [6] and promptly react to them as they might lead to harm or damage to people, properties, or

the environment. However, especially in popular projects, tens or hundreds of issues of different types (e.g.,
signaling bugs or asking questions) and quality are reported daily [109, 138], making it hard to quickly identify

safety-related concerns.

This paper aims to provide developers with support in analyzing user-reported issues occurring in UAV

platforms, and identifying sentences describing safety-related concerns. In the last decades, researchers proposed

general-purpose automated solutions aimed at easing the issue management and fixing processes, with approaches

able to classify [100, 109, 139], and prioritize [162, 165], or summarize [39, 40] user-reported issues, and techniques

to detect potential misclassifications [3, 101] and duplications [173] of bug reports. With respect to the existing

body of work, our purpose and classification granularity is different. That is, while previous work automatically

classifies issues along different categories (e.g., bugs, enhancement, etc.), we aim to analyze individual sentences

composing the issues and recognize those describing a safety-related concern. The rationale would be to highlight

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 3

such sentences and therefore provide developers with proper support during the issue triaging and management

phase.

Also, while the sentence classification approach described in this paper would not be strictly tied to the UAV

domain, to the best of our knowledge this is the first work aimed at identifying safety-related concerns in issue

reports related to the UAV domain.

As a first contribution of the paper, we have experimentedwith several machine-learning (ML)-based approaches

previously used in the context of issue classification to evaluate whether and the extent to which such approaches

can identify safety-related sentences in issue reports. When a user or a developer is reporting an issue, every

time a sentence (or even the issue title itself) is related to safety-critical problems, such a sentence is flagged, as

well as the whole bug report. By properly classifying safety-related issues, and highlighting specific sentences

within these issues, projects can properly triage issues, e.g., by prioritizing safety-critical ones over others, and

then developers can focus on specific sentences when performing hazard analysis, i.e., the analysis of situations
or conditions that have the potential to lead to mishaps [115].

To further aid such a hazard analysis in the context of UAV systems, through a manual inspection of 273 safety

issues and pull requests reported in three different open-source UAV platforms, we propose a categorization of the

main hazards and accidents (i.e., unexpected and unwanted events that could cause injury or damage to persons,

equipment, materials, or environment) discussed in such issues. Such a categorization is complementary to the

ones proposed in recent studies concerning drones, which mainly focused on the root causes of UAV-specific

bugs [160, 170] and the uses of bounding functions in UAV systems [120].

In summary, the original contributions of this paper are the following:

• an evaluation of ML-based approaches (previously used in the context of issue labeling) when leveraged

for identifying safety-related sentences contained in user-reported issues of UAV platforms;

• a categorization of the main hazards and accidents occurring in safety-related issues reported in open-

source UAV platforms; and

• a manually-labeled dataset (available for research purposes) of 304 safety issues extracted from three

different UAV platforms hosted on GitHub.

The results of the experiments with different machine learning models for identifying safety-related concerns

in issue reports of UAV software platforms show that Random Forest (RF) obtains precision, recall, and F-measure

values of about 80%, with the model considering hardware-related keywords and text features about concrete

states (or actions) of the UAVs as the most important ones. The RF results are similar to the ones obtained by

using the default implementation of fastText (state-of-art approach for issue classification [108, 109]) in a 10-fold

validation setting. Results of our study also provide insights into the nature of UAV issues, and, in particular, we

found that in the great majority of the considered UAV issue reports, the hazardous circumstances depend on

software-related defects. The most recurrent signaled accidents are related to crashes/collisions, while, in about

40% of the cases, hazards are due to undesired behaviors occurring when the system enters failsafe mode or to

the missing inhibition of certain actions when the system is in specific states.

Replication package. Our replication package, available on Zenodo [43], contains (i) the scripts developed to

pre-process the data used for training the ML models (RQ1) and (ii) the results of the manual validation of issues

(both RQ1 and RQ2).

Paper structure. The rest of the paper is organized as follows. Section 2 briefly provides the background

knowledge about safety-critical systems and UAVs. Section 3 describes our empirical study, including the data, the

research questions, and the methodology followed to answer such questions. The achieved results are reported

and discussed in Section 4, while Section 5 reports the threats to our study’s validity. Finally, Section 6 discusses

the related work, while Section 7 concludes the paper outlining future research directions.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

4 • Di Sorbo, et al.

2 BACKGROUND
This section provides background notions about (i) concepts related to safety-critical systems, and (ii) concepts

and terminologies about UAVs.

2.1 Safety-Critical Systems
In the following, we provide relevant definitions related to safety-critical systems (SCSs) that will be the subject

of our study such as the definitions of accident and hazard. At same time, we only briefly elaborate on emerging

types of SCSs, since a full coverage of background on SCSs is available in previous seminal studies [113–119].

A SCS can be considered any system (composed of hardware and/or software) whose failure may cause (i)

death or injury to people, or (ii) damage to equipment/property, or to the environment [152, 167]. Given this

definition, almost any system could be safety-critical [115]. For this reason, the key point in the safety-critical

analysis is not to ensure 100% safety, but, rather, to reduce the risk that a hazardous event occurs. In this context,

emerging SCSs can be represented by robotic systems [151], real-time systems [10], autonomous systems [178],

and more in general CPSs [141].

SCSs complexity poses challenges on scaling agile practices [45, 156] and performing requirements engineering

[126] for SCSs. Important SCS definitions related to the safety of these systems are hazard and accident. An hazard
is defined as “a set of conditions that can lead to an accident, given certain environmental conditions" [115]. For
instance, a hazard in a self-driving vehicle can be due to a sensor failing to detect an obstacle. An accident, also
referred to as a mishap, refers to “events, or series of events, that result in death, injury, occupational illness, damage
to or loss of equipment or property, or environmental harm". [115]. For instance, the hazardous event reported
above can lead to the vehicle hitting a pedestrian (i.e., accident). In this paper, we focus primarily on shed some

more light on the types of hazards and accidents affecting a specific type of autonomous system such as UAV.

2.2 Unmanned Aerial Vehicles Development Cycle

• Polynomial
Trajectories

• Trajectory
Optimization

Planning

Perception

• State Estimation
• Mapping

• PID Control
• Model Predictive

Control
• Iterative Learning

Control

Control

Sensors

ActuatorsEN
VI
RO

N
M
EN

T

HARDWARE

SOFTWARE

Fig. 1. Overview of development cycle of UAVs

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 5

Figure 1 shows the development cycle of UAVs [140], which includes three software phases (i.e., Perception,
Planning, and Control) as well as the hardware components that interact with the environment.

The Perception phase includes state estimation [47, 50, 134, 143] and mapping [103, 136] steps. The state

estimation step enables navigation and autonomous driving of UAVs [143]. Themapping step consists of computing

obstacles distance information and, complementary to the state estimation step, it generates a 3D model of the

environment (with 3D range measurements [103]) and models unmapped areas at run-time [136].

The Planning phase consists of finding the right trajectory between a starting point and a destination,

with state-of-the-art approaches in this phase leveraging polynomial trajectories[130, 133, 148] and trajectory
optimization [49] strategies. Finally, the Control phase identifies the flight control commands to be executed by

UAVs to safely navigate the environment.

To enable the usage of UAVs in different contexts, their software is equipped with functions and checks enabling

different autonomous or teleoperated flight modes [25, 48, 140, 166]. These are enabled by the use of a Ground

Control Station (GCS), consisting of a set of hardware and software components that enable UAV operators to

communicate with/control the UAVs.

In the following, we elaborate on some of the main flight modes relevant for the conducted research:

• Position Mode: The UAV maintains a consistent location and heading, with manual control of the throttle,

which controls the vertical motion of the UAV.

• Altitude Mode: Ensures that the UAV will level and maintain the current altitude (e.g., in windy conditions).

• Manual/Stabilized Mode: This allows the operators to manually fly a UAV, with self-levels keeping the

stability of pitch axis.

• Failsafe Mode: The UAV lands safely back to the take-off point based on GPS signals (the failsafe mode is

activated when the connection between the UAV and the controller is disconnected).

• Return to Launch (RTL) Mode: The UAV returns to the home position.

• Fence Mode: It consists in geofencing an UAV, which means that the UAV flight will be restricted to a

certain area.

• Follow-me Mode: Instructs the UAV to continuously follow an object of interest (or a person).

• Hold Mode: The UAV keeps its current position.

• Return Mode: Mode used to fly a UAV to safety from a difficult path to a safe destination.

• Mission Mode: The UAV performs a predefined autonomous mission.

• Takeoff Mode: The UAV to take off to a specified altitude position and wait for further input.

• Land Mode: The UAV lands from a certain altitude position to the ground.

• Offboard Mode: The UAV will apply the position, velocity, or altitude setpoint provided over MAVLink,

i.e., a protocol for communicating with small unmanned vehicle.

3 EMPIRICAL STUDY DESIGN
The goal of our study is to analyze safety issues occurring in open-source UAV-related software. The perspective
is of researchers interested to build and improving recommender systems aimed at identifying, prioritizing, and

supporting the issue fixing and management processes for this kind of system. In particular, we (i) investigate

the extent to which automated strategies (previously used in the context of issue classification) can be used for

identifying safety-related concerns occurring in issues reported in UAV platforms, and (ii) qualitatively discuss

the types of hazards and accidents emerging from safety issues in UAV software. The study context consists of
304 safety issues sampled from three well-known open-source UAV software systems.

3.1 ResearchQuestions
Based on the aforementioned goal, our study aims at answering the following research questions:

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

6 • Di Sorbo, et al.

Fig. 2. Research Approach Overview

• 𝑅𝑄1: To what extent can machine learning models automatically identify safety-related concerns
in issue reports of UAV software platforms? In this research question, we want to explore whether and

the extent to which automated strategies proposed for issue report classification purposes can help UAV

developers to recognize safety issues. Therefore, we experiment with approaches that leverage textual

analysis and ML techniques to identify safety-related sentences in the titles and descriptions of reported

issues. We argue that this may result particularly useful for the issue management process as it would (i)

allow to automatically label the issue as safety-related, and (ii) highlight the safety-related text, so that it

would be possible to properly analyze it during the issue prioritization process.

• 𝑅𝑄2: What are the main hazards and accidents emerging from safety issues reported in UAV
software platforms? For achieving a more in-depth understanding of the specific types of safety issues

occurring in drone systems, we analyze the hazards and related accidents emerging from safety-related

issues. Specifically, by performing an open coding on 273 safety-related issues extracted from three

different GitHub drone projects, containing at least one sentence describing a safety concern, we propose

a categorization of the main hazards and accidents that occur in such issues. In the first stage, our goal is

to analyze the relationship between hazards and accidents. At the same time, this would pave the way for

automated tools aimed at supporting hazard classification and resolution prioritization (e.g., based on the

possible consequences).

Fig. 2 depicts the research approach we followed to answer our research questions. Our research approach

consists of four phases. The Data Collection phase aims to build the dataset to be used for answering the given

research questions and it is described in Section 3.2. During the phase of Gold Standard Definition, sentences of
the dataset are manually annotated with safety and non-safety labels through a process of individual analysis,

review, and open discussion. This process is detailed in Section 3.3.1. The labeled sentences are then used to

train several ML techniques discussed in Section 3.3.2. Finally, in the Hazards & Accidents phase, the hazards and
the related accidents reported in the safety-related sentences are identified through an approach explained in

Section 3.3.3.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 7

Table 1. Dataset characterization

Project

Closed # Safety-related # Closed # Safety-related

Issues Issues Pull Requests Pull Requests

Ardupilot 4,529 153 11,815 78

dRonin 691 25 1,452 37

PX4-Autopilot 5,623 3 11,195 8

Total 10,843 181 (1.67%) 24,262 123 (0.51%)

3.2 Data Collection
The study context consists of three open-source UAVs hosted on GitHub, from which we extracted 304 issues

labeled as safety-related. To identify UAV-related projects, we queried GitHub to retrieve all projects having

as topic drone and/or drones, and as main programming language C or C++, the ones predominant for CPS

development [154]. From the list, we removed fork projects, and projects not being forked, and ordered them

based on the number of forks, i.e., used as a proxy of the project’s popularity. As an outcome, we ended up with a

list of 150 candidate UAV-related projects.

Since our goal is to identify and analyze the safety-related issues occurring in UAV platforms, for each project,

we downloaded the set of labels used for tagging the user-reported issues, and filtered out all the projects that

do not have safety-related labels. After the filtering, we ended up with 3 UAV-related projects (as reported in

Table 1), for which we downloaded the whole set of closed issues and pull requests by relying on Perceval [46].

Finally, we filtered out all the issues and pull requests not being labeled with a safety-related label, ending up

with a total of 304 closed issues tagged with at least one safety label.

Table 1 reports, for each project included in our study, the total number of closed issues and pull requests, as

well as, among them how many are labeled as reporting a safety concern. Note that, two out of three projects

included in our study, i.e., Ardupilot and PX4-Autopilot, have been considered as references in other studies

dealing with UAVs [170]. Furthermore, by looking at data reporting in Table 1, even if all the considered projects

use both issues and pull requests for supporting software development and evolution, only a small percentage of

them (1.67% of issues and 0.51% of pull requests) are labeled as discussing safety properties.

For each issue and pull request having a safety-related label, we used the BEE tool [153] to structure its title

and description into sentences. While other bug trackers (e.g., JIRA or Bugzilla) provide explicit fields for issue

descriptions, the GitHub issue tracker does not, and the issue/pull request description is usually provided in the

issue’s first comment. Therefore, similar to previous work [7, 24, 108, 109, 138], here and in the remainder of the

paper, we refer to the first comment of an issue/pull request as the issue description.
As a result, the 304 safety-related issues have been decomposed into 1,916 sentences.

3.3 Analysis method
3.3.1 Definition of the Gold Standard. To check whether it is possible to classify issues (not) reporting safety-

related concerns, we need to properly identify, among the 1,916 sentences, the ones that refer to safety properties.

To do this, all authors (henceforth referred to as coders), performed a manual classification of the sentences,

considering two categories, i.e., safety-related and not.

Identifying the presence of safety concerns in a piece of text is a subjective task, e.g., interpretation of the

text might be different for different individuals or might depend on their cultural background. For this reason,

we conducted a pilot labeling study. Specifically, after having randomly sampled 10 safety-related issues in our

dataset, accounting for 49 sentences, we relied on a plenary meeting (i.e., pilot study), where, upon discussion,

each sentence was properly classified as (not) describing safety-related concerns. Once the coders reached a

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

8 • Di Sorbo, et al.

common understanding of the labeling procedure, we assigned the remaining 1,867 sentences to two coders each,

i.e., an average of ≃ 747 sentences for each coder.

At the end of the labeling procedure, an open discussion was performed by adding a third coder, to check all

the sentences for which there were disagreements among the original coders (284 out of 1,867). Even if the coders

agreed in 84.8% of the cases on whether a sentence discusses a safety-related property, it is still possible that they

agreed by chance. For this reason, we computed the Cohen’s k [29] which resulted to be 0.68 (substantial). After

disagreements’ resolution, among the 1,916 sentences in our dataset we identified 837 (43.7%) discussing safety

concerns, while the remaining 1,079 did not. In other words, among the 304 safety-related issues, 274 contain at

least one sentence in the title or description describing a safety-related concern. As regards the 30 safety-labeled

issues in the original dataset that are not being classified as safety-related in our study, we found cases where:

• the description was empty and the title was not clearly reporting a safety concern, such as PR # 13926 [94]

from PX4-Autopilot entitled “navio_sysfs_rc_in: only publish input_rc if connected and all channels are
non-zero” ;

• the safety concerns were discussed in a related issue/pull request pointed out in the description, such as

PR # 1129 [78] from dRonin where the description simply reports the observed behavior, i.e., “battery
is also very low, and stack analysis confirms usage is increased” while the referred issue highlights the

in-flight reset occurring due to the low battery value; and

• the safety concerns are raised later on during the reviewing process of the issue/pull request, such as

issue # 2011 [72] from ardupilot where the first comment simply limited to describe the problem: “We
probably want to keep logging after a parachute release to capture the impact in the logs”, while only reading
the follow-up comments it is possible to acknowledge that the current behavior might lead to the arming

status being inadvertently changed.

The manual inspection of the 274 safety-related issues also revealed that one of these issues [59] aimed at

summarizing multiple and too generic hazardous circumstances when using a tablet ground station as a user

interface. For this reason, we decided not to consider such an issue when conducting the subsequent analysis (i.e.,

the identification of hazards and accidents). The labeled dataset is used as input for addressing both RQ1 and RQ2.

Specifically, the whole labeled dataset (304 issues) is used to experiment with ML models, while the 273 issues

with at least one safety-related sentence in either the title or the description are further classified to determine a

set of hazards and accidents occurring in UAV systems.

3.3.2 𝑅𝑄1: To what extent can machine learning models automatically identify safety-related concerns in issue
reports of UAV software platforms? After the definition of the golden standard, we benchmark different techniques

(proposed for issue report classification purposes) when used to automatically identify safety-related sentences

in the titles and descriptions of UAV-reported issues. The experimented techniques have been used in related

literature to work at the document level (i.e., they consider the whole text in the issue report to automatically label

it). In contrast, since we aim at specifically detecting the safety-related sentences appearing in issue reports to

help developers timely identify safety-related UAV issues and ease the inspection of such issues when performing

hazard analysis, we leveraged the aforementioned approaches to operate at the sentence level. For achieving

this goal, we considered all safety-critical (837) and non-safety-critical (1,079) sentences in our dataset, collected

through the metadata analysis explained in Section 3.3.1, and leveraged the different ML techniques, by applying

the following steps:

• Textual corpus: All the manually-labeled sentences in our dataset are used as an information base to

build a textual corpus that is used in the next steps to extract different types of textual features relevant

to the ML-based classification.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 9

• Bag of Words (BOW) features extraction: All terms contained in the sentences are indexed and pre-

processed applying stop-word removal (using the English Standard Stop-word list) and stemming (i.e.,
English Snowball Stemmer), to reduce the number of textual features to consider as input to the ML

techniques [9]. The outcome of this step is a Term-by-Document matrix,M, where each column represents

a sentence of our dataset and each row represents a term contained in a generic safety-critical or non-

safety-critical sentence belonging to the 304 issues/pull requests object of the study. Each entry M[𝑖, 𝑗]

of the matrix represents the weight (or relevance) of the i−𝑡ℎ term contained in the j−𝑡ℎ sentence. The

weights in the matrix are determined by using the tf-idf score [9], which allows for identifying the most

important terms occurring in the sentences. The weighted matrix,M𝑡 𝑓 −𝑖𝑑 𝑓 , represents the outcome of

this step.

• Latent Semantic Indexing (LSI) features extraction: LSI is an indexing and retrieval method that uses

singular value decomposition (SVD) to identify relationships between the terms and concepts contained

in the unstructured text [23, 123, 145]. LSI is typically used for its analysis of latent (hidden) semantics in

a text, addressing the problems of polysemy (i.e., a term having a different meaning in different contexts)

and synonymy (i.e., two or more terms denoting the same concept). Using the R package lsa, we applied
LSI (with the standard share of 0.5) to transform the Tf-idf matrix, M𝑡 𝑓 −𝑖𝑑 𝑓 , obtained as an outcome from

the previous step, in a different space, called M𝐿𝑆𝐼 , so that terms having the same meaning are mapped to

the same concept.

• N-gram features extraction: We computed n-grams [127, 175] of size 2, 3, and 4 from each sentence

in our dataset. The weights in the matrix are determined by using the tf-idf score [9], which allows for

identifying the most important n-grams occurring in the sentences. The weighted matrix, M𝑁−𝑔𝑟𝑎𝑚𝑠 ,

represents the outcome of this step.

• OB, EB, and S2R features extraction: The BEE tool [153] verifies, given a bug report, whether a sentence

describes the current and unexpected behavior (OB), the expected behavior (EB), and the steps needed

to reproduce the problem (S2R). Hence, we extracted, for each sentence in our dataset, such additional

features since it could happen, for example, that safety-related concerns may be expressed while describing

the current and undesired behavior. As a result, among the 1,916 sentences, 1,106 describe the current

behavior, 186 report the expected behavior, and no sentences are reporting the steps to reproduce the

problem. Note that, the distribution of OB, EB, and S2R in our sample is in line with previous literature

showing that bug reports very often describe the current behavior, while only 35.2% and 51.4% of the bug

reports detail EB and S2R, respectively [24].

The matrix M𝑂𝐵−𝐸𝐵 (reporting the presence/absence of OB and EB in each sentence) represents the

outcome of this step.

• Classification: We automatically identify safety-critical sentences by adopting various ML models and a

10-fold cross-validation strategy. To check whether the results are biased due to the dataset imbalance

(i.e., the majority of issues and pull requests considered in our dataset originates from ardupilot), we

also report results of a cross-project analysis, in which we use the best performing ML configurations

(identified using 10-fold cross-validation strategy) to train it on the ardupilot sentences and evaluate the

classification performance on the sentences belonging to the other two projects, i.e., PX4-Autopilot and

dRonin.

We experiment with different shallow ML techniques (using Weka
1
), namely standard probabilistic Naive

Bayes classifier, J48 decision tree, Sequential Minimal Optimization (SMO) model for Support Vector

Machines (SVM), Logistic Regression, and Random Forest.

1
http://waikato.github.io/weka/

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

http://waikato.github.io/weka/

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

10 • Di Sorbo, et al.

The rationale for the choice is to include different types of classifiers, namely, a probabilistic one (Naive

Bayes), a tree-based one (J48), a regression-based one (Logistic Regression) a black-box model that creates

a boundary between data points (SVM), and, finally, an ensemble classifier (Random Forest). These ML

techniques have been previously used for the classification of bug reports [4, 182], user review [38, 39, 139],

and other artifacts [41, 42, 146] textual content.

The ML models are fed with the following combinations of features: M𝐵𝑂𝑊 , M𝐿𝑆𝐼 , M𝐵𝑂𝑊 + M𝑂𝐵−𝐸𝐵 , and
M𝐵𝑂𝑊 + M𝑂𝐵−𝐸𝐵 + M𝑁−𝑔𝑟𝑎𝑚𝑠 . It is important to mention that we did not report other configurations of

features (e.g., M𝑂𝐵−𝐸𝐵 only), since for them we achieved poor experimental results (or no difference in re-

sults compared to other combinations of features). We decided to benchmark shallow ML techniques since,

in cases of limited training data availability, they can still produce comparable or superior results [107]

that allow an easier explainability than those generated by deep neural networks [150].

Complementary to the aforementioned shallow ML models, we experimented with fastText (by using

default values of parameters
2
), a library leveraging word embeddings as internal representation for

text classification created by Facebook’s AI Research lab. FastText is an extension of Word2Vec: while

Word2Vec, under the hood, uses words to predict words, fastText operates at a more granular level

and breaks words into several n-grams (sub-words) [19], benefiting from this information for better

representing rare and out-of-vocabulary words. FastText was successfully used for identifying the correct

labels to assign to GitHub issues [108, 109]. Recent research demonstrated that fastText is among the best

performing classifiers in issue type prediction tasks [100].

It is important to highlight that we initially used the out-of-the-box implementation of all the experimented

ML algorithms (i.e., no hyperparameters were tuned), as we wanted to first estimate the potential lower

bound in the classification performance for the different algorithms, this by experimenting with different

combinations of features (i.e.,M𝐵𝑂𝑊 ,M𝐿𝑆𝐼 , M𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 , andM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 +M𝑁−𝑔𝑟𝑎𝑚𝑠).

A range of different optimization algorithms can be used to achieve potentially better results with

respect to the default configuration of parameters of the ML models, with two of the most common

methods represented by Random Search and Grid Search [2, 14, 15]. Grid search is great for spot-checking

combinations that are known to perform well. Then, we experimented with Grid search as hyperparameter

optimization approach [2, 14, 15] to investigate potential optimal combinations of parameters for the

selected shallow ML models. Specifically, with Grid search we experimented with several parameters

combinations of the various ML models (for a total of around 600 experimented combinations) using a

10-fold validation setting, as summarized below:

– For the Decision Tree (J48) we covered all possible combinations of the following parameters:

∗ C (confidenceFactor): Is the confidence factor, and we experimented with values

[0.001, 0.01, 0.05, 0.1, 0.5]

∗ M (minNumObj): Is the minimum number of instances in a leaf, and we experimented with

values [1, 10, 20, 50, 100]

∗ R (reducedErrorPruning): Reduced error pruning is an alternative algorithm for pruning

that focuses on minimizing the statistical error of the tree. We experimented with the following

values [𝑦𝑒𝑠, 𝑛𝑜]

∗ S (subtreeRaising): This is a specific method of pruning whereby a whole set of branches fur-

ther down the tree are moved up to replace branches that were grown above it. We experimented

with the following values of it [𝑦𝑒𝑠, 𝑛𝑜]

– For the SMO model we covered all possible combinations of the following parameters:

2
For further details, see https://fasttext.cc/docs/en/options.html

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://fasttext.cc/docs/en/options.html

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 11

∗ C: Represents the complexity parameter, andwe experimentedwith the values [0.1, 0.2, 0.5, 0.8, 1,

10, 50, 100, 500, 1000]

– For the Naive-Bayes we covered all possible combinations of the following parameters:

∗ K: Use Kernel estimator, and we experimented with values [𝑦𝑒𝑠, 𝑛𝑜]

∗ D: use Supervised discretization, and we experimented with values [𝑦𝑒𝑠, 𝑛𝑜]

– For the Logistic Regressionmodel we covered all possible combinations of the following parameters:

∗ R (ridge): Is the Ridge in the log-likelihood, andwe experimentedwith values 𝑙𝑜𝑔𝑠𝑝𝑎𝑐𝑒(2,−9, 𝑛𝑢𝑚 =

25)

– For the Random Forest model we covered all possible combinations of the following parameters:

∗ I (numIterations): Is the number of trees in the forest, and we experimented with values

[5, 10, 100, 1000, 2000]

∗ K (numFeatures): Is the max number of features considered for splitting a node, and we

experimented with values [0, 10, 100, 500, 1000]

∗ depth: Is the maximum depth of the tree (0 unlimited), and we experimented with values

[0, 5, 10, 20]

∗ M (minNumObj): Is the minimum number of instances in a leaf , and we experimented with

values [1, 10, 20, 50, 100]

It is important to note that, the aforementioned Grid search setting results in the application of a 10-fold

cross-validation strategy over all experiments, with the usage of the configuration of features that achieves

the best classification performance when using the default hyperparameter configurations of the ML

models (as it is possible to see in Section 4.1). This means that the first round of experiments with default

parameters had the aim of establishing the best features’ set to train the various ML models (which is

M𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵), while the hyperparameter tuning computed with Grid search focuses on investigating

if it is possible to improve the performance using only the best features’ set.

Evaluation Metrics. To evaluate the performance of the selected ML models, we adopted well-known metrics

used to assess the performance of ML classifiers, namely precision, recall, and F-measure [8]. For this kind of

problem, the choice of such evaluation metrics is dictated by having an indication of:

• the extent to which the experimented classifiers avoid false alarms in terms of safety issues (precision);

• the extent to which the classifiers do not miss safety-related sentences (recall); and

• an aggregation of the above (F-measure).

Furthermore, as a binary classifier may perform very well on a given label and poorly on the other (e.g.,
performing worse than a constant classifier), we report the metrics for all labels (i.e., Safety and Non-Safety,
referring to the safety relevance of issues). As we perform cross-validation, precision, recall, and F-measure are

averaged over the 10 folds.

We statistically compared the performance of different classifiers using the McNemar’s exact test [128] from the

R exact2x2 package 3
. The McNemar’s test is a pairwise proportion tests. The test pairwise compares two classifiers

by analyzing proportion differences on a confusion matrix counting the number of cases where both classifiers

succeed, both fail, the first succeeds and the second fails, and vice versa. Due to multiple comparisons, the resulting

𝑝-values are adjusted using the Benjamini-Hochberg correction [13]. The McNemar’s test is complemented by

the Odds Ratio (OR) effect size measure, which is the ratio between the odds of the experimental and control

group (OR> 1 indicates that the experimental group has higher odds to succeed).

To identify the features that contribute more towards the safety sentence classification, we report feature

importance indications. We do so for the ML technique that performs better. As discussed in Section 4.1, this is

3
https://cran.r-project.org/web/packages/exact2x2/index.html

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

12 • Di Sorbo, et al.

the case of Random Forest. Therefore, we compute and report the Mean Decrease Gini (also called Mean Decrease

in Impurity), which is the standard technique to analyze feature importance for Random Forest [20, 53, 125, 164].

3.3.3 𝑅𝑄2: What are the main hazards and accidents emerging from safety issues reported in UAV software platforms?
To identify hazards and related accidents, i.e., events or conditions resulting in unexpected behavior being able

to damage people, the environment and/or the equipment, we manually analyzed the 273 issues containing at

least one sentence describing a safety concern, through a card sorting strategy [155]. Specifically, the manual

analysis has been performed by four coders (all of them are authors of the paper), guaranteeing that each bug was

classified by two different coders. Since the labeling procedure did not start with a predefined set of categories

related to hazards and accidents, even in this case, we performed a pilot study, on the same 10 issues used in

the previous pilot study, to determine a set of coding guidelines to follow during the subsequent independent

labeling procedure.

To perform the issue labeling process, we used online spreadsheets (a separate spreadsheet for each coder),

where coders could use drop-down menus to select previously identified categories or add new ones when those

did not fit. Note that, during the labeling process, the categories identified by one coder were not shared with

the others, finally resulting in 465 different categories of hazards and 43 categories of accidents. Going over the

identified categories, we found that, in several cases, different coders used different wordings for pointing out the

same hazards and accidents. Further discrepancies between some of the identified categories depended on the

different granularity levels used by the coders while reporting them. For these reasons, before the resolution

of disagreements, two coders went through the whole set of the originally identified categories and clustered

them. In the end, they obtained 20 categories describing hazards, and eight categories related to accidents. The

categories that emerged from the clustering were used to refine the original labeling results. Specifically, all four

coders leveraged such categories to properly discuss, through online meetings, the cases in which a disagreement

between them in terms of hazards or accidents occurred. Furthermore, to reduce the agreement by chance that

could have been introduced as a consequence of the clustering procedure on the original lists, we proceeded to

discuss also the cases where the original coders agreed.

To sum up, out of the 273 safety-related issues analyzed, 258 clearly mentioned the hazard, while only 115

indicated the accident occurred or which might have likely occurred. The final categorization we provide is made

up of 19 hazards and 7 accidents.

4 RESULTS
In this section, we report and discuss the results for RQ1 and RQ2.

4.1 𝑅𝑄1: To what extent can machine learning models automatically identify safety-related concerns
in issue reports of UAV software platforms?

As detailed in Section 3.3.2, we experimented with different ML classifiers, namely Naive Bayes, J48, SMO, Logistic

Regression, Random Forest, and fastText, leveraging different combinations of features. In the following, we

report and discuss our results. Note that we only report statistical comparisons where appropriate, because we

computed statistical comparisons among all possible comparisons of treatments. Detailed statistical results can

be found in the replication package.

Table 2 summarizes the results obtained when considering different ML classifiers with different combinations

of features. As shown in Table 2, Random Forest, together with fastText are the classifiers showing the best

performance in terms of precision, recall, and f-measure.

Based on the statistical comparison, Random Forest with BOW outperforms all other techniques (adjusted

𝑝-values< 0.05) with ORs ranging from 1.3 for the comparison with BOW+SMO and 2.95 for the comparison with

BOW+Logistic regression. There is no statistically significant difference when augmenting BOWwith OB/EB/S2R

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 13

Table 2. RQ1 Performance of the ML classifiers for classifying safety-related sentences

ML Processing Safety Non-Safety Weighted Avg.

Model Pr Rc F1 Pr Rc F1 Pr Rc F1

Naive Bayes

BOW 0.71 0.73 0.72 0.79 0.77 0.78 0.76 0.75 0.75

LSI 0.62 0.79 0.70 0.80 0.63 0.70 0.72 0.70 0.70

BOW+OB/EB/S2R 0.71 0.74 0.72 0.79 0.77 0.78 0.76 0.75 0.76

BOW+n-grams+OB/EB/S2R 0.48 0.96 0.64 0.86 0.19 0.31 0.69 0.53 0.45

J48

BOW 0.72 0.66 0.69 0.75 0.80 0.78 0.74 0.74 0.74

LSI 0.65 0.64 0.65 0.72 0.73 0.73 0.69 0.69 0.69

BOW+OB/EB/S2R 0.74 0.67 0.70 0.76 0.81 0.79 0.75 0.75 0.75

BOW+n-grams+OB/EB/S2R 0.74 0.67 0.70 0.76 0.82 0.79 0.75 0.75 0.75

SMO

BOW 0.76 0.72 0.74 0.79 0.83 0.81 0.78 0.78 0.78

LSI 0.78 0.72 0.75 0.80 0.84 0.82 0.79 0.79 0.79

BOW+OB/EB/S2R 0.77 0.74 0.75 0.80 0.83 0.82 0.79 0.79 0.79

BOW+n-grams+OB/EB/S2R 0.77 0.72 0.74 0.79 0.84 0.81 0.78 0.78 0.78

Logistic Regr.

BOW 0.58 0.59 0.58 0.68 0.66 0.67 0.63 0.63 0.63

LSI 0.77 0.74 0.76 0.81 0.83 0.82 0.79 0.79 0.79

BOW+OB/EB/S2R 0.59 0.59 0.59 0.68 0.68 0.68 0.64 0.64 0.64

BOW+n-grams+OB/EB/S2R 0.74 0.72 0.73 0.78 0.80 0.79 0.76 0.77 0.76

Random Forest

BOW 0.80 0.74 0.77 0.81 0.85 0.83 0.80 0.80 0.80

LSI 0.68 0.75 0.71 0.79 0.72 0.75 0.74 0.74 0.74

BOW+OB/EB/S2R 0.80 0.75 0.78 0.82 0.86 0.84 0.81 0.81 0.81

BOW+n-grams+OB/EB/S2R 0.83 0.65 0.73 0.77 0.90 0.83 0.79 0.79 0.79

fastText – 0.78 0.80 0.79 0.85 0.81 0.83 0.83 0.81 0.81

and applying Random Forest (𝑝-value=0.6). Indeed, the weighted precision, recall, and f-measure only slightly

increase from 0.80 to 0.81. We can also notice that the introduction of n-grams in the model slightly lowers

the performance to 0.79 for all metrics, yet such a difference is not statistically significant (𝑝-value=0.31). This

may happen because terms contributing toward the classification of a safety-related sentence are unlikely to be

sequences of adjacent words.

When training the classifiers using the features extracted with LSI, Logistic Regression outperforms Random

Forest: 0.79 versus 0.74 on all the evaluation metrics being considered. The difference is statistically significant

(𝑝-value< 0.01, with an OR=1.5). However, there is no statistically significant difference with BOW+Random

Forest (𝑝-value= 0.28). Hence the application of LSI in this context may not result as particularly convenient,

given that building a LSI space is typically more expensive than just creating a simple BOW model.

As regards the classifiers showing the worst performance, we found that Naive Bayes trained with all features

shows an average f-measure of 0.45, while Logistic Regression trained with BOW features has an average F-

measure of 0.63. Based on the results reported in Table 2 it is possible to conclude that, for most of the ML

classifiers, the performance tends to be already very positive when considering the BOW features, with marginal

improvements when adding OB/EB/S2R. Only Naive Bayes does not show an improvement in terms of F-Measure

results when combining different types of features. The latter might happen because the Naive Bayes classifiers

show limited improvements when increasing the number of features [138, 139].

It is important to highlight that, in general, for almost all the ML models trained with multiple features, the

performance tends to be better in identifying true negatives (i.e., issues not containing safety-related concerns).

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

14 • Di Sorbo, et al.

This may happen because the dataset used for training the classifiers is imbalanced, i.e., ≃ 56% of the sentences

do not discuss any safety-related concerns.

When comparing the results obtained by Random Forest and fastText, we must mention that, as shown in

Table 2, fastText and Random Forest both achieve an average f-measure value of 0.81. It is important to highlight

that fastText achieves good performance by using a standard configuration (as detailed in Section 3.3.2), while

Random Forest, achieves similar results only when applying several pre-processing steps and experimenting with

specific sets of features. Interestingly, fastText achieves a higher recall on the Safety class, which is important to

identify safety-related issues timely during the issue management process. It is worth noticing that fastText does

not outperform the other experimented techniques by a large margin (as it happens in the context of assigning

labels to issues by considering the whole text reported [109]) achieving comparable results to the ones achieved

by the Random Forest classifier trained withM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 features.

Our dataset has two levels of imbalance: (i) the imbalance of the projects (i.e., a project has many more safety

issues than the others) and (ii) the imbalance of the number of samples in the Safety and Non-Safety classes.

These two issues are addressed in this Section (see “Imbalance handling techniques" and “Cross-project analysis"

paragraphs).

Imbalance handling techniques. To check whether the results are biased due to the imbalance of the number

of samples in the Safety and Non-Safety classes, we also report the results of imbalance handling techniques

applied to our dataset, considering the best performing shallow ML model in all our experiments, i.e., Random
Forest trained withM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 features. We then compare the results of Random Forest when using the

default configuration and its variant using imbalance handling techniques. Specifically, the imbalance handling

approach applied was conducted by performing the following steps:

(1) 242 Non-Safety sentences were randomly discarded from the dataset (i.e., undersampling), to obtain a

balanced dataset (i.e., 837 Safety sentences and 837 Non-Safety sentences).

(2) We leveraged the balanced dataset obtained from the previous step to experiment with 10-fold cross-

validation using the default configuration of Random Forest trained withM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 features.

Hence, we decided to use undersampling (and not oversampling) as the imbalance handling strategy since, as

reported in previous work [159], oversampling methods tend to generate false examples, causing classifiers

to perform well in labs but more likely to fail in practice. We follow the recommendation of such previous

work [159] that suggests avoiding oversampling methods when dealing with sensitive applications such as

security, autonomous driving, aviation safety, and medical applications. Given the projects investigated in our

study fall in the domain of aviation safety, we decided to experiment with the undersampling strategy. Table 3

reports the results achieved by (i) Random Forest when using its default configuration (trained with M𝐵𝑂𝑊 +

M𝑂𝐵−𝐸𝐵 features) and 10-fold cross-validation on the unbalanced original dataset (described in Section 3.2), and (ii)

the default configuration of Random Forest (trained with M𝐵𝑂𝑊 + M𝑂𝐵−𝐸𝐵 features) in a 10-fold cross-validation

setting by leveraging the balanced dataset obtained when applying the undersampling strategy. As we can observe

from Table 3, the performance obtained by the two variants of Random Forest are almost identical, so no major

improvements are achieved by balancing the dataset. We conjecture that this happens because our dataset does

not present a heavy imbalance in terms of the number of samples in the Safety and Non-Safety classes. Indeed, as

reported in Section 3.3.2, we have a fairly balanced set of sentences: i.e., 837 Safety sentences (representing 43.7%

of the data), and 1,079 Non-Safety sentences (representing 56.31% of data).

Cross-project analysis. As detailed in Section 3.3.2, to check whether the results are biased due to the dataset

imbalance (i.e., the majority of issues and pull requests considered in our dataset belong to Ardupilot), we

also report results of a cross-project analysis, in which we use the best performing configurations, i.e., Random
Forest trained withM𝐵𝑂𝑊 +M𝑂𝐵−𝐸𝐵 features, and fastText. As it is shown in Table 4, for Random Forest, the

average precision and recall values decreased compared to a 10-fold setting. Consequently, the overall F-measure

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 15

Table 3. Comparison of results of Random Forest when using M𝐵𝑂𝑊 + M𝑂𝐵−𝐸𝐵 features and 10-fold cross-validation on
imbalanced and balanced datasets.

ML Technique Precision Recall F-Measure

Random Forest without imbalance handling techniques 0.81 0.81 0.81

Random Forest with undersampling 0.81 0.81 0.81

Table 4. Cross-project Evaluation based on Random Forest using BOW and OB-EB combination of features and fastText

ML Technique Class Precision Recall F-Measure

Safety 0.63 0.37 0.46

Random Forest Non-Safety 0.69 0.87 0.77

Weighted Avg. 0.67 0.68 0.65

Safety 0.79 0.62 0.70

FastText Non-Safety 0.79 0.90 0.84

Weighted Avg. 0.79 0.76 0.77

decreases of 0.16. In particular, for the Random Forest algorithm, we observe a quite significant degradation in

the recall concerning the identification of the sentences labeled as Safety. This performance degradation could

happen because the terminology used to describe safety issues can be slightly different in Ardupilot, compared

to the other projects.

When comparing the performance of fastText in the cross-project setting and the results achieved by this model

in a 10-fold setting (see Table 2), we can observe that such performance only slightly decreased, i.e., the weighted
average f-measure in a cross-project setting is 0.77 while it is equal to 0.81 in a 10-fold setting. Specifically, in a

cross-project setting, the default implementation of fastText achieves a recall of 0.62 for the sentences in the Safety
category, suggesting that the usage of word embeddings (i.e., the features’ representation strategy leveraged by

fastText) allows to partially mitigate the problem of different vocabularies used in heterogeneous projects to

describe safety-related problems.

Feature Importance. To better understand the features that contribute more to the classification, we computed

the Mean Decrease Gini (also called Mean Decrease in Impurity) [53, 125, 164] for Random Forest, considering

BOW and OB/EB/S2R features. As shown in Fig. 3, we can find intuitive (top 20) features considered important

for the classification of safety-related sentences. Specifically, hardware-related features (e.g., motor and vehicle)
and aspects concerning concrete states (e.g., failsafe) or actions (e.g., arm and disarm) of the UAVs tend to be

considered as important features by the model. Although the keyword safety is among the top 20 relevant features,

it only appears in 48 out of 837 (less than 6%) safety-related sentences in our dataset.

Hyperparameter Optimization. As detailed in Section 3.3.2, we experimented with Grid search as hyperpa-

rameter optimization approach [2, 14, 15] to investigate potential optimal combinations of parameters for the

selected shallowMLmodels. Specifically, with Grid search, we experimented with several parameter combinations

for the various ML models. In total, we experimented with a total of around 600 combinations using a 10-fold

validation setting for the selected shallow ML models (all detailed results are shared in our replication package

along with the Python code used to run the Grid search experiments). As is shown in Table 5, for Random Forest,

the average Precision, Recall, and F-Measure values slightly increased (by about +1%) compared to its default

configuration. For most of the other models, the obtained improvements are slightly more evident in terms of

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

16 • Di Sorbo, et al.

ekf

loss

lead

spin

land

control

climb

posit

avoid

copter

crash

altitud

safeti

fenc

vehicl

disarm

arm

throttl

failsaf

motor

0 5 10
Mean Decrease Gini

Fe
at

ur
es

Fig. 3. Mean Decrease Gini when using BOW and OB/EB/S2R combination of features. The top 20 features are visualized.

Precision, Recall, and F-Measure. In particular, for the J48 algorithm, we observe a +2% of improvements for all

metrics. Similarly, for Naive-Bayes we observe small improvements in Recall (+1%), Precision (+2%), and F-Measure

(+1%) values. For Logistic Regression we observe more substantial improvements in Recall (+16%), Precision

(+16%), and F-Measure (+16%) values. SMO is the only model that did not achieve any observable improvement

in terms of F-Measure. Overall, considering mainly the model having the higher values of both Precision and

Recall (i.e., values > 0.80), Random Forest and fastText are the best performing models, as observed before, with

Random Forest, slightly better in terms of F-Measure (+1%). Interestingly, after a Grid search optimization step,

all experimented ML strategies are not able to achieve more than 0.82 of F-Measure, which represents—within

the considered hyperparameter values—the upper bound of our experiments.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 17

Table 5. Grid search on shallow ML models using BOW and OB-EB combination of features

ML Technique Best Parameters Config. Precision Recall F-Measure

Random Forest I=1000, K=1 depth=0, M=10 0.82 0.82 0.82

J48 C=0.1, M=50, R=no, S=yes 0.77 0.77 0.77

SMO C=0.8 0.79 0.79 0.79

Logistic R=100 0.80 0.80 0.80

Naive-Bayes K=yes 0.77 0.77 0.77

RQ1 Summary: The Random Forest (RF) algorithm obtains precision, recall, and F-measure values of about 81-82%,
with the model considering hardware-related keywords and text features about states (or actions) of the UAVs as the
most important ones. Considering additional features to the BOW ones or experimenting with grid search strategies
do not substantially impact the classification performance of RF. The RF results are similar to the ones obtained by
using the default implementation of fastText in a 10-fold validation setting. FastText does not outperform the other
experimented techniques by a large margin, as it happens in the context of assigning labels to issues. Nevertheless,
fastText showed more promising results in a cross-project setting compared to RF.

4.2 𝑅𝑄2: What are the main hazards and accidents emerging from safety issues reported in UAV
software platforms?

Table 6. Hazard categories and corresponding occurrences in our dataset of 273 safety-related issues and pull requests.

Category Description Occ.

event/action allowed in

undesired states/configura-

tions

Scenarios where some events, e.g., in-flight reboot, or actions,
e.g., disable safety checks, are allowed while they should not

40 (14.65%)

undesired behavior on fail-

safe or error condition/con-

figuration

Unexpected behavior of the system in the scenarios where

failsafe operations or error conditions occur, e.g., low default

speed allowed when radio contact is lost, undesired throttle

behavior in case of gps lock

34 (12.45%)

undesired failsafe behavior

The behavior of the system to deal with a failsafe operation

does not reflect the expected one

32 (11.72%)

inadequate checks

Parameters, input data from sensors, actions and/or events

not checked before activating a specific flight-mode or before

enabling a specific action, e.g., battery status not checked

before takeoff

25 (9.16%)

improper parameter

setting/initialization/config-

uration

System-level parameters, e.g., min-throttle, not or wrongly

initialized, configured and set, e.g., improper calibration or

incorrect conversions

20 (7.33%)

Continued on next page

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

18 • Di Sorbo, et al.

Table 6 – Continued from previous page
Category Description Occ.

misleading or missing

data/measurements/reports

Data coming from external devices and sensors being noisy

or missing, e.g., wrong values in transmission channels

18 (6.59%)

missing or misleading com-

munication with pilot

Conditions and/or events not notified to the pilot, e.g., no
alert in presence of unusually high throttle output

16 (5.86%)

undesired hardware behav-

ior

Unexpected behavior, e.g., failures, of the hardware com-

ponents affecting the overall behavior of the system, e.g.,
throttle unclamped when disarmed

12 (4.40%)

action not allowed in specific

states/configurations

Scenarios where some events or actions, e.g., disarm speed

controller, are not allowed while they should

11 (4.03%)

inappropriate mode

changes/ handling

Incorrect switches betweenmodes, or inappropriate handling

of rapid mode switching

9 (3.30%)

onboard instrumentation is-

sue

Unexpected behavior in the instrumentation being available

onboard, e.g., GPS, GCS, or RC 7 (2.56%)

inappropriate safety switch

handling

The safety switch used to enable/disable the outputs to mo-

tors and servos is not handled based on what reported in the

requirements specification

7 (2.56%)

undetected failure

The system is not able to properly detect the presence of

failures in both the hardware and software components, e.g.,
undetected and unhandled airspeed blockage

7 (2.56%)

timing/timeout/ synchro-

nization issue

Inappropriate handling of synchronization across different

functionalities and timing issues when various components,

both hardware and software, must communicate

5 (1.83%)

communication failure

Two or more hardware components/devices fail to properly

communicate, e.g., data are sent when not needed/requested

4 (1.47%)

lack of control

Scenarios where it is not possible to retake control of the

system after specific conditions

4 (1.47%)

inappropriate handling for

high vibrations

The occurrence of high vibrations introducing instabilities

are not properly handled, e.g., no failsafe actions for high

vibration

3 (1.10%)

memory/stack issue

The system lacks a proper handling mechanism of the mem-

ory/stack needed to guarantee that the system behaves as

expected, e.g., to store new data coming from sensors

2 (0.73%)

battery issue

Battery voltage insufficient for arming or battery insufficient

to guarantee a full flight

2 (0.73%)

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 19

To explore the recurrent hazards and accidents reported in UAV software platforms, and answer RQ2, we performed

a manual analysis of the 273 issues and pull-requests of our dataset containing at least one sentence describing a

safety-related concern (as described in Section 3.3.3). Specifically, based on the title and the description content,

each issue is assigned to at most one hazard and/or accident category. Upon completion of the manual inspection

and clustering procedure (see Section 3.3.3), we found 19 different categories of hazards and seven categories of

accidents reported in Tables 6 and 7, respectively, along with their occurrences.

As reported in Table 6, undesired hardware behavior [75] (4.40%), onboard instrumentation issues, such as GPS,

GCS, or RC connection lost during flight [57] (2.56%), communication failures, such as improper communication

with motors and between motors [76] (1.47%), inappropriate handling (due to either hardware or software

defects) for high vibrations [89] (1.10%), and battery-related issues [77] (0.73%) are signaled as sources of hazards

in only about 10% of the cases, meaning that, in the great majority of the considered reports, the hazardous

circumstances depend on software-related defects. Specifically, in about 40% of the analyzed issues, the reported

hazards depend on misbehaviors occurring when the system enters failsafe mode (undesired behavior on failsafe or
error condition/configuration + undesired failsafe behavior, 24.18%), or the missing inhibition of certain actions (e.g.,
reboot while in-flight [87], motor lockdown during takeoff [95], etc.) when the system is in specific states (14.65%).

Concerning hazards happening in failsafe mode, we distinguish misbehaviors depending on improper failsafe

settings [54] (i.e., undesired failsafe behavior) from unsafe actions occurring when a failsafe (or error condition)

is triggered [60] (i.e., undesired behavior on failsafe or error condition/configuration). As regards the former,

Issue # 292 [54] from ardupilot having as title “Battery Monitoring RTL Bug” states a case where there is a bug
inside the functionality handling the failsafe condition due to low battery. Specifically, “a low battery warning can
cause a permanent RTL that can[not] be overridden”. As regards the latter, instead, Issue # 697 [60] from ardupilot

clearly mentions the case where the propellers “go to 100% Full Throttle” when a radio signal loss occurs (i.e., the
failsafe condition is triggered), resulting in the vehicle flipping.

On the one hand, in ≃ 9% of the inspected reports, the risky situations are due to insufficient checks such

as Issue # 6649 [79] from ardupilot where there is a need to “check that the battery voltage is above the
ARMING_MIN_VOLT and ARMING_MIN_VOLT2 parameter values” before arming the vehicle. On the other hand,

there are 20 (7.33%) issues/pull requests discussing hazardous situations due to an improper parameter setting,

such as PR # 1516 [81] from dronin where there is the need for changing the output calibration, i.e., “offset the
minimum of the calibration range up a little bit from what we send” during disarming.

Furthermore, in ≃ 13% of the manually analyzed pull requests and issues, misleading data [65, 83] (6.59%),

or missing warnings when the system is under anomalous conditions [62, 69] (5.86%) are highlighted as risky

situations by both developers and/or end-users.

In the remaining cases, dangerous events are related to the inability to perform certain actions when the

system is in specific states [68] (4.03%), improper mode switches (inappropriate mode changes/handling [86] +

inappropriate safety switch handling [84], 5.86%), the missing detection of failures occurred [85] (2.56%), race [90]

or timing [71] conditions (1.83%), impossibility to take control [63] (1.47%), and memory size issues [70] (0.73%).

Moving the attention to the accidents generated by risky situations, as expected, crashes/collisions [64, 66] or

abnormal behaviors while in-flight [74] are the most recurrent ones. Specifically, (potential) accidents in these

categories have been indicated in more than 20% of the manually inspected issues (see Table 7). In a further 8% of

the analyzed reports, users signaled (potential) mishaps connected with problematic landing/return-to-location

operations. For instance, users experienced the automated triggering of blind [93] or hard [91] landings after

the occurrence of unexpected events, confirming that landing is among the most critical and accident-prone

phases of a UAV flight [44]. Flyaways [161] (i.e., the devices fly off from their users) are signaled in nearly 7%

of investigated issues, while stabilization/positioning accidents [88] are disclosed in less than 4% of the cases.

Finally, in less than 3% of the inspected reports, users indicated (potential) operator injuries [73] (1.83%) or takeoff

issues [58] (0.73%).

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

20 • Di Sorbo, et al.

Table 7. Accident categories and corresponding occurrences in our dataset of 273 safety-related issues and pull requests.

Category Description Occ.

crashing/collision issue The drone crashes on the ground or else collides with a an object while in-flight 35 (12.82%)

anomalous flight conduct The drone manifests anomalous behavior while in-flight, e.g., in-flight resets 23 (8.42%)

landing/rtl issue The drone has anomalous behavior while landing or returning-to-location 21 (7.69%)

aircraft lost/flown away The drone stops taking actions from the pilot and starts flying autonomously 19 (6.96%)

stabilization/orientation/

positioning issue

The drone experiences issues with positional and localization data, e.g., “you
can create congestion on the serial port to the GPS and the position data gets
delayed”

10 (3.66%)

operator injury

The unexpected behavior of the drone leads to damage to the operator, e.g.,
motors spin when connecting battery

5 (1.83%)

takeoff issue The drone experiences issues during takeoff 2 (0.73%)

To better understand the cause-effect relationships between the different hazard and accident categories, Fig. 4

reports the occurrences with which specific hazard categories (detailed in Table 6) co-occur with the different

accident categories (see Table 7). To avoid discussing relations occurring only once in our dataset, Fig. 4 only

shows the co-occurrences that took place more than once. Note that, the thickness of the lines is proportional to

the number of issues reporting, at the same time, a specific hazard (on the left) and a specific accident (on the

right).

Out of the overall 34 issues describing undesired behaviors when the system enters the failsafe mode or

encounters an error condition (see Table 6), (i) 8 (23.53%) led to landing/rtl problems, (ii) 6 (17.65%) caused crashes

or collisions, and (iii) 3 (8.82%) resulted in flyaways, e.g., PR # 8039 [82] from ardupilot stating “Prevent DCM
fallback from triggering a flyaway”. As regards the former, Issue # 1164 [61] from ardupilot reports a situation

where the undesired behavior of the drone when a battery failsafe is triggered results in an immediate undesirable

landing of the vehicles (i.e., “give the operator the possibility to calculate and configure a battery level at which it is
still safe to RTL/fly to a failsafe destination before landing”). Issue #1234 [67] from dronin, instead, discusses a

scenario where the drone crashes as a consequence of “motors keep running at neutral throttle until the arming
timeout has expired” once a TX failsafe is triggered — “this is unsafe, as the motors will likely burn up in a crash.”

Similarly, out of the overall 32 signaled undesired failsafe behaviors (see Table 6), (i) 4 (12.50%) led to crashes

or collisions, (ii) 3 (9.38%) caused landing/rtl problems, (iii) 3 (9.38%) provoked stabilization/positioning accidents,

(iv) 3 (9.38%) induced abnormal in-flight behaviors, and (v) 3 (9.38%) co-occurred with flyaways. For instance,

Issue #374 [55] from ardupilot clearly discussed a scenario where the “copter lost around 30m of height” due
to a bug in the handling of the failsafe operation triggered by a RC-signal loss. Differently, when talking about

anomalous behavior of the UAV while in flight, PR # 16594 [96] from ardupilot reports about a situation where

it is mandatory to have “the EKF failsafe [being] trigger[ed] soon after the vehicle is armed in stabilizing (or any
other non-GPS mode) if it does [not] have a good position estimate.”
Crashes or collisions might also be due to (i) misleading data (11.43% of reported crashes/collisions) such

as “there is no filtration in the current sensor drivers, and any noise gets passed down as obstacles; this gives a
sudden jerky response by the vehicle, which may even lead to crash” [97], (ii) inadequate checks (11.43% of reported

crashes/collisions), (iii) missing inhibition of certain actions in specific states (11.43% of reported crashes/collisions)

like “allowing the operator to inhibit ADS-B avoidance below the specified altitude” so that it is possible to avoid

“crashing into trees or buildings” as described in PR # 7074 [80] from ardupilot, (iv) undesired hardware behaviors

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 21

Fig. 4. Co-occurrences of hazard categories and accident categories.

(8.57% of reported crashes/collisions), (v) undetected failures (5.71% of reported crashes/collisions), or (vi) inability

to perform certain actions (5.71% of reported crashes/collisions).

Besides, out of the 16 issues reported as an hazard the missing or misleading communication with the pilot, 2

(12.50%) caused flyaways, and 2 (12.50%) led to abnormal in-flight behaviors, such as “add warning to user from
vehicle and ground station when user is approaching the fence [so that] it’s more obvious for the user to see the
vehicle distance from the fences” [62]. Abnormal in-flight behaviors might also arise when specific actions are

not inhibited (17.39% of the reported abnormal in-flight behaviors), or disabled (8.70% of the reported abnormal

in-flight behaviors), and in case of inadequate checks (13.04% of the reported abnormal in-flight behaviors) or

high vibrations were not properly handled (8.70% of the reported abnormal in-flight behaviors). As regards the

latter, PR # 12349 [89] from ardupilot describes a case where the inappropriate detection of high vibrations and

loss of altitude results in a vehicle climbing very quickly while it is not expected to climb at all.

Flyaways, instead, might also depend on missing, misleading, noisy data or measurements coming from the

sensors (15.79% of reported flyaways) such as “catch fly-aways caused by bad compass heading” [56] and onboard

instrumentation issues (10.53% of reported flyaways), such as “sudden bad GPS position leads to Loiter flying off
(GPSGlitch)” [57].

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

22 • Di Sorbo, et al.

Finally, landing/rtl problems might also be caused by inadequate checks (9.52% of reported landing/rtl problems).

For instance, PR # 15092 [92] from ardupilot reports a dangerous situation where “the vehicle continuously
climbs or descends at its maximum rate which at best leads to a hard landing” that is caused by a missing pre-arm

check of the EKF’s altitude estimate.

The results presented above, on the one hand provide an empirical characterization of safety issues in UAV-

related software. On the other hand, such results pave the way to research approaches aimed at supporting a

better analysis and testing of UAV software:

• Have a clear mapping of actions and events enabled or inhibited in each specific configuration or state. The
obtained results showed that, if the system performs an action in a given state, or handles an event

that should be ignored, or fails to handle an event that should be handled, then accidents can occur.

Therefore, the studied bugs urge the need for clearly specifying—e.g., through state machines—the system

behavior in different states. Moreover, given such state models, it is desirable to leverage suitable hazard

analysis approaches [10] or testing approaches [135] not only to check whether events/inputs are correctly

captured in each state, but also, through the testing of sneaky paths (i.e., unspecified transitions in a state

machine) that unexpected events do not have unintended consequences.

• Failsafe and error modes. We have seen how the improper handle of the failsafe mode may be the cause of

accidents, for example when a rotor is not stopped after an emergency landing. On the one hand, this

highlights design problems, and the need to clearly specify how the UAV should behave in such failsafe

or error mode. On the other hand, this also triggers the need for suitable state-based testing, as explained

above. More in general, such results also suggest the need to adapt or customize failsafe and error modes

for specific UAVs.

• Test of misleading data or improper parameter settings. Misleading data from communication channels

or from sensors (e.g., malfunctioning ones) may also cause unintended consequences and, ultimately,

accidents. This raises the need to use fault injection [169] and mutation testing techniques with the aim

of simulating such errors, and test whether they are correctly handled. Furthermore, this trigger the need

for customized sets of high-level mutant operators specialized for such a domain, similar to what has

been done in domains such as deep learning-based systems and embedded software [102, 106]. Last, but

not least, this triggers the development of approaches aimed at supporting the developer in the definition

of input data or state consistency check, where appropriate.

• Cause-effect analysis. The analysis of the co-occurrences between hazard and accident categories (see

Fig. 4), as well as the frequencies of reported accidents (see Table 7) can be leveraged not only to develop

approaches aimed at supporting issue triaging by predicting the likely root causes based on the accidents

and other observable elements, but, also, to prioritize test and analysis activities [17, 18], by determining

what kinds of root causes can be responsible for the most dangerous accidents.

RQ2 Summary: In the great majority of the considered reports, the hazardous circumstances depend on software-
related defects. The most recurrent signaled accidents are related to crashes/collisions, while, in about 40% of the
cases, hazards are due to undesired behaviors occurring when the system enters failsafe mode or to the missing
inhibition of certain actions when the system is in specific states.

5 THREATS TO VALIDITY
Threats to construct validity concern the relationship between theory and observation. The first type of threat

could be related to imprecision and subjectiveness in our classifications, and specifically to (i) distinguish safety-

related sentences from sentences that were not related to safety and (ii) identify hazards and accidents appearing

in safety issues. As far as the former is concerned, we first established the classification criteria to drive the

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 23

analysis carried out by the authors individually, as explained in Section 3.3.1. To reduce the mistakes due to

subjective interpretation, each sentence was classified by two annotators, inter-rater agreement was computed,

and disagreements were resolved through a discussion involving a third rater. The most critical disagreements

were examined by all the annotators through an open debate. For the identification of hazards and accidents,

multiple annotators were involved and a process similar to the previous one was followed. In this case, we applied

an open coding strategy. The codes defined by the annotators were then clustered and through a joint discussion

discrepancies were resolved. In this case, given the exploratory nature of the coding, achieving an inter-rater

agreement was less meaningful. Instead, we discussed every single issue to avoid agreement by chance.

Threats to internal validity concern factors internal to the study that could influence our results. First, the

splitting of sentences and identification of OB, EB, and S2R may be affected by the imprecision of the used tool

i.e., BEE [153]. We mitigated this choice by manually reviewing all sentences and fixing the tool’s mistakes at

least for the splitting (while on the OB, EB, and S2R the reliability of these features depends on BEE’s accuracy).
Performances of the ML techniques used in RQ1 may depend on the setting of their hyper-parameters. We

initially leveraged default settings ofWeka, knowing that the obtained results can represent a lower bound for the

classification performances. Then, we experimented with Grid search as hyperparameter optimization approach

to investigate potential optimal combinations of parameters for the selected shallow ML models.

Threats to conclusion validity concern the relationship between experimentation and outcome. In RQ1, we used

appropriate statistical procedures (i.e., McNemar’s tests and Odds Ratio effect size) to support the comparison of

different classifiers.

Threats to external validity concern the generalizability of our findings. For RQ1, the applicability of the

classifiers to further projects may require retraining, even though we have shown the performance achieved by

the best performing models in a cross-project setting. Another concern could be the ability of the classifiers to

properly work on sentences coming from other bugs. To address this issue, we plan for future work to experiment

with the investigated approaches in the context of further CPS projects and domains. Also, while we compared five

shallow machine learning techniques of different type and fastText, it is entirely possible that other techniques

we did not consider could perform better.

For RQ2, our results—within the UAV domain—in terms of categorization of hazards and accidents may not

generalize beyond the studied projects, therefore it is entirely possible (and likely) that studying further projects

may enlarge the set of considered categories.

Threats to reliability validity concern the ability to reproduce our study. We have created a replication package,

available on Zenodo [43], containing data from the analyzed issues, as well as results from the different steps of

the manual classifications for both RQ1 and RQ2, and raw results of the ML classifiers.

6 RELATED WORK
Our work falls at the intersection between the research fields of (i) issue report classification and (ii) software

engineering for UAVs. In the following, we provide an overview of the recent literature and highlight the

contributions of our paper concerning each of the two research fields.

6.1 Issue Classification
As reported in previous research [31], for popular projects the number of pending issues constantly grows [110]

and, despite the use of labels has a positive impact on the issue management [22], they are rarely used by GitHub

developers. For this reason, researchers proposed automated approaches supporting the issuemanagement process,

with techniques leveraging machine learning [4, 16, 30], textual analysis [174], natural language parsing [41],

and summarization approaches [132, 137, 147].

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

24 • Di Sorbo, et al.

Other, complementary research directions concern the automated classification and analysis of the textual

content of issues [181] for detecting duplicated bugs [174] and predicting reopened issues [177]. In recent years,

tools have been designed to automatically estimate the issue lifetime [111, 112].

In the context of issue textual analysis, recent work [138, 172] empirically investigates the combination of ML

and textual analysis techniques to automatically predict whether issues will be not fixed, by analyzing (only) the

titles and descriptions of reported issues. Similarly, Cabot et al. [22] proposed labels to classify issues in open source
projects, and (ii) Guo et al. [98] presented an approach to determine the bugs that will be actually fixed. Finally,

Kallis et al. [108, 109] proposed Ticket Tagger, a GitHub app analyzing the issue title and description through

machine learning techniques to automatically assign labels to each issue submitted on GitHub, accordingly.

Based on a default implementation of fastText, Ticket Tagger can predict three categories of default labels: bug,
enhancement, and question. Herbold et al. [100] demonstrated that Ticket Tagger represents one of the most

effective approaches to identify issues of the bug type.

Recently, Wang et al. [171] proposed PLPI, a framework able to identify labels with similar meanings and

predict project-specific labels to address the problem deriving from the usage of custom label schemes.

Similar to previous research [138], to build the ground truth we perform a manual inspection of UAV issues.

However, we specifically focus on safety-related issues, comparing the performance achieved by different ML

approaches when used to predict safety-related sentences from user-reported issues of UAV platforms. Our

evaluation is useful to help developers timely identify the UAV issues that are likely to be safety-related. Besides,

to ease the inspection of such issues, the experimented techniques can also help highlight the specific safety-related

sentences occurring in the issue titles and descriptions.

6.2 Software Engineering for UAVs
UAVs are often mentioned as fascinating examples of self-adaptive CPSs. Software engineering for these types of

systems is an increasingly explored research field. In particular, recent efforts mainly focused on bug characteri-

zation [52], testing [1, 37, 180], and verification [27] of self-adaptive CPSs.

Another emerging area of research is related to the automated generation of oracles for testing and localizing

faults in CPSs. For instance, Menghi et al. [131] proposed SOCRaTes, an approach to automatically generate

online test oracles in Simulink able to handle CPS Simulink models featuring continuous behaviors and involving

uncertainties. The oracles are generated from requirements specified in a signal logic-based language. In a similar

effort, He et al. [99] proposed a system identification-based oracle for fault localization in CPS software.

Cleland-Huang and Vierhauser proposed SafetyScrum [28], an agile software development methodology that

augments the Scrum life-cycle with safety-related activities to incrementally track the safety status of UAV

systems. Previous research also proposed programming languages for supporting UAV-specific aspects, such as

energy awareness [124] and context adaptation [21], while Liang et al. [120] focused on how Bounding Functions

(i.e., dynamic checks inserted by developers to ensure that specific variables stay within a prescribed range) are

used in the Paparazzi autopilot software.

Different researchers proposed methods to perform safety analysis of UAV systems. For instance, Denney

and Pai [33–36] focused on different aspects of UAV safety and proposed automated approaches for creating

and maintaining safety assurance cases. Recently, Vierhauser et al. [168] presented an approach for deriving

human-interaction hazards (hazards related to human-system interactions). In particular, the authors provided a

set of domain-level hazard trees designed for the safety analysis of UAV systems.

Prior studies that most relate to ours are the ones concerning the analysis of UAV-specific software issues

reported by developers and/or end-users. In this context, Wang et al. [170] conducted an empirical study to

(i) characterize UAV-specific bugs, (ii) identify their root causes, and (iii) propose repairing strategies. They

further identified five challenges associated with detecting and fixing such UAV-specific bugs. As in our work,

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 25

to perform the analysis, they collected issues from PX4 and Ardupilot GitHub projects. Similarly, Taylor et
al.. [160] analyzed the root causes, severity, and position in the firmware architecture of bugs occurring in these

two open-source projects. However, while Wang et al. and Taylor et al. collected the issues with the bug label

assigned, we specifically focused on safety-related issues (i.e., having safety-related labels assigned), beyond

collecting issues from a further project (i.e., dRonin). Unlike Wang et al. and Taylor et al., who focused on the

root causes of UAV bugs, we analyzed the safety-related UAV issues to present two sets of categories modeling the

main hazards and accidents occurring in the analyzed projects, beyond assessing automated strategies to support

the identification of safety-related concerns occurring in such issues. Besides, we also analyzed the frequencies

with which the specific hazard categories co-occur with the various accident categories, to better understand

recurrent cause-effect relationships.

7 CONCLUSIONS AND FUTURE WORK
Unmanned Aerial Vehicles (UAV) software systems are highly-dependable. The presence of defects in their

software can cause harmful accidents, resulting in damage to the vehicle, but also potentially harmful events for

people and the environment.

This paper contributes to the state-of-the-art by exploringways to aid developers when triaging of safety-critical

issues for UAVs. Specifically, the paper provides the following contributions:

(1) an evaluation of various Machine Learning (ML)-based classifiers, trained with different text represen-

tations and algorithms, by experimenting on a dataset consisting of 1,916 manually-labeled sentences

extracted from safety-related issues and pull requests of three popular open-source UAV platforms; and

(2) a categorization of hazards and accidents, along with their relations, obtained by performing an open

coding over 273 safety-related issues.

For what concerns the sentence classification, we found that a simple bag-of-words model with a Random

Forest classifier already achieves good classification performance, with precision, recall, and f-measure reaching

≃ 0.8. More complex models do not achieve additional benefits. Besides, we obtained a set of 19 hazard categories

and 7 accident categories. Such categories have been further analyzed and discussed (by also providing qualitative

examples) to better understand the most likely occurring accidents for the different hazard categories.

Our study can have relevant implications for both developers and researchers. For what concerns UAV developers,
our study triggers the possibility of leveraging automated approaches to support them in identifying safety-

related concerns in issue reports. Besides, the elicited hazard and accident categories highlight safety-related

specific problems that need to be carefully monitored in UAV development. For instance, to avoid hazardous

circumstances, our results underline the need for developers to have a more clear mapping of inhibited and

enabled actions/events in each specific configuration/state, beyond the need for implementing redundant checks

to detect the presence of misleading data or improper parameter settings.

For what concerns researchers, our work fosters research toward better testing and analysis of safety-related

issues in UAV development. Indeed, our study highlights the need for envisioning testing strategies that allowmore

comprehensive audits of the system behaviors in failsafe or error modes. Other researchers could also build on our

study and the provided manually-labeled data to probe further automated approaches for labeling safety-related

sentences, thus finding the best-performing strategies and settings. Our work also encourages the development of

specific tools to help UAV developers avoid safety-related recurring problems. Finally, complementary empirical

research could focus on investigating the difficulty (e.g., in terms of duration and effort) of fixing safety-related

specific UAV issues and developing tools to help developers allocate the proper resources to various types of

UAV-specific safety-related issues.

Future work aims at replicating the work in other contexts, e.g., closed-source ones, but also to experiment the

safety issue classification in domains different from UAV, also experimenting the extent to which models can be

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

26 • Di Sorbo, et al.

(partially) transferred between domains or whether they require a complete retrain because of very different

safety-related features. Also, we plan to develop further support for safety issue triaging, e.g., by leveraging natural
language processing techniques for the automated identification of hazards to better support fault localization

and fixing tasks.

ACKNOWLEDGMENT
We gratefully acknowledge the Horizon 2020 (EU Commission) support for the project COSMOS (DevOps for
Complex Cyber-physical Systems), Project No. 957254-COSMOS.

REFERENCES
[1] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2018. Testing vision-based control systems using learnable

evolutionary algorithms. In Proceedings of the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018. 1016–1026. https://doi.org/10.1145/3180155.3180160

[2] Muhammad Adnan, Alaa Abdulsalm Alarood, Muhammad Irfan Uddin, and Izaz ur Rehman. 2022. Utilizing grid search cross-

validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput. Sci. 8 (2022), e803.

https://doi.org/10.7717/peerj-cs.803

[3] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2018. Is it a bug or an enhancement?:

a text-based approach to classify change requests. In Proceedings of the 28th Annual International Conference on Computer Science and
Software Engineering, CASCON 2018, Markham, Ontario, Canada, October 29-31, 2018. 2–16. https://dl.acm.org/citation.cfm?id=3291293

[4] Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2008. Is It a Bug or an Enhancement?:

A Text-based Approach to Classify Change Requests. In Proceedings of the 2008 Conference of the Center for Advanced Studies on
Collaborative Research: Meeting of Minds (Ontario, Canada) (CASCON ’08). ACM, New York, NY, USA, Article 23, 15 pages.

[5] Ardupilot.org. 2021. Open Source Drone Software. Versatile, Trusted, Open. ArduPilot. https://ardupilot.org/

[6] Fredrik Asplund, John Alexander McDermid, Robert Oates, and Jonathan Roberts. 2019. Rapid Integration of CPS Security and Safety.

IEEE Embed. Syst. Lett. 11, 4 (2019), 111–114. https://doi.org/10.1109/LES.2018.2879631

[7] Muhammad Ilyas Azeem, Sebastiano Panichella, Andrea Di Sorbo, Alexander Serebrenik, and Qing Wang. 2020. Action-based

Recommendation in Pull-request Development. In ICSSP ’20: International Conference on Software and System Processes, Seoul, Republic
of Korea, 26-28 June, 2020. 115–124. https://doi.org/10.1145/3379177.3388904

[8] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval. Addison-Wesley. http://sunsite.dcc.uchile.cl/irbook

[9] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

[10] Ahmed Mohamed Bakr, May Salama, and Abdelwahab K. Alsammak. 2021. A Hierarchical State Machine Model for Hazard Analysis

of Real-time Safety Critical Systems. Comput. Sci. 22, 1 (2021). https://doi.org/10.7494/csci.2021.22.1.3547

[11] Eulalia Balestrieri, Pasquale Daponte, Luca De Vito, and Francesco Lamonaca. 2021. Sensors and Measurements for Unmanned Systems:

An Overview. Sensors 21, 4 (2021), 1518. https://doi.org/10.3390/s21041518

[12] Eulalia Balestrieri, Pasquale Daponte, Luca De Vito, Francesco Picariello, and Ioan Tudosa. 2021. Sensors and Measurements for UAV

Safety: An Overview. Sensors 21, 24 (2021), 8253. https://doi.org/10.3390/s21248253

[13] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple

Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57, 1 (1995), 289–300.
[14] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms for Hyper-Parameter Optimization. In Proceedings

of the 24th International Conference on Neural Information Processing Systems (Granada, Spain) (NIPS’11). Curran Associates Inc., Red

Hook, NY, USA, 2546–2554.

[15] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
https://doi.org/10.5555/2503308.2188395

[16] Pamela Bhattacharya and Iulian Neamtiu. 2011. Bug-fix Time Prediction Models: Can We Do Better?. In Proceedings of the 8th Working
Conference on Mining Software Repositories (Waikiki, Honolulu, HI, USA) (MSR ’11). ACM, New York, NY, USA, 207–210.

[17] Christian Birchler, Nicolas Ganz, Sajad Khatiri, Alessio Gambi, and Sebastiano Panichella. 2022. Cost-effective Simulation-based Test

Selection in Self-driving Cars Software with SDC-Scissor. In 2022 IEEE 29th International Conference on Software Analysis, Evolution
and Reengineering (SANER). https://doi.org/toappear

[18] Christian Birchler, Sajad Khatiri, Pouria Derakhshanfar, Sebastiano Panichella, and Annibale Panichella. 2022. Single and Multi-

Objective Test Cases Prioritization for Self-Driving Cars in Virtual Environments. ACM Trans. Softw. Eng. Methodol. (apr 2022).
https://doi.org/10.1145/3533818

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://doi.org/10.1145/3180155.3180160
https://doi.org/10.7717/peerj-cs.803
https://dl.acm.org/citation.cfm?id=3291293
https://ardupilot.org/
https://doi.org/10.1109/LES.2018.2879631
https://doi.org/10.1145/3379177.3388904
http://sunsite.dcc.uchile.cl/irbook
https://doi.org/10.7494/csci.2021.22.1.3547
https://doi.org/10.3390/s21041518
https://doi.org/10.3390/s21248253
https://doi.org/10.5555/2503308.2188395
https://doi.org/to appear
https://doi.org/10.1145/3533818

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 27

[19] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. 2017. Enriching Word Vectors with Subword Information.

Trans. Assoc. Comput. Linguistics 5 (2017), 135–146. https://doi.org/10.1162/tacl_a_00051

[20] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5–32.
[21] John Henry Burns, Xiaozhou Liang, and Yu David Liu. 2020. Adaptive Variables for Declarative UAV Planning. In COP ’20: Proceedings

of the 12th International Workshop on Context-Oriented Programming and Advanced Modularity, COP@ECOOP 2020, Virtual Event, 21
July 2020. 1:1–1:7. https://doi.org/10.1145/3422584.3422763

[22] Jordi Cabot, Javier Luis Cánovas Izquierdo, Valerio Cosentino, and Belen Rolandi. 2015. Exploring the use of labels to categorize issues

in Open-Source Software projects. In 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering, SANER
2015, Montreal, QC, Canada, March 2-6, 2015. 550–554.

[23] Giovanni Capobianco, Andrea De Lucia, Rocco Oliveto, Annibale Panichella, and Sebastiano Panichella. 2009. Traceability Recovery

Using Numerical Analysis. In 2009 16th Working Conference on Reverse Engineering. 195–204. https://doi.org/10.1109/WCRE.2009.14

[24] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent

Ng. 2017. Detecting missing information in bug descriptions. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 396–407.

[25] Ying Chen and Néstor O. Pérez-Arancibia. 2020. Controller Synthesis and Performance Optimization for Aerobatic Quadrotor Flight.

IEEE Transactions on Control Systems Technology 28, 6 (2020), 2204–2219. https://doi.org/10.1109/TCST.2019.2919819

[26] Sudipta Chowdhury, Omid Shahvari, Mohammad Marufuzzaman, Xiaopeng Li, and Linkan Bian. 2021. Drone routing and optimization

for post-disaster inspection. Comput. Ind. Eng. 159 (2021), 107495. https://doi.org/10.1016/j.cie.2021.107495

[27] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph Csallner. 2020. SLEMI: equivalence modulo input

(EMI) based mutation of CPS models for finding compiler bugs in Simulink. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020. 335–346. https://doi.org/10.1145/3377811.3380381

[28] Jane Cleland-Huang and Michael Vierhauser. 2018. Discovering, Analyzing, and Managing Safety Stories in Agile Projects. In

26th IEEE International Requirements Engineering Conference, RE 2018, Banff, AB, Canada, August 20-24, 2018. 262–273. https:

//doi.org/10.1109/RE.2018.00034

[29] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement 20, 1 (1960), 37–46.
[30] William W. Cohen, Vitor R. Carvalho, and Tom M. Mitchell. 2004. Learning to Classify Email into "Speech Acts". In Proceedings of the

2004 Conference on Empirical Methods in Natural Language Processing , EMNLP 2004, A meeting of SIGDAT, a Special Interest Group of
the ACL, held in conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain. 309–316.

[31] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2017. A Systematic Mapping Study of Software Development With

GitHub. IEEE Access 5 (2017), 7173–7192.
[32] Raffaello D’Andrea. 2014. Guest Editorial Can Drones Deliver? IEEE Trans Autom. Sci. Eng. 11, 3 (2014), 647–648. https://doi.org/10.

1109/TASE.2014.2326952

[33] Ewen Denney, Ganesh Pai, and Iain Whiteside. 2017. Modeling the Safety Architecture of UAS Flight Operations. In Computer Safety,
Reliability, and Security - 36th International Conference, SAFECOMP 2017, Trento, Italy, September 13-15, 2017, Proceedings. 162–178.
https://doi.org/10.1007/978-3-319-66266-4_11

[34] Ewen Denney and Ganesh J. Pai. 2014. Automating the Assembly of Aviation Safety Cases. IEEE Trans. Reliab. 63, 4 (2014), 830–849.
https://doi.org/10.1109/TR.2014.2335995

[35] Ewen Denney and Ganesh J. Pai. 2016. Composition of Safety Argument Patterns. In Computer Safety, Reliability, and Security - 35th
International Conference, SAFECOMP 2016, Trondheim, Norway, September 21-23, 2016, Proceedings. 51–63. https://doi.org/10.1007/978-

3-319-45477-1_5

[36] Ewen Denney, Ganesh J. Pai, and Ibrahim Habli. 2015. Dynamic Safety Cases for Through-Life Safety Assurance. In 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2. 587–590. https://doi.org/10.1109/

ICSE.2015.199

[37] Jyotirmoy V. Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems

through Bayesian Optimization. ACM Trans. Embed. Comput. Syst. 16, 5s (2017), 170:1–170:18. https://doi.org/10.1145/3126521

[38] Andrea Di Sorbo, Giovanni Grano, Corrado Aaron Visaggio, and Sebastiano Panichella. 2021. Investigating the criticality of user-

reported issues through their relations with app rating. J. Softw. Evol. Process. 33, 3 (2021).
[39] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki, Corrado Aaron Visaggio, Gerardo Canfora, and Harald C.

Gall. 2016. What would users change in my app? Summarizing app reviews for recommending software changes. In Proc. Int’l
Symposium on Foundations of Software Engineering (FSE). 499–510.

[40] Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Corrado Aaron Visaggio, and Gerardo Canfora. 2017. SURF: summarizer

of user reviews feedback. In Proceedings of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina,
May 20-28, 2017 - Companion Volume. 55–58. https://doi.org/10.1109/ICSE-C.2017.5

[41] Andrea Di Sorbo, Sebastiano Panichella, Corrado Aaron Visaggio, Massimiliano Di Penta, Gerardo Canfora, and Harald C. Gall. 2015.

Development Emails Content Analyzer: Intention Mining in Developer Discussions (T). In 30th IEEE/ACM International Conference on

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1145/3422584.3422763
https://doi.org/10.1109/WCRE.2009.14
https://doi.org/10.1109/TCST.2019.2919819
https://doi.org/10.1016/j.cie.2021.107495
https://doi.org/10.1145/3377811.3380381
https://doi.org/10.1109/RE.2018.00034
https://doi.org/10.1109/RE.2018.00034
https://doi.org/10.1109/TASE.2014.2326952
https://doi.org/10.1109/TASE.2014.2326952
https://doi.org/10.1007/978-3-319-66266-4_11
https://doi.org/10.1109/TR.2014.2335995
https://doi.org/10.1007/978-3-319-45477-1_5
https://doi.org/10.1007/978-3-319-45477-1_5
https://doi.org/10.1109/ICSE.2015.199
https://doi.org/10.1109/ICSE.2015.199
https://doi.org/10.1145/3126521
https://doi.org/10.1109/ICSE-C.2017.5

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

28 • Di Sorbo, et al.

Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 12–23.
[42] Andrea Di Sorbo, Sebastiano Panichella, Corrado Aaron Visaggio, Massimiliano Di Penta, Gerardo Canfora, and Harald C. Gall. 2016.

DECA: development emails content analyzer. In Proceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016 - Companion Volume, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM, 641–644.

https://doi.org/10.1145/2889160.2889170

[43] Andrea Di Sorbo, Fiorella Zampetti, Corrado A. Visaggio, Massimiliano Di Penta, and Sebastiano Panichella. 2021. Dataset of the
paper "Automated Identification and Qualitative Characterization of Safety Concerns Reported in UAV Software Platforms". https:

//doi.org/10.5281/zenodo.6207783

[44] Ahmad Din, Basilio Bona, Joel Morrissette, Moazzam Hussain, Massimo Violante, and M. Fawad Naseem. 2012. Embedded Low

Power Controller for Autonomous Landing of UAV Using Artificial Neural Network. In 10th International Conference on Frontiers of
Information Technology, FIT 2012, Islamabad, Pakistan, December 17-19, 2012. 196–203. https://doi.org/10.1109/FIT.2012.42

[45] Osama Doss and Tim P. Kelly. 2016. Challenges and Opportunities in Agile Development in Safety Critical Systems: A Survey. ACM
SIGSOFT Softw. Eng. Notes 41, 2 (2016), 30–31. https://doi.org/10.1145/2894784.2894798

[46] Santiago Dueñas, Valerio Cosentino, Gregorio Robles, and Jesus M Gonzalez-Barahona. 2018. Perceval: Software project data at your

will. In Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. 1–4.
[47] Jakob Engel, Vladlen Koltun, and Daniel Cremers. 2018. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40, 3 (2018),

611–625. https://doi.org/10.1109/TPAMI.2017.2658577

[48] Matthias Faessler, Davide Falanga, and Davide Scaramuzza. 2017. Thrust Mixing, Saturation, and Body-Rate Control for Accurate

Aggressive Quadrotor Flight. IEEE Robotics Autom. Lett. 2, 2 (2017), 476–482. https://doi.org/10.1109/LRA.2016.2640362

[49] Philipp Foehn, Angel Romero, and Davide Scaramuzza. 2021. Time-optimal planning for quadrotor waypoint flight. Sci. Robotics 6, 56
(2021), 1221. https://doi.org/10.1126/scirobotics.abh1221

[50] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. 2014. SVO: Fast semi-direct monocular visual odometry. In 2014 IEEE
International Conference on Robotics and Automation (ICRA). 15–22. https://doi.org/10.1109/ICRA.2014.6906584

[51] Fortune Business Insights. 2020. Market Research Report: Unmanned Aerial Vehicle (UAV) Market Size, Share & COVID-19 Impact

Analysis, By Class (Small UAVs, Tactical UAVs, and Strategic UAVs), By Technology (Remotely Operated, Semi-autonomous, and

Fully-autonomous), By System (UAV Airframe, UAV Payloads, UAV Avionics, UAV Propulsion, and UAV Software), By Application

(Military, Commercial and Recreational), and Regional Forecast, 2020-2027. https://www.fortunebusinessinsights.com/industry-

reports/unmanned-aerial-vehicle-uav-market-101603

[52] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred Chen. 2020. A comprehensive study of autonomous

vehicle bugs. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020. 385–396.
https://doi.org/10.1145/3377811.3380397

[53] Carina Gerstenberger and Daniel Vogel. 2015. On the efficiency of Gini’s mean difference. Stat. Methods Appl. 24, 4 (2015), 569–596.
https://doi.org/10.1007/s10260-015-0315-x

[54] Github.com. 2013. ArduPilot/ardupilot Issue #292. https://github.com/ArduPilot/ardupilot/issues/292. (Last access: 18/02/2022).

[55] Github.com. 2013. ArduPilot/ardupilot Issue #374. https://github.com/ArduPilot/ardupilot/issues/374. (Last access: 18/02/2022).

[56] Github.com. 2013. ArduPilot/ardupilot Issue #572. https://github.com/ArduPilot/ardupilot/issues/572. (Last access: 18/02/2022).

[57] Github.com. 2013. ArduPilot/ardupilot Issue #616. https://github.com/ArduPilot/ardupilot/issues/616. (Last access: 19/02/2022).

[58] Github.com. 2013. ArduPilot/ardupilot Issue #647. https://github.com/ArduPilot/ardupilot/issues/647. (Last access: 28/01/2022).

[59] Github.com. 2013. ArduPilot/ardupilot Issue #656. https://github.com/ArduPilot/ardupilot/issues/656. (Last access: 18/02/2022).

[60] Github.com. 2013. ArduPilot/ardupilot Issue #697. https://github.com/ArduPilot/ardupilot/issues/697. (Last access: 18/02/2022).

[61] Github.com. 2014. ArduPilot/ardupilot Issue #1164. https://github.com/ArduPilot/ardupilot/issues/1164. (Last access: 18/02/2022).

[62] Github.com. 2014. ArduPilot/ardupilot Issue #1254. https://github.com/ArduPilot/ardupilot/issues/1254. (Last access: 18/02/2022).

[63] Github.com. 2014. ArduPilot/ardupilot Issue #1372. https://github.com/ArduPilot/ardupilot/issues/1372. (Last access: 19/02/2022).

[64] Github.com. 2014. ArduPilot/ardupilot Issue #1516. https://github.com/ArduPilot/ardupilot/issues/1516. (Last access: 30/01/2022).

[65] Github.com. 2014. ArduPilot/ardupilot Issue #1648. https://github.com/ArduPilot/ardupilot/issues/1648. (Last access: 18/02/2022).

[66] Github.com. 2014. ArduPilot/ardupilot Issue #841. https://github.com/ArduPilot/ardupilot/issues/841. (Last access: 30/01/2022).

[67] Github.com. 2014. d-ronin/dRonin Issue #1234. https://github.com/d-ronin/dRonin/issues/1234. (Last access: 18/02/2022).

[68] Github.com. 2015. ArduPilot/ardupilot Issue #2190. https://github.com/ArduPilot/ardupilot/issues/2190. (Last access: 18/02/2022).

[69] Github.com. 2015. ArduPilot/ardupilot Issue #2666. https://github.com/ArduPilot/ardupilot/issues/2666. (Last access: 28/01/2022).

[70] Github.com. 2015. d-ronin/dRonin Pull Request #275. https://github.com/d-ronin/dRonin/pull/275. (Last access: 19/02/2022).

[71] Github.com. 2015. d-ronin/dRonin Pull Request #342. https://github.com/d-ronin/dRonin/pull/342. (Last access: 18/02/2022).

[72] Github.com. 2016. ArduPilot/ardupilot Issue #2011. https://github.com/ArduPilot/ardupilot/issues/2011. (Last access: 18/02/2022).

[73] Github.com. 2016. ArduPilot/ardupilot Pull Request #3669. https://github.com/ArduPilot/ardupilot/pull/3669. (Last access: 31/01/2022).

[74] Github.com. 2016. d-ronin/dRonin Issue #1123. https://github.com/d-ronin/dRonin/issues/1123. (Last access: 28/01/2022).

[75] Github.com. 2016. d-ronin/dRonin Issue #406. https://github.com/d-ronin/dRonin/issues/406. (Last access: 19/02/2022).

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://doi.org/10.1145/2889160.2889170
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.1109/FIT.2012.42
https://doi.org/10.1145/2894784.2894798
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1109/LRA.2016.2640362
https://doi.org/10.1126/scirobotics.abh1221
https://doi.org/10.1109/ICRA.2014.6906584
https://www.fortunebusinessinsights.com/industry-reports/unmanned-aerial-vehicle-uav-market-101603
https://www.fortunebusinessinsights.com/industry-reports/unmanned-aerial-vehicle-uav-market-101603
https://doi.org/10.1145/3377811.3380397
https://doi.org/10.1007/s10260-015-0315-x
https://github.com/ArduPilot/ardupilot/issues/292
https://github.com/ArduPilot/ardupilot/issues/374
https://github.com/ArduPilot/ardupilot/issues/572
https://github.com/ArduPilot/ardupilot/issues/616
https://github.com/ArduPilot/ardupilot/issues/647
https://github.com/ArduPilot/ardupilot/issues/656
https://github.com/ArduPilot/ardupilot/issues/697
https://github.com/ArduPilot/ardupilot/issues/1164
https://github.com/ArduPilot/ardupilot/issues/1254
https://github.com/ArduPilot/ardupilot/issues/1372
https://github.com/ArduPilot/ardupilot/issues/1516
https://github.com/ArduPilot/ardupilot/issues/1648
https://github.com/ArduPilot/ardupilot/issues/841
https://github.com/d-ronin/dRonin/issues/1234
https://github.com/ArduPilot/ardupilot/issues/2190
https://github.com/ArduPilot/ardupilot/issues/2666
https://github.com/d-ronin/dRonin/pull/275
https://github.com/d-ronin/dRonin/pull/342
https://github.com/ArduPilot/ardupilot/issues/2011
https://github.com/ArduPilot/ardupilot/pull/3669
https://github.com/d-ronin/dRonin/issues/1123
https://github.com/d-ronin/dRonin/issues/406

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 29

[76] Github.com. 2016. d-ronin/dRonin Issue #587. https://github.com/d-ronin/dRonin/issues/587. (Last access: 19/02/2022).

[77] Github.com. 2016. d-ronin/dRonin Issue #642. https://github.com/d-ronin/dRonin/issues/642. (Last access: 19/02/2022).

[78] Github.com. 2016. d-ronin/dRonin Pull request #1129. https://github.com/d-ronin/dRonin/issues/1129. (Last access: 18/02/2022).

[79] Github.com. 2017. ArduPilot/ardupilot Issue #6649. https://github.com/ArduPilot/ardupilot/issues/6649. (Last access: 18/02/2022).

[80] Github.com. 2017. ArduPilot/ardupilot Pull Request #7074. https://github.com/ArduPilot/ardupilot/pull/7074. (Last access: 18/02/2022).

[81] Github.com. 2017. d-ronin/dRonin Pull Request #1516. https://github.com/d-ronin/dRonin/pull/1516. (Last access: 18/02/2022).

[82] Github.com. 2018. ArduPilot/ardupilot Pull Request # 8039. https://github.com/ArduPilot/ardupilot/pull/8039. (Last access: 18/02/2022).

[83] Github.com. 2018. ArduPilot/ardupilot Pull Request #7440. https://github.com/ArduPilot/ardupilot/pull/7440. (Last access: 18/02/2022).

[84] Github.com. 2018. ArduPilot/ardupilot Pull Request #8180. https://github.com/ArduPilot/ardupilot/pull/8180. (Last access: 18/02/2022).

[85] Github.com. 2018. ArduPilot/ardupilot Pull Request #9381. https://github.com/ArduPilot/ardupilot/pull/9381. (Last access: 18/02/2022).

[86] Github.com. 2018. ArduPilot/ardupilot Pull Request #9858. https://github.com/ArduPilot/ardupilot/pull/9858. (Last access: 18/02/2022).

[87] Github.com. 2018. ArduPilot/ardupilot Pull Request #9941. https://github.com/ArduPilot/ardupilot/pull/9941. (Last access: 18/02/2022).

[88] Github.com. 2019. ArduPilot/ardupilot Pull Request #11025. https://github.com/ArduPilot/ardupilot/pull/11025. (Last access:

30/01/2022).

[89] Github.com. 2019. ArduPilot/ardupilot Pull Request #12439. https://github.com/ArduPilot/ardupilot/pull/12439. (Last access:

19/02/2022).

[90] Github.com. 2019. PX4/PX4-Autopilot Pull Request #13560. https://github.com/PX4/PX4-Autopilot/pull/13560. (Last access: 18/02/2022).

[91] Github.com. 2020. ArduPilot/ardupilot Issue #15608. https://github.com/ArduPilot/ardupilot/issues/15608. (Last access: 30/01/2022).

[92] Github.com. 2020. ArduPilot/ardupilot Pull Request #15092. https://github.com/ArduPilot/ardupilot/pull/15092. (Last access:

18/02/2022).

[93] Github.com. 2020. PX4/PX4-Autopilot Issue #15065. https://github.com/PX4/PX4-Autopilot/issues/15065. (Last access: 28/01/2022).

[94] Github.com. 2020. PX4/PX4-Autopilot Pull Request #13926. https://github.com/PX4/PX4-Autopilot/pull/13926. (Last access: 18/02/2022).

[95] Github.com. 2020. PX4/PX4-Autopilot Pull Request #14428. https://github.com/PX4/PX4-Autopilot/pull/14428. (Last access: 18/02/2022).

[96] Github.com. 2021. ArduPilot/ardupilot Pull Request #16594. https://github.com/ArduPilot/ardupilot/pull/16594. (Last access:

18/02/2022).

[97] Github.com. 2021. ArduPilot/ardupilot Pull Request #16604. https://github.com/ArduPilot/ardupilot/pull/16604. (Last access:

18/02/2022).

[98] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy. 2010. Characterizing and Predicting Which Bugs

Get Fixed: An Empirical Study of Microsoft Windows. In Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1 (Cape Town, South Africa) (ICSE ’10). ACM, New York, NY, USA, 495–504.

[99] Zhijian He, Yao Chen, Enyan Huang, QixinWang, Yu Pei, and Haidong Yuan. 2019. A system identification based Oracle for control-CPS

software fault localization. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019. 116–127. https://doi.org/10.1109/ICSE.2019.00029

[100] Steffen Herbold, Alexander Trautsch, and Fabian Trautsch. 2020. On the feasibility of automated prediction of bug and non-bug issues.

Empir. Softw. Eng. 25, 6 (2020), 5333–5369. https://doi.org/10.1007/s10664-020-09885-w

[101] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In 35th
International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013. 392–401. https://doi.org/10.1109/

ICSE.2013.6606585

[102] Robert M. Hierons and Tao Xie. 2021. Adaptive or embedded software testing and mutation testing. Softw. Test. Verification Reliab. 31,
7 (2021). https://doi.org/10.1002/stvr.1798

[103] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Burgard. 2013. OctoMap: an efficient probabilistic 3D

mapping framework based on octrees. Auton. Robots 34, 3 (2013), 189–206. https://doi.org/10.1007/s10514-012-9321-0

[104] Janna Huuskonen and Timo Oksanen. 2018. Soil sampling with drones and augmented reality in precision agriculture. Comput.
Electron. Agric. 154 (2018), 25–35. https://doi.org/10.1016/j.compag.2018.08.039

[105] International Civil Aviation Organization (ICAO). 2013. Safety management manual; 3rd ed.; Doc 9859.

[106] Gunel Jahangirova and Paolo Tonella. 2020. An Empirical Evaluation of Mutation Operators for Deep Learning Systems. In 13th IEEE
International Conference on Software Testing, Validation and Verification, ICST 2020, Porto, Portugal, October 24-28, 2020. 74–84.

[107] Christian Janiesch, Patrick Zschech, and Kai Heinrich. 2021. Machine learning and deep learning. Electron. Mark. 31, 3 (2021), 685–695.
https://doi.org/10.1007/s12525-021-00475-2

[108] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella. 2019. Ticket Tagger: Machine Learning Driven Issue

Classification. In 2019 IEEE International Conference on Software Maintenance and Evolution, ICSME 2019, Cleveland, OH, USA, September
29 - October 4, 2019. IEEE, 406–409. https://doi.org/10.1109/ICSME.2019.00070

[109] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella. 2021. Predicting issue types on GitHub. Sci. Comput.
Program. 205 (2021), 102598. https://doi.org/10.1016/j.scico.2020.102598

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://github.com/d-ronin/dRonin/issues/587
https://github.com/d-ronin/dRonin/issues/642
https://github.com/d-ronin/dRonin/issues/1129
https://github.com/ArduPilot/ardupilot/issues/6649
https://github.com/ArduPilot/ardupilot/pull/7074
https://github.com/d-ronin/dRonin/pull/1516
https://github.com/ArduPilot/ardupilot/pull/8039
https://github.com/ArduPilot/ardupilot/pull/7440
https://github.com/ArduPilot/ardupilot/pull/8180
https://github.com/ArduPilot/ardupilot/pull/9381
https://github.com/ArduPilot/ardupilot/pull/9858
https://github.com/ArduPilot/ardupilot/pull/9941
https://github.com/ArduPilot/ardupilot/pull/11025
https://github.com/ArduPilot/ardupilot/pull/12439
https://github.com/PX4/PX4-Autopilot/pull/13560
https://github.com/ArduPilot/ardupilot/issues/15608
https://github.com/ArduPilot/ardupilot/pull/15092
https://github.com/PX4/PX4-Autopilot/issues/15065
https://github.com/PX4/PX4-Autopilot/pull/13926
https://github.com/PX4/PX4-Autopilot/pull/14428
https://github.com/ArduPilot/ardupilot/pull/16594
https://github.com/ArduPilot/ardupilot/pull/16604
https://doi.org/10.1109/ICSE.2019.00029
https://doi.org/10.1007/s10664-020-09885-w
https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1002/stvr.1798
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.1016/j.compag.2018.08.039
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1109/ICSME.2019.00070
https://doi.org/10.1016/j.scico.2020.102598

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

30 • Di Sorbo, et al.

[110] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. 2015. Issue Dynamics in Github Projects. In Product-Focused Software Process
Improvement - 16th International Conference, PROFES 2015, Bolzano, Italy, December 2-4, 2015, Proceedings. 295–310.

[111] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. 2016. Using Dynamic and Contextual Features to Predict Issue Lifetime in GitHub

Projects. In Proceedings of the 13th International Conference on Mining Software Repositories (Austin, Texas) (MSR ’16). ACM, New York,

NY, USA, 291–302.

[112] Sunghun Kim and E. James Whitehead, Jr. 2006. How Long Did It Take to Fix Bugs?. In Proceedings of the 2006 International Workshop
on Mining Software Repositories (Shanghai, China) (MSR ’06). ACM, New York, NY, USA, 173–174.

[113] Nancy Leveson. 2020. Are you sure your software will not kill anyone? Commun. ACM 63, 2 (2020), 25–28. https://doi.org/10.1145/

3376127

[114] Nancy G. Leveson. 1984. Software Safety in Computer-Controlled Systems. Computer 17, 2 (1984), 48–55. https://doi.org/10.1109/MC.

1984.1659054

[115] Nancy G. Leveson. 1986. Software Safety: Why, What, and How. ACM Comput. Surv. 18, 2 (1986), 125–163. https://doi.org/10.1145/

7474.7528

[116] Nancy G. Leveson. 1991. Software Safety: In Embedded Computer Systems. Commun. ACM 34, 2 (1991), 34–46. https://doi.org/10.

1145/102792.102799

[117] Nancy G. Leveson. 1995. Safety as a System Property. Commun. ACM 38, 11 (1995), 146. https://doi.org/10.1145/219717.219816

[118] Nancy G. Leveson and Peter R. Harvey. 1983. Analyzing Software Safety. IEEE Trans. Software Eng. 9, 5 (1983), 569–579. https:

//doi.org/10.1109/TSE.1983.235116

[119] Nancy G. Leveson and Peter R. Harvey. 1983. Software fault tree analysis. J. Syst. Softw. 3, 2 (1983), 173–181. https://doi.org/10.1016/0164-
1212(83)90030-4

[120] Xiaozhou Liang, John Henry Burns, Joseph Sanchez, Karthik Dantu, Lukasz Ziarek, and Yu David Liu. 2021. Understanding Bounding

Functions in Safety-Critical UAV Software. In 43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. 1311–1322. https://doi.org/10.1109/ICSE43902.2021.00119

[121] Mikael Lindvall, Adam Porter, Gudjon Magnusson, and Christoph Schulze. 2017. Metamorphic Model-Based Testing of Autonomous

Systems. In 2nd IEEE/ACM International Workshop on Metamorphic Testing, MET@ICSE 2017, Buenos Aires, Argentina, May 22, 2017.
IEEE Computer Society, 35–41. https://doi.org/10.1109/MET.2017.6

[122] Shuhang Liu, Zhiqing Wei, Zijun Guo, Xin Yuan, and Zhiyong Feng. 2018. Performance Analysis of UAVs Assisted Data Collection in

Wireless Sensor Network. In 87th IEEE Vehicular Technology Conference, VTC Spring 2018, Porto, Portugal, June 3-6, 2018. IEEE, 1–5.
https://doi.org/10.1109/VTCSpring.2018.8417673

[123] Tao Liu, Zheng Chen, Benyu Zhang, Wei-Ying Ma, and Gongyi Wu. 2004. Improving Text Classification using Local Latent Semantic

Indexing. In Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004), 1-4 November 2004, Brighton, UK. IEEE
Computer Society, 162–169. https://doi.org/10.1109/ICDM.2004.10096

[124] Yu David Liu and Lukasz Ziarek. 2017. Toward Energy-Aware Programming for Unmanned Aerial Vehicles. In 3rd IEEE/ACM
International Workshop on Software Engineering for Smart Cyber-Physical Systems, SEsCPS@ICSE 2017, Buenos Aires, Argentina, May 21,
2017. 30–33. https://doi.org/10.1109/SEsCPS.2017.8

[125] Fernando Martinez-Taboada and Jose Ignacio Redondo. 2020. Induction of decision trees. PLOS ONE (2020).

[126] Luiz Eduardo G. Martins and Tony Gorschek. 2017. Requirements Engineering for Safety-Critical Systems: Overview and Challenges.

IEEE Software 34, 4 (2017), 49–57. https://doi.org/10.1109/MS.2017.94

[127] Graham McDonald, Craig Macdonald, and Iadh Ounis. 2015. Using Part-of-Speech N-grams for Sensitive-Text Classification. In

Proceedings of the 2015 International Conference on The Theory of Information Retrieval, ICTIR 2015, Northampton, Massachusetts,
USA, September 27-30, 2015, James Allan, W. Bruce Croft, Arjen P. de Vries, and Chengxiang Zhai (Eds.). ACM, 381–384. https:

//doi.org/10.1145/2808194.2809496

[128] Quinn McNemar. 1947. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12,
2 (01 Jun 1947), 153–157.

[129] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. 2015. PX4: A node-based multithreaded open source robotics framework for

deeply embedded platforms. In IEEE International Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015.
IEEE, 6235–6240. https://doi.org/10.1109/ICRA.2015.7140074

[130] Daniel Mellinger and Vijay Kumar. 2011. Minimum snap trajectory generation and control for quadrotors. In 2011 IEEE International
Conference on Robotics and Automation. 2520–2525. https://doi.org/10.1109/ICRA.2011.5980409

[131] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019. Generating automated and online test oracles for

Simulink models with continuous and uncertain behaviors. In Proceedings of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019.
27–38. https://doi.org/10.1145/3338906.3338920

[132] Laura Moreno and Andrian Marcus. 2018. Automatic software summarization: the state of the art. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. 530–531.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://doi.org/10.1145/3376127
https://doi.org/10.1145/3376127
https://doi.org/10.1109/MC.1984.1659054
https://doi.org/10.1109/MC.1984.1659054
https://doi.org/10.1145/7474.7528
https://doi.org/10.1145/7474.7528
https://doi.org/10.1145/102792.102799
https://doi.org/10.1145/102792.102799
https://doi.org/10.1145/219717.219816
https://doi.org/10.1109/TSE.1983.235116
https://doi.org/10.1109/TSE.1983.235116
https://doi.org/10.1016/0164-1212(83)90030-4
https://doi.org/10.1016/0164-1212(83)90030-4
https://doi.org/10.1109/ICSE43902.2021.00119
https://doi.org/10.1109/MET.2017.6
https://doi.org/10.1109/VTCSpring.2018.8417673
https://doi.org/10.1109/ICDM.2004.10096
https://doi.org/10.1109/SEsCPS.2017.8
https://doi.org/10.1109/MS.2017.94
https://doi.org/10.1145/2808194.2809496
https://doi.org/10.1145/2808194.2809496
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/10.1109/ICRA.2011.5980409
https://doi.org/10.1145/3338906.3338920

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 31

[133] Mark W. Müller, Markus Hehn, and Raffaello D’Andrea. 2015. A Computationally Efficient Motion Primitive for Quadrocopter

Trajectory Generation. IEEE Trans. Robotics 31, 6 (2015), 1294–1310. https://doi.org/10.1109/TRO.2015.2479878

[134] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. 2015. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE
Transactions on Robotics 31, 5 (2015), 1147–1163. https://doi.org/10.1109/TRO.2015.2463671

[135] A. Jefferson Offutt and Aynur Abdurazik. 1999. Generating Tests from UML Specifications. In UML (Lecture Notes in Computer Science,
Vol. 1723). Springer, 416–429.

[136] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan I. Nieto. 2017. Voxblox: Incremental 3D Euclidean Signed

Distance Fields for on-board MAV planning. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017,
Vancouver, BC, Canada, September 24-28, 2017. IEEE, 1366–1373. https://doi.org/10.1109/IROS.2017.8202315

[137] Sebastiano Panichella. 2018. Summarization techniques for code, change, testing, and user feedback (Invited paper). In 2018 IEEE
Workshop on Validation, Analysis and Evolution of Software Tests, VST@SANER 2018, Campobasso, Italy, March 20, 2018. 1–5.

[138] Sebastiano Panichella, Gerardo Canfora, and Andrea Di Sorbo. 2021. "Won’t We Fix this Issue?" Qualitative characterization and

automated identification of wontfix issues on GitHub. Inf. Softw. Technol. 139 (2021), 106665. https://doi.org/10.1016/j.infsof.2021.106665
[139] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Aaron Visaggio, Gerardo Canfora, and Harald C. Gall. 2015. How

can i improve my app? Classifying user reviews for software maintenance and evolution. In 2015 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2015, Bremen, Germany, September 29 - October 1, 2015, Rainer Koschke, Jens Krinke, and
Martin P. Robillard (Eds.). IEEE Computer Society, 281–290. https://doi.org/10.1109/ICSM.2015.7332474

[140] Scott Drew Pendleton, Hans Andersen, Xinxin Du, Xiaotong Shen, Malika Meghjani, You Hong Eng, Daniela Rus, and Marcelo H.

Ang. 2017. Perception, Planning, Control, and Coordination for Autonomous Vehicles. Machines 5, 1 (2017). https://doi.org/10.3390/

machines5010006

[141] Ana Pereira and Carsten Thomas. 2020. Challenges of Machine Learning Applied to Safety-Critical Cyber-Physical Systems. Mach.
Learn. Knowl. Extr. 2, 4 (2020), 579–602. https://doi.org/10.3390/make2040031

[142] Pixhawk.org. 2021. Pixhawk | The hardware standard for open-source autopilots. https://pixhawk.org/

[143] Tong Qin, Peiliang Li, and Shaojie Shen. 2018. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE
Trans. Robotics 34, 4 (2018), 1004–1020. https://doi.org/10.1109/TRO.2018.2853729

[144] Yi Qin, Tao Xie, Chang Xu, Angello Astorga, and Jian Lu. 2020. CoMID: Context-Based Multiinvariant Detection for Monitoring

Cyber-Physical Software. IEEE Trans. Reliab. 69, 1 (2020), 106–123. https://doi.org/10.1109/TR.2019.2933324

[145] Oscar Quispe, Alexander Ocsa, and Ricardo Coronado. 2017. Latent semantic indexing and convolutional neural network for multi-label

and multi-class text classification. In IEEE Latin American Conference on Computational Intelligence, LA-CCI 2017, Arequipa, Peru,
November 8-10, 2017. IEEE, 1–6. https://doi.org/10.1109/LA-CCI.2017.8285711

[146] Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, Andrea Di Sorbo, and Oscar Nierstrasz. 2021. How to identify class comment

types? A multi-language approach for class comment classification. J. Syst. Softw. 181 (2021), 111047. https://doi.org/10.1016/j.jss.2021.

111047

[147] Sarah Rastkar, Gail C. Murphy, and Gabriel Murray. 2010. Summarizing software artifacts: a case study of bug reports. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010.
505–514.

[148] Charles Richter, Adam Bry, and Nicholas Roy. 2013. Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense

Indoor Environments. In Robotics Research - The 16th International Symposium ISRR, 16-19 December 2013, Singapore (Springer Tracts in
Advanced Robotics, Vol. 114), Masayuki Inaba and Peter Corke (Eds.). Springer, 649–666. https://doi.org/10.1007/978-3-319-28872-7_37

[149] Johanna Roiha, Einari Heinaro, and Markus Holopainen. 2021. The Hidden Cairns - A Case Study of Drone-Based ALS as an

Archaeological Site Survey Method. Remote. Sens. 13, 10 (2021), 2010. https://doi.org/10.3390/rs13102010

[150] Cynthia Rudin. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models

instead. Nat. Mach. Intell. 1, 5 (2019), 206–215. https://doi.org/10.1038/s42256-019-0048-x

[151] Andrew Singletary, Shishir Kolathaya, and Aaron D. Ames. 2022. Safety-Critical Kinematic Control of Robotic Systems. IEEE Control
Systems Letters 6 (2022), 139–144. https://doi.org/10.1109/LCSYS.2021.3050609

[152] Ian Sommerville. 2010. Software Engineering (9 ed.). Addison-Wesley, Harlow, England.

[153] Yang Song and Oscar Chaparro. 2020. BEE: a tool for structuring and analyzing bug reports. In ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020.
1551–1555. https://doi.org/10.1145/3368089.3417928

[154] Paul Soulier, Depeng Li, and John R Williams. 2015. A survey of language-based approaches to cyber-physical and embedded system

development. Tsinghua Science and Technology 20, 2 (2015), 130–141.

[155] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

[156] Jan-Philipp Steghöfer, Eric Knauss, Jennifer Horkoff, and Rebekka Wohlrab. 2019. Challenges of Scaled Agile for Safety-Critical

Systems. In Product-Focused Software Process Improvement - 20th International Conference, PROFES 2019, Barcelona, Spain, November
27-29, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11915), Xavier Franch, Tomi Männistö, and Silverio Martínez-Fernández

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1016/j.infsof.2021.106665
https://doi.org/10.1109/ICSM.2015.7332474
https://doi.org/10.3390/machines5010006
https://doi.org/10.3390/machines5010006
https://doi.org/10.3390/make2040031
https://pixhawk.org/
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/TR.2019.2933324
https://doi.org/10.1109/LA-CCI.2017.8285711
https://doi.org/10.1016/j.jss.2021.111047
https://doi.org/10.1016/j.jss.2021.111047
https://doi.org/10.1007/978-3-319-28872-7_37
https://doi.org/10.3390/rs13102010
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1109/LCSYS.2021.3050609
https://doi.org/10.1145/3368089.3417928

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

32 • Di Sorbo, et al.

(Eds.). Springer, 350–366. https://doi.org/10.1007/978-3-030-35333-9_26

[157] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. 2020. Misbehaviour prediction for autonomous driving systems.

In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and

Doo-Hwan Bae (Eds.). ACM, 359–371. https://doi.org/10.1145/3377811.3380353

[158] Sihao Sun, Giovanni Cioffi, Coen de Visser, and Davide Scaramuzza. 2021. Autonomous Quadrotor Flight Despite Rotor Failure With

Onboard Vision Sensors: Frames vs. Events. IEEE Robotics Autom. Lett. 6, 2 (2021), 580–587. https://doi.org/10.1109/LRA.2020.3048875

[159] Ahmad S. Tarawneh, Ahmad B. Hassanat, Ghada Awad Altarawneh, and Abdullah Almuhaimeed. 2022. Stop Oversampling for Class

Imbalance Learning: A Review. IEEE Access 10 (2022), 47643–47660. https://doi.org/10.1109/ACCESS.2022.3169512

[160] Max Taylor, Jayson Boubin, Haicheng Chen, Christopher Stewart, and Feng Qin. 2021. A Study on Software Bugs in Unmanned Aircraft

Systems. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS). 1439–1448. https://doi.org/10.1109/ICUAS51884.2021.

9476844

[161] Max Taylor, Haicheng Chen, Feng Qin, and Christopher Stewart. 2021. Avis: In-Situ Model Checking for Unmanned Aerial Vehicles.

In 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2021, Taipei, Taiwan, June 21-24, 2021.
471–483. https://doi.org/10.1109/DSN48987.2021.00057

[162] Yuan Tian, David Lo, and Chengnian Sun. 2013. DRONE: Predicting Priority of Reported Bugs by Multi-factor Analysis. In 2013 IEEE
International Conference on Software Maintenance, Eindhoven, The Netherlands, September 22-28, 2013. 200–209. https://doi.org/10.1109/

ICSM.2013.31

[163] Christopher Steven Timperley, Afsoon Afzal, Deborah S. Katz, Jam Marcos Hernandez, and Claire Le Goues. 2018. Crashing Simulated

Planes is Cheap: Can Simulation Detect Robotics Bugs Early?. In 11th IEEE International Conference on Software Testing, Verification
and Validation, ICST 2018, Västerås, Sweden, April 9-13, 2018. IEEE Computer Society, 331–342. https://doi.org/10.1109/ICST.2018.00040

[164] Alexander Trautsch, Steffen Herbold, and Jens Grabowski. 2020. Static source code metrics and static analysis warnings for fine-

grained just-in-time defect prediction. In 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). 127–138.
https://doi.org/10.1109/ICSME46990.2020.00022

[165] Jamal Uddin, Rozaida Ghazali, Mustafa Mat Deris, Rashid Naseem, and Habib Shah. 2017. A survey on bug prioritization. Artif. Intell.
Rev. 47, 2 (2017), 145–180. https://doi.org/10.1007/s10462-016-9478-6

[166] Chris Cole Drone Wars UK. 2019. ACCIDENTS WILL HAPPEN - A review of military drone crash data as the UK considers allowing

large military drone flights in its airspace. https://dronewars.net/wp-content/uploads/2019/06/DW-Accidents-WEB.pdf

[167] U.S. Dept. Of Defense. 1984. MIL-STD-882B:System Safety Program Requirements.

[168] Michael Vierhauser, Md Nafee Al Islam, Ankit Agrawal, Jane Cleland-Huang, and James Mason. 2021. Hazard analysis for human-on-

the-loop interactions in sUAS systems. In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Athens, Greece, August 23-28, 2021. 8–19. https://doi.org/10.1145/3468264.3468534

[169] Jeffrey M. Voas and Gary McGraw. 1997. Software Fault Injection: Inoculating Programs against Errors. John Wiley & Sons, Inc., USA.

[170] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021. An exploratory study of autopilot software bugs in

unmanned aerial vehicles. In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Athens, Greece, August 23-28, 2021. 20–31. https://doi.org/10.1145/3468264.3468559

[171] Jun Wang, Xiaofang Zhang, Lin Chen, and Xiaoyuan Xie. 2022. Personalizing label prediction for GitHub issues. Information and
Software Technology 145 (2022), 106845. https://doi.org/10.1016/j.infsof.2022.106845

[172] Qingye Wang. 2020. Why Is My Bug Wontfix?. In 2020 IEEE 2nd International Workshop on Intelligent Bug Fixing (IBF). IEEE, 45–54.
[173] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach to detecting duplicate bug reports using natural

language and execution information. In 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18,
2008. 461–470. https://doi.org/10.1145/1368088.1368151

[174] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach to detecting duplicate bug reports using natural

language and execution information. In 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18,
2008. 461–470.

[175] Zhihua Wei, Duoqian Miao, Jean-Hugues Chauchat, and Caiming Zhong. 2008. Feature Selection on Chinese Text Classification Using

Character N-Grams. In Rough Sets and Knowledge Technology, Third International Conference, RSKT 2008, Chengdu, China, May 17-19,
2008. Proceedings (Lecture Notes in Computer Science, Vol. 5009), Guoyin Wang, Tianrui Li, Jerzy W. Grzymala-Busse, Duoqian Miao,

Andrzej Skowron, and Yiyu Yao (Eds.). Springer, 500–507. https://doi.org/10.1007/978-3-540-79721-0_68

[176] Anna Wojciechowska, Jérémy Frey, Sarit Sass, Roy Shafir, and Jessica R. Cauchard. 2019. Collocated Human-Drone Interaction:

Methodology and Approach Strategy. In 14th ACM/IEEE International Conference on Human-Robot Interaction, HRI 2019, Daegu, South
Korea, March 11-14, 2019. IEEE, 172–181. https://doi.org/10.1109/HRI.2019.8673127

[177] Xin Xia, David Lo, Xinyu Wang, Xiaohu Yang, Shanping Li, and Jianling Sun. 2013. A Comparative Study of Supervised Learning

Algorithms for Re-opened Bug Prediction. In Proceedings of the 2013 17th European Conference on SoftwareMaintenance and Reengineering
(CSMR ’13). 331–334.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://doi.org/10.1007/978-3-030-35333-9_26
https://doi.org/10.1145/3377811.3380353
https://doi.org/10.1109/LRA.2020.3048875
https://doi.org/10.1109/ACCESS.2022.3169512
https://doi.org/10.1109/ICUAS51884.2021.9476844
https://doi.org/10.1109/ICUAS51884.2021.9476844
https://doi.org/10.1109/DSN48987.2021.00057
https://doi.org/10.1109/ICSM.2013.31
https://doi.org/10.1109/ICSM.2013.31
https://doi.org/10.1109/ICST.2018.00040
https://doi.org/10.1109/ICSME46990.2020.00022
https://doi.org/10.1007/s10462-016-9478-6
https://dronewars.net/wp-content/uploads/2019/06/DW-Accidents-WEB.pdf
https://doi.org/10.1145/3468264.3468534
https://doi.org/10.1145/3468264.3468559
https://doi.org/10.1016/j.infsof.2022.106845
https://doi.org/10.1145/1368088.1368151
https://doi.org/10.1007/978-3-540-79721-0_68
https://doi.org/10.1109/HRI.2019.8673127

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 33

[178] Wei Xiao, Christos G. Cassandras, and Calin Belta. 2021. Safety-Critical Optimal Control for Autonomous Systems. J. Syst. Sci. Complex.
34, 5 (2021), 1723–1742. https://doi.org/10.1007/s11424-021-1230-x

[179] Fiorella Zampetti, Ritu Kapur, Massimiliano Di Penta, and Sebastiano Panichella. 2022. An empirical characterization of software bugs

in open-source Cyber–Physical Systems. Journal of Systems and Software 192 (2022), 111425. https://doi.org/10.1016/j.jss.2022.111425

[180] Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming Zhang, and Cong Liu. 2020. DeepBillboard:

systematic physical-world testing of autonomous driving systems. In ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020. 347–358. https://doi.org/10.1145/3377811.3380422

[181] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald Gall. 2014. Combining Text Mining and Data Mining for Bug Report Classification.

In Proceedings of the 2014 IEEE International Conference on Software Maintenance and Evolution (ICSME ’14). IEEE Computer Society,

Washington, DC, USA, 311–320.

[182] Yu Zhou, Yanxiang Tong, Ruihang Gu, and Harald C. Gall. 2016. Combining text mining and data mining for bug report classification.

Journal of Software: Evolution and Process 28, 3 (2016), 150–176.

APPENDIX - EXAMPLES OF HAZARD AND ACCIDENT CATEGORIES

Table 8. Examples of Hazard Categories

Category Examples

event/action allowed in unde-

sired states/configurations

“I tried arming when not in a transition state and when in a transition
state to ensure it was rejecting the arming at the correct times”
“manualcontrol: prevent spurious disarms in altitude hold mode”
“Prevent motor movement while programming”
“Copter: jump in altitude when EKF becomes available”

undesired behavior on failsafe

or error condition/configuration

“If a radio, GCS, or battery failsafe event happens during that landing,
the vehicle should continue with the landing rather than carrying out
the failsafe action”
“Motors keep running on Failsafe if Motors spin at neutral is enabled”
“For the RC/Transmitter failsafe we need special handling while in
Auto mode. This is not the case for the battery failsafe however”
“While in AUTO flight, our quadplane suddenly decided to go into
SAFETY_DISARMED, which immediately resulted in all outputs to
motors being shut off. This brought the plane down”

undesired failsafe behavior “Hangtime stays engaged in failsafe, i.e., the hangtime is correct for
low throttle while valid signal but failsafe kicks in LPS for around 25
seconds when hangtime is set to 2 seconds”
“Copter: battery failsafe shouldn’t switch to RTL mode if we’re already
in RTL”
“Copter-3.4-dev: GPS failsafe triggers too quickly”
“Rover: shorten radio and GCS failsafe timeouts”

inadequate checks “Add servo voltage check. Needed to prevent arming with extremely
bad/questionable servo power supply.”
“We should add an attitude consistency pre-arm check to all vehicles
that checks that all active AHRS cores have consistent attitudes and if
not, display a pre-arm check.”
“We should add a pre-arm check if the terrain database allocation fails
so that the user is aware of the problem before flight”

Continued on next page

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

https://doi.org/10.1007/s11424-021-1230-x
https://doi.org/10.1016/j.jss.2022.111425
https://doi.org/10.1145/3377811.3380422

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

34 • Di Sorbo, et al.

Table 8 – Continued from previous page
Category Examples

“pre-arm check if compass1 is disabled but 2 or 3 are enabled”

improper parameter setting/ini-

tialization/configuration

“If someone uses a 3 position switch, could end up with a badly config-
ured neutral value”
“Because theMIN had been set to zero, theWPNAV_SPEEDwas reduced
to zero so while the copter switched into RTL it would not return because
of the zero WPNAV speed”
“[Fix] Fence Altitude Limit”
“Plane: TECS: NAVL1_LIM_BANK does not have an appropriate mini-
mum angle forced”

misleading or missing data/mea-

surements/reports

“as reported by several logs on the forums, there is no filtration in the
current sensor drivers, and any noise gets passed down as obstacles”
“we could read from the sensor too soon after requesting data and the
result coming back would be garbage”
“Plane: add protection against bad GPS positions”
“The air pressure can change quite rapidly result[ing] in an altitude
error of > 40m for a one hour mission. The resulting problems are
obvious, from inadvertent entry into forbidden airspace to crashes
during Auto-Land/RTL”

missing or misleading commu-

nication with pilot

“It would be great if we had a status_text message indicating that
the copter was arming. A gcs could then give an audible and visual
announcement that the arm command was accepted”
“The copter falls to the ground with no sounds, beeps, or indications”
“Copter: warn when single motors reaches throttle limits as it’s a sign
the motor is failing”
“When EKF failsafe was triggered, some users were unaware that it
was switched to LAND. ToneAlarm makes the user aware [of] the
failsafe”

undesired hardware behavior “Plane: Parachute should turn off the motor only and not disarm the
AP. Today we have triggered the parachute, the door has opened but
the parachute didn’t pull out”
“We have discovered about 38 cases where users have flown with
MPU6k accelerometer failures during flight. Sometimes this leads to a
crash”

action not allowed in specific

states/configurations

“Plane 3.2 does not allow disarmingwith rudder like copter does. I found
the arming switch totally pointless when I have ARMING_DIS_RUD=0
which is the real safety for my motor, and to be more precise, I found
Arduplane less safe than it should be by default since it will still crash
my plane if it reboots in flight because all servos are frozen waiting
for me to push the arming switch”
“GCS should strongly urge user to use switch arming with hangtime”

Continued on next page

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

Automated Identification andQualitative Characterization of Safety Concerns Reported in UAV Software Platforms • 35

Table 8 – Continued from previous page
Category Examples

inappropriate mode changes/

handling

“When using Follow-me mode via the tablet, it continually sets Guided
mode waypoints [making] impossible to recover control of the craft if
the tablet remains in Follow-me”
“flight: ensure thrust mode is driven in all paths”

onboard instrumentation issue “This must be acknowledge and taken note of it in software (esp. on
what action to take ’immediately’ when the GPS count diminishes
suddenly in a matter of seconds - as this is not normal and not seen
by all but when it happens it is ALL GONE)”
“A flight log with two active GPS modules shows 23 GPS glitches in 5
minutes of flight, while GPS conditions were OK”

inappropriate safety switch han-

dling

“There is an edge case where forcing the safety switch state can fail
for an extended period of time, and then succeed forcing the arming
check that users can not opt out of to prevent it”
“Some controllers may wish to set the safety switch remotely without
the user having to physically get close to the machine and push it”

undetected failure “Copter: landing detector false-positive when slowing down in PosHold
mode. The cause was a slight motor imbalance combined with a slow-
down from fast-forward flight in PosHold mode”
“add detection of airspeed blockage and switch to non-airspeed control:
cope with water droplet blocking pitot”

timing/timeout/synchronization

issue

“Possible race conditions (they all happen between the check of exis-
tence of a topic and trying to create the node): - single instance, with
multiple advertisers during the first advertise: both advertisers see the
topic as non-existent and try to advertise it”
“This seems bad– while this timing is probably considerably helpful
in ensuring synchronization with genuine Futaba stuff and rejecting
illegitimate data, it may work against us in other cases”

communication failure “Just before the touch down, the plane lost RC link and the RTL mode
kicked in. I was no longer in control. The ardupilot software executed
an immediate right turn towards the Take off position without any
climb”

lack of control “Copter: allow pilot to forcibly retake control from GCS with TX. When
something goes wrong, it would probably be best for the pilot to be
able to reach for the TX, click a switch and be back in control”

inappropriate handling for high

vibrations

“Copter: prevent bad Z-vibrations causing rapid climb”

memory/stack issue “attitude: increase stack size to 2504 from 2200. Function will use 2440
at peak. This is a nasty one, because most attempts to dynamically
measure stack won’t cause home position update”

Continued on next page

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

36 • Di Sorbo, et al.

Table 8 – Continued from previous page
Category Examples

battery issue “After setup for my fixed wing craft I observe a problem, i.e., a glitching
of the power rails, when I connect my flight battery without connecting
USB”

Table 9. Accident categories’ examples

Category Example

crashing/collision issue “I just had a crash due to a burnt motor"

anomalous flight conduct “My son and I have experienced in-flight resets of the BrainFPV FC"

landing/rtl issue “GPS lost in position control (or RTL) lands without pilot having control"

aircraft lost/flown away “Stuck baro can lead to flyaway"

stabilization/orientation/

positioning issue

“Stabilization: Failsafe provisions don’t work properly after apparent code refac-
tor"

operator injury “Safety-Related Motors spin when connecting battery"

takeoff issue “After arming the vehicle just took off and was extremely difficult to control"

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: July 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Safety-Critical Systems
	2.2 Unmanned Aerial Vehicles Development Cycle

	3 Empirical Study Design
	3.1 Research Questions
	3.2 Data Collection
	3.3 Analysis method

	4 Results
	4.1 RQ1: To what extent can machine learning models automatically identify safety-related concerns in issue reports of UAV software platforms?
	4.2 RQ2: What are the main hazards and accidents emerging from safety issues reported in UAV software platforms?

	5 Threats to Validity
	6 Related Work
	6.1 Issue Classification
	6.2 Software Engineering for UAVs

	7 Conclusions and Future Work
	References

