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Abstract—In this paper we discuss our experience in teach-
ing the Robotic Applications Programming course at ZHAW
combining the use of a Kubernetes (k8s) cluster and real, het-
erogeneous, robotic hardware. We discuss the main advantages
of our solutions in terms of seamless ‘‘simulation to real” expe-
rience for students and the main shortcomings we encountered
with networking and sharing GPUs to support deep learning
workloads. We describe the current and foreseen alternatives
to avoid these drawbacks in future course editions and propose
a more cloud-native approach to deploying multiple robotics
applications on a k8s cluster.

I. INTRODUCTION

The Robotic Applications Programming course (RAP) has
been taught at the School of Engineering of the Zurich Uni-
versity of Applied Sciences since Spring 2021. The course
is offered to bachelor students in IT in their last semesters
with the aim of learning how to program robotic applications
using the ROS framework, as well as combining knowledge
from other courses (e.g., computer vision, artificial intelli-
gence, cloud computing) to make robots autonomous.

The course is organized in three main sections: (1) robotics
(e.g., basic robotic HW, URDF/XACRO, rviz, poses, co-
ordinate frames and transformations, controllers) and ROS
fundamentals (communication primitives, ROS packages);
(2) base capabilities (e.g., SLAM, navigation, perception,
arm motion planning and control); and (3) distributed robotic
applications culminating with a yearly challenge. This year’s
challenge was inspired by the DARPA Subterranean Chal-
lenge!: student groups had to program a mobile manipulator
(a Robotnik Summit XL with a URS arm) to autonomously
explore an unknown indoor area, detect coke cans, and bring
them back to the starting point.

We designed the theoretical modules and practical labs of
the course for students to minimize the configuration and
set-up effort to work collaboratively in order to focus on
software development and, at the same time, preserve the
excitement of seeing one’s own code running on real robotic
hardware. In order to do this we first investigated available
solutions we could use for our scenario. We report on related
work in the next section.

II. RELATED WORK

As the complexity of robotic applications is growing
steadily, with the adoption of advanced solutions such as
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appeared in terms of computation, networking and storage
resources. To cope with them, Fog/Cloud-Robotic solutions
are gaining traction in several domains. The possibility for
remotely controlling robotic systems further reduces costs
for deployment, monitoring, diagnostic and orchestration
of any robotic application. This, in turn, allows for build-
ing lightweight, low cost and smarter robots as the main
computation and communication burden is brought to the
cloud. Since 2010, when the “cloud robotics” term was
first used, several projects (e.g., RoboEarth [8] DAVinci
[9]) investigated the field pushing forward both research
and products to appear on the market. Companies started
investing in the field as they recognized the huge potential
of cloud robotics. This led to open-source cloud robotics
frameworks appearing in recent years. An example of this is
the solution from Rapyuta Robotics?. Similarly, commercial
solutions for developers have seen the light with the big
players in the Cloud field joining the run (e.g., Amazon
Robomaker?) or startups (e.g., Formant.io).

A. Robotic Applications Development in Education

Depending on the educational level and the requirements
for professional knowledge of robotic application develop-
ment, different teaching and learning approaches can be
identified as a combination of simulation- and hardware-
based solutions.

Simulation-based learning leverage software tools and
programming languages to simulate the behavior of robots
without direct interaction with a physical robot. Under this
category we include web robotics as a way of learning online
using a web-based platforms for simulating robots, as e.g., in
[2]. This latter is gaining momentum with offerings such as
The Construct* or AWS RoboMaker® which are cloud-based
simulation services that enable robotics developers to run,
scale, and automate simulation without managing any infras-
tructure. Simulation based solutions are clearly useful and
serve some important educational needs; however, the models
on which they are based always have some limitations
which can become apparent in a real world context. Further,
adopting a simulation only approach does not give students
experience with some of the more practical considerations
associated with working with physical devices.

Hardware-based learning allows for direct interaction
and programming of physical robots. In some simple do-
mains and for simple applications students can safely interact
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directly with the hardware without necessarily first simu-
lating the application behavior. One example of this is the
LEGO® Robot Programming for kids program® where kids
build a robot, program it and interact with it; programming
in this environment is based on a set of predefined tasks the
robot can execute. Similar other solutions exist, but these lack
flexibility and the extensibility and customization capabilities
required for real world robotics scenarios. To develop more
realistic applications the use of programming languages such
as Python, C++, MATLAB or frameworks like ROS is a
must.

Hybrid learning combines simulation and hardware-
based learning where the robotic application can be tested
in a simulated environment and deployed on the physical. In
doing so we have the advantages of less costs, reduced risks
of damaging expensive hardware, reduced risks of damages
to third persons and things. Oftentimes, a digital copy of the
robotic hardware can be used for visualization and control of
the robot. In advanced solution, a digital-twin can be placed
into a simulated environment while the actions and tasks
are physically executed on the hardware. In this way, the
simulated environment will provide inputs to the application
in terms of environment (e.g., obstacles), sensing information
(e.g., light, temperature), which allows to test applications in
a close-to-real environment.

ITI. USE CASES AND REQUIREMENTS

During the duration of the course, students are expected to
use three different types of robots to familiarize themselves
with different use cases and capabilities.

o Turtlebot3 (6x): these robots are used to first teach rudi-
mentary ROS communication primitives (i.e., imple-
menting a random-walk reading from the laser scanner
and sending a cmd_vel to move_base), then experiment
with SLAM (with gmapping and SLAM toolkit), and
finally navigating waypoints (move_base);

e Niryo One Arms (3x): these simple 6 DoF arms
are used together with Realsense cameras running on
Raspberry Pi4 to first learn about poses and transfor-
mations (i.e., picking a marker with a simplified script),
then experimenting with Movelt, and finally picking a
random object using point cloud segmentation and the
GPD’ library;

o Summit XL: the large mobile manipulator from Robot-
nik, equipped with a UR-5 arm and a Robotiq gripper,
is used by students exclusively in simulation during the
course labs to combine all learnt capabilities to solve
the yearly challenge. The best challenge solutions are
run on the physical robot at the end of the course.

In RAP, the objective is to teach students the use of ROS
and application development addressing problems which
typically arise in a robotics context, e.g. navigation and map-
ping, grasping of objects and perception. The students should
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be able to collaboratively develop software (in teams of 3)
and quickly test it using simulation; only code working cor-
rectly in simulation is then run on physical robots. Further,
embracing the Cloud Robotics paradigm, some components
of the robotic application will run on the physical robots,
while others will run on the cloud (e.g., the GPD neural net-
work which requires a GPU) or the edge (e.g., the Realsense
ROS node) of the network. The objective of our system setup
is that students can seamlessly transition their applications
from the simulation environment to the real world context,
while not having to address the troublesome issues associated
with framework setup and networking which arise in such
distributed systems.

IV. SOLUTIONS AND DRAWBACKS

In this section we discuss the compute and networking en-
vironment that was used at ZHAW in the last course editions.
First of all, due to university security policy, all robots used
for the course are constrained to a subnet (iot-ZHAW) that
is blocked from accessing ZHAW's internal network, where
teacher and student laptops are connected. Hence, standard
distributed ROS applications (requiring bidirectional TCP
connections) cannot run. Unsurprisingly, this is a common
restriction at many universities.

Moreover, students use their own personal laptop to attend
the course (BYOD), each with its own CPU architecture (e.g.,
x86 vs M1) and operating system. Installing a functioning
ROS environment (Noetic) for each student was out of the
question. Virtual Machines (VMs) with preinstalled ROS are
a common solution, but they require installation and manage-
ment of the images, would have very different performance
for each student when running simulations, and still would
require some networking configuration to forward ports from
the host to the VM. Finally, the isolated robot subnet would
still be an issue.

We wanted students to learn from each other by working
in groups on the same codebase and simulation environment,
we needed GPU-acceleration to boost simulation perfor-
mance (keeping a decent sim-to-real time ratio) as well as
to run neural-network based components (e.g., the already
mentioned GPD, but also instance segmentation with Mask-
RCNN).

A. Spring 2021: VMs and flat network

Given the above requirements and constraints, for the first
edition of the course we opted to extend our local Openstack
cluster installation with a dedicated node for the course.
With 8 Nvidia Tegra GPUs per node we could allocate
one GPU per VM and provide sufficient computation for
24 students (in groups of 3). The cluster node was also
running outside of the internal ZHAW network, in a subnet
that could be reached by iot-ZHAW, hence bidirectional TCP
communication with the robots was possible.

VMs were pre-instantiated by ZHAW staff, and students
had a shell account. To make available the slightly different
environments and components we needed for each lab, we
provided students with different container images each week.



They would run them with host mode networking, so that
container ports would be directly addressable on the host
by the robots as depicted in Figure 1. They could use their
own laptops to access a complete ROS virtual environment
through a browser with VNC.
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Fig. 1. The robot and Pi use TCPROS to communicate with each other
and with the container running the RAP lab code

The simulation environment would run smoothly at about
60 FPS® and the steps required for transitioning from sim-
ulation to real hardware would simply be: 1) configuring
the ROS_MASTER_URI environmental variable to match
the allocated robot, 2) configuring the ROS_HOSTNAME
environmental variable in the container to the floating IP
address of the VM. DNS name resolution of the robots / PIs
would take care of the rest.

The main drawbacks of this solution were 1) the fact that
we had to manage student VMs individually and they would
be pinned (constantly preventing others from accessing) to
GPUs; 2) students had to configure networking manually
often having trouble with the concept of floating IP; 3) each
VM had to be preconfigured® to enable GPU acceleration of
VNC with VirtualGL!? and each container would have to be
built specifically to make use of that'!.

B. Spring 2022: K8S and rosbridge

In fall 2021 we set out to solve the shortcomings from
the previous course edition. In particular we wanted to avoid
requiring dedicated GPUs for the RAP course using a model
where GPUs would be shared with other courses. To this
end we installed a Kubernetes cluster on the same Openstack
infrastructure, this hid physical and virtual hosts from stu-
dents who were provided scripts to directly run “pods” (i.e.,
collections of containers) on the distributed cluster. To enable
GPU sharing, we used the nvidia—-docker runtime which
provides access to GPUs for containers running on a host —
any container running with this runtime will have access to
the GPU: no fine-grained control over resources is however
supported, meaning that any single container can consume all
the resources of a single GPU. A quick empirical validation
allowed us to estimate that running two RAP groups on the
same GPU would not cause a perceivable performance decay,
so we configured the system to allocate shared GPUs for
maximum two RAP groups concurrently. This meant that in
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2022 we could support 24 RAP students (in 8 groups) with
only 4 GPUs.

As noted above, one of the key drivers for this approach
is to support sharing of GPUs to allow multiple robotic
applications to leverage deep learning models. Sharing
nvidia GPUs in containerized environments is evolving with
the release of Multi-instance GPUs (MIG)!? which is a
promising solution which will support accurate control of
GPU resources. Our approach, however, was to use a simpler
solution based on technologies with which we already had
experience.

The main drawback of using a K8S cluster is that we had
to take special care with networking to the robots. While
TCP connectivity as required by ROS is generally possible
by configuring the ingress-controller of a K8S cluster!3, the
cluster was shared by multiple courses and was installed
with a minimal configuration: only HTTPS traffic through
a proxy was allowed. This is a fairly common restriction
also in public cloud “managed K8S cluster” offerings.
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Fig. 2. The robot and Pi use a rosduct client to relay ROS traffic to the
K8S pod

To circumvent this issue, we resorted to using web sockets
as done in [11]: the rosbridge suite was running in the
KS8S pods and the robots would use rosduct to connect to
it as in Figure 2. We customized both components to support
bidirectional CBOR (Concise Binary Object Representation).
While this worked for the scope of our course, the solution
can be further improved. We observed frequent unexpected
disconnections from the websocket - it was reestablished
quickly so it was not unusable when throttling message
rates'* but it led to some performance degradation. Also,
there were still some issues with some specific CBOR data
types encoding due to our quick implementation'?.

C. Summer 2022: K8S and VPN sidecar

By the end of the semester, with the need of controlling the
Summit XL for the challenge and supporting its higher band-
width requirements (i.e., streaming of two RGBD cameras
and point clouds, two laser scanners) we needed to resolve
the connectivity issues we had with web sockets. For lack of
a possibility to update the K8S cluster, we resorted to use an

2https://www.nvidia.com/en-us/technologies/
multi-instance—-gpu/

Bhttps://kubernetes.github.io/ingress—nginx/
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14An example of running the system to control a real Niryo arm is
available at https://www.youtube.com/watch?v=CWYd-MeHG6C

Bhttps://github.com/icclab/rosduct and https:
//github.com/icclab/rosbridge_suite/tree/rosl



external VM as VPN server and run the ROS node network
on top of a VPN overlay. This also required manual ROS
environmental variables adjustment to mitigate the lack of
DNS resolution. While installing an OpenVPN client (either
directly or containerized) on the robots was simple, we didn’t
want to rebuild and redistribute our RAP container images.
Using the sidecar pattern in the K8S pods allowed us to add
a container that would create the VPN tunnel and make it
available for the entire pod, granting a network interface our
original container could use to access the VPN overlay. We
ended up adapting a similar configuration we found online'®.
A high level representation of the set up is depicted in Figure
3.
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Fig. 3. The VPN overlay built connecting robots and edge devices in an
isolated LAN with a K8S pod through the sidecar pattern

With this configuration, we could support using a Web
browser to fully control our Summit XL mobile manipulator
in both navigation and grasping task through the cloud,
including sending the point cloud from the arm camera to
be used for segmentation and grasp generation with GPD.

V. CLOUD NATIVE ROBOTIC APPS

As Spring 2023 approaches, a new edition of the RAP
course lingers, and this year we will have a dedicated
K8S cluster on shared infrastructure. This allows sharing
GPUs but removes the limitation on incoming TCP traffic,
meaning we could host a VPN server for each student group,
configuring all pods of a student group namespace to have
access to the VPN overlay”. In this scenario, traffic would
no longer be routed through an external VPN server. On
top of shorter routing, in a public cloud deployment this
would also mean not incurring in the additional charges of
the provider’s VPN services.

Given this setup it makes a lot more sense to rewrite
our labs to enable sharing of commonly used services (e.g.,
the GPD grasp pose generation) across student groups. This
is in line with cloud native application practices where
functionalities (i.e., K8S “services”) are scaled and load
balanced through multiple instances of their implementations
(i.e., pods), see an example in Figure 4.

Apart from optimizing resource usage, this would allow
us to bring to the lectures the concept of orchestration of
dynamic components based on robotic behavior. Students

ohttps://bugraoz93.medium. com/
openvpn-client-in-a-pod-kubernetes-d3345c66b014

7See for example here: https://docs.k8s-at-home.com/
guides/pod-gateway/
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Fig. 4. A more cloud-native deployment of a cloud-to-edge robotic
application. Shared services and dynamic orchestration.

would be required to switch on and off pods in their
namespace (or respectively nodes on the robots) depending
on a state machine / behavior tree (e.g., stream the arm
camera and process the stream only when an object to be
picked is detected by the front camera). This would reduce
even further our need of GPU resources, allowing us to host
even more students per GPU, and would also teach students
how to write applications that minimize energy and resource
consumption.

VI. CONCLUSIONS

In this paper we discussed our different setups and ex-
periences in teaching a robotic application programming
course that leverages containerized cloud computing re-
sources connected to local robotic hardware at our university.
Notwithstanding our specific networking setup, the solutions
we used in the past and we propose for the future are
also applicable to a public cloud scenario with non publicly
addressable robots (e.g., on a private LAN, behind NAT)
and should be generally useful for other teachers and cloud
robotics practitioners willing to share cloud GPU resources
across robotic applications.
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