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Minimal codewords in Norm-Trace codes

Daniele Bartoli∗, Matteo Bonini †and Marco Timpanella‡

Abstract

In this paper, we consider the affine variety codes obtained evaluating the polyno-
mials by = akx

k + · · · + a1x + a0, b, ai ∈ Fqr , at the affine Fqr -rational points of the
Norm-Trace curve. In particular, we investigate the weight distribution and the set of
minimal codewords. Our approach, which uses tools of algebraic geometry, is based on
the study of the absolutely irreducibility of certain algebraic varieties.
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MSC codes: 14G50 - 11T71 - 94B27

1 Introduction

Affine variety codes [18] are linear codes obtained evaluating multivariate polynomials at
the Fq-rational points of a certain affine variety. Since any linear code can be described as an
affine variety code (see [18, Prop 1.4]), such codes constitute the entire class of linear codes.
Even though it is easy to determine the length and the dimension of an affine variety code, a
more difficult task is to provide estimates on the minimum distance, or, more in general, on
the weight distribution of the code. Still, computing the planar intersections of the chosen
variety with some low-degrees ones is often useful in obtaining information on the weight
spectrum and the weight distribution of affine-variety codes, see for example [6,16,19,23,28].

Given any linear code C, another challenging task is the determination of the set of its
minimal codewords. For a codeword c ∈ C, the support of c, denoted by Supp(c), is the set
of its nonzero coordinate positions, and the weight of c is wt(c) = #Supp(c). If the support
of a codeword c contains the support of another codeword c′, then we will say that c covers
c′. A codeword c is said to be minimal if it covers only the proportional codewords, i.e.
if c′ ∈ C is linear independent with c, then Supp(c′) 6⊆ Supp(c). Minimal codewords were
employed by Massey [29] for the construction of a secret sharing scheme. For this reason,
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in recent years, several papers have been dedicated to the determination of the minimal
codewords of a linear code [1, 2, 7–10,12,22,27,32].

In this paper, we give information on the weight distribution and on the minimal code-
words of affine variety codes arising from the Norm-Trace curve, as already investigated in
literature; see [3,13,14]. More in detail, throughout the paper we consider the affine variety
code Cq,r,k obtained evaluating the polynomials

by = akx
k + · · · + a1x+ a0, (1)

where b, ai ∈ Fqr , at the affine Fqr -rational points of the Norm-Trace curve Nq,r, that is the
plane curve defined by the affine equation

x
qr−1

q−1 = yq
r−1

+ yq
r−2

+ . . .+ yq + y. (2)

Note that, up to rescaling, we can assume that the polynomials as in (1) are either of type

y = akx
k + · · ·+ a1x+ a0, (3)

or
akx

k + · · ·+ a1x+ a0 = 0.

In order to obtain information on the weight distribution of the code Cq,r,k, we deal with
the possible intersection patterns of the curve Nq,r and the curves with affine equation (3).
To do this, our approach is based on the investigation of the absolutely irreducibility of a
certain algebraic variety, and therefore it relies on tools of algebraic geometry; see Section
2 for the details. In the last decades, such tools have proved successful in the construction
and investigation of many classes of linear codes; see for instance [4, 23,25,30,31,34].

The paper is organized as follows. The prerequisites on Norm-Trace curves, affine variety
codes, and the description of our approach, are give in Section 2. Section 3 deals with the
absolutely irreducibility of an algebraic variety attached to the problem, and these results
are then applied in Section 4 to investigate the weight distribution of the code Cq,r,k. Finally,
in Section 5, we determine the set of minimal codewords of Cq,r,k.

2 Preliminaries

In this section, we introduce the notation and terminology that we will use throughout the
paper. Hereafter, p is a prime and q = pm, where m is a positive integer. Also, Fq denotes
the finite field with q elements. With the symbol Ar(Fq) (resp. P

r(Fq)) we denote the affine
(resp. projective) r-dimensional space over Fq.

The norm function N
Fqr

Fq
and the trace function T

Fqr

Fq
are the functions from Fqr to Fq

defined by

N
Fqr

Fq
(x) = x

qr−1

q−1 = xq
r−1+qr−2+···+q+1

and
T
Fqr

Fq
(x) = xq

r−1

+ xq
r−2

+ · · · + xq + x,

respectively. When q and r are understood, we will write N = N
Fqr

Fq
and T = T

Fqr

Fq
.
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2.1 Affine variety codes

We introduce now affine variety codes, see [18] for further information.
Let t ≥ 1 and consider an ideal I = 〈g1, . . . , gs〉 of Fq[x1, . . . , xt], {xq1−x1, . . . , xqt −xt} ⊂

I. The ideal I is zero-dimensional and radical. Let V (I) = {P1, . . . , Pn} be the variety of I
and R = Fq[x1, . . . , xt]/I.

An affine variety code C(I, L) is the image φ(L) of L ⊆ R, a Fq-vector subspace of R of
dimension r, given by the isomorphism of Fq-vector spaces φ : R −→ Fn

q that evaluates an
element f ∈ R on {P1, . . . , Pn}, i.e. φ(f) = (f(P1), . . . , f(Pn)).

2.2 Norm-trace curve

The Norm-Trace curve Nq,r is the plane curve defined by the affine equation

N
Fqr

Fq
(x) = T

Fqr

Fq
(y).

The equation N
Fqr

Fq
(x) = T

Fqr

Fq
(y) has precisely q2r−1 solutions in F2

qr , so the curve Nq,r has

q2r−1 + 1 rational points: q2r−1 of them correspond to affine points, plus a single point at
infinity P∞. If r = 2, Nq,r coincides with the Hermitian curve, whereas Nq,r is singular in
P∞ if r ≥ 3.

Let Cq,r,k be the affine variety code obtained evaluating the polynomials

by = akx
k + · · · + a1x+ a0,

with b and ai ranging in Fqr , at the q
2r−1 affine Fqr -rational points of Nq,r, and k < qr−1.

Then Cq,r,k has length q2r−1, dimension k + 1, and the weight of a codeword associated to
the evaluation of a polynomial by = f(x) as in (1) is given by

w(ev(f)) = q2r−1 − |Nq,r ∩ X ∩ A2(Fqr)|,

where X is the curve with affine equation by − f(x) = 0. Therefore, in order to investigate
the weight distribution of the code Cq,r,k, we must study the possible planar intersections
in A2(Fqr) between Nq,r and the (rational) curves whose affine equations are given by (1).
Here, by planar intersections (or simply intersections) of two curves lying in the affine
space A2(Fqr), we mean the number of points in A2(Fqr) lying on both curves, disregarding
multiplicity.

For the remaining part of this section, we report the approach used in [13, 14] to deal
with this problem.

In the following we deal with the case b 6= 0 in (1). Substituting y = f(x) as in (3) in
the equation of Nq,r, and exploiting the linearity of the trace function, we get

N(x) = T(akx
k) + · · ·+T(a2x

2) + T(a1x) + T(a0). (4)

Now, fix a normal basis B = {α,αq , . . . , αqr−1} of Fqr over Fq with a suitable α ∈ Fqr

(see [26] for the details), and let ΦB be the canonical vector space isomorphism defined by
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ΦB : (Fq)
r −→ Fqr

ΦB((s1, . . . , sr)) = s1α+ s2α
q + · · ·+ srα

qr−1

.

This isomorphism allows us to read the norm N and the trace T as maps from (Fq)
r

to Fq, by taking Ñ = N ◦ ΦB and T̃ = T ◦ ΦB. Let Ti := T(aix
i) and T̃i := Ti ◦ ΦB, for

1 ≤ i ≤ k. Then it is readily seen that Ñ and T̃i are homogeneous polynomials of degree
respectively r and i in Fq[x1, . . . , xr], i = 0, . . . , k.

Therefore, we can rewrite (4) as

Ñ(x1, . . . , xr) = T̃k(x1, . . . , xr) + · · ·+ T̃1(x1, . . . , xr) + T(a0). (5)

Equation (5) is the equation of a variety S defined over Fq. Note that the RHS of (5)
has degree r, and the LHS has degree k. By construction, the Fq-rational points of S,
correspond to the planar intersections in A2(Fqr) between the Norm-Trace curve Nq.r and
the rational curve of equation y = f(x), see [13, Remark 4.1].

Let Vk,r be the variety ψ(S), where ψ is the affine change of variables of Ar(Fq) defined
by

ψ(x1, . . . , xr) =M(x1, . . . , xr)
t = (X1, . . . ,Xr)

t,

and M is the non-singular matrix

M =




α αq . . . αqr−1

αq . . . αqr−1

α
...

...
...

...

αqr−1

α . . . αqr−2


 .

Then, the variety Vk,r is defined over Fqr , and it has affine equation Vk,r(X1, . . . ,Xr) = 0,
with

Vk,r(X1, . . . ,Xr) = −
r∏

i=1

Xi +
r∑

i=1

aq
i−1

k Xk
i + · · ·+

r∑

i=1

aq
i−1

1 Xi +T(a0) (6)

Note that ψ an affine change of variables and thus preserves the number of absolutely
irreducible components of S, and their degrees. This equivalence between Vk,r and S is
crucial in our investigation and in the next sections we will make use a number of times of
this link.

3 Planar intersections of Nq,r and the curves y − f(x) = 0

As it was shown in Section 2, finding the planar intersections of the norm-trace curve Nq,r

and the curves of equation (3) is equivalent to finding the number of Fq-rational points
of the Fq-rational variety S. Our aim is to prove that S is absolutely irreducible under
certain assumptions on k and r, by proving the absolutely irreducibility of Vk,r . Indeed,
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since ψ(x1, . . . , xr) preserves the number of absolutely irreducible components of a variety,
it follows that if Vk,r is absolutely irreducible the same holds for S. Also, if S is absolutely
irreducible we can apply the Lang-Weil bound to estimate the number of its Fq-rational
points.

Theorem 3.1. [24, Lang-Weil bound] Let V ⊂ PN (Fq) be an absolutely irreducible variety
of dimension n and degree d. Then there exists a constant C depending only on N , n, and
d such that ∣∣∣∣∣#(V ∩ PN(Fq))−

n∑

i=0

qi

∣∣∣∣∣ ≤ (d− 1)(d − 2)qn−1/2 + Cqn−1.

Although the constant C was not computed in [24], explicit estimates have been provided
for instance in [11,15,20,21,26,33] and they have the general shape C = r(d) provided that
q > s(n, d), where r and s are polynomials of (usually) small degree. We refer to [15] for a
survey on these bounds. We only include the following result due to Cafure and Matera.

Theorem 3.2. [15, Theorem 7.1] Let V ⊂ AN (Fq) be an absolutely irreducible variety
defined over Fq of dimension n and degree d. If q > 2(n+1)d2, then the following estimate
holds:

|#(V ∩ AN (Fq))− qn| ≤ (d− 1)(d− 2)qn−1/2 + 5d13/3qn−1.

We report here some results that we will use to prove the irreducibilty of Vk,r, under
certain conditions on k and r. As a corollary of [5, Lemma 4.15], we have the following.

Proposition 3.3. Let H be an hyperplane of Pr(Fqr) such that Vk,r ∩ H is non-repeated
and absolutely irreducible. Then Vk,r is absolutely irreducible.

The following result about the absolutely irreducibility of varieties of Fermat-type is
well known and it is a direct consequence of their non-singularity.

Proposition 3.4. Let n, r be two positive integers such that p ∤ n and r ≥ 3. Then, the
variety of Pr−1(Fq) with homogeneous equation

a1X
n
1 + a2X

n
2 + . . .+ arX

n
r = 0,

where a1, . . . , ar ∈ Fq, is absolutely irreducible.

Proposition 3.5. Suppose that k > r ≥ 3 and p ∤ k. Then Vk,r is absolutely irreducible.

Proof. It is readily seen that the homogeneous part in Vk,r of the highest degree is

r∑

i=1

aq
i−1

k Xk
i ,

which is absolutely irreducible by Proposition 3.4. Since
∑r

i=1 a
qi−1

k Xk
i = 0 is the intersec-

tion between Vk,r and the hyperplane at infinity, it follows that Vk,r is absolutely irreducible
by Proposition 3.3.
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Proposition 3.6. Suppose that k = r ≥ 4 and p ∤ k. Then Vk,r is absolutely irreducible.

Proof. In this case, the homogeneous part in Vk,r(X1,X2, . . . ,Xr) of the highest degree is

R(X1, . . . ,Xr) := −
r∏

i=1

Xi +
r∑

i=1

aq
i−1

r Xr
i .

Since r ≥ 4, the polynomial

R(0,X2, . . . ,Xr) =

r∑

i=2

aq
i−1

r Xr
i

is absolutely irreducible by Proposition 3.4, and hence also R(X1, . . . ,Xr) is absolutely
irreducible by Proposition 3.3.

Finally, since R(X1, . . . ,Xr) = 0 is the intersection between Vk,r and the hyperplane at
infinity, by Proposition 3.3 the claim follows.

Proposition 3.7. Suppose that k = r ≥ 4 and p | r. Then Vk,r is absolutely irreducible.

Proof. Write r = r̄pα, with p ∤ r̄. Then α ≥ 1 and r̄ < r. The homogeneous part in
Vk,r(X1,X2, . . . ,Xr) of the highest degree is

R(X1, . . . ,Xr) := −
r∏

i=1

Xi +
r∑

i=1

aq
i−1

r Xr
i = −

r∏

i=1

Xi +

(
r∑

i=1

āq
i−1

r X r̄
i

)pα

,

where āp
α

r = ar.
We will prove that R(X1, . . . ,Xr−1, 1) = 0 is absolutely irreducible.

Let F =
∑r−1

i=1 ā
qi−1

r X r̄
i . Observe that F is absolutely irreducible by Proposition 3.4.

Suppose now that

R(X1, . . . ,Xr−1, 1) = G(X1,X2, . . . ,Xr)H(X1,X2, . . . ,Xr),

where G(X1,X2, . . . ,Xr) and H(X1,X2, . . . ,Xr) have the following shape

G(X1,X2, . . . ,Xr) = F β +Gr̄β−1 + · · · +G0,

H(X1,X2, . . . ,Xr) = F pα−β +H(pα−β)r̄−1 + · · · +H0,

with 0 < β < pα, and Hi and Gj are either homogeneous polynomials of degree i and j
respectively, or they are the zero polynomials. Thus

F βH(pα−β)r̄−1 + F pα−βGr̄β−1 = −
r−1∏

i=1

Xi.

This yields F | ∏r
i=1Xi, a contradiction. Therefore R(X1, . . . ,Xr−1, 1) = 0 is absolutely

irreducible and so is Vr,k by Proposition 3.3.
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Proposition 3.8. Suppose that 0 < k < r. Then Vk,r is absolutely irreducible.

Proof. If Vk,r is reducible then Vk,r(X1,X2, . . . ,Xr) splits into the product of two polyno-
mials H and G with the following shape,

H(X1,X2, . . . ,Xr) = X1 . . . Xs +Hs−1 + · · ·+H0,

G(X1,X2, . . . ,Xr) = Xs+1 . . . Xr +Gr−s−1 + · · ·+G0,

where Hi and Gj are either homogeneous polynomials of degree i and j respectively, or they

are the zero polynomials, and 1 ≤ s ≤ r − 1. Let Fu =
∑r

i=1 a
qi−1

u Xu
i , then

H(X1,X2, . . . ,Xr)G(X1,X2, . . . ,Xr) = X1 · . . . ·Xr +
k∑

u=0

Fu.

Because of the shape of Vk,r(X1,X2, . . . ,Xr), for each i such that i ≥ s+ 1+ k − r and
i ≤ s− 1, we have that Hi = 0. For the same reason, for each j such that j ≥ k− s+1 and
j ≤ r − s− 1, Gj = 0.

Now observe that it is not possible that k − r + s + 1 < 0 or k + 1 − s < 0, otherwise
there would exist a variable Xi dividingH(X1,X2, . . . ,Xr) or G(X1,X2, . . . ,Xr) (and hence
dividing Vk,r).

Therefore, the only possibility left is k − r + s+ 1 ≥ 0 and k + 1− s ≥ 0, which gives

Fk(X1,X2, . . . ,Xr) = X1 . . . Xs·Gk−s(X1,X2, . . . ,Xr)+Xs+1 . . . Xr·Hk−r+s(X1,X2, . . . ,Xr).

Still, this is not possible, since for X1 = 0 we would have

Fk(0,X2, . . . ,Xr) =

r∑

i=2

aq
i−1

k Xk
i = Hk−r+s(0,X2, . . . ,Xr)

r∏

i=s+1

Xi.

Clearly, this is impossible by Proposition 3.4, as this would imply that
∑r

i=2 a
qi−1

k Xk
i is

divisible by Xs+1 · · · · ·Xr.

We recall that by definition of Vk,r and S, these two varieties have the same number
of absolutely irreducible components. Therefore, as a byproduct of the previous results,
together with Theorem 3.2, we directly obtain the following.

Proposition 3.9. Let d = max (k, r), and suppose that one of the following cases holds:

1. k > r, p ∤ k;

2. k = r ≥ 4;

3. 0 < k < r.

Then, S is absolutely irreducible and, if q > 2rd2, it contains at least qr−1 − (d − 1)(d −
2)qr−3/2 + 5d13/3qr−2 points in Ar(Fq).
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We finally point out that some results for the case (k, r) = (3, 3) and (k, r) = (3, 2) can
be found in [14] and [13]), respectively. Unfortunately, it does not seem to be easy to say
when V3,3 is irreducible, but when this happens it is possible to give a good estimate on
the number of planar intersections between the Norm-Trace curve and rational curves of
degree up to three. On the other hand, it is possible to prove (see [13]) that V2,3 is always
absolutely irreducible.

4 On the weight spectrum of Norm-Trace codes

Since the codewords of Cq,r,k are all given by the evaluations of polynomials of the form
by = f(x) as in (1), their weights are then given by

w(ev(by − f)) = q2r−1 − |Nq,r ∩ X ∩ A2(Fqr)|,

where X is the curve with affine equation by−f(x) = 0. Therefore, an estimate on maximum
possible number of Fq-rational planar intersections between Nq,r and the curves X provides
a lower bound on the minimum weight of Cq,r,k. The case when b = 0 has already been
investigated in [19], while the case b 6= 0 and deg(f) ≤ 3 can be found in [13,14]. Therefore,
from now on we will focus on the case b 6= 0 and deg(f) > 3.

Classical arguments relying on Bézout theorem tell us that the number of planar in-
tersections between the two curves can be bounded by the product of the degrees of Nq,r

and X . Then, the maximum number of planar intersection is less than or equal to k qr−1
q−1 .

Therefore the weight of the codewords of Cq,r,k is at least q2r−1 − s q
r−1
q−1 , where s ≤ k is the

degree of the polynomial whose evaluation defines the codeword.
Still, this result is not tight and, as a byproduct of the results obtained in the previous

section, we can give improvements on d(Cq,r,k).

Corollary 4.1. Consider the norm-trace curve Nq,r over the field Fqr , with q large enough,
and the code C = Cq,r,k. Suppose also that one of the following conditions holds

(a) k > r and p 6 |k,

(b) k = r ≥ 4,

(c) 0 < k < r.

Let c = ev(by − f(x)) ∈ C, then:

(i) If b = 0 and f has s distinct roots over Fqr , then w(c) = q2r−1 − sqr−1.

(ii) If b 6= 0 then w(c) ≥ q2r−1 − qr − 5d13/3qr−1 − (k − 1)(k − 2)q
r−1

2

Notice that the cases k = r = 3 has been investigated in [14].
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5 Minimal codewords in Norm-Trace codes

First, we investigate the case k = r = 2, in which Nq,r coincides with the Hermitian curve
H of homogeneous equation

xq+1 = yq + y.

In this section we provide a complete classification of the minimal codewords of the affine
variety code C obtained by evaluating the polynomials of degree 2 with coefficients in
Fq2 [x, y] at the points of H in A2(Fq2), when q is odd. Observe that such a code C contains
in particular each codeword of Cq,2,2. In order to describe the minimal codewords of C, we
consider the possible planar intersections in A2(Fq2) between H and the algebraic curves C
described by a polynomials of degree 2.

In the case C is irreducible, i.e. it is an irreducible conic, a complete list of the possible
planar intersections between H and C, which we report below, has been given for q odd
in [17]. Here, by subconic of a conic C we mean q + 1 points of C lying in a Baer subplane
P2(Fq) of P

2(Fq2).

Proposition 5.1. In P2(Fq2), q odd, the intersection pattern of H and an irreducible conic
C is one of the following.

(i) H∩ C = ∅;

(ii) |H ∩ C| = 1;

(iii) |H ∩ C| = 2;

(iv) |H ∩ C| = q + 1. In particular, H ∩ C is a subconic of C;

(v) |H ∩ C| ∈ {2q, 2q + 1, 2q + 2}. In particular, H∩ C is the union of two subconics of C
sharing either zero, one, or two points;

(vi) |H ∩ C| ∈ {q, q + 1, q + 2} and meets every subconic of C in at most four points;

(vii) q − 2
√
q + 2 ≤ |H ∩ C| ≤ q + 2

√
q + 2 and meets every subconic of C in at most six

points.

If C is reducible, the following holds.

Proposition 5.2. In P2(Fq2), q odd, the intersection pattern of H and a reducible conic C
is one of the following.

(viii) if C is a repeated line ℓ, then either |H∩C| = 1 and ℓ is a tangent to H, or |H∩C| = q+1
and ℓ is a secant to H;

(ix) |H ∩ C| = 2 and C is the product of two distinct tangents to H;

(x) |H ∩ C| ∈ {q + 1, q + 2} and C is the product of a tangent to H and a secant to H;

(xi) |H ∩ C| ∈ {2q + 1, 2q + 2} and C is the product of two distinct secants to H.
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We are now in position to prove the main result of this section. Its proof is based on the
observation that a codeword c ∈ C associated to the evaluation of a degree 2 polynomial
defining a conic C is minimal if and only if it does not exist another conic C′ 6= C such that
H ∩ C ⊆ H ∩ C′.

Proposition 5.3. Let q > 7 be odd. With the notations of Propositions 5.1 and 5.2, the
minimal codewords of the code C arise from conics whose intersection pattern with H is as
in (iv), (v), (vi), (vii), (xi).

Proof. Among the reducible cases, minimal codewords can only arise from conics that are
the product of two distinct secants toH (case (xi)). Indeed, the intersection patterns of cases
(viii), (ix), (x) are strictly contained in the intersection of H with two distinct (properly
chosen) secant lines, and hence, by the above mentioned observation, the corresponding
codewords are not minimal. To prove that a conic C as in (iv), (v), (vi), (vii) corresponds
to a minimal codeword, assume by way of contradiction that there exists a conic C′ such
that H ∩ C ⊆ H ∩ C′. Then C ∩ C′ contains H ∩ C. However, as |H ∩ C| > 4 holds in each
of the cases (iv), (v), (vi), (vii) for q > 7, this is a contradiction with the Bézout’s Theorem
stating that |C ∩ C′| ≤ 4. Finally, it is readily seen that cases (i), (ii), (iii) don’t correspond
to minimal codewords.

From now on in this section we assume k > 3, and we give a description of the minimal
codewords of the code Cq,r,k.

Proposition 5.4. Let k < #Nq,r(Fqr).
The minimal codewords of Cq,r,k are the ones generated by the evaluations of polynomials

of the shape

(i) y − f(x), deg(f) = k, with

qr−1 − (max{k, r} − 1)(max{k, r} − 2)qr−3/2 + 5max{k, r}13/3qr−2 > k,

and

k > r and p ∤ k, or k = r ≥ 4, or 0 < k < r;

(ii) g(x), where g(x) is a polynomial of degree k having all distinct roots in Fqr ;

(iii) y − α, with α ∈ Fqr .

Proof. Consider two codewords c, c′ ∈ Cq,r,k. Recall that the codewords of Cq,r,k are the
evaluation of polynomials in the span of the set {y, xi}i=0,...,k at the Fqr -rational points of
Nq,r. Let F (x, y) and F

′(x, y) be the polynomials that correspond to c and c′, respectively.
First, we assume F (x, y) = f(x) and F ′(x, y) = y − g(x). Then, we claim that the support
of c = ev(f(x)) doesn’t contain the support of c′ = ev(y − g(x)). Indeed, write f(x) =
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∏deg(f)
i=1 (x− ti), with ti ∈ Fq. Then, the zeros of c correspond to all the affine points of Nq,r

with coordinates (ti, y
(j)
i ) such that ti ∈ Fqr and

N
Fqr

Fq
(ti) = T

Fqr

Fq
(y

(j)
i ),

for j = 1, . . . , qr−1. Observe that if ti 6∈ Fqr for every i ∈ {1, . . . ,deg(f)}, then c is a
full-weight codeword and hence it is not minimal. Also, for each ti ∈ Fqr , there exists at
most a unique ȳi such that ȳi = g(ti) and (ti, ȳi) belongs to Nq,r. Therefore, the support of
c cannot contain the support of c′.

On the other hand, it is readily seen that if deg(g) = k̄ > 0, and k̄ is as in (i), then
the support of c cannot be contained in the support of c′. Indeed, Proposition 3.9 together
with the assumption qr−1−(max{k, r}−1)(max{k, r}−2)qr−3/2+5max{k, r}13/3qr−2 > k,
show that the zeros of c cannot contain the zeros of c′.

Now, we deal with the case F (x, y) = y−f(x) and F ′(x, y) = y−g(x), with f(x) 6= g(x).
Suppose that the zeros of c = ev(y − f(x)) are also zeros of c′ = ev(y − g(x)), f(x) 6= g(x).
Thus, they are also zeros of ĉ = c− c′ = ev(f(x)−g(x)). Then, the argument above applied
to c and ĉ shows that this case is not possible.

Assume now that F (x, y) = f(x) and F ′(x, y) = g(x), and denote by {t1, . . . , th} and
{u1, . . . , ul} the zeros of f and g in Fqr , respectively. Then, it is readily seen that the
support of c = ev(f(x)) contains the support of c′ = ev(g(x)) if and only if {t1, . . . , th} ⊂
{u1, . . . , ul}. As a direct consequence, the minimal codewords arising from a polynomial of
type f(x) must be as in Case (ii).

Finally, let F (x, y) = y − α for a certain α ∈ Fqr . Then, by the above mentioned
arguments, together with the fact that the support of c cannot contain the support of a
codeword arising from a polynomial of type y − β, with β 6= α, we have that in this case c
is minimal.
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