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Abstract

Sewers convey wastewater and stormwater towards treatment facilities before
releasing the water into the environment. The operation of wastewater net-
works is challenged by several factors, such as the rapid population growth,
urbanization, and the increased load on the infrastructure due to changing
weather conditions. Nonetheless, most sewers operate without any form of su-
pervision or control. Consequently, urban flooding, sewer overflows, and sub-
optimal operation of the treatment plant are common in cities, and therefore
untreated sewage discharge is a significant issue today.

One way to handle the increased load on the under-dimensioned sewer in-
frastructure (without substantial capital investment) is to better utilize the
available network capacity via real-time modelling and control. Rather than
expanding the capacity, assimilating data into the modelling and using real-
time sensor and forecast feeds provide a solution with the capability of adapting
to the changing conditions and environment. Predictive control is a widely-used
control solution for the optimal management of water volumes in wastewater
systems, however, often underpinned by the fact that a well-maintained model
is required behind the controller. Easy commissioning has a great impact in
practice, and therefore maintaining models with many details is often econom-
ically out of reach for smaller water utilities.

This thesis is concerned with the data-driven modelling and predictive con-
trol of combined wastewater and stormwater networks. One of the contri-
butions of the thesis is to bridge the gap between hydraulic and hydrologic
modelling, typically used individually as two disciplines but both necessary for
predictive control in wastewater networks. To this end, we utilize grey-box
techniques relying on the Saint-Venant partial differential equations to model
the high-level piping layout of the network, combined with volume-based mass
conservation dynamics. To tackle the challenges associated with the infiltrat-
ing disturbance flows, we propose to learn the dynamic effect of the wet- and
dry-weather disturbances through the variations of easy-commissionable level
sensors distributed through the network. We adopt a generic Gaussian process-
based predictive control framework, where the data-driven Gaussian processes
are obtained via training on the residuals generated between the real-time level
measurements and the pre-identified physically-based, yet, grey-box models of
the sewer hydraulics.
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To show the practical feasibility of the approach, the closed-loop control has
been tested in high-fidelity simulation environments and also on an experimen-
tal laboratory network, while the prediction capabilities have been validated
through the course of a pilot project with a real-world water utility. The meth-
ods presented in this thesis have been verified experimentally without the use
of any flow sensors deployed in the network. Compared to rule-based con-
trol methods (typically used at utilities), the proposed control methods have
achieved a cumulative overflow decrease ranging from 10 to 28 percent under
extreme load and over a one-month study period.



Resumé

For at undgå at spildevand og regnvand slippes ud i miljøet, er der etableret
et kloaknetværk der transporterer vandet til renseanlæg, som renser vandet før
det ledes ud i miljøet. Adskillige problemer, såsom hurtig befolkningstilvækst,
urbanisering, samt øget belastning på kloaknettet på grund af skiftende vejr-
forhold, gør det vanskeligt at drive kloaknetværket. På trods af disse problemer
er størstedelen af kloakkerne ikke uden opsyn og er ukontrollerede. Som følge
heraf sker det utilsigtede kloakoverløb og ineffektiv spildevandsrensning på ren-
sningsanlæggene, og udledning af urenset spildevand til følsomme recipienter
et stort problem i dag.

En mulighed for at håndtere den øgede belastning af den underdimen-
sionerede kloakinfrastruktur er at bruge realtidsmodellering og -styring for
herved bedre at udnytte den tilgængelige netværkskapacitet. Assimilering af
data i modellering og brug af realtidssensor- og prognose-input, i stedet for at
tilføje kapacitet i kloakinfrastrukturen, giver en løsning, der tilpasser sig æn-
drede forhold og miljø. Prædiktive kontrol er en meget anvendt kontrolteknik
til styring af vandmængder i spildevandssystemer. Dog kræver denne form for
styring præcise og opdaterede modeller af kloakinfrastrukturen, hvilket hæm-
mer udbredelse af metoden. I praksis har nem idriftsættelse og vedligehold
stor betydning for spildevandsselskaberne, og vedligeholdelse af modeller, til
det niveau som er nødvendig til prædiktive kontrol, er derfor ofte ikke attrak-
tiv for mindre selskaber.

Datadrevne modellering og prædiktive kontrol af spildevands- og regnvand-
snetværk er fokus i denne afhandling. En af afhandlingens resultater er at
bygge bro mellem hydraulisk og hydrologisk modellering, som normalt behan-
dles separat, men begge er nødvendige for prædiktive kontrol af kloaknetværket.
Til dette formål kombinerer vi volumenbaseret massebevarelsesdynamik med
gråboksmodelleringsteknikker baseret på Saint-Venants ligningerne. Herved
opnås en model, der beskriver netværkets rørtopologi, samt dets dynamiske
forhold. Modellerne identificeres ud fra niveaumålinger placeret på strategiske
steder i kloaknettet. Vi bruger et datadrevet Gaussisk-procesbaseret prædik-
tivt kontrolsystem, hvor de datadrevne Gaussiske processer læres fra residualler
skabt mellem realtidsniveaumålinger og de præ-identificerede fysisk baserede
gråbokse kloakmodeller.

Lukkesløjfe-styringen er blevet evalueret i high-fidelity modeller, samt på et
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eksperimentelt laboratorienetværk for herved at demonstrere den praktiske an-
vendelighed, mens metodens evne til at forudsige volumendynamikken er blevet
valideret gennem et pilotprojekt med et spildevandsselskab i den virkelige ver-
den. Testen af de foreslåede kontrolmetoder har vist en kumulativ overløbsre-
duktion på mellem 10 og 28 procent under tung belastning sammenlignet med
regelbaserede kontrolmetoder (normalt brugt på spildevandsselskaberne).



Összefoglaló

A csatornák a szennyvizet és a csapadékvizet szennyvíztisztító üzemek felé
szállítják, mielőtt kiengednék a vizet a természetbe. A szennyvízhálózatok
működését olyan tényezők nehezítik, mint a gyors népességnövekedés, a városi-
asodás, vagy az infrastruktúrára nehezedő nyomás, melynek legfőbb okozója
az időjárási körülmények változása. Ennek ellenére a szennyvízcsatornák több-
sége bármiféle irányítás nélkül működik. Ennek következtében a városokban
gyakran fordulnak elő árvizek és a csatornákból feljövő áradások. Továbbá, a
szennyvíz tisztítóüzemek többnyire szuboptimálisan működnek, ezért a tisztí-
tatlan szennyvíz természetbe való kiengedése napjaink súlyos problémájának
számít.

Az alulméretezett csatornázási infrastruktúra kezelésének egyik módja a
rendelkezésre álló hálózati kapacitás hatékonyabb kihasználása valós idejű mod-
ellezés és szabályozás révén. A kapacitás bővítése helyett a mérési adatok mod-
ellezésbe való beépítése, valamint a valós idejű szenzorok és időjárási előre-
jelzések használata olyan megoldást nyújt, amely képes adaptálni a változó
körülményekhez és környezethez. A prediktív szabályozás egy széles körben al-
kalmazott szabályozási módszer a szennyvíz vízmennyiségének optimális kezelé-
sére, azonban a szabályozó fenntartásához jól kalibrált modellek szükségesek.
A gyakorlatban az irányítástechnika egyszerű üzembe helyezésének nagy jelen-
tősége van, ezért a részletes modellek kalibrálása és fenntartása sok esetben
gazdaságilag kivitelezhetetlen a kisebb vízművek számára.

Ezen szakdolgozat témája a kombinált szennyvíz- és csapadékvíz-hálózatok
adatvezérelt modellezése és prediktív szabályozása. A dolgozat célul tűzi ki
a hidraulikai és a hidrológiai modellezés közötti szakadék áthidalását. Ezeket
jellemzően két külön tudományágként kezelik, azonban mind a kettő szükséges a
szennyvízhálózatok prediktív szabályozásához. Ehhez a Saint-Venant parciális
differenciálegyenleteken alapuló grey-box (szürke doboz) modellezési módsz-
ert alkalmazzuk a hálózat csővezeték-rendszerének modellezésére, kiegészítve
térfogat alapú tömegmegőrzés-dinamikán alapuló modellekkel. A rendszert
terhelő zavaró áramlásokat és a nedves és száraz időjárási zavarok (csapadék
és szennyvíz) dinamikus hatásainak vizsgálatát a hálózatban elhelyezett, kön-
nyen üzembe helyezhető szintérzékelők ingadozásain keresztül hajtjuk végre.
Egy Gauss-folyamatokon alapuló prediktív szabályozási keretrendszert alka-
lmazunk, amelyben az adatvezérelt Gauss-folyamatokat a valós idejű vízállás
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szintmérései és a csatorna hidraulikájának előre meghatározott, fizikai alapú
szürke doboz modelljei közötti reziduumok révén kapjuk.

Jelen módszer gyakorlati kivitelezhetőségének bizonyítása érdekében a vis-
szacsatolt (zárt) rendszerű irányítást valósághű szimulációs környezetben és
kísérleti laboratóriumi hálózaton egyaránt teszteltük, továbbá az előrejelzési
képességét a modellnek egy tényleges vízszolgáltatóval közösen végzett kísérleti
projekt során hitelesítettük. A dolgozatban bemutatott módszereket kísérleti-
leg igazoltuk, a hálózatban elhelyezett áramlásérzékelők használata nélkül. A
klasszikus, szabályon alapuló irányítási stratégiákhoz képest (amelyet a vízmű-
vek a gyakorlatban jellemzően alkalmaznak), a jelen dolgozatban vizsgált sz-
abályozási módszerekkel rendkívüli terhelés mellett 10 és 28 százalékkal alac-
sonyabb kumulatív áradási ráta volt mérhető az egy hónapig tartó vizsgálati
időszak alatt.
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1 Background

In this chapter the introduction to waste- and stormwater net-
works is given. The chapter details the motivation, application
background and the main objectives of the thesis.

1.1 Motivation

Throughout the past decades, governments, industries, and researchers have
shown increasing interest to employ smart technologies, such as smart data
acquisition, improved real-time monitoring, and decision-making in large-scale
water systems [Li et al., 2020]. Due to the growing population, urbanization,
and the changing weather conditions across the world, water has become a
valuable asset while its scarcity is a significant issue for modern and developing
societies. According to [UN DESA, 2019], the urban population of the world
has grown from 1.019 billion in 1960 to 4.117 billion in 2017, and it is projected
that it will reach 9.7 billion by 2050. As the demand for drinking water rises
globally, so does the amount of discharged domestic wastewater. For instance,
one of the most urbanized country in the world, China, has almost doubled
its domestic wastewater discharge just over 14 years after the turn of the last
century, as depicted in Figure 1.11.
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Figure 1.1: The evolution of the yearly domestic and industrial wastewater discharge over
14 years in the Republic of China. Data source: [Li et al., 2012].

One of the key drivers for the collection, transport, and treatment of dis-
charged waste and stormwater is the emerging government regulations regard-
ing the discharge of domestic and industrial wastewater to the environment.
Even though regulations are tightening, the expansion and modernization of
the sewer infrastructure do not follow the rapid urbanization growth [Henze and
Arnbjerg-Nielsen, 2008]. For instance, many large cities still utilize century old
piping infrastructure, meanwhile, urbanization and the excessive connections
to the sewer net have grown to the extent that the load on the system surpasses
its original design capacity [UNESCO World Water Assessment Programme,
2017].

1Despite the rising GDP and industrial activity, the industrial discharge is reported to be
decreasing in China, indicating that the discharge is likely under-reported.
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Chapter 1. Background

Of the US$271 billion in investments to meet the wastewater infrastructure
needs of the United States, the expansion and correction of the current infras-
tructure account for 52% according to [US EPA, 2016]. As a consequence of
the current situation, urban flooding and sewer overflows are common in large
cities, and hence the discharge of untreated wastewater is a significant issue up
until today, as depicted in Figure 1.2.

Untreated wastewater

< 0.1

0.1− 0.5

0.5− 1

1− 2.5

> 2.5

(million m3 / year)

Figure 1.2: Untreated wastewater flows released to the environment based on a 5 arcmin
resolution. Source: [Jones et al., 2021]

Besides the problem with the under dimensioned sewer infrastructure, an-
other catalyst of the problem is the meteorological load through rain infiltrating
into the systems [US EPA, 2021]. Figure 1.3 illustrates the change of land area
affected by extreme single-day rain events over the past century.
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Figure 1.3: Percentage of land area in the United States where a large portion of annual
precipitation has come from extreme single-day rain events. Data source: [NCEI, 2021]

According to [Kenward et al., 2016], climate models predict that the over-
all rain precipitation and the frequency of heavy or extreme rain events will
continue to increase in certain parts of the world, which will increase the prob-
ability of sewer overflows.

Overflows in sewers often occur due to water surges and bottlenecks in the
system. These bottlenecks are typically a consequence of the heavy infiltra-
tion, the out-dated design, and the lack of active control solutions to overcome
the design issues. To handle the increased load on the existing infrastructure
(without substantial re-design and expansion) and thereby utilize the in-sewer
capacity in a better way, a solution might be to use advanced control methods,
relying on real-time data and system-wide optimization.
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1.2. Waste and Storm Water Networks

1.2 Waste and Storm Water Networks

Open-channel hydraulic networks are systems where the water is transported
through pipes with a free surface. Open-channel networks comprise several
types of water systems in the water cycle, e.g., irrigation canals, rivers, lakes
and sewer networks. In this thesis, our attention is mainly focused on sewer
networks, however, the terms and characteristics discussed in the following can
often resemble to processes in other open-channel applications.

The main purpose of sewer networks is to collect and transport the sewage2
from the populated areas toward a treatment plant, where it is treated before
the water is released back to the environment. The sewer network may also
include stormwater collection, meaning that the rainwater runoff from roads,
catchments, and roofs is collected together with the sewage. These networks
together are called combined sewer systems, where the complexity of the opera-
tion is significantly increased compared to separated systems, in regards to the
increased risks associated with incorrect network operation [Ocampo-Martinez,
2010]. In the thesis we deal with both types of systems, however, for generality,
we refer to combined sewer networks in the rest of the study. An illustration
of a simple combined sewer network scheme is depicted in Figure 1.4.
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Figure 1.4: Wastewater collection and treatment process in combined sewer networks.

The illustration in Figure 1.4 points out the subprocesses and their inherent
connection within the cycle of wastewater collection and treatment. Through-
out the thesis, we adopt the terminology used in the field of control theory
instead of the application-specific expressions. For instance, the exogenous
flows (rain runoff, groundwater, wastewater) generated by the hydrologic pro-
cesses provide a load on the hydraulic pipe network, which we call disturbances.
These flows are then gravitated or mitigated utilizing controlled actuators to
collect and eventually discharge to the root of the network, i.e., to the treat-
ment plant. From a decision-making perspective, the outlet of the actuators is

2We define sewage as the liquid waste produced by human or industrial activity.

5



Chapter 1. Background

considered as input in the control problem. Moreover, the states we consider
are restricted only to the hydraulic part of the collection process, typically
characterized by the flow or level in hydraulic structures. The output of our
control problem is the discharged flow provided to the treatment plant. Note
that our consideration of the treatment processes is limited to the operational
management goals, e.g., providing a smooth flow to the plant. Otherwise, the
biological and chemical treatments are outside the scope of this study.

1.2.1 Hydrologic Process

Hydrologic processes typically comprise the rain running off catchments and
roads. The infiltration of groundwater is a consequence of the slow precipitation
and accumulation of the rain, hence groundwater is always handled by consid-
ering slow infiltration into the system. Moreover, the generation of sewage is
due to human activity, however, we handle it together with the former two
disturbances as they are the driving force of the hydraulic processes.

Both rainfall precipitation and urban catchments are spatially distributed
to the extent that a precise description of the governing hydrologic processes
is impossible. Generating disturbance forecasts governing the rain entering the
sewers requires rainfall inputs, which require certain hydrologic instrumentation
for the wastewater network. The most common way to measure rain intensity
is through rain gauges and radars [Löwe et al., 2016]. Rain gauges are typically
deployed in most sewer systems at several locations to capture local rain events.
An illustration of a tipping bucket rain gauge is shown in Figure 1.5a. An
alternative way to capture rain intensities is via radars using nowcasting3, which
can provide a lead time of up to 2 hours. Relating the forecasted rain intensities
to the actual flow appearing in the sewer network is typically done through
hydrologic modelling. Finding alternatives to hydrologic modelling is of major
interest in the thesis.

1.2.2 Hydraulic Process

The hydraulic part of wastewater networks can be considered as a collection
of subelements, where each part provides a specific function. The main part
of sewers is the piping infrastructure, typically exhibiting a topology of an in-
terconnected tree graph. Due to the extent and size of the piping network,
the transport links are typically governed by significant time delays in terms of
transport time between wastewater stations. Along the sewer lines, manholes
are placed where disturbance flows enter the network. In between the main
transport links, the wastewater stations are equipped with storage tanks and
some actuators, in case there is active control available in the system. Oth-
erwise, the sewage simply propagates by means of gravity towards the lowest
elevation point. Most drainage and wastewater networks are driven by gravity,
but actuation is needed in systems where the landscape is flat and therefore

3Nowcasting is a form of weather forecast on a very short term period of up to two hours.
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does not provide enough gravitation for the sewage. Examples for this are
countries like Denmark and the Netherlands, where the sewage is transported
with the help of pressurized pipelines, driven by the flow coming from pumping
stations [van Heeringen et al., 2016], [van Nooijen and Kolechkina, 2018]. An
illustration of a manhole, a pumping station and a wet pit with pumps is shown
in Figure 1.5b, Figure 1.5c and Figure 1.5d, respectively.

(a) Tipping bucket rain gauge. (b) Manhole (Ishøj, Denmark).

(c) Pumping station at the treat-
ment plant(Biofos, Denmark).

(d) Pumps sitting in a wet pit
(Ishøj, Denmark).

Figure 1.5: Instrumentation in wastewater networks.

Typical actuators in sewers are pumps, retention gates, weirs, and in some
cases redirection gates [Ocampo-Martinez, 2010]. These assets aim to manip-
ulate either the outflow or the downstream level in the system. Furthermore,
wastewater networks are often equipped with retention tanks, where pumps sit
in wet pits. These assets represent the controllable capacity in the system, stor-
ing or holding back water volumes. Besides, the most typical instrumentation
of sewers includes flow and level sensors. Measuring flow in harsh environments
such as sewers has a high maintenance cost and often provides inaccurate read-
ings. Hence, velocity sensors are often utilized to enable more accurate flow
computations.

1.2.3 Treatment Process

Treating the industrial wastewater and removing the pollutants is typically
done by the treatment facility through physical, chemical, and biological pro-
cesses. Figure 1.6a shows a treatment plant of a combined sewer network. The
treatment process is of high importance, as it allows to release the treated

7



Chapter 1. Background

sewage to the receiving environment, e.g., lakes, rivers, and seas. An issue
arises when the water provided to the treatment plant is combined. In situ-
ations when the rain load is high on the system, the treatment plant might
get overwhelmed, furthermore the treating efficiency might degrade due to the
dilution of the discharged flow [Schütze et al., 2002]. To overcome this issue,
many networks are equipped with retention capabilities to smoothen the dis-
charge flows. An illustration of a retention pond is shown in Figure 1.6b.

(a) Waste water treatment plant
(Biofos, Denmark).

(b) Retention pond (Ishøj, Den-
mark).

Figure 1.6: Facilities in wastewater networks.

Designing control strategies to hold back volumes, avoid in-sewer overflows,
and thereby avoid overloading the treatment plant is in focus in the thesis.

1.2.4 Real-time Sewer Optimization

The optimization problem solved behind any real-time sewer controller aims to
improve the system performance in terms of avoiding overflows due to water
surges, preventing discharges of combined overflows, utilizing the sewer storage
capacity equally, and providing a smooth discharge to the treatment process.
A typical closed-loop structure for sewer control is depicted in Figure 1.7.
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Figure 1.7: Automatic wastewater network optimization based on rain forecasts and state
feedback. Red: disturbances, blue: input, green: output, black: states.

Having a controller that is easy to set into operation, as well as robust
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1.3. Research Objectives

in a real-world implementation is a significant criteria when it comes to the
instrumentation and control of sewers. As shown in Figure 1.7, given the
forecasts and state feedback, the ultimate goal of the optimization behind the
controller is to provide the setpoints either to the personnel (decision-support)
or directly to the controllable assets in the network (fully automated control).

This study has been initiated by Grundfos Holding A/S, whose vision is to
provide digital solutions in terms of monitoring, decision-support, and even-
tually, automatic control solutions in wastewater networks. In industry, this
vision is often termed as Smart Water Management. The thesis aims to enable
a Plug and Play control paradigm that is easy to commission and can either
support or fully automate the decision-making currently made by the utility
operators. The specific objectives of the research are detailed in the following.

1.3 Research Objectives

The two primary objectives of the research is, on the one hand, to establish a
real-time decision-making toolchain to minimize the effect of increased mete-
orological load on sewer networks. On the other hand, to reduce the cost of
infrastructure expansion by better utilizing the available storage capacity [Balla
et al., 2022d]. Specifically, our aim is to develop a real-time and data-driven
modelling and control framework that is practically and economically feasible
to implement for utility operators. To realize this vision, two hypotheses are
formulated:

Hypothesis 1: Structure preserving reduced models can represent the network
dynamics such that the main sewer processes are captured, relying solely
on in-sewer water level sensors, the topological network layout, and flow
estimation data regarding pump operation from the pumping stations.

A major difficulty with modelling large-scale rain and wastewater collection
systems is to describe a large number of hydraulic elements without using
many sensors and system parameters. Besides, pipe lengths, diameter, friction
parameters, and bed slopes of the pipes are typically not available. Reduced
and simplified models updated with a limited number of real-time sensor data
should represent the key variables that describe the essential sewer processes
for level and flow prediction in wastewater networks.

Hypothesis 2: A physically-based yet data-driven model relying on the avail-
able system knowledge and the topological network layout can be used to
predict the effect of hydraulic and hydrologic processes and their corre-
sponding uncertainties in an integrated predictive controller.

Model-based control approaches such as standard predictive control are well-
suited techniques for the operational management of sewer networks. However,
models behind the predictive controllers typically require well-maintained and
properly calibrated network models, often economically out of reach for smaller
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Chapter 1. Background

operators. Moreover, the prediction performance highly relies on the quality of
disturbance forecasts and the dynamics capturing their effect on the system.
Easy commissioning and the integrated handling of hydraulic and hydrologic
processes thus have a high impact in practice.

The hypotheses lead to distinct research questions. The first two research
questions are related to Hypothesis 1 while the latter two to Hypothesis 2, i.e,

Research Question 1: Can we obtain easy-commissionable control models by
only considering the main transport links, using a combination of simpli-
fied pipe models, graph theory, and the volume balance relations?

Scalability is an issue in large-scale waste water networks, as the full-scale
modelling is too complex in practice. Nevertheless, full-scale (high-fidelity)
models often require prohibitively many sensors, meaning that their reliability
is good for planning, however, less suitable for real-time control applications.

Research Question 2: Can model parameters of reduced and conceptualized
models be identified using only level sensor measurements, pump flow
estimation, and information about the topological network structure?

Keeping track of the volumes and flow transport in sewers is essential to op-
timize the network capacity. Level sensors are typically deployed in basins
to monitor the level for rule-based pump control. However, we propose dis-
tributing additional level sensors inside the manholes along gravity sewer pipes.
Learning the dynamics and the disturbances from the level variation at differ-
ent locations in the system allows bypassing the level-to-flow calculations, often
characterized by a high uncertainty and low accuracy in real-life applications.

Research Question 3: Can standard predictive control be combined with learn-
ing models describing the interconnected process of hydraulic and hydro-
logic sewer dynamics using the rainfall intensities directly as input?

Rain infiltrating into sewer networks and afterward the runoff flow propagat-
ing downstream in sewers is often seen as two individual modelling and control
problems. Nevertheless, solving the sewer optimization problem is highly influ-
enced by the non-linear and often season-dependent dynamics of the catchment
runoff. The synthesis of the two problems has the potential to handle the direct
effect of disturbances in the optimization behind the predictive controller.

Research Question 4: Based on rain forecasts, can the in-sewer level mea-
surements appropriately predict how the level variations in the storage
elements evolve, e.g., in basins at pumping stations?

Mass or volume balances in water networks are one of the most basic physi-
cal laws to describe storage transport and capacity. However, in the case of
sewer networks, the volume balance of a storage tank is characterized not only
by the actuators removing or adding volumes but by the infiltration of rain
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and wastewater, making the actual volume balances quite uncertain towards
the meteorological loads and forecasts. To overcome this issue, upstream level
variations may be used to predict how the disturbances affect the volume bal-
ance in downstream tanks.
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2 State of the Art

This chapter aims to provide an overview of the current state of
the art and point out potential research gaps.

A Plug and Play solution for real-time control faces several challenges in
wastewater networks, i.e., how well the network is instrumented, the quality of
data, the modelling and physical attributes, and the complexity or computation
demand of the control algorithm. In order to give a broad overview of these
challenges, we summarize the state-of-the-art around the four main challenges
illustrated in Figure 2.1.

–
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(a) Modelling.

–

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(b) Instruments.

–
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(c) Data.

–
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(d) Control.

Figure 2.1: Four level of challenges in the real-time control of wastewater networks. Source:
[Den Danske Vandklynge, 2022].

According to the review paper [Yuan et al., 2019], the above-mentioned
groups of smart water system management do not frequently interact. Inte-
grating the instrumentation and control of urban sewer systems offers a great
potential to meet the growing complexity requirements of urban water man-
agement in cities of the future. In the following, we detail the four research
areas respectively.

2.1 Instrumentation

In recent years, system-wide instrumentation of sewer networks has become a
reality due to the rapid development of sensors, instruments, and the deploy-
ment of communication systems enabling real-time data acquisition. Accord-
ing to [Yuan et al., 2019], [Hill et al., 2014] and [Häck and Wiese, 2006], the
instrumentation of large-scale water systems will enable to better utilize the
controllable assets and defer the capital investment in expanding the existing
infrastructure. [Häck and Wiese, 2006] also points out that the wide utilization
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of software sensors1 already available at the hands of utility operators will push
further the development of setting advanced control algorithms into operation.

2.1.1 Physical Sensors

The instrumentation of sewer networks faces mainly practical challenges, e.g.,
the precision of the reading, and the optimal placement of sensors. For an
overview of sewer sensors see [Yuan et al., 2019], and for a study on the potential
and limitations of sensor deployments consult [Campisano et al., 2013].

Flow measurement in sewers is not trivial, as the flow in open channels is
typically low, leading to large relative errors. As an example, [Aguilar et al.,
2016] reported on an experimental test bench where the observed in-sewer
flow discharge deviations were −56% to +62% under certain stormwater events,
contrasting the nominal uncertainties provided by the sensor manufacturer of
−10% to +10%.

Although the deployment of the sensors is a practical issue, there is some
scientific work reported on choosing the optimal placement of sensors in sewer
networks. For instance, [Mignot et al., 2012] reports on the optimal place-
ment of flowmeters in local flow structures based on 3D simulations. Similarly,
[Leitão et al., 2018] reports on an optimization method to support the decision
of where to install flow control devices to prevent overflows in sewer networks.

2.1.2 Software Sensors

It is a general trend that researchers in the field of wastewater networks attempt
to reconstruct the flow processes inside the sewer pipes to quantify the capac-
ity utilization of the system. This is often done by using level, temperature,
velocity, or conductivity sensors. The number of physical sensors is limited not
only due to the large-scale nature of sewer networks but also because these sen-
sors occasionally need maintenance [Bassø et al., 2020]. Maintenance in harsh
environments such as sewers requires certified operators and preparation with
equipment for several reasons, e.g., regulation and precautions before inspect-
ing wastewater pipes. Flow sensors have direct contact with the fluid, meaning
expensive and laborious work in regards of cleaning and maintenance. For a
review on software sensors in the process industry, see [Kadlec et al., 2009].

Establishing a relation between level and flow is crucial to quantify volumes
based on level measurements. For instance, [Ahm et al., 2016] proposed a soft-
ware sensor to establish such relations in overflow structures, relying on compu-
tational fluid dynamics. Flow reconstruction based on the physical properties
of sewer systems has been done in [Bassø et al., 2020], where velocity sensors
have been used additionally to the level sensors to reduce the uncertainty of
the estimated flows. For a similar idea, see also [Akgiray, 2004]. [Kallesøe and
Knudsen, 2016] reports on a self-calibrating estimation of discharged gravity
inflow to pumping stations, using the physical model of fixed-speed pumps and

1Equivalent to state observers in control theory.
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level sensors in the wet pits. Similarly, [Chen et al., 2014] estimated the inflow
to the pumping stations based on the on/off timing of the pumps.

In contrast with physically-based software sensor solutions, the develop-
ment of data-driven techniques is also an emerging area. See for example
[Zhang et al., 2018c], where conductivity sensors have been utilized to quan-
tify rainfall-derived infiltration into sewers based on pollutographs. Long-short
term memory neural networks have been used in [Palmitessa et al., 2021] to
make a soft sensor for level tracking in overflow structures when observations
are limited. See also [S.V. Lund et al., 2019] for runoff flow estimation via the
assimilation of flow and level data.

Knowing the flow induced by the actively controlled assets, such as pumps,
is also essential for real-time control applications. In [Kallesøe and Knudsen,
2016] and [Kallesøe and Eriksen, 2010], a robust approach for soft sensing
pump flows has been developed based on the on/off operation of sewer pumps.
In [Ahonen et al., 2010], the pump operational state has been estimated for
supervisory purposes to maintain energy-efficient operation.

2.2 Data

With the increase of more sensors in water systems, it is often unclear which
data is useful and how the data uncertainty affects predictions in real-time
control. As [Hu et al., 2018] pointed out, more measurements do not necessarily
improve the predictions, mainly because of the uncertainty introduced during
the modelling. Similarly, [Kerkez et al., 2016] states that the performance of
any real-time or data-driven control strategy is underpinned by the uncertainty
related to rainfall forecasts or measurements, the modelling, and the sensor
feeds. To overcome the issue with forecast uncertainties, [Jean et al., 2018]
recommends data selection methods for the design of stormwater control in
sewer networks. Additionally, [Molini et al., 2005] studies the impact of tipping-
bucket rain gauge measurement errors and proposes a correction procedure for
the underestimated rain intensity data sets.

Alternatives to the data selection and correction methods are data assimi-
lation methods such as Kalman or Particle filtering, which is typically used in
hydrologic modelling to account for data and modelling errors. For instance,
[S.V. Lund et al., 2019] suggests using the Ensemble Kalman filter to update
simplified hydrological models before forecasting, based on the most recent sys-
tem observations to achieve precise runoff flows. Similar updating procedures
are proposed in [Hutton et al., 2011] and [Refsgaard, 1997].
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2.3 Modelling

Due to the large temporal and spatial scale of sewer networks, the combi-
nation of the three modelling disciplines (hydraulic, hydrologic, and quality-
based treatment) is an extensive task, often termed integrated sewer modelling
[Romero et al., 2021]. In the scientific literature, integrated modelling is an
emerging area, whereas separated hydraulic, hydrologic, and treatment pro-
cesses are well researched. Integrated modelling for combining hydrologic and
hydraulic models is reported in [Luo et al., 2021], where a subdivision of three
layers is proposed; a hydrologic modelling framework for the catchment runoffs,
a hydraulic layer for suburbs, and a hydraulic layer for the city areas. For a
review of quality-based integrated modelling see [Jia et al., 2021].

2.3.1 Hydraulics

Hydraulic modelling in sewers deals with the mechanical description of the
fluid moving through the man-made hydrauliuc structures and conduits in the
sewer network. This part of the sewer processes is of key importance due to
the fact that it can be controlled by means of actuators. For a broad overview
of hydraulic modelling in sewers, see [Chow, 2009].

Open-channel flow propagation in sewers is most accurately described via
the Saint-Venant hyperbolic partial differential equations. These equations can
describe the evolution of water level and flow in free-surface flow, however re-
quire precise information about the physical properties of the infrastructure,
e.g., pipe geometry, length and slope. Besides, solving models based on the
Saint-Venant equations for prediction in real-time is a computationally de-
manding and complex problem. In the scientific literature, the most common
approach to tackle the computation and complexity burden of these equations
is to apply approximations to them. For example in [Xu et al., 2012] and [Xu
et al., 2011], the coupled partial differential equations are approximated by
a linear state-space model and solved for control purposes. Similarly, [Schu-
urmans et al., 1995] and [Munier et al., 2008] assumed steady-state flow and
identified operating points in open-channel canals to approximate the origi-
nal equations with simple transfer functions. Nevertheless, the most simple
approximation method is to assume kinematic waves in open channels. For
an overview, see [Singh, 2001]. Another method is to assume diffusion waves
to keep track of the water accumulation inside the pipes, i.e., the backwater.
[Szymkiewicz and Gasiorowski, 2012] reports on the development of a simu-
lation model based on the diffusion wave approximation and finite element
methods, while [Duchesne et al., 2001] proposes a diffusion wave control model
to support real-time decision making.

High-fidelity modelling in sewer networks is typically based on the spatial
and time-discrete solution of the full Saint-Venant partial differential equa-
tions to simulate sewer flows and levels. Via using the available physical net-
work attributes and measurement data for calibration, simulators such as the
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MIKE URBAN collection system modeller [DHI, 2017], the EPA SWMM software
tool [Niazi et al., 2017] and the SWIFT hydraulic package [Li et al., 2022] can
be efficiently used to run offline simulations of large-scale wastewater systems.
In recent years, several libraries have been developed to interact with these
environments, including some interfacing layers with general-purpose program-
ming languages such as the MatSWMM in MATLAB [Riaño-Briceño et al., 2016]
and PySWMM in Python [McDonnell et al., 2020] to implement real-time con-
trol strategies in EPA SWMM. As an alternative to high-fidelity hydraulic simu-
lators, [Bartos and Kerkez, 2021] reports on an interactive digital twin model
for wastewater networks, where the framework not only includes the partial
differential-based solvers but also provides a Kalman filtering scheme to effi-
ciently update hydraulic states based on online data observations. Similarly,
[Pedersen et al., 2021] reports on a digital twin modelling concept based on in-
sewer level sensors to verify the performance of high-fidelity models and point
out when and where simulation results are acceptable or differ from reality.

2.3.2 Hydrology

In the scientific literature, the hydrological input for real-time control studies
is typically taken either by historical observations or generated by hydrologic
models that map the rain to flow [Fletcher et al., 2013]. The input of rainfall
forecasts are coming either from extrapolated radar rainfall estimates [Thorn-
dahl et al., 2013], [Borup et al., 2016], [Thorndahl et al., 2017], or from numer-
ical weather prediction models [Courdent et al., 2018]. The hydrologic model
behind the input generation is often updated on historical rain gauge data, us-
ing simplified kinematic wave or unit hydrograph approximations of the runoff.
For reference, see [Jean et al., 2018] and [Birkinshaw et al., 2021]. Machine
learning techniques are also emerging in runoff modelling. For instance, [Liu
et al., 2021] used statistical techniques, while [Dawson and Wilby, 2001] used
artificial neural networks to relate rain to flow.

2.3.3 Conceptualizing

Conceptualizing the underlying sewer processes is often applied to construct
models for control purposes. This results in loss of physical interpretation,
however, allows the use of data for simpler identification purposes.

One of the most widely applied techniques is to collectively model the stor-
age capacity of open-channel gravity pipes as interconnected storages. This
method is often termed the virtual tank method and extensively utilized in
[Ocampo-Martinez et al., 2013], [Ocampo-Martinez and Puig, 2009] and [Joseph-
Duran et al., 2014b], for hybrid predictive control purposes. Besides, conceptual
modelling is heavily used in the integrated (or quality-based) control of sewers.
Due to the complexity of the biological and chemical processes in the trans-
ported sewage, conceptual pollutant transport and transformation models are
typically coupled with the hydraulic model equations to consider the quality of
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compounds. For reference, see the works in [Romero et al., 2021], [Sun et al.,
2017] and [Guo et al., 2019]. Besides, [Petrucci and Tassin, 2015] reports on
a conceptual flow-rate attenuation model in pipes, while [Wolfs et al., 2013]
and [Wolfs et al., 2015] propose generic transfer functions for identification
and automated recalibration. Furthermore, reduction by utilizing the sparsity
of Saint-Venant based models is reported in [Xu et al., 2013], and the skele-
tonization of the network is proposed in [Thrysøe et al., 2019] via surrogate
models.

2.3.4 Grey-box Methods

Large-scale sewer networks are complex systems, where the full physical de-
scription of the entire network is often too complicated to model accurately by
first principles and white-box methods. Grey-box modelling has been applied
widely in scientific research, where prior knowledge of the physical properties
of a system can be encoded in a physically-based model or model structure.
For an overview, consult [Rogers et al., 2017].

Grey-box modelling has been applied in sewer system modelling in [Thor-
darson et al., 2012] for probabilistic flow predictions, while the flow predic-
tion problem is solved with stochastic differential equations assuming state-
dependent diffusion in [Breinholt et al., 2011]. Additionally, [Bechmann et al.,
2000] applied simple grey-box modelling for the first flush of wastewater to
treatment plants. Other applications typically include large-scale systems, of-
ten described by spatially discretized partial differential equations. Applica-
tions fields include: household refrigerator systems in [Costanzo et al., 2013],
district heating in [Nielsen and Madsen, 2006], pipe temperature transfer in
[Kicsiny, 2017], and distillation process in [Bohlin, 1994].

White-box modelling, combined with Gaussian process regression is an ac-
tive field of grey-box modelling research, where the residual between the nomi-
nal dynamics and the black box-box Gaussian process model is typically utilized
to correct for errors. This approach retains the physical insight into the process,
while also reducing the unmodelled errors. For a review on Gaussian processes,
consult [Tulleken, 1993]. Gaussian process-based modelling has been done in
water distribution networks for predicting water demands in [Wang et al., 2014]
and [Wang et al., 2014]. Other fields of application include autonomous racing
in [Hewing et al., 2020] and telescope positioning error correction in [Klenske
et al., 2016].

2.3.5 Black-box methods

Due to the increased data availability and instrumentation, data-driven (or of-
ten termed black-box) techniques have gained popularity among the urban wa-
ter systems community. For a general overview of machine learning techniques
in wastewater networks consult [Granata and de Marinis, 2017]. Powerful tools,
such as artificial neural networks are often applied to model wastewater flow
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propagating inside the sewers [Sufi Karimi et al., 2019], the disturbances infil-
trating into the network [El-Din and Smith, 2002], and generally to predict the
risk and occurrence of overflows in critical points trained on historical rainfall
data, as in [Zhang et al., 2018a], [Zhang et al., 2018b] and [Berkhahn et al.,
2019]. Moreover, an emerging trend in black-box modelling of water systems
is the generation of artificial data sets with the help of high-fidelity simula-
tors, allowing to generate richer datasets, often not feasible to obtain through
safety-critical real-life operations. Reports on this topic include [Zhang et al.,
2018b], where a high-fidelity modelling environment has been used to update
black-box models for predictions.

2.4 Control

Control of sewer networks is one of the most researched topics among the
urban water society, mostly dominated by predictive optimal control. For a
broad overview of real-time predictive control in sewers, see [Mollerup et al.,
2016], [Ocampo-Martinez et al., 2013], [Schütze et al., 2004], [García et al.,
2015], [Jacopin et al., 2001] and [van der Werf et al., 2021], while for case
studies from real-world examples using high-fidelity simulations see [Gaborit
et al., 2013] and [Cembrano et al., 2004].

2.4.1 Rule-based Control

Research in advanced predictive control is popular in the scientific literature,
however reports on rule-based (or heuristic) control development are relatively
few. In industrial applications, rule-based controllers are the most commonly
implemented strategies for sewer networks. Although the performance of ad-
vanced global control is promising in real-world applications, the practical com-
missioning of such controllers is often unattractive to operators. See [Beeneken
et al., 2013] for a review on the additional efforts of implementing real-time
control solutions compared to rule-based controllers.

Event-driven local control algorithms of pressurized pumping stations are
reported in a Dutch sewer network in [van Nooijen and Kolechkina, 2018],
where a hierarchical control scheme is proposed to consider the behavior of the
local event-driven pump stations. The study by [Fu et al., 2019] reports on a
scenario-based approach, where hydraulic models are utilized to generate sce-
narios and thereby support decision-making to the utility operators. Similarly,
[Klepiszewski and Schmitt, 2002] uses fuzzy logic in combined sewers with hy-
drodynamic and hydraulic simulators to set up a lookup table for admissible
control rules. Tests over three storm events have shown that by adding new
rules to the existing ones, the fuzzy-based controller does not provide opera-
tional advantages compared to the simple rule-based method. In [Poehler and
Uwe Thamsen, 2017], a decentralized switching strategy for a network of five
wet pit pumping stations is presented. An experimental implementation has
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been proposed, which fits well into the existing instrumentation of a typical wet-
pit pump control architecture. As opposed to on/off pump operation, in this
decentralized framework the wet-pits communicate and exchange information
about their water levels. Simulations testing with historical events have shown
the improvement of the decentralized level-based decision-making mechanism.

2.4.2 Predictive Control

In the context of sewer network control, real-time control tools aim to prepare
the sewer network for high-intensity rain or wastewater load to optimally utilize
the maximum available storage capacity. From a control-theoretic perspective,
predictive control has high relevance in sewers. In these frameworks, the fu-
ture value of disturbances is typically given utilizing weather forecasts and an
internal model is used to predict the states of the hydraulic elements in the
network.

Several works in the scientific literature deal with solving the optimization
of predictive control problems by using physically-based models. For instance,
[Nielsen et al., 2020a], [Nielsen et al., 2020b], [Xu et al., 2011] and [Xu et al.,
2012] use the simplified version of the well-known Saint-Venant partial differ-
ential equations to solve a linear convex optimization problem for the gravity-
driven flow predictions in sewers. Nevertheless, [Schwanenberg et al., 2011]
proposed a nonlinear predictive controller by using both an explicit and im-
plicit time-stepping scheme of the full hyperbolic partial differential equations
in large-scale river systems. To deal with the nonlinear and non-differentiable
features of the Saint-Venant-based prediction model in a nonlinear predictive
control problem, [Leirens et al., 2010] proposed a pattern search method to
solve the optimization problem in sewer systems. Although solving the Saint-
Venant equations to provide multiple-step predictions for the control problem
is the most suitable way to incorporate nonlinear phenomena such as the wave
attenuation, large time delays, and the backwater effect in sewers pipes, the
computation demand is high and the modelling requires significantly high mod-
elling expertise and data availability. The previously-mentioned features have
been exploited in [Duchesne et al., 2004] and [Duchesne et al., 2003], where
high-fidelity simulation models have been used together with a predictive con-
troller to simulate surcharged flows and thereby exploit the capacity increase
induced by the backwater in the sewer system pipes.

Hybrid predictive control has been proposed in [Puig et al., 2009], where
the virtual tank approach has been adopted to conceptually model the entire
sewer network as interconnected buffer tanks. The hybrid predictive control
framework presented in [Joseph-Duran et al., 2014b] and [Joseph-Duran et al.,
2014a] is capable of solving an optimization problem, where mainly redirection
and retention gates are utilized as actuators. In these works, the combina-
tion of continuous and discrete type dynamics is considered, where the logical
phenomena of overflow are triggered by redirection gates.

Nonetheless, most of the research articles reporting on predictive control
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in sewer networks investigate the performance by considering historical dis-
turbances, i.e., historical rain forecasts. Works on model-based optimization,
where imperfect forecasts and the uncertainty governing both the modelling
and predicting uncertainties are relatively few in sewer applications. Chance-
constrained predictive control has been considered in [Svensen et al., 2021],
where the uncertainty in weather forecasts has been used to propagate the un-
certainty of the system states along the predictions. (For a review on stochastic
model predictive control, see [Farina et al., 2016].) In [Courdent et al., 2015],
the risk of overflows has been used in optimization based on a simplified sewer
network model and the stored volume. [Grosso et al., 2014] reports on chance-
constrained predictive control in drinking water systems by considering the un-
certainty of the water demands. Besides, chance-constrained predictive control
has been broadly used in other application fields; hydrogen-based microgrids in
[Velarde et al., 2016], power grids in [Wang et al., 2019], and irrigation canals
in [Nasir et al., 2019].

Another way to consider stochastic hydrological processes in optimization is
to assume possible scenarios, estimate their probability and test the optimiza-
tion under the different scenarios [Balla et al., 2020b]. A flow control problem
has been studied in [Tian et al., 2017], where a multi-scenario approach has
been implemented on a simulation model of a Dutch canal system [van Over-
loop et al., 2008]. In [Grosso et al., 2017], chance-constrained, tree-based, and
multi-scenario stochastic MPC approaches have been compared and applied to
drinking water networks. In [Tian et al., 2019], a multi-scenario model predic-
tive control approach has been presented based on genetic algorithms for the
regulation of water levels in a Dutch canal system. To overcome the computa-
tion issue due to the curse of dimensionality, tree-based predictive controllers
have been proposed in [Raso et al., 2014] for level control in a collection reser-
voir, considering the hydrologic and forecasts uncertainties induced by sewage
and rain infiltration. A similar approach is presented in [Velarde et al., 2019].

2.4.3 Learning Control

The available scientific literature on learning-based optimal control for large-
scale water systems is sparse. Among the research community in control
technology, learning-based or data-driven control techniques have emerged as
a state-of-art technique for autonomous systems. For a review on Machine
learning-based control in water resource systems, see [Labadie, 2014]. Rein-
forcement learning has shown some initial but promising results in canal sys-
tems to control gates for equal storage utilization in [Ochoa et al., 2019], while
[Mullapudi et al., 2020] is the first reported scientific research in the practi-
cal application of deep reinforcement learning in stormwater networks. Deep
learning with neural networks has also been reported in [El Ghazouli et al.,
2022] and [Gudaparthi et al., 2020] for overflow prediction in sewers. More-
over, [Val Ledesma et al., 2021a] and [Val Ledesma et al., 2021b] report on
real-time reinforcement learning for learning the unknown dynamics and water
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demand in water distribution networks, supported with experimental results.
Iterative learning control has been widely used in applications where the

control task is repetitive, hence the performance can be gradually improved by
learning the results of the previous operations. Result in water distribution
systems are available in [Jensen et al., 2018], while [Li et al., 2018] reports on
the application of a dam-river channel irrigation system. Furthermore, [Cui
et al., 2015] reports on learning rain events with similar return periods in
combined sewer systems by utilizing iterative learning control. Additionally,
[Grosso et al., 2013] reports on incorporating a learning and planning layer
into a standard economic model predictive controller setup, where the demand
forecasting for water distribution is done by neural networks. It also has self-
tuning capabilities to tune the objectives in the control problem.

Learning the underlying dynamics to provide correction terms via the use
of Gaussian processes has been an active field of research in the past two
decades. For instance, [Wang et al., 2014] and [Wang et al., 2014] reports
on the characterization of the uncertainty by learning the water demand in
water distribution systems, while [Troutman et al., 2017] used the Gaussian
processes to learn the infiltration flow dynamics in combined sewer systems.
Predictive control with Gaussian processes has been widely used in other fields;
autonomous racing is reported in [Kabzan et al., 2019] and [Hewing et al.,
2020], telescope guiding to correct periodic errors in [Klenske et al., 2016],
while trajectory tracking with robotic arms in [Carron et al., 2019].
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2.5 Contributions

The application of predictive control in combined waste- and stormwater net-
works has received high academic attention. Nevertheless, apart from the large
number of simulation studies with high-fidelity models, the real-time and indus-
trial implementation of control methodologies are very few, making it difficult
to evaluate the robustness and feasibility of the proposed methods in the state-
of-the-art. Based on the state-of-the-art, the presented research in this thesis
mainly focuses on the research gaps dealing with: the assessment of uncer-
tainty governing the disturbances in forecasts, assimilating the data in both
the hydraulic and hydrologic modelling, and the practical implementation of
the control methods.

The main contributions are outlined via the associated scientific papers
published throughout the project. To navigate between the contributions, a
dependency chart is provided in Figure 2.2. All papers are provided in Part II.

Stochastic
control

Deterministic
control

Modelling

Paper A Paper C Paper D

Paper EPaper B

Paper FPaper G

Figure 2.2: Dependency graph of the paper contributions grouped by research area.

Moreover, an overview is provided for each paper, summing up the topics
of the content in Table 2.1.

Modelling Control Simulation Experiment Real world
Paper A 3 3 3

Paper B 3 3

Paper C 3 3 3

Paper D 3 3

Paper E 3 3 3

Paper F 3 3 3

Paper G 3 3

Table 2.1: Overview of the contributions by the topic of content.

Given the industrial application of the thesis, most of the contributions are
dealing either with an experimental or real-world case study.
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Paper A
K. M. Balla, C. S. Kallesøe, C. Schou, and J. D. Bendtsen. “Nonlin-
ear grey-box identification with inflow decoupling in gravity sew-
ers”. IFAC-PapersOnLine, 53(2):1065–1070, 2020a. ISSN 24058963.
doi:10.1016/j.ifacol.2020.12.1295.

Paper A is our first contribution investigating the grey-box modelling of gravity-
driven sewage transport to identify the delays and the attenuation of the water
flow. In this work, the downstream discharges are predicted coming from up-
stream pumping stations by decoupling the periodic wastewater and groundwa-
ter infiltration under dry-weather conditions. For this purpose, the physically-
based Saint-Venant partial differential equations are reduced to a simplified
form (Kinematic Wave approximation), where only four lumped parameters
are used through the model fitting. Furthermore, simple Fourier series are
used to capture the periodic effect of the disturbances.

To test our approach, two studies are presented. A numerical study on a
simulation network with both wastewater and groundwater disturbance, and a
real-life case study on data from the wastewater network in Gram, Denmark.

The model fitting indicates that there is an optimal number of sensors
(states in the model) for which the approach is providing the highest accuracy.

Paper B
K. M. Balla, C. H. Knudsen, A. Hodzic, J. D. Bendtsen, and
C. S. Kallesøe. “Nonlinear Grey-box Identification of Sewer
Networks with the Backwater Effect: An Experimental Study”.
In 2021 IEEE Conference on Control Technology and Appli-
cations (CCTA), pages 1202–1207, San Diego, 2021. IEEE.
doi:10.1109/CCTA48906.2021.9658864.

Paper B extends Paper A by introducing an improved Kinematic Wave model
from Paper A and a new model based on the Diffusion Wave approximation of
the Saint-Venant equations. To this end, two system identification problems are
presented using level sensors distributed along the sewer lines. Our motivation
behind the more complex approximation with the Diffusion Wave model is to
investigate whether the estimated model via level sensor data is capable of
predicting a typical phenomenon in sewer networks: the backwater effect2.

To compare the two approaches, data is gathered from an experimental
setup representing a scaled version of a typical wastewater network topology.

The experimental comparison shows the feasibility of both approaches, fur-
thermore the capability of the Diffusion Wave model to predict the accumula-
tion of disturbances infiltrating in sewer pipes. We also highlight the drawbacks
of the increased complexity coming with the extended Diffusion Wave model.

2Modelling of the backwater effect has the potential to utilize the volume capacity of pipes
as extra storage under heavy loads when tanks cannot efficiently mitigate the overflows.
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2.5. Contributions

Paper C
K. M. Balla, C. Schou, J. D. Bendtsen, C. Ocampo-Martínez,
and C. S. Kallesøe. “A Nonlinear Predictive Control Ap-
proach for Urban Drainage Networks Using Data-Driven Mod-
els and Moving Horizon Estimation”. IEEE Transactions on
Control Systems Technology (Early Access), pages 1–16, 2022d.
doi:10.1109/TCST.2021.3137712.

Paper C is building on the results obtained in Paper A and Paper B. In
this article, we use the previous models in a predictive control framework. As
pointed out in Paper A, the modelling of level variations in manholes through
the coupled partial differential equations model requires as many level sensors,
as many system states are used in our model. This inherently means expen-
sive installation and maintenance costs. For that reason, we formulate joint
parameter and state estimations via a moving horizon approach to obtain the
unmeasured states and network parameters in real time.

To verify our results, we use a numerical study using a high-fidelity simu-
lation model of a branch network with four interconnected pumping stations.
To provide disturbances to our control problem, we use the catchment runoff
dynamics of the simulator providing real rain and wastewater data.

The results obtained through the simulations show the dominance of our
method compared to currently applied rule-based controllers, resulting in a 28%
accumulative overflow decrease over the considered period. In this paper, we
also report on the scalability and robustness of uncertain rain and wastewater
flow infiltrations. The approach scales almost linearly with the number of
pumping stations and the uncertain forecasts do not compromise the closed-
loop performance significantly. This robustness is partially due to the physical
guarantees that we can provide in both the moving horizon system identification
and control, relying on the models developed in Paper A and Paper B.
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Paper D
K. M. Balla, C. Schou, J. Dimon Bendtsen, and C. S. Kallesøe.
“Multi-scenario model predictive control of combined sewer over-
flows in urban drainage networks”. In 2020 IEEE Confer-
ence on Control Technology and Applications (CCTA), pages
1042–1047, Montréal, 2020b. IEEE. ISBN 9781728171401.
doi:10.1109/CCTA41146.2020.9206362.

Paper D is the first attempt to characterize the uncertainty due to the distur-
bances, e.g., household wastewater discharge and rain precipitation in wastew-
ater networks. Consequently, a simplified model is presented where the trans-
port delays are known. We adapt a multi-scenario approach where multiple
scenarios are generated based on the uncertainty of rain forecasts.

The optimization is formulated as a multi-objective convex problem and we
use a high-fidelity simulator to evaluate our results based on real forecast data.

The numerical results show that the controller can avoid worst-case situa-
tions, typically not considered in a standard predictive control setup. However,
the approach is quite conservative when an improbable no-rain scenario is fore-
casted, restricting the control action while more likely scenarios would require
emptying the retention tanks. The paper also highlights the scalability issues
which arise when several forecast scenarios are considered in networks with
several pumping stations.

Paper E
K. M. Balla, D. Eringis, M. Al Ahdab, J. D. Bendtsen, C. S.
Kallesøe, and C. Ocampo-Martínez. “Learning-Based Predic-
tive Control with Gaussian Processes:An Application to Urban
Drainage Networks”. In 2022 American Control Conference (ACC),
pages 1–7, Atlanta, 2022b. IEEE.

Paper E is the first publication where the nonlinear effect of rain, wastewater
infiltration, and the transport dynamics are combined by a non-physical model.
We integrate the known dynamics, i.e., pumping and tank storage, with an ad-
ditive, unknown part modelled via Gaussian processes. The Gaussian processes
provide the residual uncertainties trained with the level sensors and capture the
effect of the load on the transport dynamics.

The controller is implemented on an experimental setup that resembles
the topology of a real network. We assess the closed-loop performance of the
controller through a reference tracking problem, where pumping stations aim
to track certain water levels in storage tanks.

The experimental tests show that the controller can recognize the uncer-
tainty over the flow forecasts, hence the tracking of the reference signal is often
violated in case the chance for overflow increases.
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2.5. Contributions

Paper F
K. M. Balla, J. D. Bendtsen, C. S. Kallesøe, and C. Ocampo-
Martínez. “A learning-based approach towards the data-
driven predictive control of combined wastewater networks –
An experimental study”. Water Research, pages 1–15, 2022a.
doi:10.1016/j.watres.2022.118782.

Paper F provides an extensive study solving the shortcomings of the initial
experimental work in Paper E. Similarly to Paper E, we propose to learn the
effect of dry- and wet-weather flows through the variation of water level sensors.
However, we extend the modelling by providing time as an input to learn
the inherent periodicity and dynamic behavior of the dry-weather wastewater
flows. Thereby, it becomes possible to provide only the rain intensities as the
forecasts to the Gaussian process-based controller. The optimization behind
the controller is extended and reformulated to a disturbance rejection problem,
where safety bounds in storage elements are utilized to allow the controller
to find solutions without any penalties within the safety range. In this work,
we also provide key performance indicators to support the idea of a practical
implementation as a decision-support tool.

To make a fair evaluation, the controller is implemented on an experimental
setup representing a segment of the wastewater utility in Gram, Denmark.

Overall, the system identification and the closed-loop performance show
that the wastewater loads and the temporal dynamics of the network are learned
well. The controller significantly outperforms the currently deployed rule-based
setup, especially during high-intensity rainfalls.

Paper G
K. M. Balla, H. Lemée, C. Schou, and C. S. Kallesøe. “A Toolchain
for the Data-driven Decision Support in Waste Water Networks –
A Level-based Approach”. In 2022 International Water Association
(IWA) World Water Congress and Exhibition, pages 1–4, Copen-
hagen, 2022c. IWA.

Paper G is a case study, relying on the results provided in Paper D and Paper E.
In this work, the stochastic modelling tool based on Gaussian process regression
has been tested on a stormwater network in the municipality of Ishøj, Denmark.
Five level sensors have been deployed in the network for a period spanning five
months (between 16. June 2020 to 27. October 2020) to investigate the effect
of rain infiltrating into the system through the level variations in the pipes.

From the collected level and rain datasets, 12 events have been chosen to
evaluate the prediction capabilities of the proposed approach. The current
solution can predict the levels and the corresponding uncertainty reasonably
well for one hour ahead via the level sensors and local rain intensity feeds3.

3The rain intensity used as a forecast is the rain intensity measured over the considered
period.
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3 Case Studies

The methods used in the thesis have been verified through simu-
lational, experimental, and real-world case studies. This chapter
provides an overview of the layout and configuration of all wastew-
ater networks used throughout the study.

3.1 Simulation Studies

Simulation environments allow the use of high-fidelity models and simulate
both hydraulic and hydrologic processes in sewer systems, from the drop of
rain to the flow leaving the sewer pipes. In our tests, we simulated the runoff
due to rainfall and the evolution of flows, volumes, and water levels in hydraulic
structures by solving the full Saint-Venant equations. In all simulation envi-
ronments, the entire network is defined by the true physical parameters, hence
we considered these tools as virtual reality for our control and modelling tests.

3.1.1 Simulation Study A

Simulation Study A comprises of a network artificially created in the high-
fidelity simulation software EPA SWMM, as depicted in Figure 3.1.
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As seen in Fig. 6., there is an optimal selection for Nx

where model accuracy is the highest for the provided
training and validation datasets.

5. RESULTS

5.1 Numerical results

Results of applying the method are first presented on a
numerical case study in the EPA SWMM(Rossman [2015])
simulation software. The test model is depicted in Fig. 7.

x = L/2

Downstream

Upstream

Pumping
station

Communalarea

Fig. 7. Schematics of the EPA SWMM simulation model.

In this network, a single sewer line is considered, trans-
porting the sewage from a pumping station to an outlet
point, representing either the next pumping station or the
treatment plant. We consider an urban area discharging to
the transportation line at x = L/2. The pumped inlet flows
Qin enter the sewer at the upstream and we observe the
discharged flows Qout at the downstream, indicated in Fig.
7. Moreover, measurement noise is added to the simulated
Qout(ti) flows with the property of n ∼ N (0, 0.2).
In simulation, we attempt to mimic the behavior of a real
scenario, where the wastewater pit collects non-periodic
runoff water with a variety of rain intensity, forcing the
pump to turn on for different time duration. The validation
of the identified model is shown in Fig. 8.
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Fig. 8. Discharged downstream flow prediction.

Nx = 4 sections resulted in good model accuracy. Note,
that the discharged flow shown in Fig. 8. consists of the
delayed non-periodic pumped flows Qin and the periodic
disturbance inflows q. In EPA SWMM, we can access
the q periodic disturbances for validating our results. The
disturbance q entering the network at x = L/2 and then
discharged at the end of the channel are shown in Fig. 9.
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Fig. 9. Upstream and discharged domestic waste flows.

The domestic waste flow arrives at the downstream with
a flow-dependent delay. Using the estimated parameter θ1

and the disturbance model defined in Section 4, the de-
coupled domestic disturbance flow qdom

x=L/2 yields as shown
in Fig. 10.
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Fig. 10. Disturbance decoupling with 2nd (above) and 4th
order Fourier series (below).

Fig. 10. shows that we are able to estimate the periodic
domestic waste flows and the constant groundwater infil-
tration at the point where they enter the system, by using
the disturbance model and the identified model parame-
ters. The disturbances qdom and qgnd in Fig. 10. correspond
to the decoupled flows in (19). With higher order Fourier
series, the estimation is more precise, however at the cost
of increasing the number of parameters.

5.2 Experimental results

We also present results of applying the system identifi-
cation method on a real world case study. The available
data is flow estimation, extracted from a sewer network,
operated by Provas A/S, located in Gram, Denmark. The
pipe layout of the drainage network is shown in Fig. 11.

PGH104

PGH103

PGH102

PGH101

PGH201

PGH202

PGH203

Fig. 11. A segment of a combined sewer network, where
blue dots denote waste water pumping stations.

This particular segment of the network consists of seven
pits with corresponding pumping stations. The estimation
data has been sampled at 1 Hz and gathered from the
gravity sewers connected by PGH103-104 and PGH202-
203 pumping stations. (For detailed explanation of the flow
estimation method utilized in this work, consult Kallesøe
and Knudsen [2016]). In the two test scenarios, urban
areas are not connected, therefore our tests have been
restricted to groundwater detection. The model validations
are shown for the two tests in Fig. 12.

Figure 3.1: Conceptual combined wastewater network simulation model in EPA SWMM.
Source:[Balla et al., 2020a].

In this network, a single sewer line has been created transporting the sewage
from an upstream pumping station to an outlet point through a 7 kilometer-long
gravity sewer pipe. Besides, a communal area discharges to the main transport
line in the middle of the pipeline. The data generated for the tests are based
on the threshold-based operation of the pumps at the pumping station. We
attempted to mimic a realistic scenario, where the wastewater pit collects the
runoff water induced by a variety of rain events, thereby forcing the pump to
turn on for different time durations. To create a realistic scenario, the gravity
sewer line is designed such that there are several sections of pipes with different
slopes and different diameters. Further details and dimensions of the network
are given in Paper A.
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3.1.2 Simulation Study B

Simulation Study B comprises of a network in the MIKE Urban simulation soft-
ware and interfaced with the MIKE1D [DHI] Application Programming Interface
(API). The system is depicted in Figure 3.2.

mentioned are real. Boldface letters are used for sets, such as
s = {s1, ...sn} as well as for vectors x = [x1, ...xn]T ∈ Rn.
Time dependent variables are denoted by x(t) or x(tk),
where t ∈ R+ and tk ∈ Z+ are the continuous and discrete
time variables, respectively.

II. DRAINAGE SYSTEMS

Urban drainage systems typically consist of storage ele-
ments such as gravity pipes, retention tanks, catchment areas
and one or several outlet points leading to the treatment
plants. The most common actuators in these networks are
pumps and gates. In the present work, networks with multiple
retention tanks are considered, where the stored sewage
volumes are controlled by pumps. Hence, the regulated
variable is flow, provided by local, variable-speed pumps.

In order to make closed-loop control, a high-fidelity model
is used in the MIKE URBAN1 (MU) simulation environment.
The network model is shown in Fig. 1.

T1
T2

- Pumping stations

- Retention tanks

- Gravity sewers

- Treatment plant

- Manholes

- Rain runoff

- Catchments

Fig. 1. Schematics of the high-fidelity simulator in MIKE URBAN.

The network consists of two pumping stations, equipped
with retention tanks with a total storage capacity of about
30[m3]. The pumps are operated by local PID controllers.
There is one outlet point representing the treatment plant and
several catchment areas, where rainfall runs off and enters the
system through manholes. The disturbances considered here
are domestic sewage and rain infiltration. In the network,
rainfall run-off flow enters the network through eight inlet
points, distributed over the entire network.

III. NETWORK MODEL

A. Gravity sewers

Gravity-driven flow in sewage pipes can be computed
accurately by the well-known Saint-Venant partial differ-
ential equations [1]. Due to their computation burden and
complexity, these equations are not well-suited for large-
scale RTC applications. Instead, similarly to [4] and [6], the
pipes are modelled as pure delay elements.

Qin(t) Qout(t)

Qlat(t)

Fig. 2. Delay translation model.

Hence, outflows from a gravity pipe section are the delayed
sums of controlled pump flows and uncontrolled lateral
inflows, as shown in Fig. 2. (Lateral inflows are additional

1MIKE URBAN is a standard hydraulic simulation and modeling tool,
used by operators at many water utilities. The MU simulation environment
solves the full dynamic Saint-Venant equations for open-channel flow [18].

flows that enter the pipelines along the length of the channel.)
The mass balance relation at time t is formulated as follows:

Qout(t) = Qin(t− τ) +Qlat(t− τlat) (1)

where τ ∈ R+ and τlat ∈ R+ are time lags measured from
the upstream and from the point where lateral flows enter the
pipeline, respectively. After discretization, delays are defined
in δt sampling steps, hence the delayed flow is modeled with
an augmented state vector consisting of the previous flows.
The state equation, assuming Qlat = 0 (to ease the notation),
is given by:
Qout(t+δt)

Qin(t−τ+2δt)
...
...

Qin(t)

= A


Qout(t)

Qin(t−τ+δt)
Qin(t−τ+2δt)

...
Qin(t−δt)

+ BuQin(t) (2)

where Qin inlet flow is subject to control, Qout discharged
flow is the output and the system matrices A and Bu are
given by:

A =


0 1 . . . . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
...

...
. . . 1

0 0 . . . . . . 0

 ∈ Rτ×τ , Bu =


0
0
...
...
1

 ∈ Rτ . (3)

Note, that in case there are Qlat inflows, the augmented state
vectors are stacked together. This simple delay translation
model is considered computationally beneficial and realis-
tic enough for system-wide optimization, even though the
physical phenomena such as flow attenuation and backwater
effect are not incorporated in this formulation.

B. Retention tanks

Storage within the network is modeled by conceptual tanks
that can account for overflows, as shown in Fig. 3.

Qin(t)

Vcso(t)

Qcso(t) Qout(t)

Fig. 3. Linear retention tank with VCSO virtual overflow volume.

Flows to retention tanks (Qin) are considered as (i) fore-
casted disturbances and (ii) controlled flows, coming from
an upstream pumping station. The manipulated flow variables
are denoted with Qout, furthermore V represents the stored
volume in the tank. The mass balance for each tank is:

dV (t)

dt
=

N∑
n=1

Qin,n(t)−
M∑
m=1

Qout,m(t), (4)

where N and M are the number of inlet points and number
of pumps, respectively. The translation between volume and
level is done by using the constant cross section area A.

In order to model overflows, the formulation in (4) is
extended with a virtual volume, similarly as done in [8] and
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Figure 3.2: Conceptual combined wastewater network simulation model in MIKE Urban.
Source:[Balla et al., 2020b]

The network consists of two pumping stations T1 and T2, equipped with
retention tanks of storage capacity 30 (m3). The pumps are operated by local
PID controllers and references are given to the actuators from outside through
the API. There is one outlet point in the network, furthermore several catch-
ment areas discharging to the pipe network through manholes. Further details
and dimensions of the high-fidelity model are given in Paper D.

3.1.3 Simulation Study C

Simulation Study C is an extended network, artificially created in the high-
fidelity simulation software MIKE Urban and interfaced with the MIKE1D API.
The system is depicted in Figure 3.3.

s1

s2

s3

s4

- manhole - catchment

- gravity sewer

- storage - pumping station

- outlet

WWTP

Figure 3.3: Conceptual combined wastewater network simulation model in MIKE Urban.
Source:[Balla et al., 2022d]
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The network consists of four pumping stations, where the collected sewage
is transported to S2 pumping station through two branches; from station S1
and from the interconnected line of S3, S4. The network consists of 170 man-
holes, 170 segments of gravity pipes and three wet pit at the pumping stations,
whereas at the station S2 there is a retention tank to hold back volume from dis-
charging downstream. Similarly to Simulation Study B, flow and level sensors
are read through virtual sensors and control inputs are provided to the pumps
through the MIKE1D API to provide flow reference to local PID controllers.
Further details and dimensions of the network are given in Paper C.

3.2 Experimental Study

The Experimental Study has been conducted on a modular test facility that
can be configured to emulate the hydraulic transport processes in wastewater
collection systems. The setup and the schematics of the network configuration
are shown in Figure 3.4.
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pipe

Tank
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Gravity
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Figure 3.4: Experimental sewer network setup of the Smart Water Infrastructures Lab-
oratory (SWIL) at Aalborg University. Left: Pumping station and pipe modules in the
laboratory. Right: Schematics of the network topology. Source: [Balla et al., 2022b], [Balla
et al., 2022a]

Throughout the thesis, the laboratory setup enabled us to prototype con-
trol algorithms without the risk of compromising the operation of real-world
infrastructure. The setup replicates a segment of a combined sewer network,
where sewage is transported from an upstream pumping station to a down-
stream station through a gravity pipe. The disturbances enter the system at
two locations: combined rain and household sewage enters at the upstream
station, while household sewage is entering in the middle of the gravity pipe.
The instrumentation of the network consists of level sensors distributed along
the pipelines and inside the storage tanks. Moreover, flow sensors are placed
at each pumping unit.

The experiments carried out on a setup represent a 1 ∶ 80 scale reality
of a wastewater network, meaning that the typical resolution and time scale
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of the disturbances, i.e., the one day periodicity of household discharge, are
scaled down accordingly. Besides, the sensor measurements are obtained and
locally managed at each laboratory unit with a Codesys [ 3S-Smart Software
Solutions GmbH] soft-PLC in real time. The data acquisition is done at every
0.5 seconds. The detailed description of the experimental setup is given in [Val
Ledesma et al., 2021]. The results of the research verified on this setup are
detailed in Paper B, Paper E and Paper F.

3.3 Field Study

The field studies conducted in the thesis are restricted to the analysis and
modelling based on the collected sensor data from real-world sewer operation.
This is partly because of the safety-critical operation and the lack of controllable
assets available in both storm- and wastewater networks included in our study.

3.3.1 Haderslev Case Study

The Haderslev Case Study is a combined sewer network, operated by the Provas
Wastewater Utility in Haderslev, Denmark. The network in consideration com-
prises several wet pits equipped with pumping stations to collect and transport
the sewage from the communal areas to a treatment plant outside the city. The
layout of the network is depicted in Figure 3.5 below.

PGH104

PGH103

PGH102

PGH101

PGH202

PGH201

PGH203

0 1 2 [km]

Gram, Haderslev, South Denmark

Figure 3.5: A segment of a combined wastewater network in Gram, Haderslev, South
Denmark, operated by the Provas Wastewater Utility. Source: [Balla et al., 2020a]

This particular segment of the network consists of seven stations, operated
by threshold-based pumping rules, locally managed by the company Provas.
The data collection from this network has been carried out through a collab-
oration between Provas Wastewater Utility and Grundfos Holding A/S. Fur-
thermore, Grundfos has deployed a flow estimation algorithm for real-time
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estimation of both the flow provided by the pumps and the discharged flows
downstream. As depicted in Figure 3.5, the discharged flows are propagated
downstream via open-surface flow. Detailed description of the data and the
network is found in Paper A.

3.3.2 Ishøj Case Study

The Ishøj Case Study has been carried out in a pilot project under the collabo-
ration of Grundfos Holding A/S1, Aalborg University2, and Ishøj Spildevand3
in Ishøj Denmark. The network in consideration is a stormwater system, oper-
ated by the Ishøj Wastewater Utility. The main operation task of the network
is to collect the rain runoff and transport the water volumes towards the sea.
The network is depicted in Figure 3.6.

Level
sensors

Basin 1.
Basin 2.

Discharge
to the sea

Figure 3.6: A segment of a stormwater network in Ishøj, Denmark, operated by the Ishøj
Wastewater Utility. Source: [Balla et al., 2022c].

As seen in Figure 3.6, the network consists of two ponds with high volume
capacity both upstream and downstream. These ponds are connected by a main
transport line running below the main road called "Stationsvej". Through a
period spanning five months, from the 16th of June 2020 to the 27th of October
2020, five level sensors have been deployed, providing 30 seconds measurement
resolution to collect in-sewer level data. We deployed level sensors in the two
basins and three sensors between the basins to learn how rain infiltrates into
the network, and most importantly: how the upstream level variations affect
the levels downstream. Detailed description of the data and the case study is
provided in Paper G.

1Represented by Christian Schou, Carsten Skovmose Kallesøe and Krisztian Mark Balla
2Represented by Carsten Skovmose Kallesøe and Krisztian Mark Balla
3Represented by Henrik Lemée
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3.4 Benchmark Controller

In this work, we build upon the experience collected in the review paper [Lund
et al., 2018] for predictive control in urban sewer networks. According to [Lund
et al., 2018], the current state-of-the-art typically compares controller perfor-
mance to rule-based control rules used by the practitioners. Hence, the most
common baseline controller is a simple rule based on the on/off switching of the
actuators according to the water levels in storage elements. The switching can
either be done via a pump turning to full speed and shutting down or a gate
opening and closing. In this thesis, we restrict ourselves to pumps as actuators
for the baseline control, however, gate operation can equivalently be used for
the benchmark.

The switching rule of a pumping station along with the aggregated flow
provided by the pumps under the rule-based control is given by

Q(tk) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q, if h(tk) ≥ h, ∀tk,
Q, if h(tk) ≤ h, ∀tk,
Q(tk−1), otherwise, ∀tk,

(3.1)

where h(tk) is the measured water level in the storage element. Upper and
lower bounds of the inlet flow Q,Q correspond to the maximum and minimum
flow capacity of the pumps [Balla et al., 2022d]. Threshold values h, h de-
fine the maximum and minimum allowed water levels in the storage element,
respectively.
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Figure 3.7: Rule-based control implemented in real-time on the Experimental Study setup.
Source: [Balla et al., 2022a]

As depicted in Figure 3.7, the pumps turn on and off according to the levels
reaching the higher and lower bounds of the operating region. Violation of the
upper bound indicates high load on the system, hence the longer pump cycles.
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4 Sewer Dynamics Modelling

This chapter provides an overview of the modelling approaches
introduced in the research papers.

4.1 Modelling Goals

The approaches proposed in this chapter are developed to obtain network mod-
els incorporating only physically measurable water levels as the system states.
Consequently, the overall concept of the presented approaches relies on de-
ploying in-sewer level sensors at critical locations in the sewer network. Our
modelling purpose is to consider both the temporal and spatial extents of the
water network while using the simplified topology to describe the piping layout.
Specifically, we utilize the full scale of the network by modelling only the main
transport lines between the actuators and the main hydraulic elements. The
overall requirements for the modelling developed throughout the thesis can be
summarized as follows

• The network topology of the control model is obtained directly from the
high-level pipe layout of the real network, considering the hydraulic ele-
ments forming a tree-based graph structure,

• Our main purpose with the level sensors is to capture the effect of distur-
bances through the variation of level signals, hence the sensors are placed
at the vicinity of pipes joining the main transport lines,

• The collected level observations and the estimated flow data are aimed
for online or offline system parameter identification with the proposed
model structures,

• The level-to-flow conversion is either partly or fully bypassed by estab-
lishing relation between the in-sewer level states and the level variation
in hydraulic storage elements.

In the following, we summarize the main modelling approaches detailed
in the published research papers included in this thesis. These approaches
are categorized into two groups, namely; parametric (or physically-based) and
non-parametric (or conceptual) modelling techniques. The parametric mod-
elling is detailed in Section 4.2 (Parametric Modelling of Sewer Hydraulics)
and mainly concerns the hydraulic processes, while the non-parametric mod-
elling is detailed in Section 4.4 (Non-parametric Modelling of Sewer Hydrology)
and concerns the combination of hydraulic and hydrologic processes. Note that
the presented methods are developed to enable system identification where data
is used to find the required model parameters.
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4.2 Parametric Modelling of Sewer Hydraulics

In this section, we propose modelling methods, assuming that the mathematical
structure of the underlying model is partly known. The parameters of these
models are optimised to get the best fit of the input-output dynamics. These
approaches are often termed grey-box, for the reason that both theoretical
and experimental considerations are taken into account when building the final
models for prediction and control. Detailed description of the methods and
outcomes regarding parametric modelling are provided in Paper A, Paper B,
Paper C and Paper D.

4.2.1 Volume Conservation in Tanks

Storage of wastewater is represented by storage tanks or wet pits, among which
some tanks are also equipped with a retention area to hold back a large amount
of waste and rainwater in high-load periods. An illustration of such structure
is shown in Figure 4.1.

h

V

Retention tank
WW pit

f−1
V

(V )

K1

K2

Figure 4.1: Level to volume conversion for a waste water tank equipped with retention
area. Source: [Balla et al., 2022d]

Hydraulic structures describing storage are typically linear tanks, setting rela-
tion between the volumetric flow to the level change. In the case of hydraulic
structures where retention spaces are present, the non-linearity between level
and flow is handled by the following assumption.

Assumption 1. Nonlinear storage elements are approximated with a piecewise
linear, strictly monotonic increasing function fV (⋅), parameterized by the level
to flow constant of the tanks, i.e., the area of the tanks [Balla et al., 2020b].

Then the infinitesimal level change in storage elements is simply described by
the volume conservation, given by eq.(4.1).

dfV (h(t))
dt

= q(t) −Q0(t), (4.1)

where fV (⋅) is defined by the size of the tanks. Besides, Q0(t) is the outflow
controlled by actuators, and q(t) is the inflow to the storage element. Note that
soft sensing techniques exist (see [Kallesøe and Knudsen, 2016]) to estimate
both in and outflows from pumping stations in real-time. However, predicting
the inflow to hydraulic elements is highly influenced by the stochastic nature
of the disturbances, i.e., the rain and wastewater infiltration.
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4.2.2 Volume Conservation in Pipes

The free-surface motion of flow in wastewater networks is based on the 1-
dimensional Saint-Venant hyperbolic Partial Differential Equations (PDEs) for
small channel slope assuming constant cross-sectional area. These equations
relate to the water level and the flow propagating in open channels.

4.2.2.1 Saint-Venant Partial Differential Equations

The Saint-Venant PDEs describe both the volume and momentum conservation
of the fluid, given by eq.(4.2a) and eq.(4.2b), respectively.

∂A(x, t)
∂t

+ ∂Q(x, t)
∂x

= q̃(x, t), (4.2a)

1
gA(x, t)(

∂Q(x, t)
∂t

+ ∂

∂x
(Q(x, t)2

A(x, t) ))+ ∂h(x, t)
∂x

+
Kinematic wave
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Sf(x, t)−Sb

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Diffusion wave

= 0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dynamic wave

, (4.2b)

where Q(x, t) is the flow propagating inside the pipe and q̃(x, t) = q(x, t)/δx
represents the lateral inflows per unit length, where q(x, t) is the lateral inflow,
i.e., the disturbance. A(x, t) is the wetted pipe area, h(x, t) represents the
water level, furthermore Q(x, t), q(x, t),A(x, t) and h(x, t) are functions from
(0, L) ×R+ → R+, where L is the total length of the gravity pipe [Balla et al.,
2020a]. The gravitational acceleration is denoted with g. Moreover, the slope
term Sb ∈ R+ and friction term Sf ∈ R+ are considered to be independent of x
and t, i.e., all pipe segments along the gravity pipe are modelled with assuming
identical physical attributes [Balla et al., 2020a].

As seen in eq.(4.2), the independent variables describing the full dynamic
motion of fluid are the water level h(x, t), the flow inside the channel Q(x, t)
and the wetted area A(x, t). Using these variables without a very precise
physical parameter description of the network is unrealistic in practice, as the
geometry and the boundary conditions coupling these equations are spatially
varying. Hence, the problem of using the full dynamic wave equation of the
Saint-Venant PDEs for prediction is computationally demanding and requires
heavy commissioning and calibration in real-time control [Balla et al., 2020b].

4.2.3 Model simplifications

To overcome the issues with the complex flow routing proposed by the full
dynamic Saint-Venant PDEs, several simplifications of the original model are
proposed in the literature [Schütze et al., 2002]. The type of simplification
depends on which terms are neglected in the momentum equation in eq.(4.2b).
As indicated in eq.(4.2b), we consider two approximations, namely the Kine-
matic wave (KW) and Diffusion wave (DW) approaches. By approximating

37



Chapter 4. Sewer Dynamics Modelling

the original physically-based PDEs, a trade-off is made by neglecting physical
phenomena to the benefit of obtaining a simpler model structure and better
suitability for system identification. The comparison of the proposed approxi-
mations is shown in Table 4.1.

Kinematic wave Diffusion wave Dynamic wave
Backwater effect 7 3 3

Wave attenuation 7 3 3

Flow acceleration 7 7 3

Table 4.1: Physical phenomena described by the Saint-Venant partial differential equations
describing open-channel flow, and their approximations. Source: [Schütze et al., 2002]

Although the KW approximation of the full dynamic Saint-Venant PDEs ne-
glects the wave attenuation phenomena, artificial distortion is obtained via the
time and spatial discretization of the model. In this way, the wave attenuation
can be numerically recreated.

To obtain a simple model structure for both the KW- and DW-based model
approximations, further hydraulic assumptions are introduced. These assump-
tions regard the geometry of the pipelines and the relation between the inde-
pendent variables in the original full dynamic equations.

Assumption 2. A linear relation between water level h(x, t) and wetted pipe
area A(x, t) is assumed. Semi-filled pipe segments regardless of their geometry
are approximated with a rectangular pipe shape, as illustrated in Figure 4.2.

h(x, t)

w

1

Figure 4.2: Semi-filled circular pipe approximated with a rectangular geometry,
parametrized by the width w. Source: [Balla et al., 2022d]

The wetted perimeter P (x, t) and pipe area A(x, t) are formulated, i.e.,

A(h(x, t)) ≈ wh(x, t), (4.3a)
P (h(x, t)) ≈ w + 2h(x, t), (4.3b)

where h(x, t), x ∈ (0, L) is the water level and the cross-section is described
by the width parameter w. By using the linear area-level relation, the number
of independent variables can be reduced to the levels h(x, t) and flows Q(x, t).
Besides, the accuracy of this approximation is highly-dependent on the fullness
of the pipe and the original geometry of the cross-section. For instance, circular
pipes are approximated well with rectangular shape as shown in Figure 4.2.
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Assumption 3. In the case of the KW-based approximation of the full dy-
namic PDEs, we relate the friction Sf(x, t) inside the pipes to the flow Q(x, t)
and water level h(x, t) by utilizing the empirical Manning formula [Szymkiewicz,
2010], given by

Sf(x, t) = n2 P (x, t)4/3

A(x, t)10/3Q(x, t)2, (4.4)

where n is the Manning friction factor representing the roughness of the pipe.

Assumption 4. In the case of the DW-based approximation of the full dy-
namic PDEs, we relate the friction Sf(x, t) inside the pipes to the flow Q(x, t)
and water level h(x, t) by utilizing the empirical Darcy-Weisbach formula
[Szymkiewicz, 2010], given by

Sf(x, t) = k
P (x, t)

8A(x, t)3g
Q(x, t)2, (4.5)

where k is the Darcy-Weisbach friction factor representing the friction losses
in the pipe and g is the gravitational acceleration.

4.2.4 Kinematic Wave Model

When approximating the momentum equation of the Saint-Venant PDEs with
kinematic waves, we assume quasi-steady flow and neglect the phenomena
of flow attenuation, acceleration, and backwater by keeping only the friction
Sf(x, t) and slope Sb terms in eq.(4.2b). This assumption inherently means
that the flow in sewer pipes propagates such that the gravitational and friction
forces acting on the fluid are equivalent. This results in the following expression
for the momentum of the fluid, i.e.,

Sb = Sf(Q(x, t), h(x, t)), (4.6)

where the pipe geometry is simplified to the linear area-level relation, and the
friction term is expressed by the Manning formula described by Assumption 2
and Assumption 3, respectively.

To present the transport dynamics in a form more amenable to system iden-
tification, the simplified PDEs are reduced to ordinary differential equations
by spatially discretizing them. The pipe is divided into Nx non-overlapping δx
pipe segments and the signals h(x, t), Q(x, t) and q(x, t) are approximated as
piecewise constant functions of the spatial coordinate x [Balla et al., 2020b].
The volume balance inside the pipe is depicted in Figure 4.3.

As shown in Figure 4.3, volume conservation applies for each segment of
pipes, holding a balance between the section flows Q(x, t) and lateral inflows
q(x, t). When considering the KW approximation, the section flows Q(x, t) are
generated due to the water level in each pipe segment. Note that the detailed
derivation of the proposed KW-based model approximation is out of the scope
of the summary, however, detailed in Paper A, Paper B and Paper C.
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x = 0 x = L

q(δx, t) q(L, t)q(3δx, t)q(2δx, t)

Q(0, t) Q(L, t)Q(δx, t) Q(3δx, t)Q(2δx, t)

δx

1

Figure 4.3: Volume balance for a pipe discretized into Nx = 4 sections for the KW approx-
imation. Source: [Balla et al., 2021].

Applying the assumptions and the spatial discretization with the backward
Euler method, the final form of the KW-based pipe model for the water level
as the state is given by

dh1(t)
dt

= θ1(Q0(t) + q1(t)) − θ1θ2f(h1(t), θ3), (4.7a)
⋮

dhn(t)
dt

= θ1qn(t) + θ1θ2(f(hn−1(t), θ3) − f(hn(t), θ3)), (4.7b)
⋮

dhNx(t)
dt

= θ1(qNx(t) −QNx(t)) + θ1θ2f(hNx−1(t), θ3), (4.7c)

where h1(t), h2(t), ..., hNx(t) represent the water level in each segment of pipe,
while the nonlinear map f ∶ R+ → R+ is given by

f ∶ (h(x, t), θ3) ↦
h(x, t)5/3

(h(x, t) + θ3)2/3 , ∀ x ∈ (0, L), (4.7d)

and the physical constants along with the spatial step δx are lumped into the
following parameters

θ1 =
1
wδx

, θ2 =
√
Sbw

5/3

22/3n
, θ3 =

w

2
. (4.7e)

Besides, the flow Q0(t) at x = 0 is considered as an input provided by con-
trollable actuators. Since the section flows are generated by the water levels
in each segment, the discharged flow at the downstream end of the channel is
calculated directly from the water level in the last segment, i.e.,

QNx(t) = θ2f(hNx(t), θ3), (4.8)
where hNx(t) is the water level in the last pipe segment. The resulting KW-
based model has a bi-linear structure in its parameters and the physical con-
stants describing the original equations are lumped into three independent pa-
rameters. Note that the physical insight of the parameters allows to constrain
them, i.e., all θ1, θ2, and θ3 are positive, given that the physical constants and
the spatial step δx are positive [Balla et al., 2021].
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4.2.5 Diffusion Wave Model

When approximating the momentum equation of the Saint-Venant PDEs with
diffusion waves, we do not neglect the diffusion term ∂h(x, t)/∂x in eq.(4.2b)
[Balla et al., 2021]. Hence, the momentum equation for the DW-based model
is given by

∂h(x, t)
∂x

= Sb − Sf(x, t), (4.9)

where similarly to the KW-based model, the pipe geometry is simplified to
the linear area-level relation, and the friction term is expressed by the Darcy-
Weisbach formula described by Assumption 2 and Assumption 4, respectively.

To present the transport dynamics in a form more amenable to system iden-
tification, the simplified PDEs are reduced to ordinary differential equations via
spatial discretization. Similarly to the KW case, the pipe segment is divided
into Nx non-overlapping δx pipe segments and the signals h(x, t), Q(x, t) and
q(x, t) are approximated as piecewise constant functions of the spatial coordi-
nate x [Balla et al., 2020b]. The volume balance inside the pipe is depicted in
Figure 4.4.

x = 0 x = L

q(δx, t)

q(L, t)
q(3δx, t)

q(2δx, t)

Q(0, t)

Q(L, t)
h(δx, t)

h(L, t)h(3δx, t)h(2δx, t)

z

δx

1

Figure 4.4: Volume balance for a pipe discretized into Nx = 4 sections for the DW approx-
imation. Source: [Balla et al., 2021].

As shown in Figure 4.4, similarly to the KWmodel, the volume conservation
applies for each segment of a pipe section. In contrast to the KW model, the
relation between the section flows Q(x, t) and the water levels h(x, t) is not
one-to-one, meaning that in this case the section flows are generated by the
level difference between the interconnected pipe segments. This is depicted in
Figure 4.4 by the elevation parameter z = δxSb. As opposed to the KW-based
model, the section flows are not only dependent on the local water levels, but
also the water levels one spatial step forward [Balla et al., 2021]. This feature
allows the model to inherently model the accumulation of volumes inside the
channel, often occurring in gravity-driven sewer pipes with small slopes.

The detailed derivation of the DW-based model approximation is (likewise
the KW-based model) out of the scope of the summary, however, detailed in
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Paper B. To obtain the final DW-based model, we apply again the assumptions
and the spatial discretization of the original model. In this case we use the
backward Euler discretization for the term ∂Q(x, t)/∂x in eq.(4.2a) and the
forward Euler discretization for ∂h(x, t)/∂x in eq.(4.2b). The final form of the
DW-based pipe model for the water levels is given by eq.(4.10).

dh1(t)
dt

=λ1(Q0(t) + q1(t)) − λ1λ2((h1(t) − h2(t) + z)g(h1(t), λ3))
1
2 , (4.10a)

⋮
dhn(t)
dt

=λ1qn(t) + λ1λ2[((hn(t) − hn(t) + z)g(hn−1(t), λ3))
1
2 (4.10b)

− ((hn(t) − hn+1(t) + z)g(hn(t), λ3))
1
2 ],

⋮
dhNx(t)
dt

=λ1(qNx(t) −QNx(t)) (4.10c)
+ λ1λ2((hNx−1(t) − hNx(t) + z)g(hNx−1(t), λ3))

1
2 ,

where the nonlinear map g ∶ R+ → R+ is given by

g ∶ (h(x, t), λ3) ↦
h(x, t)3

h(x, t) + λ3
, ∀ x ∈ (0, L), (4.11)

and the physical constants together with the spatial step δx are lumped into
the following parameters

λ1 =
1
wδx

, λ2 = (4gw3

kδx
)

1/2

, λ3 =
w

2
. (4.12)

Note that in the case of the DW-based model, the elevation z is an extra model
parameter, which is handled the same way as the lumped parameters, i.e.,
generally unknown. Similarly to the KW-based model, the parameters are all
positive, i.e., λ1, λ2, λ3 ∈ R+. Note that the parameters for the KW- and DW-
based models only differ in θ2 and λ2. Furthermore, the number of independent
parameters has been extended with the elevation z [Balla et al., 2021].

4.2.6 Conceptual Alternatives

Conceptual modelling of volume conservation in gravity pipes arises from sim-
plified mathematical descriptions, typically not related to physical models such
as the Saint-Venant PDEs. The most relevant dynamics governing free-surface
flow propagating in sewers are the time delay and the attenuation of the wave.
Conceptual models describing hydraulic processes in sewers provide approxi-
mations to the flow propagating in the channels. Conceptualizing the physical
models is often attractive from the complexity and computation point of view.
Throughout the thesis, two types of conceptual modelling have been utilized;
a single linear delay translational model and a simple linear version of the
KW-based pipe model described in Section 4.2.4 (Kinematic Wave Model).
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Modelling entire pipelines as pure delay elements is a computationally sim-
ple method where outflows QN(t) from a gravity pipe are the delayed sums of
the controlled inflows Qq(t) and the uncontrolled lateral inflows q(t), i.e.,

QN(t) = Q0(t − τ) + q(t − τlat), (4.13)

where τ and τlat are time lags measured from the point where the controlled
inflows and lateral inflows enter the sewer pipe, respectively. Note that the time
delays are parameters to be estimated experimentally in the model. Although
physical phenomena such as wave attenuation, backwater, and flow-dependent
delays cannot be modelled with this technique, it is considered computationally
beneficial for real-time control. From the practical point of view, the delay
parameters in this model are difficult to find, especially if the disturbances
q(x, t) are spatially distributed along the channel. Such model has been utilized
in the Simulation Study B and further detailed in Paper D.

To further simplify the KW-based approximation of the Saint-Venant PDEs,
we assume that the relation between the friction Sf(x, t) inside the pipe to the
flow Q(x, t) is linear, meaning that the empirical Manning formula introduced
in Assumption 3 is a linear expression. Although such model does not have
direct mathematical relation to the original Saint-Venant PDEs, it simplifies
the KW-based model to a linear alternative, i.e.,

dh1(t)
dt

= θ1(Q0(t) + q1(t)) − θ1θ2h1(t), (4.14a)
⋮

dhn(t)
dt

= θ1qn(t) + θ1θ2(hn−1(t) − hn(t)), (4.14b)
⋮

dhNx(t)
dt

= θ1(qNx(t) −QNx(t)) + θ1θ2hNx−1(t), (4.14c)

and the discharged flow at the downstream end of the pipe simplifies as shown
in eq.(4.15) below.

QNx(t) = θ2hNx(t), (4.15)

where hNx(t) is the water level in the last section of the pipe. Note that the
above model is bi-linear in the parameters but linear in the control variables
Q0(t) and states h(t). Besides, the two parameters θ1 and θ2 are sufficient to
describe the delay and flow attenuation of the traveling wave in the channel.
As a consequence of neglecting the nonlinearities, this model introduces offset
error via the linear flow to level conversion in contrast to the empirical Man-
ning formula. This type of conceptualization has been used as an addition to
Paper F, further detailed in Section 4.5.2 (System Identification Results).
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4.2.7 Disturbance Model

Until this point, we considered the propagation of the controlled inflows Q0(t)
coming from the upstream end of gravity pipes and the in-sewer level evolution
based on physically-based and conceptual sewer models. However, all models
are influenced by the disturbances q(t) entering the pipes at multiple locations
along the sewer. Due to the spatial discretization of the pipe models, the
disturbances are aggregated at each section of the pipeline. The typical sources
of disturbances are considered additive in terms of the inflows, i.e.,

q(x, t) = qr(x, t) + qh(x, t) + qg(x, t), ∀ x ∈ (0, L), (4.16)
where qr(x, t) denotes the rain runoff, qh(x, t) is the domestic or household
sewage and qg(x, t) is the groundwater infiltrating into the system. The dis-
turbances governing household sewage and groundwater are considered in each
of the proposed physically-based models by introducing a disturbance model
describing the signals. To set up an adequate disturbance model, the following
assumption is introduced.

Assumption 5. The disturbance flows induced by household sewage have an
inherent periodicity such that qh(x, t) = qh(x, t + T ), where T corresponds to
one day. Besides, the disturbance flows due to groundwater infiltration fulfill
the constraint ∑Nx

i=1 q
g(i, t) = Nxq

g(j, t), ∀ j ∈ {1,2, ...,Nx}, i.e. uniformly
distributed along the whole length of the gravity sewer pipe [Balla et al., 2020a].

To model the periodicity of the disturbance signal corresponding to the
household and groundwater infiltration, we introduce Fourier series. For sim-
plicity let us assume dry-weather flow, hence qr(x, t) = 0, ∀ x ∈ (0, L). Then
the disturbances describing dry-weather flow are given by

q(x, t) = γ0 +
k

∑
j=1

(γ1j cos(jωt) + γ2j sin(jωt)), (4.17)

where the parameters are γ = (γ0, γ11, γ21, ..., γ1k, γ2k)⊺ ∈ R2k+1. The angular
frequency ω corresponds to one day and k ≥ 2 is the number of frequency
terms [Balla et al., 2020a]. The transport models proposed in this section
in combination of this disturbance model are then used to find the network
parameters θ, λ and the disturbance parameters γ.

Note that the disturbance qr(x, t) induced by the rain runoff dynamics
is not handled by the parametric, physically-based models introduced in this
section. However, handling rain runoff is of paramount importance as rain is
typically the main driving force of flow propagation and overflows. Besides,
the uncertainty present in modelling is not only due to the modelling of the
runoff dynamics but also due to the high uncertainty governing the weather
forecast of rain intensities. In the following sections, we provide some results
of the physically-based modelling presented in this section.
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4.3 Parametric Modelling Results

The parametric modelling results presented in this section are partially based
on Paper A, Paper B and Paper C, where the KW- and DW-based dynamic
models are utilized to estimate the parameters based on the water level sensor
data h(t) and the estimated flow of the actuators Q(t).

4.3.1 System Identification Problem

The system identification problems concerning the physically-based parametric
modelling in the thesis have been developed for the KW- and DW-based models.
In each case, the underlying dynamic models have been discretized and the
discrete-time model structure has been used for the system identification with
sampled time series data. The dynamic equations of the KW-based model for
a single pipeline are given in the implicit form, i.e.,

ĥ(tk+1) = FKW
θ (ĥ(tk),Q0(tk), q(tk)), (4.18a)

QNx(tk) = θ2f(hNx(tk), θ3), (4.18b)

where the numerical integration from tk to tk+1 is done by the fixed-step 4th
order Runge-Kutta method [Balla et al., 2020a]. The predicted water levels are
ĥ(tk) ∈ RNx , representing the states in each Nx section of pipes [Balla et al.,
2021]. Furthermore, the disturbance vector q(tk) ∈ RNx represents the lateral
inflows at each segments of the pipe. The dynamics are given implicitly by
FKWθ ∶ RNx × R+ × RNx → RNx , where the function is parametrized by the
lumped pipeline parameters collected in the parameter vector θ = (θ1, θ2, θ3)⊺.
Note that the disturbances q(tk) in the argument of FKW(⋅) correspond to the
groundwater and wastewater inflows. Furthermore, the outflow equation cor-
responding to the KW-based model is given by eq.(4.18b), where the function
f(⋅) is equivalent to the function introduced in eq.(4.7d).

The DW-based model dynamics are given by eq.(4.19) for one pipeline

ĥ(tk+1) = FDW
λ,z (ĥ(tk),Q0(tk),QNx(tk), q(tk)), (4.19)

where the dynamics are discretized in time the same way as for the KW-based
model and given implicitly by FDWλ,z ∶ RNx ×R+×R+×RNx → RNx , parametrized
by the elevation z between the pipe segments and the lumped parameter vector
(λ1, λ2, λ3)⊺ [Balla et al., 2021]. Equivalently to the KW-based model, the
modelled disturbances include ground- and wastewater infiltration. Note that
we do not provide the outflow equation, as in the case of the DW-based model
the flow is generated due to the water levels in the current and the neighboring
downstream pipe sections. The downstream pipe section typically represents
the receiving storage tank or pumping station. To provide such outflow relation,
an extra structure needs to be introduced, depending on the regime of the flow,
i.e., whether it is free or submerged flow. Instead, we provide the estimated
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outflows QNx(tk) as time series inputs in the argument. For more details,
consult Paper B.

The collected measurement data consists of the water levels in pipe sections
measured by the sensors. The measurement vector is given as follows

v(tk) = Ch(tk) + ν, (4.20)

where C ∈ RN0×Nx is picking out all measured states v(tk) from the state
vector h(tk). N0 denotes the number of level sensors deployed in the system
and ν ∈ NID(0, σ2) is white Gaussian measurement noise [Balla et al., 2021].

4.3.2 KW-based System Identification

The system identification problem for the KW-based model is given as follows

( θ∗

ĥ(t0)∗
) = argmin

θ,ĥ(t0)

Nt

∑
i=0

(QNx(ti) − Q̂Nx(ti))
2 +Ω∣∣v(ti) − v̂(ti)∣∣2 (4.21a)

subject to the dynamics in eq.(4.18) and to inequality constraints, i.e.,

0 < ĥ(ti) ≤ h, (4.21b)
0 < Q̂Nx(ti) ≤ QNx

, (4.21c)
0 < θ ≤ θ, (4.21d)

where eq.(4.21b), eq.(4.21c) and eq.(4.21d) impose bounds on states, outputs
and parameters, respectively. Note that we minimize the squared errors be-
tween the measured water levels h(tk) (states) and the estimated outlet flows
Q(tk) (outputs). Moreover, the upper and lower bounds relate to physically
meaningful values. For instance, the model parameters are positive and their
maximum value can be bounded based on a rough estimate of the slope, chan-
nel width, and length of the channel. Besides, Ω is a weighing constant scaling
the water levels to the magnitude of the discharged flows [Balla et al., 2020a].

4.3.3 DW-based System Identification

Unlike the KW-based model, the system identification problem for the DW-
based scenario is constructed only for the vector of water level measurements
v(tk) as outputs, and the estimated discharge flow QNx(tk) is rather provided
as an input to the model, i.e.,
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⎛
⎜
⎝

λ∗

z∗

ĥ(t0)∗

⎞
⎟
⎠
= argmin
λ,z,ĥ(t0)

Nt

∑
i=0

∣∣v(ti) − v̂(ti)∣∣2 (4.22a)

subject to the dynamics in eq.(4.19) and to inequality constraints, i.e.,

0 < ĥ(ti) ≤ h, (4.22b)
0 < λ ≤ λ, (4.22c)
0 < z ≤ z, (4.22d)

where similarly to the KW case, eq.(4.22b) imposes bounds on the states,
eq.(4.22c) on the parameters and eq.(4.22d) on the parameter corresponding
to elevation, respectively.

The system identification problems in both cases are solved with a Gauss-
Newton gradient method in the nlgreyest toolbox in MATLAB, furthermore,
the auxiliary variable Nx are fixed for both problems. Selecting the number of
discretized sections of pipelines is further detailed in Paper A.

4.3.4 Parametric System Identification Results

The results presented here are related to the flow propagation in gravity sewer
lines regarding the parametric modelling introduced in the previous sections.
The methods have been verified with the use of data extracted from high-
fidelity simulations, from real world utilitz, and from our experimental labora-
tory setup.

The flow fitting and disturbance decoupling features of the KW-based model
have been verified on data. Results of the flow discharge validation with the
KW-based model in our Simulation Study A is shown in Figure 4.5.
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Figure 4.5: Discharged downstream flow prediction under on/off pump operation. Source:
[Balla et al., 2020a].

As shown in the figure above, the discharged flow QNx(tk) is composed of
the pump flow cycles Q0(tk), combined with ground and periodic wastewater
patterns. To achieve such smooth model response, Nx = 4 sections with N0 = 4
level sensors have been utilized. Moreover, in Simulation Study A we also
visualized the disturbance decoupling features of the model. In the simulation,
we can show the actual and the discharged disturbances by simply simulating

47



Chapter 4. Sewer Dynamics Modelling

0 1 2 3 4 5 6 7 8 9 10
0

10

20

Time [day]

F
lo

w
[m

3
h

]
qh

x=L/2 qh
x=L

1

Figure 4.6: Disturbance infiltrated at the middle of the pipe and discharged downstream.
Source: [Balla et al., 2020a].

the high-fidelity models without the actuation of the pumps. The flow discharge
inside the empty channel in the simulation study is shown in Figure 4.6..
As seen, the wastewater discharged in the middle of the pipeline (qhx=L/2) is
delayed and attenuated at the downstream end (qhNx

) where it is discharged.
Using the estimated parameters θ of the KW-based model together with the
disturbance model presented in Section 4.2.7 (Disturbance Model), the decou-
pled wastewater disturbance flow can be calculated at the point where it enters
the channel. This is shown in Figure 4.7.
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Figure 4.7: Disturbance decopling with 2nd order (above) and 4th order Fourier series.
Source: [Balla et al., 2020a].

The higher-order the Fourier series, the better decoupling performance our
model yields to the cost of increasing the number of parameters in the com-
bined hydraulic and disturbance model. Note that the model parameters θ and
disturbance parameters λ in the KW-based model allow detecting the offset on
the disturbance signals, indicating groundwater infiltration into the channel.

Similar tests have been carried out on our Haderslev Case Study where real
flow data pairs of the pumped Q0(tk) and discharged QNx(tk) flow time series
have been utilized. Note that in this study level sensors have not been available,
however, our model allows fitting to the input-output flows. Although the tests
are from the operation of a real combined sewer system, wastewater infiltration
is not present in the data. The resulting validation of the Haderslev Case Study
for flow prediction in two different branches of the wastewater network is shown
in Figure 4.8.
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Figure 4.8: Model validation on experimental data of the gravity sewer line between
PGH103 and PGH104 pumping stations (above) and between the PGH202 and PGH203
pumping stations (below). Source: [Balla et al., 2020a].

The estimation data used in this study are pumped and discharged flows
in both cases. As depicted in the figures, the groundwater infiltration in the
graph above is nearly zero, meaning that the channel dries out between two
pumping cycles. Nevertheless, the groundwater infiltration is significant in the
figure below, as the discharged flow to the downstream pumping stations is
constant, even if pumps are not operating. The model fitted to the data above
was constructed with Nx = 7 pipe sections. For the sake of curiosity, it would
be interesting to deploy level sensors in the Haderslev Case Study network to
detect where the groundwater is infiltrating the sewer pipes.

Following the KW- and DW-based modelling methodologies in Section 4.2.4
and Section 4.2.5, a comparison has been made in our Experimental Study. To
validate the results of both methods, we tested the KW and DWmodels against
the same experimental data. To point out the main feature differences between
the two methods, we placed a level sensor upstream to the point where lateral
inflow disturbance enters the gravity channel, creating backflow in the sewer.
The validation data and the results are shown in Figure 4.9. The pump and
lateral inflows are shown in Figure 4.9(a-b) while the level sensor measurement
data are depicted in the rest of the graphs. Note that the upstream level
measurement (h1) highly resembles the pumping cycles not being affected by
the disturbance flows. The disturbance flow enters the pipeline before the third
sensor (h3), however, as seen in Figure 4.9(e-f), the second sensor h2 is affected
by the disturbance in the form of backwater inside the pipe. Both models have
been fit to the level data from time 0−1250 (2s), and the remaining data set was
used for validation (yellow area). The two models are validated in free-running
mode, meaning that an initial state and the input flow Q0 sequence are applied
for prediction in closed-loop. As seen in Figure 4.9(e-f), the KW-based model
cannot model the water volumes accumulating according to the sensor at the
second position h2. In contrast to the KW-based model, the DW-based model
finds the additional parameter z and captures the backwater effect.

49



Chapter 4. Sewer Dynamics Modelling

0

0
.1

0
.2

Flow(l/s)

(a
)

Pu
m

p
an

d
la

te
ra

l
in

flo
w

In
flo

w
D

is
tu

rb
an

ce

0

0
.0
5

0
.1

0
.1
5

0
.2

Level(dm)

(c
)

W
at

er
le

ve
l

(h
1

)

M
ea

su
re

m
en

t
K

W
m

od
el

0

0
.0
5

0
.1

0
.1
5

0
.2

Level(dm)

(e
)

W
at

er
le

ve
l

(h
2

)

M
ea

su
re

m
en

t
K

W
m

od
el

0

0
.0
5

0
.1

0
.1
5

0
.2

Level(dm)

(g
)

W
at

er
le

ve
l

(h
3

)

M
ea

su
re

m
en

t
K

W
m

od
el

0
5
0
0

1
,0
0
0

1
,5
0
0

2
,0
0
0

0

0
.0
5

0
.1

0
.1
5

0
.2

Ti
m

e
(2

s)

Level(dm)

(i
)

W
at

er
le

ve
l

(h
4

)

M
ea

su
re

m
en

t
K

W
m

od
el

0

0
.1

0
.2

Flow(l/s)

(b
)

Pu
m

p
an

d
la

te
ra

l
in

flo
w

In
flo

w
D

is
tu

rb
an

ce

0

0
.0
5

0
.1

0
.1
5

0
.2

Level(dm)

(d
)

W
at

er
le

ve
l

(h
1

)

M
ea

su
re

m
en

t
D

W
m

od
el

0

0
.0
5

0
.1

0
.1
5

0
.2

Level(dm)

(f
)

W
at

er
le

ve
l

(h
2

)

M
ea

su
re

m
en

t
D

W
m

od
el

0

0
.0
5

0
.1

0
.1
5

0
.2

Level(dm)

(h
)

W
at

er
le

ve
l

(h
3

)

M
ea

su
re

m
en

t
D

W
m

od
el

0
5
0
0

1
,0
0
0

1
,5
0
0

2
,0
0
0

0

0
.0
5

0
.1

0
.1
5

0
.2

Ti
m

e
(2

s)

Level(dm)

(j
)

W
at

er
le

ve
l

(h
4

)

M
ea

su
re

m
en

t
D

W
m

od
el

Fi
g.

5.
Sy

st
em

id
en

tifi
ca

tio
n

an
d

va
lid

at
io

n
re

su
lts

fo
r

th
e

K
W

-
(l

ef
t)

an
d

th
e

D
W

-b
as

ed
(r

ig
ht

)
m

od
el

lin
g

ap
pr

oa
ch

es
.

In
fu

tu
re

w
or

k,
th

e
tw

o
m

et
ho

do
lo

gi
es

w
ill

be
te

st
ed

on
re

al
w

at
er

in
fr

as
tr

uc
tu

re
s.

M
or

eo
ve

r,
it

w
ill

be
in

te
re

st
in

g
to

ca
rr

y
ou

t
st

ab
ili

ty
an

d
id

en
tifi

ab
ili

ty
an

al
ys

is
,

es
pe

ci
al

ly
on

co
m

pl
ex

m
od

el
s

as
th

e
di

ff
us

io
n

w
av

e.
A

pp
ly

in
g

th
e

m
et

ho
ds

in
pr

ed
ic

tiv
e

co
nt

ro
l

is
al

so
a

m
at

te
r

of
fu

tu
re

w
or

k.

A
C

K
N

O
W

L
E

D
G

M
E

N
T

T
he

au
th

or
s

w
ou

ld
lik

e
to

th
an

k
th

e
Po

ul
D

ue
Je

ns
en

Fo
un

da
tio

n
fo

r
pr

ov
id

in
g

th
e

Sm
ar

t
W

at
er

L
ab

at
A

al
bo

rg
U

ni
ve

rs
ity

.
T

he
pr

oj
ec

t
w

as
su

pp
or

te
d

by
In

no
va

tio
n

Fu
nd

D
en

m
ar

k
an

d
G

ru
nd

fo
s

H
ol

di
ng

A
/S

as
pa

rt
of

a
D

an
is

h
In

du
st

ri
al

Ph
.D

.P
ro

je
ct

[A
pp

lic
at

io
n

nu
m

be
r:

90
65

-0
00

18
A

].

R
E

F
E

R
E

N
C

E
S

[1
]

M
.R

.S
ch

üt
ze

,D
.B

ut
le

r,
an

d
M

.B
.B

ec
k,

M
od

el
lin

g,
Si

m
ul

at
io

n
an

d
C

on
tr

ol
of

U
rb

an
W

as
te

w
at

er
Sy

st
em

s.
Sp

ri
ng

er
,2

nd
ed

.,
20

02
.

[2
]

M
.

S.
G

el
or

m
in

o
an

d
N

.
L

.
R

ic
ke

r,
“M

od
el

-p
re

di
ct

iv
e

co
nt

ro
l

of
a

co
m

bi
ne

d
se

w
er

sy
st

em
,”

In
te

rn
at

io
na

l
Jo

ur
na

l
of

C
on

tr
ol

,
vo

l.
59

,
no

.3
,p

p.
79

3–
81

6,
19

94
.

[3
]

C
.

O
ca

m
po

-M
ar

tin
ez

,
M

od
el

P
re

di
ct

iv
e

C
on

tr
ol

of
W

as
te

w
at

er
Sy

s-
te

m
s.

B
ar

ce
lo

na
:

Sp
ri

ng
er

,1
st

ed
.,

20
10

.
[4

]
X

.
L

itr
ic

o
an

d
V.

Fr
om

io
n,

M
od

el
in

g
an

d
co

nt
ro

l
of

hy
dr

os
ys

te
m

s.
Sp

ri
ng

er
,2

00
9.

[5
]

M
.

X
u,

R
.

R
.

N
eg

en
bo

rn
,

P.
J.

va
n

O
ve

rl
oo

p,
an

d
N

.
C

.
va

n
de

G
ie

se
n,

“D
e

Sa
in

t-
V

en
an

te
qu

at
io

ns
-b

as
ed

m
od

el
as

se
ss

m
en

ti
n

m
od

el
pr

ed
ic

tiv
e

co
nt

ro
lo

fo
pe

n
ch

an
ne

lfl
ow

,”
A

dv
an

ce
s

in
W

at
er

R
es

ou
rc

es
,

vo
l.

49
,n

o.
D

ec
em

be
r,

pp
.3

7–
45

,2
01

2.
[6

]
M

.X
u,

P.
J.

va
n

O
ve

rl
oo

p,
an

d
N

.C
.v

an
de

G
ie

se
n,

“O
n

th
e

st
ud

y
of

co
nt

ro
l

ef
fe

ct
iv

en
es

s
an

d
co

m
pu

ta
tio

na
l

ef
fic

ie
nc

y
of

re
du

ce
d

Sa
in

t-
V

en
an

t
m

od
el

in
m

od
el

pr
ed

ic
tiv

e
co

nt
ro

l
of

op
en

ch
an

ne
l

flo
w

,”
A

dv
an

ce
s

in
W

at
er

R
es

ou
rc

es
,v

ol
.3

4,
no

.2
,p

p.
28

2–
29

0,
20

11
.

[7
]

V.
P.

Si
ng

h,
“K

in
em

at
ic

w
av

e
m

od
el

lin
g

in
w

at
er

re
so

ur
ce

s:
A

hi
st

or
i-

ca
lp

er
sp

ec
tiv

e,
”

H
yd

ro
lo

gi
ca

l
P

ro
ce

ss
es

,v
ol

.1
5,

no
.4

,p
p.

67
1–

70
6,

20
01

.
[8

]
G

.E
va

ns
,J

.B
la

ck
le

dg
e,

an
d

P.
Y

ar
dl

ey
,N

um
er

ic
al

m
et

ho
ds

fo
r

pa
rt

ia
l

di
ffe

re
nt

ia
l

eq
ua

tio
ns

.
Sp

ri
ng

er
Sc

ie
nc

e
&

B
us

in
es

s
M

ed
ia

,2
01

2.
[9

]
X

.
L

itr
ic

o
an

d
V.

Fr
om

io
n,

“B
ou

nd
ar

y
co

nt
ro

l
of

lin
ea

ri
ze

d
Sa

in
t-

V
en

an
t

eq
ua

tio
ns

os
ci

lla
tin

g
m

od
es

,”
Au

to
m

at
ic

a,
vo

l.
42

,
pp

.
96

7–
97

2,
20

06
.

[1
0]

Y.
Z

ou
,L

.C
en

,D
.L

i,
an

d
X

.H
e,

“S
im

pl
ifi

ed
st

at
e-

sp
ac

e
m

od
el

an
d

va
lid

at
io

n
of

ir
ri

ga
tio

n
ca

na
ls

ys
te

m
s,”

in
C

hi
ne

se
C

on
tr

ol
C

on
fe

re
nc

e,
C

C
C

,(
H

an
gz

ho
u)

,p
p.

20
02

–2
00

7,
20

15
.

[1
1]

K
.

M
.

B
al

la
,

C
.

Sc
ho

u,
J.

D
.

B
en

dt
se

n,
an

d
C

.
S.

K
al

le
so

e,
“M

ul
ti-

sc
en

ar
io

m
od

el
pr

ed
ic

tiv
e

co
nt

ro
l

of
co

m
bi

ne
d

se
w

er
ov

er
flo

w
s

in
ur

ba
n

dr
ai

na
ge

ne
tw

or
ks

,”
in

4t
h

IE
E

E
C

on
fe

re
nc

e
on

C
on

tr
ol

Te
ch

-
no

lo
gy

an
d

A
pp

lic
at

io
ns

,(
M

on
tr

ea
l,

C
an

ad
a)

,p
p.

10
42

–1
04

7,
20

20
.

[1
2]

K
.M

.B
al

la
,C

.S
.K

al
le

sø
e,

C
.S

ch
ou

,a
nd

J.
D

.B
en

dt
se

n,
“N

on
lin

ea
r

G
re

y-
B

ox
Id

en
tifi

ca
tio

n
w

ith
In

flo
w

D
ec

ou
pl

in
g

in
G

ra
vi

ty
Se

w
er

s.
,”

in
IF

AC
20

20
-

21
st

IF
AC

W
or

ld
C

on
gr

es
s,

(B
er

lin
,G

er
m

an
y)

,2
02

0.
[1

3]
S.

C
.

Tr
ou

tm
an

,
N

.
Sc

ha
m

ba
ch

,
N

.
G

.
L

ov
e,

an
d

B
.

K
er

ke
z,

“A
n

au
to

m
at

ed
to

ol
ch

ai
n

fo
r

th
e

da
ta

-d
riv

en
an

d
dy

na
m

ic
al

m
od

el
in

g
of

co
m

bi
ne

d
se

w
er

sy
st

em
s,”

W
at

er
R

es
ea

rc
h,

vo
l.

12
6,

pp
.8

8–
10

0,
20

17
.

[1
4]

J.
A

.
R

ob
er

so
n

an
d

C
.

T.
C

ro
w

e,
E

ng
in

ee
ri

ng
F

lu
id

M
ec

ha
ni

cs
.

B
os

to
n:

H
ou

gh
to

n
M

iffl
in

C
om

pa
ny

,5
th

ed
.,

19
93

.
[1

5]
S.

D
ey

,“
Fr

ee
ov

er
fa

ll
in

op
en

ch
an

ne
ls

:S
ta

te
-o

f-
th

e-
ar

tr
ev

ie
w

,”
F

lo
w

M
ea

su
re

m
en

t
an

d
In

st
ru

m
en

ta
tio

n,
vo

l.
13

,
no

.
5-

6,
pp

.
24

7–
26

4,
20

02
.

[1
6]

C
.

S.
K

al
le

sø
e

an
d

T.
K

nu
ds

en
,

“S
el

f
ca

lib
ra

tin
g

flo
w

es
tim

at
io

n
in

w
as

te
w

at
er

pu
m

pi
ng

st
at

io
ns

,”
in

P
ro

ce
ed

in
gs

of
th

e
20

16
E

ur
op

ea
n

C
on

tr
ol

C
on

fe
re

nc
e

(E
C

C
20

16
),

(A
al

bo
rg

),
pp

.5
5–

60
,2

01
6.

[1
7]

A
.W

ill
s

an
d

B
.N

in
ne

ss
,“

O
n

gr
ad

ie
nt

-b
as

ed
se

ar
ch

fo
r

m
ul

tiv
ar

ia
bl

e
sy

st
em

es
tim

at
es

,”
IE

E
E

Tr
an

sa
ct

io
ns

on
Au

to
m

at
ic

C
on

tr
ol

,v
ol

.5
3,

no
.1

,p
p.

29
8–

30
6,

20
08

.
[1

8]
3S

-S
m

ar
t

So
ft

w
ar

e
So

lu
tio

ns
G

m
bH

,“
C

od
es

ys
.”

F
ig

ur
e

4.
9:

Sy
st
em

id
en
tifi

ca
tio

n
an

d
m
od

el
va
lu
id
at
io
n
co
m
pa

ri
so
n
be

tw
ee
n
th
e
K
W

-
(le

ft
co
lu
m
n)

an
d
D
W

-b
as
ed

(r
ig
ht

co
lu
m
n)

m
od

el
lin

g
ap

pr
oa

ch
es
.
So

ur
ce
:[B

al
la

et
al
.,
20
21
]

50



4.3. Parametric Modelling Results

It is important to note that the training data includes half of the backflow
period, so the model can adjust and find a good estimate for the z elevation
parameter. As shown in the level sensor readings in Figure 4.9(g-j), the models
are equally good at predicting the level downstream.

The results above are further verified by showing the histogram of the error
signals between the measured data points and the predicted model outcome for
both the KW- and DW-based model structures, respectively. The histograms
are shown in Figure 4.10.
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Figure 4.10: Histogram of the error residuals for the KW- and DW-based model predictions.

As shown, the model performance is similar in the two cases expect for h2
where the backwater lifts the volume in the upstream pipe channel. Note that
the histogram for the KW-based model is skewed to the positive error values,
as the model does not capture the backwater in the second state. Moreover, the
histogram is also slightly skewed in the first state h1 to the positive values. This
can be explained by the physical fact that the channel at the upstrem does not
dry out completely due to its small slope. This is depicted in Figure 4.9, where
the model predicts that the level attenuates slowly to zero, while there is no
input applied to the system. In contrast to that, the measured level saturates
at a lower water level.

One of the advantages of the DW-based model over the KW-based version is
its capability of keeping track of the accumulated volumes in the pipes, hence
accounting for the stored volume (level). This opens the possibility to use
large sewer pipes in a smart way to store excess volumes in high-intensity rain
periods. However, this feature comes with increased model complexity.

Additional results of the parametric modelling in gravity-driven sewers can
be found in Paper C where the KW-based model and the disturbance model
are combined in a moving horizon estimation setup to estimate both states and
parameters based on historical data batches.

It is important to note that the presented results do not provide a solution
to rain infiltration into the network. To predict with the proposed models,
the rain disturbance contribution needs to be provided in the form of flow
data. In the following sections, we attempt to solve this issue by combining
the parametric methods with non-parametric ones to include the hydrologic
processes in the model.
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Chapter 4. Sewer Dynamics Modelling

4.4 Non-parametric Modelling of Sewer Hydrology

The modelling of hydraulic and hydrologic processes are typically treated as
two separate problems in the state-of-art concerned with physically-based sewer
modelling. Opposed to the state-of-art, in this section we propose to combine
the parametric modelling of the system hydraulics introduced in Section 4.2
(Parametric Modelling of Sewer Hydraulics) with non-parametric approaches
to incorporate the dynamic effect of the rain disturbances affecting the sewers.

In Section 4.2 (Parametric Modelling of Sewer Hydraulics), we argued that
grey-box modelling is a reasonable approach since the hydraulic processes inside
the sewer are governed by well-established white-box models. In this section, we
focus on the hydrologic processes and argue that their distributed and highly-
stochastic nature makes it very difficult to model them precisely using physical
laws. Hence, in the following sections, we turn our attention to the available
real-time sensor data to build prediction models.

4.4.1 Gaussian Process Modelling

A powerful way to represent input-output relations is through Gaussian Pro-
cesses (GPs). GP models belong to a class of black-box modelling, which does
not attempt to approximate the modelled system by finding parameters of the
corresponding mathematical model structure but rather searches for the input-
output relationship in the available data. The predicted output of a GP is a
Gaussian distribution parameterized by the mean and the variance of the pro-
cess, i.e., the mean value representing the most likely outcome of output and
the variance representing the measure of confidence. The variance, therefore,
depends strongly on the quality and amount of available data.

As opposed to the previously described approaches regarding the volume
conservation inside sewers in Section 4.2 (Parametric Modelling of Sewer Hy-
draulics), instead of claiming that the input-output dynamics belong to a
specific mathematical structure, GPs are non-parametric, probabilistic mod-
els based on the data. Let us denote the input-output function describing the
unknown dynamics as g(⋅). A GP characterizing the distribution of all possible
functions of g(⋅) of the dynamic process can be given as

g(z) ∼ GP (m(z),ΣGP + Iσ2
n), (4.23)

where z ∈ RNz×M is the set of inputs, Nz denoting the number of input dimen-
sions andM the number of data points used for prediction. Besides, m(⋅) is the
mean function and ΣGP ∈ RM×M is the covariance matrix. The noise on the
data is represented by σ2

n and I is the identity matrix of suitable dimension.
The mean and covariance functions are defined by

m(z(i)) = E{g(z(i))}, (4.24a)

ΣGP (i, j) = cov (g(z(i)), g(z(j))) ≈ k(z(i), z(j)), (4.24b)
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4.4. Non-parametric Modelling of Sewer Hydrology

where the mean m and the covariance matrix ΣGP are obtained via evaluating
all available data pairs z. Note that z(i) and z(j) are time series at the time
instances i and j, respectively. Specifically, the values of the covariance matrix
corresponding to the covariances between the function values of g(z(i)) and
g(z(j)), regarding the arguments of the input set z(i) and z(j). Besides, E{}
is the expected value operator. Note that in eq.(4.24b), instead of evaluating
the covariance function explicitly, the covariance matrix is approximated with
a kernel function k. The purpose of this kernel is to establish a measure of
similarity between the function values of g, i.e., to capture the correlation
between different training data observations. By choosing a kernel function,
we give a structure to our model, based on some prior information or belief
governing our system dynamics. Some kernel functions are shown in eq.(4.25).

k(z(i), z(j)) =(z(i) − c)⊺Ω(z(j) − c), (4.25a)

k(z(i), z(j)) =σ2
f exp( − 2

σ2
L

sin2 ( π
T
∣z(i) − z(j)∣)), (4.25b)

k(z(i), z(j)) =σ2
f exp( − 1

2
(z(i) − z(j))

⊺
Λ−1(z(i) − z(j))), (4.25c)

where eq.(4.25a) is a linear, eq.(4.25b) is a periodic, and eq.(4.25c) is a squared
exponential kernel. Furthermore, the hyper-parameter σ2

f describes the vari-
ance of the signal, Λ−1 = diag(σ−2

L,1, ..., σ
−2
L,Nz

) denotes the length scale matrix,
where σL is the length scale for each input dimension, and Ω = diag(σ2

f,1, ..., σ
2
f,Nz

)
is the signal variance matrix for the linear kernel. Furthermore, T corresponds
to the periodicity of the periodic kernel, which can either be pre-defined or
found through the optimization while training the model. Finally, the con-
stant c represents an offset in the linear kernel. The visualization of the kernel
functions is shown in Figure 4.11.

(a) Squared exponential (b) Periodic (c) Linear

Figure 4.11: Heatmaps of the squared exponential, periodic and linear kernel approxima-
tions, created from 25, equally-spaced values from -5 to 5. Source: [Görtler et al., 2019].

The choice of the kernel structure is of fundamental importance when train-
ing a model with GPs. We provide the following remarks for our prior belief
and structure on the GP and the kernel and mean functions.
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Chapter 4. Sewer Dynamics Modelling

Remark 1. We utilize the squared exponential kernel defined in eq.(4.25c).
We argue that the runoff dynamics and the sewer processes in general exhibit
smooth behavior, and therefore the smooth properties of such kernel is sufficient
to approximate the covariance function [Rasmussen and Williams, 2018].

Remark 2. The mean function utilized in our work is assumed to be constant
and deterministic. The reasoning behind choosing a constant mean function
is twofold; Firstly, in combined wastewater networks the measured states, i.e.,
the in-sewer water levels are rarely zero due to the dry-weather flow activity
induced by groundwater or the domestic household discharges. Hence the pipes
rarely dry out. Secondly, level sensors in practice are difficult to calibrate to
zero offset errors. Therefore, we aim to learn the offset on the measurements
by choosing a constant mean function.

Note that zero mean function is typically assumed as the prior mean function
for GPs. In that case, we need to make sure that the data is pre-processed
such that the training set is zero mean.

Having the data and our prior belief on the structure of the mean and
covariance functions, we seek the posterior distribution of g(⋅). It can be shown
that the posterior of the GP using Bayes’ Rule is [Kocijan, 2016]

P{g ∣ z, y} = P{g}P{y ∣ z, g}
P{y ∣ z} , (4.26)

where P{y ∣ z, g} is the likelihood, P{g} is the function prior, P{y ∣ z} is the
evidence and P{g ∣ z, y} is the posterior distribution over g(⋅). Moreover, P{}
is the probability operator. Then, the posterior distribution simplifies to

P{g ∣ z, y} ∼ GP (m(z),ΣGP + Iσ2
n). (4.27)

The hyper-parameters of the above problem are learned by maximizing the
marginal likelihood P{y ∣ z}, typically done via numerical approximations, as
the analytical evaluation of the problem is intractable [Chalupka et al., 2013].

Once the hyper-parameters are learned from the data, the GP model can
be used to predict an output point y∗ using the testing point z∗, such that y∗ =
g(z∗). The problem of predicting one step with the GP model corresponds to
finding the probability distribution of P{y∗ ∣ z, y, z∗}, given the training input-
output set {z, y}, the testing point z∗ and the hyper-parameters. Note that
the detailed derivation of how the predictive mean and variance of a GP are
obtained is out of the scope of this summary, however, detailed in [Rasmussen
and Williams, 2018]. The predicted mean and variance are given by eq.(4.28).

µGP (z∗) =m(z∗) +Kz∗z(Kzz + Iσ2
n)

−1(y −m(z)), (4.28a)

ΣGP (z∗) =Kz∗z∗ −Kz∗z(Kzz + Iσ2
n)

−1
Kzz∗ , (4.28b)

whereKzz∗ = k(z, z∗) andKz∗z =K⊺
zz∗ are the covariances between the training

and testing points, furthermoreKz∗z∗ is the autocovariance of the testing point.
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4.4. Non-parametric Modelling of Sewer Hydrology

4.4.2 Residual Approach

As stated in Section 4.2 (Parametric Modelling of Sewer Hydraulics), the distur-
bances in the proposed grey-box model for the gravity flow do not concern the
rain infiltrating into the sewers and the uncertainty characterizing the house-
hold sewage production. We propose to exclude the exogenous effect of dry-
and wet-weather disturbances from our nominal sewer models describing the
pipe and storage elements. Our main goal is to deploy the level sensors at
critical locations in the wastewater network, where we can capture their effect
through the in-sewer level variations. A visualization for the instrumentation
of such sewer network is shown in Figure 4.12 below.

Pumping
station 1

Pumping
station 4

Pumping
station 3

Pumping
station 2

Industrial
area

Residential
area

Residential
area

Wastewater
treatment plant

Rainfall
runoff

Rainfall
runoff

Hotel

Level sensor

Manhole

Gravity pipe

Pump discharge

Sewer discharge

Figure 1: An illustration of a pumped wastewater network, where water level sensors are deployed in critical points.

2. Problem statement

The overall concept of the method is shown in Fig. 1, where
in-sewer level sensors are deployed at critical locations in
manholes and basins. The network topology is defined by
a directed tree graph (Thrysøe et al., 2019), where pumping
stations are connected via gravity sewers. Note that the
topology is simplified based on the high-level piping layout
(Thrysøe et al., 2019), while the infiltration of rain and
wastewater is concentrated on network nodes (manholes) being
affected by the discharge. The discharged waste- and storm-
water are collected and pumped from station to station until the
root (treatment plant) is reached. Specifically, we consider the
full scale of the network, however, only the main sewer lines
between the pumping stations are modelled.

The configuration of our proposed control method is shown
in Fig. 2. The models behind the controller are the physical
model (Section 3.1) and the data-driven model (Section 3.2).
The former incorporates the physical knowledge about the
dimension of basins, while the latter describes the effect of
rain, wastewater and the uncertainties in forms of residuals
by using sensor (h), estimation (Q) and rain forecast (d)
data. Opposed to classical methods that handle the inflows
(or disturbances) by building individual forecasting blocks, we
consider the translation of rain to level variation incorporated
in the controller. The Gaussian Process-based MPC controller
block (GP-MPC) (Section 3.4.3) stands for the optimization
algorithm behind the MPC problem, using a relevant cost
function (Section 3.4.2) and the operational and physical
constraints (Section 3.4.1). The decision support block
(Section 3.4.4) is an information panel providing performance
measures of the closed-loop control performance to, e.g.,

network operators in case the algorithm is used as an offline
decision-support tool. As shown, the controller provides flow
setpoints to the pumping stations, where the pumps operating
in parallel move the water volumes at the rate of the optimal
flow (Qoptimal). Since only water level sensors are deployed in
the wastewater network, the loop is closed with an observer or
pumpflow estimator, allowing for using soft sensing techniques
or estimating the pump flows in the proposed output-feedback
scheme. In the following, we present the control scheme by
describing each building block.

3. Methods

3.1. Physical modelling
The nominal model structure is described by the physical

laws of wastewater transport. The information we use are the
the topological layout of the network, the size of storage tanks,
and the estimated pump flow. Hydraulic storage elements are
described with simple mass-balances. Specifically, the level
change induced by pump operation is given by

ht(t + 1) = At ht(t) + BtQ(t), (1)

where ht ∈ RNt is the vector of water levels in storage tanks at
discrete time t, with Nt being the number of tanks and Q ∈ RNQ

is the vector of pump flows representing the sum of flows for
each pump at the NQ pumping stations. The parameter matrices
At ∈ RNt×Nt and Bt ∈ RNt×NQ are defined by the physical size
of the storage elements, i.e., the diameter and the discretization
time step or sampling time. The mass balance is described by
Eq. (1) with the exception that the effect of inflows, i.e., rain
runoff and domestic wastewater are in general unknown, hence
not considered as part of the nominal storage dynamics.

3

Figure 4.12: An illustration of a sewer network. Sensors are deployed to learn the effect of
disturbances through in-sewer variations of the water level. Source: [Balla et al., 2022a].

As shown in Figure 4.12, level sensors are deployed mainly in the vicinity
of lateral inflow points where pipes join the main sewer lines connecting the
controllable assets in the network, e.g., in our case the pumping stations.

Assumption 6. The nominal model considered for residual generation is lin-
ear (or linearized) with a standard state-space model structure, i.e.,

h(tk+1) = f(h(tk),Q0(tk)) = Ah(tk) +BQ0(tk), (4.29)

where f(⋅) denotes the nominal dynamics, Q0(tk) ∈ RNu is the vector of con-
trollable flows, Nu denoting the number of controllable assets. Besides, h(tk) ∈
RNp+Nt is the state vector, Np denoting the number of pipe states and Nt the
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Chapter 4. Sewer Dynamics Modelling

number of storage tank states. Furthermore, A and B are the state-space ma-
trices of suitable dimensions.

In eq.(4.29), the state vector includes all available sensor measurements, in-
cluding the level in both basins and sewer pipes corresponding to the tank and
pipe volume conservation dynamics. It is important to note that we slightly
modify the parametric dynamics model in comparison to what we presented
in Section 4.2 (Parametric Modelling of Sewer Hydraulics). For instance, the
storage tank dynamics describe the variation of level but only consider the
controlled flow removing volume from the tank. This can be also read from
eq.(4.29), where a complete volume conservation model would also include the
volumes arriving at the storage tank, i.e., the disturbances q induced by wastew-
ater and rain runoff. However, these disturbances are generally unknown and
therefore not considered in this part of the model. Hereinafter we refer to the
volume conservation models as nominal dynamics.

Given all the deployed level sensor data h, the measured or estimated flow
input of the actuators (pumps), and some weather forecasts in the form of
rain intensity measure, we form our modelling problem by the need to learn
the unknown and unmodelled dynamics to complement the nominal dynamics
described in eq.(4.29). For this reason, we assume a structure for the network
model where the dynamics are composed of a nominal and an additive un-
known part. The former describes the hydraulics in the network, attempted to
model through parametric, grey-box modelling techniques. The latter repre-
sents the dynamics governing the disturbances, i.e., the rain runoff dynamics
and wastewater inflows. (Note that in some of our research we also consid-
ered the flow propagation dynamics in sewer pipes, leaving only the integrator
states, i.e., the tank dynamics for the nominal parts.)

Similarly to [Hewing et al., 2020], the combined network model in discrete
time is given in the form shown below

h(tk+1) = f(h(tk),Q0(tk)) +Bpg(h(tk),Q0(tk), d(tk), tk) +w(tk), (4.30)

where g is a nonlinear, unknown vector function representing the unknown dy-
namics, modelled by the GPs. The function g is equivalent to what we presented
in Section 4.4.1 (Gaussian Process Modelling) for modelling the input-output
relation of unknown dynamics. Moreover, d ∈ RNd is the vector of rain inten-
sity forecasts, Nd representing the number of locations where we have forecasts
available for predicting the rainfall-runoff. Besides, Bp is a matrix mapping the
outputs of the unknown function g to the full state vector h. Simply stated: if
there are states not affected by the disturbances or the unmodelled dynamics,
then Bp maps zeros as the contribution from the additive GP compensation.
The process noise w ∼ N(0,Σw) follows a Gaussian white noise distribution.

For generality, we collect the data used for generating the residuals in the
following vector referred to as input data vector, i.e.,
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4.4. Non-parametric Modelling of Sewer Hydrology

z(tk) = [h(tk)⊺,Q0(tk)⊺, d(tk)⊺, tk]⊺. (4.31)
where h(tk), Q0(tk) and d(tk) are the state, input and disturbance vectors
describing the state-input space and the disturbances. Since the dry-weather
flows typically follow a diurnal cycle1 we assume that these disturbances gener-
ated by the household sewage correlate with time. For this reason, we provide
time tk as an additional input, assuming that flow patterns are similar at the
same time of the day on different days.

To generate the residuals, we subtract the output of the nominal model
from the measured states, hence the output data vector becomes

y(tk) = g(z(tk)) +w(tk) = B†
p(h(tk+1) − f(h(tk),Q0(tk))), (4.32)

where y ∈ RNy is the vector of residuals, Ny denoting the dimensions of states
compensated by the GPs. Besides, the mapping matrix Bp is inverted with
the Moore-Penrose pseudo-inverse. We aim to generate residuals to remove the
effect of known dynamics from our measurements, which we later use for mod-
elling the input-output relation with the nonparametric GP models. Simply
stated: we attempt to model a small subpart of the dynamics with the GPs
and leave the grey-box, physically-based nominal dynamics as the backbone of
the network model.

The full training set used for training the GPs are then constructed by
collecting the input-output data vectors in the following set

D = {(z(i), y(i)) ∣ i = 1, ...,M}, (4.33)

where M corresponds to the number of collected data used for training.

4.4.3 Prediction with Residuals

Predicting multiple-step with our nominal model is straightforward, especially
if the sewer dynamics are governed by linear dynamics and are determinis-
tic. However, this is not the case after combining our physically-based model
with the Gaussian processes, as the output of the GPs are stochastic variables
following a Gaussian distribution. Predicting multiple-step with such models
inherently means that the mean and variance of the previously predicted states
are used to predict the next state values in time. Hence, we feedback normally
distributed variables, which in general does not result in normally distributed
outputs, as our kernel stated in eq.(4.25c) is nonlinear.

To resolve this problem, we present the combined dynamics of the nominal
and GP models, such that at each prediction step tk the states h and the GP
dynamics are approximated as jointly Gaussian, i.e.,

1A diurnal cycle is a pattern that repeats at every 24 hour in accordance to one full
rotation of the Earth. In our application, the activity of human behavior plays a role in the
daily wastewater generation discharged to the sewer network.
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( h(tk)
GP (tk)

) ∼N(µ(tk),Σ(tk)) =
⎛
⎝
[ µh(tk)
µGP (tk)

], [ Σh(tk) Σh,GP (tk)
ΣGP,h(tk) ΣGP (tk)

]
⎞
⎠
, (4.34)

where Σh,GP = (ΣGP,h)⊺ are the cross-covariances between the water levels and
the GPs, µh(tk) is the vector of mean levels and Σh(tk) is the covariance matrix
of the water levels at time tk. The inputs Q0(tk) are considered as deterministic
variables. (Otherwise it is necessary to consider the cross-correlation between
the inputs and the states, and between the GPs and the inputs.)

To obtain the transition probability of the full state-space, similarly to
[Hewing et al., 2020], we apply the first-order Taylor expansion of the joint
mean-variance dynamics shown in eq.(4.34). Then, the linearized mean and
variance dynamics become

µh(tk+1) = f(µh(tk),Q0(tk)) +BpµGP (tk), (4.35a)

Σh(tk+1) = [∇hf(µh(tk),Q0(tk)),Bp]Σ(tk)[∇hf(µh(tk),Q0(tk)),Bp]
⊺
, (4.35b)

where Σ is the joint covariance matrix given in eq.(4.34) and the operator ∇h
denotes the first-order partial derivative with respect to the states.

The final mean-variance dynamics of the combined nominal and GP model
is given by expressing the state-space structure of the nominal dynamics, i.e.,

µh(tk+1) = Aµh(tk) +BQ0(tk) +BpµGP (tk), (4.36a)
Σh(tk+1) = AΣh(tk)A⊺ +BpΣGP,h(tk)A⊺

+AΣh,GP (tk)B⊺
p +BpΣGP (tk)B⊺

p , (4.36b)

where the covariance and cross-covariance updates are calculated by

µGP (tk) = µGP (z̃(tk)), (4.37a)

Σh,GP (tk) = Σh(∇hµGP (z̃(tk)))
⊺
, (4.37b)

ΣGP (tk) = ΣGP (z̃(tk)) + ∇hµGP (z̃(tk))Σh(tk)(µGP (z̃(tk)))
⊺
, (4.37c)

where the input vector is z̃(tk) = [µ⊺h(tk),Q0
⊺(tk), d⊺(tk), tk]⊺ with the mea-

sured state being the mean µh(tk). Note that in eq.(4.37) we need to calculate
the derivative of the posterior mean ∇hµGP (z̃(tk)). As seen from the expres-
sion of the GP mean in eq.(4.28), only the Kz∗z term depends on the testing
point z∗, since we chose the mean of the GP m(⋅) to be constant. Therefore, to
calculate the first derivative of the posterior mean µGP (z̃(tk)), only the kernel
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Kz∗z ≈ k(z∗, z) needs to be derivated. The derivative of the posterior mean
with squared exponential kernel is given in [Kocijan, 2016].

The algorithm to predict N -step ahead, i.e., to propagate the uncertainty
with the final model is shown in Algorithm 1 below.

Algorithm 1 State uncertainty propagation with Taylor approximation
1: Input: µh(tk), Σh(tk), Q0(tk), d(tk), tk, and D
2: Construct testing vector z∗(tk) = [µ⊺h(tk),Q0

⊺(tk), d⊺(tk), tk]⊺
3: Construct training vector z = [µ⊺h,Q0

⊺, d⊺, t]⊺
4: Approximate kernel Kz,z∗ ≈ k(z, z∗)
5: Calculate posterior mean µGP (z∗) =m +Kzz∗(Kzz + Iσ2

n)−1(y −m)
6: Calculate cross-covariance Σh,GP (tk) = Σh(∇hµGP (z∗(tk)))

⊺

7: Calc. cov. ΣGP (tk) = ΣGP (z∗(tk)) +∇hµGP (z∗(tk))Σh(tk)(µGP (z∗(tk)))
⊺

8: Construct joint covariance Σ(tk) = [ Σh(tk) Σh,GP (tk)
ΣGP,h(tk) ΣGP (tk)

]

9: Calculate predicted state mean µh(tk+1) = f(z∗(tk)) +BpµGP (tk)
10: Calculate predicted state covariance Σh(tk+1) =

[∇hf(z∗(tk)),Bp]Σ(tk)[∇hf(z∗(tk)),Bp]
⊺

11: Return: µh(tk+1) and Σh(tk+1)

In Algorithm 1 the inputs are the measured states µh(tk), the initial covariance
Σh(tk), the controlled flow input Q0(tk), the forecasted rain intensity d(t), the
time of the day t, and the historical training data vector D, consisting of M
datapoints of the input vector z and the residual vector y.

By including the variance of the states in our model, we propagate the
variances representing the uncertainty around our mean predictions for pre-
dicting N -step ahead in time. The prediction is therefore largely dependent
on the number of datapoints M and their quality, as the variance provides us
confidence regarding our historical observations of the process. In our applica-
tion, this confidence is influenced mainly by the rain disturbances, i.e., states
under previously observed storm events are likely to be predicted with high
confidence.

4.5 Non-parametric Modelling Results

The non-parametric modelling results presented in this section are partially
based on Paper E, Paper F and Paper G, where the GP models combined
with the tank model (i) and the GP models combined with both the tank and
simplified pipe models (ii) are trained with the use of the water level sensor
data h, the estimated flow of the actuators Q0 and with either the intensity of
rain r or the disturbance flow appearing due to the rain qr.
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4.5.1 System Identification Problem

The system identification problem based on the non-parametric modelling and
the residual generation has been carried out via the volume conservation in
tanks (Section 4.2.1 - Volume Conservation in Tanks), the conceptualization
of the KW-based pipe model with the assumption that the flow to level re-
lation is linear (Section 4.2.6 - Conceptual Alternatives), and the Gaussian
processes (Section 4.4.1 - Gaussian Process Modelling). The system identifica-
tion problem has been tested on the Experimental Study, recreating a subpart
of a real-world wastewater infrastructure, further detailed in Paper E and Pa-
per F. For the sake of clarity, the schematics of the experimental setup with
the corresponding sensor utilization is shown again in Figure 4.13 below.
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Figure 4.13: Experimental sewer network setup of the Smart Water Infrastructures Lab-
oratory (SWIL) at Aalborg University. Left: Pumping station and pipe modules in the
laboratory. Right: Schematics of the network topology, where q and h denote flow and level
sensors, respectively. Source: [Balla et al., 2022b] and [Balla et al., 2022a].

Following the methodology in Section 4.4 (Non-parametric Modelling of Sewer
Hydrology), our aim is to generate the residuals between measurements and
the nominal model, i.e.,

y(tk) = B†
p(h(tk+1) − f(h(tk),Q0(tk))), (4.38)

where f(⋅) describes all the known dynamics regarding the tank and pipe states,
whereas h(tk) depicts the vector of water levels. The tank dynamics are con-
sidered to be fully defined by knowing the diameter and geometry properties of
the tank, while the linear pipe dynamics described in Section 4.2.6 (Conceptual
Alternatives) only consider the actuated inflow propagating from upstream to
downstream. The latter is identified on level data as described in Section 4.3.2
(KW-based System Identification). Besides, the training data array for identi-
fying the hyperparameters of the GPs is constructed such that

z(tk) = [h⊺(tk),Q⊺
0(tk), d(tk), tk]⊺, (4.39)
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where d(tk) denotes the forecast of the disturbance and tk is the time. Be-
sides, the state h(tk) and input Q0(tk) vectors are written specifically for our
Experimental Study, i.e.,

h(tk) = [ht1(tk), ht2(tk), hp3(tk)]⊺, (4.40a)
Q0(tk) = [Qt1(tk),Qt2(tk)]⊺, (4.40b)

where ht1(tk) and ht2(tk) correspond to the integrator states and hp3(tk) is
the level in the gravity pipe at location p3. Note that out of the four avail-
able pipe state measurements we utilize only one for the residual generation.
Furthermore, Qt1(tk) and Qt2(tk) correspond to the actuated flows at the two
pumping stations, respectively. In this specific case study, we argue that using
only one level sensor inside the pipe for the GP-based part of the model is
sufficient enough as the sensor located at the downstream end of the pipeline
captures the information to model how the Qt1(tk) pumpflows and the distur-
bance flows qp3(tk) enter and propagate in the system. Note that if the pipe
dynamics are incorporated in the nominal model, a minimum of two sensors
are required. This is because the PDE-based models need state measurements
at two different locations to capture the attenuation and the delay inside the
pipes.

Given the nominal model pre-identified on the level and estimated flow
datasets, the contribution of the physically-based tank (and pipe model if in-
cluded) can be subtracted from the state measurements. Hence the residuals
y ∈ R3 can be constructed. Beyond the sensor availability, knowledge of the
physical system plays a role in how efficiently we can train the non-parametric
GP models with the generated residuals. To find the hyper-parameters of each
GP model, it is unnecessary to use the entire training input vector defined in
eq.(4.39), as this can lead to high dimensionality resulting in large computation.

Remark 3. The dimension of each training input vector z is reduced via using
the high-level layout information of the network. We introduce slicing matri-
ces to map the training input vector z, such that each mapping defines which
dimensions of the original training vector z influence the given residual, i.e.,

S1
i1,...,in1

∈ Rn1×Nz , i ∈ {4,6,7}, (4.41a)

S2
i1,...,in2

∈ Rn2×Nz , i ∈ {3,5,7}, (4.41b)

S3
i1,...,in3

∈ Rn3×Nz , i ∈ {4,7}, (4.41c)

where i is the index of the predictor in the input vector z.
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The feature selection from the original training set is visualized in Figure 4.14.
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Figure 5: Validation of the GP model with the residuals regarding the level variations in the two tanks and in the sewer pipe, respectively.

where Ts denotes the sampling time of the controller, while
τ1 and τ2 are the storage tank parameters representing the
geometry and size of the tanks. It is important to note that
the experiments are carried out such that the water recirculates
in the system, meaning that the flows and volumes need to be
balanced. For this reason, the controlled pumps cannot turn
off to zero flows, as expected in a real-world implementation.
Instead, the operating range of the pumped flows is lifted to a
value where the network can run for long experiments without
emptying the Rain inflow and Household area auxiliary tanks.

5. Results and discussion

5.1. Residual model training

Given the physical model, the residuals y ∈ R3 can be
constructed based on the water level measurements h ∈ R3. As
stated in Section 3.2, beyond the sensor availability, knowledge
of the physical system plays a significant role in the training
efficiency of the model. To find the hyperparameters for each
GP, the dimension of the training data set is reduced according
to Eq. (10) by using the slicing matrices. These matrices define
which dimensions of the original training set z influence the
given residual based on the topological layout of the system,
i.e.,

S 1
i1,...,in1

∈ Rn1×Nz , i ∈ {4, 6, 7}, (28a)

S 2
i1,...,in2

∈ Rn2×Nz , i ∈ {3, 5, 7}, (28b)

S 3
i1,...,in3

∈ Rn3×Nz , i ∈ {4, 7}, (28c)

where i is the index of the predictor in the input set z. As
an example, to train the GP on residual y1 (corresponding to
the upstream tank t1), the predictors Qt1, (i = 4), the rain
forecasts d, (i = 6), and the time t, (i = 7) are used. This
is well-aligned with our physical insights, as we can observe
from the visual inspection of the water level variation in the
upstream tank that both the dry- and wet-weather flows and the

corresponding pumps influence the signal. The illustration of
the feature selection is shown in Fig. 6.
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Figure 6: Feature selection with the slicing matrices S .

The collected measurement data for training is obtained
under the nominal operation of the network. We consider the
nominal operation of pumping stations when pumps operate
with threshold-based control rules, most commonly applied
by wastewater utilities (Lund et al., 2018). To test the
modelling capabilities of the Gaussian process model fitted
to the residuals, the collected data have been divided into a
training and validation sets. The GP models have been trained
on 80% of the collected data set, corresponding to 60 days
of on/off operation. The rest of the data (15 days) have been
used for validating the results. Fig. 5 shows the three residuals
constructed from the measurement data h obtained via the
level sensors. It is seen from these results that the predictions
with the GP model match the level residual observations
within the validation period in the two tanks and the pipes.
Furthermore, except for some outlier points, the confidence
interval characterized by the variance of the GP process covers
the distribution of the data points well. The variations in the
data are primarily due to the noise and the measuring precision
of the sensors.

As seen in residual y1, removing the effect of the nominal
dynamics from the original level signal results in the daily
diurnal level variation patterns induced by the dry-weather
discharges, and level peaks due to the wet-weather rain
precipitation. It is worth noting that the performance of our
level predictions using rain forecasts is underpinned by the
fact whether we observed rain episodes similar to the current
forecast before. Besides, note that our experimental test setup

10

Figure 4.14: Feature selection with the slicing matrices. Source: [Balla et al., 2022c].

As an example, the first residual corresponding to the upstream tank state t1
uses the predictors Qt1 (i = 4), the rain forecasts d (i = 6) and the time t (i = 7).
The selection of these predictors is well-aligned with the physical structure of
the Experimental Study, as the water level variation in the upstream tank is
influenced by the dry- and wet-weather disturbances (d accounting for rain
forecasts and t for the periodic wastewater), and the corresponding pumpflows
Qt1 pumping out the volume from the tank. The GPs are then trained on data
collected from operation under an on/off threshold-based controller using the
squared exponential kernel.

The system identification problem is solved with the use of the fitrgp tool-
box in MATLAB. The formulation of the GP-based system identification problem
is further detailed in Paper E and Paper F.

4.5.2 Non-parametric System Identification Results

The results presented here are related to the modelling of wet- and dry-weather
disturbances infiltrating into the network, and the volume and flow conserva-
tion dynamics inside the sewers. The presented results here describe real data
extracted from our Experimental Study setup. To test the modelling capa-
bilities of the combined parametric and non-parametric network model, the
collected experimental data has been divided into training and validation sets.
The GPs have been trained on 80% of the collected data while the rest was
used for validation. Besides, two different tests have been carried out; where
the simplified pipe dynamics are either included or excluded from the nominal
system dynamics.

A particular case is when the simplified pipe model is included in the nomi-
nal dynamics f(⋅). In this case, the nominal pipe dynamics are pre-identified on
the measured level and flow data mainly to detect the delays and approximate
the propagated volumes induced by the pumping upstream. Figure 4.15 shows
the system identification results for the simplified KW-based pipe model on
data collected under nominal sewer operation, i.e., on/off. The results below
are shown for the first (hp1) and last (hp4) sensor locations along the pipeline.
As seen in Figure 4.15, the level sensor measurement at the upstream of the
gravity sewer resembles the flow cycles due to pumps turning on and off. This is
expected as there is no disturbance entering the sewer at the upstream location
except the flow provided by the pumps.
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Figure 4.15: System identification results of water levels corresponding to the simplified
KW-based model in Section 4.2.6 (Conceptual Alternatives).

Nevertheless, the level sensor data shown in Figure 4.15 at the downstream end
of the channel are lifted by the disturbance entering the sewer in the middle of
the pipe. Note that since we only model the nominal dynamics governing the
pumped flow propagating inside the pipe, the model is not expected to fit the
downstream level data disturbed by the lateral inflows. However, we expect
that the model output of the simplified KW-based model resembles the delayed
and attenuated level variations induced by the pumpflows.

We provide the validation results of the residual prediction for the two cases,
i.e., when the simplified KW-based pipe dynamics are included and excluded
from the nominal model f(⋅). The results for both cases regarding the two
residual for the upstream and downstream tanks (y1 and y2), and the water
level in the pipe (y3) are depicted in Figure 4.16.

As seen from both figures, the GP model outputs match the observed data
points. Moreover, the confidence interval characterized by the GP variance
covers the distribution of the data points. (The variance in the data is primarily
due to measurement noise and the precision of the level sensors.) As seen in
residual y1 corresponding to the level variations in storage tank t1, subtracting
the output of the nominal tank dynamics results in level variations following
the combination of dry- and wet-weather disturbance flows entering the pipes.
The diurnal level variation in y1 corresponds to dry-weather, while the level
peaks are due to the wet-weather flows. Residual y1 are equal in both cases,
as the upstream tank levels are not influenced by the nominal pipe dynamics.

The data describing residual y2 varies due to the discharged pump flow
upstream and the dry-weather flow discharged in the gravity pipe and propa-
gating down to the t2 downstream tank. Note that removing volume from the
tank due to pumping is incorporated in the nominal dynamics, hence its effect
is not visible on the residual data. Likewise, the first residual, residual y2 is
the same for the two cases.

Lastly, residual y3 differs for the two cases. Note that in Figure 4.16a the
level variation depicts the exact level measurements inside the sewer, while for
the case in Figure 4.16b, the nominal pipe dynamics governed by the KW-
based level propagation are subtracted from the measurement. The resulting
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Figure 5: Validation of the GP model with the residuals regarding the level variations in the two tanks and in the sewer pipe, respectively.

where Ts denotes the sampling time of the controller, while
τ1 and τ2 are the storage tank parameters representing the
geometry and size of the tanks. It is important to note that
the experiments are carried out such that the water recirculates
in the system, meaning that the flows and volumes need to be
balanced. For this reason, the controlled pumps cannot turn
off to zero flows, as expected in a real-world implementation.
Instead, the operating range of the pumped flows is lifted to a
value where the network can run for long experiments without
emptying the Rain inflow and Household area auxiliary tanks.

5. Results and discussion

5.1. Residual model training

Given the physical model, the residuals y ∈ R3 can be
constructed based on the water level measurements h ∈ R3. As
stated in Section 3.2, beyond the sensor availability, knowledge
of the physical system plays a significant role in the training
efficiency of the model. To find the hyperparameters for each
GP, the dimension of the training data set is reduced according
to Eq. (10) by using the slicing matrices. These matrices define
which dimensions of the original training set z influence the
given residual based on the topological layout of the system,
i.e.,

S 1
i1,...,in1

∈ Rn1×Nz , i ∈ {4, 6, 7}, (28a)

S 2
i1,...,in2

∈ Rn2×Nz , i ∈ {3, 5, 7}, (28b)

S 3
i1,...,in3

∈ Rn3×Nz , i ∈ {4, 7}, (28c)

where i is the index of the predictor in the input set z. As
an example, to train the GP on residual y1 (corresponding to
the upstream tank t1), the predictors Qt1, (i = 4), the rain
forecasts d, (i = 6), and the time t, (i = 7) are used. This
is well-aligned with our physical insights, as we can observe
from the visual inspection of the water level variation in the
upstream tank that both the dry- and wet-weather flows and the

corresponding pumps influence the signal. The illustration of
the feature selection is shown in Fig. 6.
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Figure 6: Feature selection with the slicing matrices S .

The collected measurement data for training is obtained
under the nominal operation of the network. We consider the
nominal operation of pumping stations when pumps operate
with threshold-based control rules, most commonly applied
by wastewater utilities (Lund et al., 2018). To test the
modelling capabilities of the Gaussian process model fitted
to the residuals, the collected data have been divided into a
training and validation sets. The GP models have been trained
on 80% of the collected data set, corresponding to 60 days
of on/off operation. The rest of the data (15 days) have been
used for validating the results. Fig. 5 shows the three residuals
constructed from the measurement data h obtained via the
level sensors. It is seen from these results that the predictions
with the GP model match the level residual observations
within the validation period in the two tanks and the pipes.
Furthermore, except for some outlier points, the confidence
interval characterized by the variance of the GP process covers
the distribution of the data points well. The variations in the
data are primarily due to the noise and the measuring precision
of the sensors.

As seen in residual y1, removing the effect of the nominal
dynamics from the original level signal results in the daily
diurnal level variation patterns induced by the dry-weather
discharges, and level peaks due to the wet-weather rain
precipitation. It is worth noting that the performance of our
level predictions using rain forecasts is underpinned by the
fact whether we observed rain episodes similar to the current
forecast before. Besides, note that our experimental test setup
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(a) Residual level validation with the GP model without the simplified KW-based pipe
dynamics. Source: [Balla et al., 2022c].
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(b) Residual level validation with the GP model with the simplified KW-based pipe dynamics.
Figure 4.16: Residual validation with the GP models.

residual for the case depicted in Figure 4.16b has a lower mean because the
volume added by the pumping is removed from the signal.

It is important to make sure that our non-parametric model captures the
correlation between the selected features (inputs) and the generated residuals.
To provide a measure of the correlation between the inputs and outputs, the
relevance of the regressors is introduced, specifically for squared exponential
kernels, i.e.,

ri =
exp(−σL,i)
∑NL

j=1 σL,j
, (4.42)

where ri is the normalized relevance of the ith predictor mapped by the slicing
matrices defined in eq.(4.41) and NL is the number of length-scale hyperpa-
rameters matching the dimension of the feature vector. The relevant input
dimensions receive positive values between one and zero, while a value close to
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zero indicates irrelevant input data. Simply stated, the length-scale parameter
in each GP scales the input dimensions according to their relevance, which is
quantified by the r normalized relevance vector. The relevance comparison for
the two cases are shown in Figure 4.17.
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Figure 7: Relevance of the regressors showing the effect of the input data on the residuals.

has physical limitations of how different rain flow profiles we
can create. This might partly explain why our final model
exhibited such suitable performance in predicting the combined
level variations (e.g., residual y1 in Fig. 5).

The data describing residual y2 varies due to the discharged
pump flow coming from the upstream station t1 and the lateral
inflow coming from the household area. However, note that
all dynamics due to the pumping have been removed from the
signal. It is seen from the signal that the diurnal lateral flows
(qp3 ) coming from upstream induce the level variations in the
downstream tank, while some effects of the gravitated discharge
flow from the pump activity break the periodicity of the signal.
Lastly, residual y3 describes exactly the level variations in
the pipe without any modifications, as the dynamics of flow
propagation in pipes are not characterized by any physically-
based nominal dynamics in our study. Incorporating physical
knowledge (e.g., travel time, level attenuation) into the pipe
residual model is of course possible in specific cases, but
ignored in this initial evaluation; investigation of this will be
reserved for future studies. As seen, the variations mainly
occur due to the dry-weather lateral inflow from the household
area (which we desire to capture through this signal), while the
jumps observed in both the predictions and the data are due to
the pumping cycles coming from the upstream station.

So far, we verified our assumptions on the input selection
based on our physical insights. However, it is crucial to make
sure that our model captures the correlation between each input
dimension of the training set z used for the residual predictions.
Since the GP models are used to solve an optimization problem
through multiple-step predictions, we need to make sure that the
decision variables are properly captured in the model. Hence,
the following measure is introduced to measure the relevance
of each input on the corresponding residuals:

ri =
exp(−σL,i)∑NL

j=1 σL, j
, (29)

where ri is the normalized relevance of the ith predictor selected
with the slicing matrices in Eq. (28) and NL is the number of
length-scale hyperparameters used for the given output residual.
The relevant data inputs receive positive values between one
and zero, while a value close to zero indicates irrelevant input
data. The comparison of input relevance corresponding to each
GP model is shown in Fig. 7. As seen in residual y1, the
time input t (used to describe the diurnal variation of wet-
weather flows) is dominant compared to the rain forecasts d
and to the pumping activity Qt1 . This fact is in line with our

expectations as the majority of the residual data incorporates
information about the diurnal wastewater activity, while the rain
peaks appear less often in the time series. It is also seen that the
pump flow data are quite irrelevant when we predict with the
model. This verifies our method since the effect of the pump
dynamics is part of the nominal model, hence it should not
affect the residual.

The relevance bars of residual y2 show that the level variation
in the sewer pipe discharging to the downstream tank (hp3 ) has
a high relevance, verifying our initial assumptions, as the only
discharge source is the flow gravitated down from the upstream
tank. Note, however, that our model shows some correlation
between the nominal pump flows Qt2 and the time input t. A
possible explanation for this fact might be that in case of high
loads, both pumping stations turn on approximately at the same
time, meaning that Qt2 and hp3 inhabit similar characteristics.
Moreover, we select the time input to model each residual,
in case there are some additional periodic components in the
signal not described by the level sensor in the gravity pipe.
Lastly, the water level variation in the sewer pipe is induced by
the pumps upstream Qt1 and by the lateral inflow qp3 , which
we model inherently by providing time t as an input. It is
worth noting that we do not distinguish between weekdays
and weekends. This means that the predicted diurnal patterns
represent an average model, which considers the similarity
between any days in our training set.

5.2. Closed-loop control experiment

The experimental evaluation of the learning-based predictive
controller has been carried out with an Hp = 20 steps horizon,
which is equivalent to a four-hour ahead prediction in real life.
It should be noted that the computational complexity of solving
the optimization problem in Eq. (22) is highly dependent on
the GP model used for learning the dry-weather flows and the
unmodelled dynamics. From the implementation point of view,
propagating the uncertainty depends on the number of data
points that we use in our optimization problem, as µGP and ΣGP

are conditioned on the observed data and therefore evaluating
Eq. (13) has a cost growing with the number of points. To
overcome this issue, we select a subset of M = 80 data points
from the D training set with a criteria that these points need to
be close to the previously predicted state trajectories. Hence,
we assume that the previous solution trajectory will lie close
to the current one, which is fair considering that wastewater
networks inhabit slowly-varying dynamics. Although several
sparse GP approximations exists (Hewing et al., 2020), here we
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(a) Input relevance for the GP models without the simplified KW-based pipe
dynamics. Source: [Balla et al., 2022c].
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(b) Input relevance for the GP models with the simplified KW-based pipe dy-
namics.

Figure 4.17: Input relevance for the GP models, where Qt denotes the aggregated pump
flow corresponding to the pumping stations, hp denotes the pipe states, d stands for rain
forecasts and t is the time recurring at every 24 hours sampled according to the control
intervals.

As seen, the two tank states are equivalent in the two test cases, as the nominal
tank dynamics are included in both. The relevance bars corresponding to
residual y1 show that time t has a very high relevance and the disturbance
forecast indicates the rain precipitation has the second-highest relevance. This
is in line with our expectation, as the majority of the residual y1 incorporates
information about the dry-weather flows discharging to the tank, while wet-
weather infiltration occurs less frequently. As expected, the relevance of the
pumps removing volume from the tank is negligible since our nominal integrator
dynamics describe the level variation in tanks quite precisely.

The relevance bars corresponding to residual y2 show that the level vari-
ations in the sewer pipe hp4 have the highest impact on the residual created
from the measured downstream tank level. This is expected, as the only source
of discharge to the tank is the pipe connecting it with the upstream pump-
ing stations, where lateral disturbance inflows are infiltrating into the pipe.
Despite the nominal tank dynamics, our model shows some impact from the
pump flows Qt2 removing volume from the tank, which is partly because un-
der high-load periods, the downstream pumping station turns on resulting in
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similar characteristics as in hp3 and Qt2 .
Lastly, the relevance of the input data differs regarding residual y3 corre-

sponding to the level measured in the sewer pipe. As seen in Figure 4.17a, the
relevance of the upstream pump flows propagating down to the channel is high
in comparison to the second case depicted in Figure 4.17b, where the simplified
KW-based pipe dynamics are included in the nominal system model. Hence,
predicting the residuals with the latter GP model, the resulting pipe level vari-
ations are less influenced by inlet flows of the upstream pumps, as a large part
of the volume prediction is taken care of by the nominal dynamics. Further-
more, we do not expect the relevance to be zero as the pre-identified KW-based
depicted in Figure 4.15 shows that the resulting nominal model cannot cap-
ture the level propagation with the simplified model perfectly, as compared to
the original non-linear grey-box models introduced in Section 4.2.4 (Kinematic
Wave Model).

4.5.2.1 Real-world Tests

The real-world evaluation of the proposed modelling methodology described in
Section 4.5 (Non-parametric Modelling Results) has been carried out in a pilot
project in collaboration with Ishøj Wastewater Utility in Ishøj, Denmark. The
Ishøj Case Study is a stormwater network, where five level sensors have been
deployed to detect the effect of rain on the level variations in the system. A
deployed level sensor is shown in Figure 4.18.

Figure 4.18: Level sensor deployed inside a manhole. The data in the Ishøj Case Study
have been obtained through level sensors equipped with battery and wireless communication,
sending data at every 2 minutes to a our data base.

Unfortunately, this network has neither active control, nor the water ponds
are utilized to retent water upstream in ther gravitational sewer network2,
therefore our methods have been limited to predicting the water levels based
on the rain intensities detected through the test period. Because of that, we

2The lack of utilization of storage capacity has been one of the key results during this pilot
study, providing insightful and cruical information for the utility where and how to improve
the operation of their storm water network.
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tested the Gaussian process regression without generating the residuals, as
we could not subtract any nominal dynamics in this specific case study. The
validation results and the data for the level prediction is shown in Figure 4.19.
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Figure 4.19: Training (above) and validation (below) for the level variations induced by
rainfall in Manhole 2.

Note that in the case above we did not use the entire dataset for training
as we deliberately wanted to show the predictions under unexplored data, i.e.,
under rain events which have significantly different nature, hence uncovered in
the training data set. A situation of such happens between Day 25 and 26,
which is visualized in Figure 4.20.0 1 2 3 4 5 6 7 8 9 10 11
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Figure 4.20: Prediction of a long and high-intensity rain event showing the prediction
deficiency due to unexplored data.
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As shown in Figure 4.20, due to the length of the rain event the channel does
not have time to dry out, hence in the middle of the day even short peaks of
high-intensity rainfall triggers a 0.6 meter water level in the pipe. As seen in
Figure 4.19, the training data only covers events covering the 0 − 0.3 meter
water level range. Hence, predicting with the historical data results in de-
graded validation performance and wider confidence intervals, as the data is
unexplored.
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5 Sewer Volume Control

This chapter provides an overview of volume optimization in sewer
networks based on the controller architectures proposed in Paper
C, Paper D, Paper E and Paper F.

5.1 Control Architectures

The modelling approaches presented in Chapter 4 (Sewer Dynamics Modelling)
serve as the baseline for the model-based predictive controllers developed in
this chapter. Since this study is focused on the control-oriented modelling
of both the hydraulic and the hydrologic processes in sewer networks, several
architectures for predictive control have been explored throughout the thesis.
Specifically, Paper C focused on the physically-based derivation of in-sewer flow
propagation by capturing the effect of the actuator, waste, and groundwater
disturbance flow via level sensors deployed in the system. This was mainly
detailed in Section 4.2.2 (Volume Conservation in Pipes). The control archi-
tecture corresponding to Paper C is shown in Figure 5.1a, hereinafter referred
to as the PDE-based MPC controller. The part of the study covering this type
of control architecture focuses on a physically-based model structure for both
the sewer flows and the volume conservation in storage elements. In this archi-
tecture, however, attention has not been given to the hydrologic modelling for
the rain infiltrating the system. Consequently, the Rain runoff dynamics block
is not part of the controller, as the runoff dynamics engine of MIKE Urban is
utilized as a disturbance generator to provide flow inputs based in rain forecasts
to the control-oriented models governing the sewer processes.

Opposed to the PDE-based MPC controller, a slightly different architecture
is proposed in Figure 5.1b. In this architecture, we utilize the non-parametric
modelling methods detailed in Section 4.4 (Non-parametric Modelling of Sewer
Hydrology) and the controller corresponding to Paper F. Hereinafter we refer
to it as the GP-based MPC controller. In this setup, the rain runoff dynam-
ics along with the pipe and wastewater disturbances have been collectively
modelled by nonparametric Gaussian processes acting as additive dynamics
to the physical volume conservation models. In this approach, the focus has
been shifted from the physically-based model structure to the data obtained
through our level measurements. The main improvement illustrated in Fig-
ure 5.1b is regarding the placement of the Rain runoff dynamics box inside the
nonparametric model part of the controller and thereby making the configura-
tion independent from any high-fidelity runoff engines. The benefit of fitting
the combination of physical and nonparametric models to residual data is the
Plug and Play nature of this control architecture, while the main drawback is
the loss of physical model insight and modelling structure.
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(a) Predictive control architecture based on the Saint-Venant PDE pipe, volume-based stor-
age and high-fidelity rain runoff models, combined with moving horizon parameter and state
estimation.
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(b) Predictive control architecture based on Gaussian process and volume-based storage
models.
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(c) Predictive control architecture combining the Saint-Venant PDE-based pipe, volume-
based storage and Gaussian process models using moving horizon estimation for updating
the pipe model.

Figure 5.1: Control architecture comparison.
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Lastly, the control architecture depicted in Figure 5.1c is the combination of
the former two approaches. The main goal with the combined GP-PDE-based
MPC controller approach is to utilize the model structure of all the hydraulics
describing the flow propagation and volume conservation inside the storage
elements and conduits. On the other hand, we restrict ourselves to only using
the nonparametric Gaussian processes to describe the dynamics of rain and
wastewater infiltrating into the system. Consequently, the resulting control
architecture depends less on the forecast data quality as the nominal model
parts are robust enough to handle the dry-weather flow disturbances and the
flows created by the controllable assets in the system. Hence, the residuals
created between the output of the volume conservation dynamics and the level
measurement resemble the hydrologic effects imposed on the sewer and the
unmodelled dynamics due to the simplicity of the physically-based part of the
model. A drawback of the method includes the fact that physically-based flow
propagation in pipe models imposes chain model-type dynamics with a large
number of states, meaning prohibitively many sensor installations. (In case
all states are measured, which is typically not a requirement.) Besides, the
purpose of including the pipe model is to predict the pumpflow propagation
travelling down the channel, as it is depicted in Figure 4.15. For this reason,
an observer is necessary to recreate the pipe model states at locations where
not only pumped flow but disturbance flow is present on the measured water
level signals.1 Therefore, similarly as for the PDE-based MPC controller, the
estimation of the pipe states needs to be considered.

In the following, the aim is to introduce the above-mentioned control ar-
chitectures, present the objectives of the control task, and show the resulting
closed-loop control performances.2

5.2 Predictive Control in Sewers

Regarding the control of large-scale water systems, the popularity of MPC is
to a great extent due to the fact that physical and operational constraints are
simple to incorporate into the optimization problem. In MPC, we formulate
an open-loop finite-horizon optimization problem, which we solve in a receding
horizon fashion. The objectives of the control problem and the operational and
physical constraints need to be carefully chosen to obtain the desired control
performance. According to the model dynamics formulated as the constraints
and the disturbance forecasts, the MPC algorithm optimizes the input variables
over a given prediction horizon Hp of chosen length. In general, at time step
tk the following steps are undertaken

1Note that measuring water levels resembling the inlet flow provided by the actuators is
only possible if the sensor is deployed very close to the discharge point without any lateral
inflows in its vicinity.

2The predicting capabilities and residual generation with the GP-PDE-based MPC con-
troller has been tested in Section 4.2.6 (Non-parametric System Identification Results), how-
ever, the closed-loop control implementation is reserved for future studies.
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R
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Figure 5.2: Solving the optimization in a receding horizon fashion.

As seen in Figure 5.2, the receding horizon strategy takes full advantage
of the real-time measurements and the forecasted disturbances. As visualized
in the third step, after solving the optimization problem, only the first step of
the obtained control sequence is applied to the network. After letting the sys-
tem respond to this action, the entire process repeats itself, i.e., new feedback
measurements are taken, and the forecasts are updated based on the latest
information.

In wastewater applications, constraints are typically formed on the physical
limits of hydraulic storage elements and the physical capacity of the controllable
assets, e.g., the maximum obtainable flow by a pumping station. The distur-
bances are considered as the dry- and wet-weather flow infiltration, among
which the latter is highly stochastic. The forecasting capabilities of the rain
intensity at a specific location is a research topic on its own, hence not detailed
in this thesis.

In this work, we formulate constraints on the states, i.e., the water levels,
and on the input variables, i.e., the controllable flow provided by the actuators.
In all our tests and experiments, the actuators are considered to be pumps con-
nected in parallel. Besides, in Paper F we introduced an operational constraint
for keeping safety levels in storage tanks instead of simply minimizing the lev-
els to a reference at all times. Keeping the water level in storage elements is
particularly important as before a storm event, the storage capacity needs to
be utilized to its full extent. Due to the stochastic nature of rain forecasts,
uncertainty is inherently present in the evolution of the governing water levels.
Therefore, the controller aims to reject the dry- and wet-weather disturbance
flows and attempts to keep the water levels within a safety region in tanks so
that the system is always prepared for unexpected storm events. In this study,
we adopt some ideas from [Grosso et al., 2014] and introduce the previously-
mentioned operational constraint for safety water levels. The state constraints
utilized in our study are illustrated in Figure 5.3.
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Figure 3: Safety and capacity constraints, where blue and red arrows
are constraint relaxations for overflow (ε) and safety violation (ξ).

(Furthermore to limit odor problems due to retention.) While
finding the optimal placement of the safety region is out of
scope here, it is reserved for future simulation studies.

Introducing the nonlinear kernel and propagating the uncer-
tainties with the Gaussian processes result in system states (wa-
ter levels) being probabilistic, following a Gaussian distribu-
tion. Hence the state constraints need to be treated stochastic.
In this study, we formulate probabilistic constraints in terms of
chance constraints (Wang et al., 2016a), i.e.,

P{Hh(t) ≤ b} ≥ α, (19a)
P{Hsh(t) ≤ bs} ≥ αs, (19b)

where Eq. (19a) describes the constraint on the physical
capacity of storage elements while Eq. (19b) describes the
constraint on the safety region. The operator P{} is the
probability that the inequality is satisfied with α and αs being
the confidence levels. Furthermore, the mapping matrices
Hh = [INh ,−INh ]ᵀ and Hs = [INht

,−INht
]ᵀ map the vector

of water levels h to suitable size of b = [hᵀ
t,max, h

ᵀ
t,min]ᵀ and

bs = [hᵀ
s,max, h

ᵀ
s,min]ᵀ water level bounds, respectively.

Under our assumptions that h is jointly Gaussian with
the residuals y, the above probabilistic expressions can be
reformulated as convex, deterministic constraints (Wang et al.,
2016a, Hewing et al., 2020). The constraints are given by

Hµh(t) ≤ b + Hεε(t) − c � H diag
(
Σh(t)

) 1
2 , (20a)

Hsµh(t) ≤ bs + Hξξ(t) − cs � Hs diag
(
Σh(t)

) 1
2 , (20b)

where the actual water level values are replaced by their
expected or mean values µh. Furthermore, we introduce a term
called the vector of critical values c = φ(α)−1, where φ(·) is the
vector of inverse cumulative distribution function (or quantile)
of the standard Gaussian distribution evaluated at α. These
quantiles can be precomputed and used as constant values. The
operator � denotes element-by-element multiplication and the
slack terms ε = [εᵀmax, ε

ᵀ
min]ᵀ and ξ = [ξᵀmax, ξ

ᵀ
min]ᵀ denote

vectors of relaxation variables standing for safety violation and
overflow, respectively. The mapping matrices H ∈ R2Nh×Nh

and Hs ∈ R2Nt×Nt map the mean water level µh and variance
Σh to the suitable dimensions of the maximum and minimum
water level bounds b and bs. Note that the additional term in
Eq. (20) corresponds to the tightening of the original bounds,
conditioned on the evolution of the water level variances along
the prediction horizon. As expected, the longer we predict into
the future, the higher the variances grow due to the model and
forecast uncertainties. To avoid recursive infeasibility, the slack
variables ξ and ε are utilized to soften the constraints.

3.4.2. Cost function
The cost function is the key component in the design

of the GP-MPC. In general, the formulation of the control
problem relates to the manipulation of water volumes to avoid
undesirable overflows and water surges outside the main sewer
lines. From the control point of view, we focus on the
rejection of the stochastic meteorological (rain-runoff) and
human (wastewater flow) loads, aiming to avoid the physical
constraint violations resulting in overflows or water surges.
Although here we propose a specific objective function, there
is a flexibility of either removing or adding control objectives
simply by adding new control goals. For example, the control
strategy may vary according to the infrastructure design, e.g.,
the inclusion of treatment plant objectives may be crucial to
add in combined networks with high wastewater load. In this
work, we focus on the following operational and management
criteria (listed in decreasing order of priority)

I. Minimise overflow in storage elements
II. Minimise safety volume violation
III. Minimise the water level in storage elements
IV. Minimise the control action of pumps

The predefined objectives are aggregated in a multi-objective
cost function to fulfill all control criteria. As the evolution of
the water levels is described by an approximated joint Gaussian
probability distribution, the cost function is formulated on
stochastic variables. The overall cost of the control problem
is formed as expected values, given by

L(t)=E
{
W1||ε(t)||2λ1︸      ︷︷      ︸

I.

+W2||ξ(t)||2λ2︸      ︷︷      ︸
II.

+W3||h(t)||2λ3︸      ︷︷      ︸
III.

+W4||∆Q(t)||2λ4︸         ︷︷         ︸
IV.

}
(21)

where the different control objectives are prioritized through
the W weighting constants. Furthermore, these weights also
normalize each objective such that water levels and flows
become comparable in magnitude. Cost I. represents the
overflow penalty, where the use of slack variable ε represents
the water level exceeding the physical bounds of the basins.
The amount of overflow shared between pumping stations is
prioritized with the diagonal λ1 matrix, where λ1 is diagonal
and 0 ≤ λ ≤ I, similarly to all λ matrices. Moreover,
the weight constant W1 is significantly higher than any other
weights, as using the overflow variables is undesirable. Cost
II. corresponds to the safety slack, while Cost III. penalizes
the level in storage tanks and manholes. By adjusting λ3, the
filling sensitivity of storage tanks or manholes can be adjusted,
meaning that storage nodes prone to overflows are filled slower
and emptied faster than less sensitive storage elements. Note
that Cost IV on minimizing the pumpflows is formulated on the
variation of the signal ∆Q(t) = Q(t) − Q(t − 1), accounting for
integral action enabling smooth system response.

The slack variables representing overflow ε and the safety
violation ξ are decision variables, similarly to the change of
flow ∆Q for pumps. The decision variables are considered
deterministic, therefore the only stochastic term in Eq. (21) is
Cost III.

7

Figure 5.3: Safety and capacity constraints, where the blue arrows denote constraint re-
laxation for overflow (ε) and red arrows are constraint relaxations for safety violation (ξ).
Source: [Balla et al., 2022a].

As shown in the figure above, while the physical limitations of, e.g., storage
tanks are evident, the determination of the safety bounds is less clear. In our
work, we argue that the placement of the safety bounds is best in the lower
regions of the storage tanks, as the system remains emptied and prepared in
case of unexpected disturbances.

Besides the constraints, the key component of the control architectures
proposed in Section 5.1 (Control Architectures) is the formulation of the cost
function. The formulation of the control problem in all our studies relates
to the manipulation of water levels (volumes) to avoid undesirable overflows
and water surges outside the sewer pipes. Our main focus is on rejecting the
highly stochastic wet-weather (rain-runoff) and dry-weather (household and
groundwater) loads while aiming to avoid constraint violations. In this work,
we focused mainly on the following operational and management criteria while
designing closed-loop control (listed in decreasing order of priority)

I. Minimize overflow in storage elements,

II. Minimize the variation on the inlet flow to the treatment plant,

III. Minimize the safety volume violation in storage elements,

IV. Minimize the water level in storage elements and manholes,

V. Minimize the control action of pumps.

Note that the above list is not limited to the proposed objectives. For instance,
the objectives for a specific case study might vary according to the infrastruc-
ture design. To solve the control problem, we combine the objectives and solve
a multi-objective optimization problem. Throughout the thesis, the overall cost
defined in MPC has been formulated as the linearly weighted sum of quadratic
terms, i.e.,
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L(tk) = w1∣∣ε(tk)∣∣2Ω1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LI.

+w2∣∣ξ(tk)∣∣2Ω2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LIII.

+w3∣∣h(tk)∣∣2Ω3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LIV .

+w4∣∣∆Q0(tk)∣∣2Ω4
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

LV.

(5.1)

+w5(Qw(tk) −
1
Hp

Hp−1
∑
k=0

Qw(tk))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LII.

where the specific terms relate to the pre-defined control criteria above, i.e.,
LI describes the overflow penalty, LII relates to the variation of inlet flow to
the treatment plant over the Hp prediction horizon, LIII is the penalty on the
safety bound violations, LIV is a state penalty, and LV is the penalty on the
input change, accounting for smooth and slow system response.3 Moreover,
ε(tk) ∈ R2Nt is the vector of slack variables measuring overflow, ξ(tk) ∈ R2Nt is
the vector of variables measuring the violation of the safety constraint, h(tk) ∈
RNt+Np is the vector of states representing water level in pipes and storage
tanks, Q0(tk) ∈ RNQ is the vector of manipulated flow variables, and lastly
Qw(tk) ∈ R is the discharged flow to the treatment plant. The weighting
constants denoted by w are prioritizing the weight of the different objectives
and Ω is diagonal and 0 ≤ Ω ≤ I, where I is the identity matrix of suitable
dimensions.

5.3 PDE-based Predictive Control

The PDE-based MPC controller uses the KW-based pipe model and the storage
model based on simple volume conservation, detailed in Section 4.2.2 (Volume
Conservation in Pipes) and Section 4.2.1 (Volume Conservation in Tanks), re-
spectively. The study has been carried out on the Simulation Study C with
the use of four pumping stations equipped with storage tanks, discharging to a
wastewater treatment plant. The specific dimensions of the study are the fol-
lowing; NQ = 4, Nt = 4, and Np = 17, denoting the number of pumping stations,
storage tanks, tank and pipe states, respectively.

In any optimization problem, the initial states are either obtained through
measurements or state estimation. As the PDE-based MPC controller uses the
KW-based pipe models, typically more states are considered than it is econom-
ically feasible to measure. The reasoning for this is mainly to obtain a good
flow attenuation and transport-delay modelling performance, given the spatial
and time discretization properties of the model. Therefore, state estimation is
necessary to reconstruct the entire state vector h out of a few measurement
points. The study has been carried out by utilizing online moving horizon es-
timation for both the states and the parameters regarding the pipes. To this

3Note that smooth and slow system response in our application is desired, as sudden
changes in the control action can degrade the lifetime of, e.g., pumps.
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end, we solve the state and parameter estimation problems jointly with a fixed-
size horizon at certain time intervals. The development of this estimator is not
detailed in this summary, however, the interested reader may consult Paper C
for further details.

5.3.1 Optimization Problem

Let us distinguish between the states governing pipes and tanks and introduce
h(tk) = [h⊺t (tk) h⊺p(tk)]⊺ as the full state vector. Besides, let the vectors
qt(tk) ∈ RNqt and qp(tk) ∈ RNqp denote the disturbances corresponding to tank
and pipe states, respectively. Moreover, the prediction horizon for the opti-
mization problem is divided into two parts, where the near-future is predicted
with a 10 minutes accuracy for up to two hours, and the far-future is predicted
at each hour summing up the entire horizon to an entire day.4 Note that for
the sake of simplicity, we present the problem with the combined prediction
horizon Hp. The pipe model parameters are re-identified every six hours with a
data batch of the last two days, while the states are estimated at every Ts = 10
minutes control step for providing the initial conditions for the optimization
problem based on a two days time window. The nonlinear optimization prob-
lem behind the PDE-based MPC controller strategy is given as

Minimize
∆Q0(0),...,∆Q0(Hp−1)

ε(0),...,ε(Hp−1)

Hp−1
∑
k=0
LI(ε(tk))+LII(Qw(tk)) + LIV (h(tk)) (5.2a)

+LV (∆Q0(tk))

subject to the KW-based pipe and Fourier disturbance dynamics

hp(tk+1) =FKW
θ,λ (hp(tk),Q0(tk), qp(tk)), (5.2b)

QNx(tk) =θ2f(hp,Nx(tk), θ3), (5.2c)

to the storage dynamics

ht(tk+1) =H(ht(tk),Q0(tk), qt(tk),QNx(tk)), (5.2d)

to integral action

Q0(tk+1) =Q0(tk) +∆Q0(tk), (5.2e)

and to state, input and output constraints

fV (ht) + ε(tk) ≤ fV (ht(tk)) ≤ fV (ht) + ε(tk), (5.2f)
0 ≤ hp(tk) ≤ hg, (5.2g)

Q0 ≤ Q0(tk) ≤ Q0, (5.2h)

0 ≤ Qw(tk) ≤ Qw, (5.2i)
4The prediction horizon of one day is relevant when the objective LII is considered for

smoothing the inflow to the treatment plant. Hence, the daily variations of wastewater flow
can be treated, especially in dry-weather periods.
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Chapter 5. Sewer Volume Control

where the pipe dynamics in eq.(5.2b) and eq.(5.2c) are equivalent to the ones
presented in Section 4.2.2 (Volume Conservation in Pipes). Besides, the storage
dynamics are equivalent to the tank model presented in and Section 4.2.1 (Vol-
ume Conservation in Tanks). Note that the presented optimization problem
used in Paper C does not use the objective LIII governing the safety volume
violations, however, it is expected to improve the network operation, especially
under dry-weather periods. Furthermore, Qw(tk) in eq.(5.2i) denotes the in-
flow to the treatment plant, which is equivalent to the outflow QNx in the pipe
link discharging to the root of the network. The nonlinear level to volume
conversion is handled outside of the optimization, where fV (⋅) in eq.(5.2f) is
a piecewise linear function that allows to track the overflow slack ε in terms
of volumes, i.e., the actual overflow [Balla et al., 2022d]. Note that the over-
flow slack lifts the upper and lower bounds of the physical volume capacities
in storage tanks, thereby keeping track of the excess storage.

Remark 4. In case of overflows the excess volume in our optimization for the
PDE-based MPC controller strategy escapes the system, i.e., it is considered as
spilled after the overflow. It is ensured via constraining the slack variables such
that 0 ≤ ε(tk) at all time steps [Balla et al., 2022d].

In the next section, we provide some closed-loop control results of the PDE-
based MPC controller strategy.

5.3.2 PDE-based Control Results

The closed-loop control results presented in this subsection are partially based
on Paper C. The results of implementing the PDE-based MPC controller strat-
egy aim to show the benefits of using a physically-based network model, where
the assimilation of water level data is used to obtain the model parameters and
to keep the model updated. The proposed method is compared to the baseline
controller introduced in Section 3.4 (Benchmark Controller), which is based on
a two-point control method turning the pumps on and off, often used in indus-
try. Furthermore, to evaluate the performance of the controller under both dry-
and wet-weather, two days are selected under which overflows are triggered due
to the insufficient capacity of the sewer network and the storage tanks. In our
results, all Ω scaling values are set equal in the individual terms of the objec-
tive function, meaning that none of the four pumping stations are prioritized
over each other. For instance, the filling sensitivity of each storage tank at the
pumping stations and the penalty on the overflows are equal at each control
node of the network. As the overflows are not fully avoidable in the selected
period, the overall goal of the controller is to reduce the aggregated volume
spilled at all pumping stations together. The overflow comparison between the
baseline and the PDE-based MPC controller strategy is shown in Figure 5.4
and the numerical results in the high-fidelity simulator of the Simulation Study
C is shown in Figure 5.5 and Figure 5.6, respectively. Note that each column of
the results in Figure 5.5 and Figure 5.6 correspond to the disturbance, overflow,
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5.3. PDE-based Predictive Control

state and pump flow of each separate pumping station s1, s2, s3 and s4, among
which s2 is the one equipped with large retention capabilities. Furthermore, s2
is the pumping station discharging the collected sewage to the treatment plant.

21 22 23 24
0

100

200

Fl
ow

( m
3 h

)

Aggregated overflow

Rule-based NMPC

21 22 23 24
0

500

1,000
1,500
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3 ) Cumulative overflow volume

Rule-based NMPC

1

Figure 5.4: Overflow comparison in the full-scale network for the PDE-based predictive
controller in closed-loop. Source: [Balla et al., 2022d].

As shown in Figure 5.4, the proposed control strategy results in approximately
28% cumulative overflow volume decrease compared to the baseline on/off con-
troller under the same meteorological load and the same time period.

As depicted in Figure 5.5 and Figure 5.6, the disturbance signals used in
the HiFi simulator are historic rain and wastewater inflows. Although we do
not consider the stochastic evaluation of the states in this case study, uncer-
tainty is introduced in the disturbance signals. To that end, we generate 10
different disturbance scenarios by adding normally distributed random data on
top of the historic events [Balla et al., 2022d]. As shown in Figure 5.5(a,b)
and Figure 5.6(i,j), the forecast provided to the predictive controller can vary
between the values shaded by the ensemble of different rain and wastewater
flow forecasts.

To show the deviation between the controller and the actual states retrieved
by the HiFi simulator, we indicated the predictions by dashed red line in Fig-
ure 5.5(a,b) and Figure 5.6(i,j). Note that the upper constraints corresponding
to the physical limits of the tanks are violated under overflow events, as the
slack variables ε are approximating the overflows by increasing the volume in
the storage tanks. Besides, the lower bounds can also be violated due to the
uncertainty introduced in the disturbance, typically in cases when the actual
inflow is higher than indicated by the forecasts. This could potentially result
in the dry-run of the sewer pumps.

The main improvement achieved by our controller in contrast to the sim-
ple rule-based strategy is best illustrated on the states and the mitigation of
overflows in Figure 5.5(c,d) and Figure 5.6(k,l).
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Chapter 5. Sewer Volume Control

As seen, the predictive controller overflows the upstream tanks (s1, s2, s3 and
s4) rather than overloading the downstream collection tank at s2. Under these
periods, all storage nodes are prepared by being emptied before the load on the
system increases and therefore the overflows in comparison to the rule-based
case are intentional and coordinated between the pumping stations [Balla et al.,
2022d]. As shown in Figure 5.5(c,d) and Figure 5.6(k,l), the timing of the
overflows is also shifted in time as the upstream storage nodes attempt to hold
back the volume until their capacity allows [Balla et al., 2022d].

5.4 GP-based Predictive Control

The GP-based MPC controller uses the Gaussian process regression and storage
model based on the simple volume conservation, detailed in Section 4.4.1 (Gaus-
sian Process Modelling) and Section 4.2.1 (Volume Conservation in Tanks),
respectively. The study has been carried out on the Experimental Study, em-
ulating a combined wastewater network with pumping stations interconnected
by gravity-driven sewer pipes. The laboratory setup is equipped with level
sensors in both the gravity lines and the storage tanks. Specifically, the dimen-
sions of the given study are the following; NQ = 2, Nt = 2, and Np = 1, meaning
that we have two states corresponding to the storage tanks and one state to
the water level in the gravity pipe. Although four level sensors are available on
our setup, only one of them is utilized in control. Specifically, we use the level
sensor placed downstream to the lateral inflow point since we aim to learn the
hydrological inflows and their impact on the sewer dynamics by observing the
variations of the water levels in the pipe. In contrast to the PDE-based MPC
controller, this implementation does not consider PDE-type chain dynamics for
the sewer pipes. The attention is rather shifted to the data and the selection
of the feature vectors, as described in Section 4.5 (Non-parametric Modelling
Results). The setup of the modelling and data structure is otherwise equivalent
as described in Section 4.5 (Non-parametric Modelling Results).

5.4.1 Optimization Problem

Similarly to the PDE-based MPC controller, the slack variables ε representing
overflows for the state constraint relaxation are decision variables as well as
the input, i.e., the flow provided by the pumps. Such optimization problem is
treated in Paper E, and the improved version in Paper F in which an additional
decision variable ξ is introduced, which is penalized when the safety volume
in the storage tanks is violated. Besides, in this study, we did not consider
the operational objective LII for the penalization of the inflow variation to the
treatment plant.

Introducing the non-linear kernel to approximate the covariance of the
Gaussian Processes, furthermore, the propagation of uncertainty results in
stochastic system states, i.e., normally distributed states. As the decision
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variables Q0, ε and ξ are treated deterministic and the water treatment ob-
jective LII are excluded from this study, the only stochastic term remaining in
eq.(5.1) is LIV regarding the system states. We take the expected value of the
stochastic variables, i.e.,

E{LIV (h(tk))} = E{w3∣∣h(tk)∣∣2Ω3} = w3[∣∣µh(tk)∣∣2Ω3 + tr{Ω3Σh(tk)}], (5.3)

where tr{} is the trace operator and Σh is the co-variance of the states. As
seen from eq.(5.3), the variance of the states becomes a state variable in our
objective function and, therefore, in our optimization problem.

Bringing together the approximation via the GPs, taking the expected value
of the objective function and treating the state constraints probabilistic, the
optimization problem behind the GP-based MPC controller is given by

Minimize
∆Q0(0),...,∆Q0(Hp−1)

ε(0),...,ε(Hp−1)
ξ(0),...,ξ(Hp−1)

Hp−1
∑
k=0
LI(ε(tk)) + LIII(ξ(tk)) + LV (∆Q0(tk)) (5.4a)

+w3[∣∣µh(tk)∣∣2Ω3 + tr{Ω3Σh(tk)}],

subject to the nominal dynamics combined with the GPs

µh(tk+1) = f(µh(tk),Q0(tk)) +BpµGP (tk), (5.4b)

Σh(tk+1)=[∇hf(µh(tk),Q0(tk)),Bp]Σ(tk)[∇hf(µh(tk),Q0(tk)),Bp]
⊺
, (5.4c)

where the GP properties are given by

µGP (tk) and ΣGP (tk) are according to eq.(4.28), (5.4d)
Σ(tk) is according to eq.(4.34), (5.4e)
µh(t0) = h(tk), Σh(t0) = 0, (5.4f)

moreover subject to integral action

Q0(tk+1) =Q0(tk) +∆Q0(tk), (5.4g)

and to state and input constraints

P{h + ε(tk) ≤ ht(tk) ≤ h + ε(tk)} ≥ α, (5.4h)
P{hs − ξ(tk) ≤ ht(tk) ≤ hs + ξ(tk)} ≥ αs, (5.4i)

Q0 ≤ Q0(tk) ≤ Q0, (5.4j)
ε(tk) ≥ 0, ξ(tk) ≥ 0, (5.4k)

where the equality constraints in eq.(5.4b) and eq.(5.4c) imposed by the com-
bined nominal and GP dynamics are provided in the mean-variance dynamics
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form, where µh and Σh are the mean and variance describing the evolution of
the system states and characterizing the uncertainty, respectively. The equal-
ity constraints representing the network dynamics are equivalent to the state
transition dynamics introduced in Section 4.2 (Parametric Modelling of Sewer
Hydraulics) and Section 4.4 (Non-parametric Modelling of Sewer Hydrology).
Besides, when we solve the above optimization problem, we assume that the
variance at the initial step is zero as indicated by eq.(5.4f).

As shown in eq.(5.4h) and eq.(5.4i), the box constraints for the states are
stochastic, meaning that there is a probability measure describing whether
the constraint is fulfilled or not. The state constraints are fulfilled with a
confidence level of α and αs. Since the evolution of the states follows a Gaussian
distribution, the above state constraints can be re-written in a tractable form
to solve the optimization. In our work, we utilize chance constraints, which are
further detailed in Paper E and Paper F.

In the next section, we provide some closed-loop control results of the GP-
based MPC controller strategy.

5.4.2 GP-based Control Results

The closed-loop control results presented in this subsection are partially based
on Paper E and Paper F. The evaluation of the controller has been carried out
in the Experimental Study, where the corresponding time steps, disturbances,
and sampling times represent a 1 ∶ 80 scale of a real-world combined sewer
network. The controller has been implemented with an Hp = 20 step prediction
horizon, corresponding to a four-hour-long prediction in real life. From the
implementation point of view, the execution of the mean-variance dynamics
in eq.(5.4b) and eq.(5.4c) depends on the number of data points used for the
prediction. This is because µh and Σh are conditioned on the observed data,
and therefore evaluating eq.(5.4) has a growing computational cost with the
number of points. In this experimental study, we utilizedM = 80 points for the
predictions, using a simple point selection algorithm that chooses points close
to the previously predicted horizon. The selection criteria and the algorithm
is further detailed in Paper E and Paper F. Besides, the presented controller
is launched for online tests after the GP-based model is pre-trained on 60
days of data obtained via operation of the baseline controller, i.e., the nominal
operation. (The pre-training results have been illustrated in Section 4.5.2 (Non-
parametric System Identification Results).) In this way, the point selection
utilized in this study already has a wide feature space to select from. The
results of the experiment are shown in Figure 8.
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Chapter 5. Sewer Volume Control

The results of implementing the GP-based MPC controller strategy aim
to show the benefits of deploying several level sensors in the sewer network,
and to use the GP-based models to learn the unknown dynamics and thereby
complement the nominal model part of the sewer system. Similarly, to the
PDE-based MPC controller strategy, to assess the performance of the GP-based
MPC controller, the methods are compared to the baseline controller described
previously in Section 3.4 (Benchmark Controller). To stretch both controllers
to their limits, a period of 18 days has been chosen with intensive rain events,
forcing the network to overflow on several occasions. In our results, all Ω scaling
values are set equal in the individual terms of the objective function, meaning
that none of the two pumping stations in the experimental setup are prioritized
over each other.

The results in Figure 8 compare the baseline and GP-based control scenar-
ios by showing the forecasts and the discharged inflows entering the system
(a,b), the water level in each tank (c,d), the volume of actual overflow escap-
ing from the tanks (e,f), and finally the control decisions at the two pumping
stations made by the GP-MPC (g,h) and by the on/off baseline controller (i,j).
Overflows are triggered several times under the baseline controller, especially
at the downstream location since the pumping stations are not collaborating to
mitigate the water volumes under heavy rain periods. Note that the upstream
pumping station (left column) rarely reaches its upper pumping capacity and
thereby saves the capacity downstream. The controller shifts the time of over-
flows, by delaying the surges downstream so the downstream tank spends less
time overflowing. This is observed between days 1 − 2 and days 14 − 17. In
the latter period, the controller is exposed to a high-intensity rain event. Note
that during this event, the control action oscillates at the upstream station
when the safety bounds are violated and the controller realizes that using the
slack variables ε for the overflows is necessary to reduce the overall accumu-
lated spilled volumes. A possible explanation for this performance degradation
can be that the forecasted rain is not represented well in our data batch, and
additionally, that the point selection behind the algorithm is not performing
well. Key performance indicators regarding the control actions, the level of
uncertainty in the state propagation, and the overflow risks are presented and
further detailed in Paper F.

Note that between days 14−16, there is a relatively dry period. During this
period, the pumps at the stations mimic the dry-weather flow variation (diurnal
pattern), indicating that the GP correction predicts an average wastewater
inflow with an uncertainty that fits quite well with the actual inflows.

The results shown in our experimental test show several benefits and chal-
lenges to using the GP-based MPC controller strategy. To get an overview
of these benefits and drawbacks, in the next section we compare the results
obtained in this section to the results obtained via the PDE-based MPC con-
troller.
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5.5 Control Results Comparison

To get an overview of the benefits and drawbacks of the control architectures
proposed in this chapter, here we provide some discussions about the PDE-
based MPC controller and the GP-based MPC controller. It is important to
note that the GP-PDE-based MPC controller depicted in Figure 5.1c is an
improved version of the GP-based MPC controller. The former architecture
builds on similar methodological approaches and incorporates more physical
knowledge into the controller to ease the influence of the dynamic error cor-
rections provided by the GPs. Therefore, we do not consider it explicitly in
this comparison discussion, rather consider it along with the GP-based MPC
controller

In the following, we discuss and compare the two methods based on their
complexity and practicability.

5.5.1 Complexity Comparison

We consider two aspects of the complexity, i.e., the computation complexity of
solving the optimization problem and the complexity of the objective function
proposed for the two controllers.

For the PDE-based MPC controller, the optimization problem has been
solved for three different configurations, including 2, 3 and 4 pumping stations
in the Simulation Study C high-fidelity environment. The solving times and
the size of the optimization problem for the three different cases are shown in
the table below.

Num. of
stations

Avg. CPU
time (s)

Max CPU
time (s)

Decision
var. Constr. Param.

4 (s1,2,3,4) 2.14 8.37 5361 8385 1216
3 (s1,2,3) 1.8 4.36 3912 6072 912
2 (s1,2) 1.15 1.86 2608 4192 610

Table 5.1: CPU times for solving the optimization problem behind the PDE-based MPC
controller strategy with different number of pumping stations stations. Source: [Balla et al.,
2022d].

As depicted, the size of the optimization problem increases by including
more pumping stations in the control problem, however, the computation times
remain low as all constraints can be cast as linear equality and inequality
constraints. The average and maximum CPU times for solving the full-scale
problem are 2.14 and 8.37 seconds, respectively [Balla et al., 2022d]. The
maximum CPU time corresponding to 8.37 seconds is acceptable in practice
considering that the worst-case computation (under overflows when the slacks
are activated) is less than 2% of the control intervals. (This study has been
carried out on a 2.6 GHz, Intel Core i7 machine with 16-GB RAM [Balla et al.,
2022d].)
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Opposed to the PDE-based MPC controller, in case of the experimental
testing of the GP-based MPC controller we could not conduct tests including
more than two pumping stations due to the limitations on laboratory infras-
tructure. Besides, the two optimization problems have been carried out on
two different machines and therefore we cannot provide a comprehensive study
on the computation comparison. However, the solving time for the GP-based
controller for two stations with M = 80 points resulted in an average CPU
time of 1.7 and maximum CPU time of 4 seconds on a machine with stronger
resources. Most importantly, the GP-based solution has been solved with a
prediction horizon of 4-hours, while the PDE-based solution provided the same
solving time for two stations but a prediction horizon of 24 hours. Hence, there
is a significant difference between the computation burdens of the two prob-
lems. The increase of the optimization problem and the number of data points
M is expected to drastically increase the computation burden for the GP-based
implementation, meaning that a more efficient point selection and the imple-
mentation of sparse methods [Snelson and Ghahramani, 2006] are required to
run the problem feasibly in a real-world implementation. (The GP-based study
has been carried out on a 3.6 GHz, Intel Xeon machine with 64-GB RAM.)

The objective function of the PDE-based MPC controller is relatively sim-
ple, given that we solve a deterministic control problem and both the storage
and pipe dynamics are represented by physically measurable state and opti-
mization variables. Although the number of states used in the PDE-based
optimization is high due to the inclusion of the discretized PDE-based pipe
dynamics, these states are updated either by measurement or estimation. The
complexity is increased significantly in the GP-based implementation as we in-
troduce an extra state variable to characterize the uncertainty propagating in
the states. This inclusion also requires solving the optimization problem in a
stochastic manner, treating the constraint regarding state variables as stochas-
tic (as we assumed that the inputs are deterministic).

5.5.2 Practicability Comparison

Practical implementation of both the PDE-based MPC controller and the GP-
based MPC controller methods require to deploy water level sensors in the
network to identify the transport dynamics and the disturbances infiltrating
into the system. In both cases, the high-level network layout is utilized to find
the link connections between the controllable assets. By using that knowledge,
the graph of the network can be generated upon which the control-oriented
transport and storage volume conservation dynamics are built.

To carry out the experimental implementation of the PDE-based MPC con-
troller at water utilities, a reliable mapping between the forecasted rain inten-
sities and the actual flow appearing in the system is required [Balla et al.,
2022d]. This strategy does not solve this problem, as the underlying prediction
model is physically-based on the volume conservation in the network. There-
fore, the optimization problem we solve behind the controller is operating with
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actual flow and level (volume) values, providing a high level of robustness in
the control.

In contrast to the PDE-based MPC controller, the GP-based MPC con-
troller strategy learns the dry- and wet-weather flows from the deployed in-
sewer water level sensors. Arguably, the major benefit of learning the effect of
disturbances on the level data is the ability to launch the controller without
physically meaningful calibration of the sensors, furthermore physically mean-
ingful calibration of the level-to-flow conversion. The level-to-flow conversion is
partly bypassed since the mapping between the predicted upstream levels and
the change of level in storage tanks is solved via utilizing the Gaussian process-
based non-parametric model corrections. However, as the experimental tests
have shown, the adoption of purely data-driven methods is underpinned by
some practical issues. For instance, data-driven control cannot be easily ex-
plained and explicit guarantees for safe operation cannot be given. Moreover,
it was shown that the selection of points used for prediction is critical and
therefore our decision-making is highly reliant not only on the data quality but
on the excitation of the system.

Although we lose insight and robustness by using data-driven methods with-
out strong mathematical structures, the practical benefits gained with the GP-
based MPC controller provide a feasible solution for implementation, while
PDE-based MPC controller lacks some of the plug and play features that are
highly desired by practitioners working in the water sector.
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6 Concluding Remarks

This chapter concludes on the research objectives and provides
future perspectives and reflections.

6.1 Results Evaluation

With a data-driven and Plug and Play emphasis, the thesis contributes to the
broader real-time modelling and control of wastewater networks. The proposed
modelling and control solutions aim to contribute with an online (or offline)
management tool to control the actuators and give decision support to opera-
tors of wastewater systems. By working in the context of a real-world system
process, our work has also focused on the practicability and feasibility of the
solutions to support data-driven modelling and predictive control as feasible
solutions in the water sector. In the following, we evaluate the results obtained
in this work based on the two hypotheses we stated at the beginning of the
thesis.

Hypothesis 1: Structure preserving reduced models can represent the network
dynamics such that the main sewer processes are captured, relying solely
on in-sewer water level sensors, the topological network layout, and flow
estimation data regarding pump operation from the pumping stations.

Hypothesis 1 regards the modelling of the sewer processes through the hydraulic
and hydrologic parts of the process chain. The major part of our work was
dedicated to the development of control-oriented models behind the real-time
predictive control algorithms. Arguably, this is a critical part of our work
since the models are used to obtain the future states of the wastewater system.
Chapter 4 (Sewer Dynamics Modelling) highlights the modelling approaches
and the results by predicting with the models under different types of system
loads.

To introduce a physically-based, yet data-driven solution for predicting wa-
ter levels inside the sewer infrastructure, we developed our models by consid-
ering the basic conservation of volumes in the network. To this end, we used
simple integrator-type dynamics for storage elements and simplified time and
spatial-discretized partial differential equations to provide a tank-in-series rep-
resentation for the volume transport in pipes. While our proposed grey-box
network model is highly conceptualized, it allows us to assimilate data and
use system identification by utilizing the high-level piping layout of any sewer
system with controllable elements. By utilizing the links connecting the con-
trollable elements, we proposed to generate a control model that discards the
low-level details of the piping infrastructure. To compensate for these losses on
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the modelling side, we used the data to capture the disturbances through the
variation of our level sensor measurements. The system identification studies
presented in Paper A and Paper B showed promising results to validate our
hypothesis, i.e., to identify a low number of parameters of the obtained model
to predict the level N -step ahead in time. Besides, to learn and distinguish be-
tween the domestic and groundwater infiltration into the sewers. Although we
did not quantify the identifiability in this work, the two main modelling tech-
niques, i.e., the kinematic and diffusion wave dynamics for volume transport in
pipes, have been compared in Paper B. Using the diffusion wave model holds
the major benefit of keeping track of accumulated water in the pipes. It makes
possible to use the pipe infrastructure as controllable storage elements under
high-load periods. Unfortunately, with the capability of tracking the backwater
comes considerably high modelling and identification complexity, making the
method less attractive compared to the simple kinematic wave pipe models.

To provide a solution that is easy to set into operation, obtaining a physically-
based model where the lumped parameters are identified through the water
level variations inside the manholes has been crucial. Besides, the assimilation
of data has allowed us to shift our focus from calibration of the sensors to
rather continuously updating the scaling factor from the measured level to the
estimated discharge flow. To this end, we tested online system identification in
the form of moving horizon estimation for both the system states and param-
eters of the network. The results in Paper C supported the feasibility of the
idea that the structure of the model is robust enough to estimate unmeasured
system states and the three parameters used for the model predictions.

One caveat of the modelling applied for the hydraulic part of the sewer
processes is the lack of considering the rain load on the sewer system. Out
of the three disturbances, rain is considered to have the largest uncertainty
in both the modelling and control of wastewater networks. To consider the
effect of rain infiltration while using the level-based framework for predict the
volume inside the sewers, we proposed to use a residual approach combined
with a non-parametric stochastic model in the form of Gaussian processes. To
this end, Paper E and Paper F explored the possibility to model the hydro-
logic effect and the governing uncertainty of the rain by creating residuals with
the use of the deployed level sensors and the output of the physical models
developed solely for the sewer processes. In this way, we established a frame-
work where the effect of all unknown dynamics is concentrated on locations
where the states are measured, i.e., where level sensors are deployed. Although
the proposed non-parametric framework is a powerful tool, its robustness for
real-time implementation is debatable. Since we predict with the data itself,
the demand for high quality and a large amount of data batches makes the
approach vulnerable to data deficiency. Besides, propagating the uncertainty
is a computationally complex task, especially if the uncertainty is explicitly
treated as a state variable during the optimization. To partly overcome some
of these issues, we showed some results of how we can incorporate more and
more nominal knowledge into the combined network model, and therefore re-
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duce the mean of the residuals representing the unknown system dynamics and
the uncertainty. The results detailed in the summary implied that the more
system knowledge we can incorporate into our combined models, the more likely
that the non-parametric part of the model finds the correct relevances between
the effect of disturbances and system states, and the decision variables and the
system states.

Overall, the complete network modell proposed in this work provides an
easy-commissionable solution based on in-sewer level measurements and rain
forecast feeds. Besides, the framework can learn by re-identifying the nominal
parts in run-time and adding newly discovered points to the data batches used
for the prediction. The performance of the proposed solution is especially high
if the nominal dynamics are pre-identified and the uncertainty and unknown
parts are reduced to be learned by the Gaussian processes. Solving the control
problem is however a more difficult task than providing open-loop predictions
ahead of time, leading to the issues raised by the second hypothesis of this
work.

Hypothesis 2: A physically-based yet data-driven model relying on the avail-
able system knowledge and the topological network layout can be used to
predict the effect of hydraulic and hydrologic processes and their corre-
sponding uncertainties in an integrated predictive controller.

Hypothesis 2 regards the control of the sewer processes using predictive control
with the in-sewer level measurements, the high-level layout of the piping net-
work, and rain forecast feeds. The research covering this part of the hypothesis
strongly builds on the modelling results obtained in the first half of this work.
Chapter 5 (Sewer Volume Control) highlights the control approaches and the
results by applying the research to high-fidelity simulation studies and also
providing proof-of-concept in experimental laboratory tests.

Paper C implemented the kinematic wave approximation based predictive
controller, i.e., the PDE-based MPC controller using online moving horizon es-
timation. The obtained results showed that even though the number of states is
high, the model complexity is kept within practically achievable limits, suitable
for nonlinear predictive control [Balla et al., 2022d]. Besides, the effectiveness
of the control and estimation method has been demonstrated on a network with
four pumping stations, interconnected in a tree graph topology. The robustness
of the closed-loop control scheme proved to be efficient both computationally
and towards the uncertainty in the inflow forecasts. This is in line with the
prediction capabilities of the PDE-based models, as in this case, we provided
a strong mathematical structure to describe the hydraulic processes occurring
in the sewers. Nevertheless, the performance shown in Paper C is underpinned
by the fact that the forecast of all disturbances has been considered in terms of
actual flows entering the sewer system. While this is unrealistic, the modular-
ity of the approach has shown great potential to use in a real-time modelling
scheme.
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To overcome the issues with the disturbance forecasting in Paper C, the
works in Paper E and Paper F attempted to solve the combined hydraulic
and hydrologic problem by considering the rain forecast feeds in terms of the
infiltration induced by the intensity of rain. To this end, we used the combined
GP-based model with assuming the storage in the network via simple volume
conservation. When solving the optimization problem behind the GP-based
controller, we considered the states being stochastic, hence introducing the
mean and variance of the states to fully describe the water level evolution in
the predictions. Even though the results in Paper E and Paper F are promising
to learn the wet- and dry-weather disturbances, the real-time implementation
in our experimental work has raised some concerns about the complexity and
practicability of the approach. Firstly, the size of the data batches used for the
predictions has been kept minimal such that our optimization executes in 1−2
seconds intervals within the 10 seconds control step. This allowed us to solve
the optimization in our scaled-down tests but also pointed out the degradation
of the control performance. Secondly, the simple point selection algorithm that
we used in our tests resulted in low performance when unexplored state-input
and disturbance pairs have been obtained, and in these cases, the minimization
of the variance has become the dominant term in our objective function.

Overall, the residual-based modelling with the parametric and non-parametric
model parts solved in real-time optimization showed promising results to tackle
the complete control problem in wastewater networks without employing flow
sensors in the network. Although the two types of control problems are under-
pinned by practical and complexity issues, the combination of the two and the
incorporation of more physical knowledge in the modelling (i.e. simplified pipe
model, simplified runoff dynamics model) is expected to increase the robustness
and performance of the proposed control architectures.

6.2 Future Perspectives

In the following, some future research directions are given based on the author’s
recommendations in the field of wastewater control. We aim to list some of the
practical, field- and method-specific challenges that arise with the proposed
control architectures, however, have not been treated in the thesis.

1. The baseline controllers in wastewater networks typically operate via
on/off schedules according to pre-defined maximum and minimum lev-
els in the wastewater storage tanks. Our current implementation of the
proposed control architecture communicates a flow setpoint to the local
pumping units translated to, e.g., the speed of a pump via a frequency
drive. Since the proposed architecture requires frequency drive for the
local pumping units, it becomes laborious and complex to build in the fall-
back functionality to the baseline controller in case our control algorithm
breaks down or the operators want to disconnect our control. Hence, it is
interesting to research whether we can translate the flow reference from
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our optimization to level-based threshold values. An illustration of such
communication architecture is shown in Figure 6.1 below.

Global controller

Local
unit 1

Local
unit 2

Local
unit N

Q1
Q2 QN

h1
h2

hN

h1,start

h1,stop

h2,start

h2,stop

hN,start

hN,stop

P T1 P T2 P TN

Figure 6.1: Flow reference translation to local level-based pump control.

Deploying such a solution would inherently mean that advanced control
methods such as the one proposed here, could be deployed without any
modification in the locally managed hierarchy level.

2. The estimation of the discharged flow arriving from an upstream station
or infiltrated flow to a downstream tank has been investigated in [Kallesøe
and Knudsen, 2016]. In this study, the methods have been successfully
applied in networks where the downstream nodes have only one branch
discharging to them. While most of the smaller wastewater networks
inhabit such tree-based structures, there can be cases when two branches
discharge to the same downstream station. An investigation of whether
the discharge from several branches can be separated and identified is a
matter of future work.

3. The Diffusion wave-based pipe model discussed in Section 4.2.5 (Diffu-
sion Wave Model) and developed in Paper B has not been considered to
estimate the discharged flow at downstream collection points. It is partly
because the boundary condition of free-fall and submerged flow inhabit
different types of mathematical structures, too complex to incorporate
into system-identification-based modelling. A future study will be inter-
esting to see whether the further conceptualization of the downstream
boundary conditions makes it possible to find model parameters from the
data.

4. It is important to note that the grey-box models developed for the volume
propagation in the sewer pipes require that either the estimated flow
or the level is precise during our system identification. This is mainly
because we model the conservation of the volumes, and therefore when
we model the discharged flow from the level measurements, we use the
discharged flow to calculate the change of level in the storage elements.
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Chapter 6. Concluding Remarks

When combining the physical models with the Gaussian Process non-
parametric models, we argued that the data-driven part can compensate
for these modelling and offset errors on the sensors. However, to achieve a
robust operation, especially during real-time control, it will be interesting
to investigate the effect of the flow estimation error on our algorithms.

5. The mean function selected for the Gaussian processes in our work has
been chosen constant. In the scientific literature, there are several ways
of estimating model parameters of a deterministic regression model com-
bined with the hyper-parameters related to the Gaussian process [Ras-
mussen and Williams, 2018]. Our simplified Kinematic wave pipe model
proposed in Section 4.2.6 (Conceptual Alternatives) can in fact be writ-
ten in the following form: φ(z)⊺β, where the coefficients β correspond
to the θ lumped parameters in the pipe model and φ is a basis function
fitting the simplified Kinematic wave pipe model. Besides, our storage
tank model based on volume conservation is already linear in its parame-
ters. Identifying such model would mean that the pre-processing spent on
residual generation can be omitted when deploying our proposed control
algorithms for wastewater networks.

6. When the parametric models corresponding to sewer pipes are identified,
the data is pre-processed such that periods with dry weather are selected.
It is not an unrealistic assumption, as there are periods with no rain,
where mainly wastewater and groundwater infiltrate into the channels.
(However, this is dependent on the specific climate and weather.) It
would be interesting to re-do the tests without separating dry- and wet-
weather periods and investigate whether the parametric models can find
the parameters regarding the pump operation and the dry-weather flows.

7. The operation of combined wastewater networks is typically twofold; they
are operated nominally during dry weather, and extreme or high-load
operation is utilized during wet-weather. The operational goals might
be prioritized differently during these two types of operating modes, e.g.,
during wet-weather the main operational objective is to avoid overflow,
while during dry weather the equal mitigation and constant feed to the
treatment plant are prioritized. Varying the objective function, or at least
the prioritization of the terms in the objective function is expected to
result in improved control performance. Therefore, an investigation into
the adaptive tuning of the objectives in the optimization is a particularly
relevant research topic for wastewater networks.

8. Tuning the objective function for the stochastic optimization problem in
the case of the GP-based MPC controller has been challenging during our
experimental tests. It has partly been due to the uncertainty propagation
utilized for the predictions. The spread of the disturbance variance has
been uncoordinated in our closed-loop controller, however, as proposed in
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6.3. Summary

[Hewing et al., 2020], including an ancillary Linear Quadratic Regulator
(LQR) might resolve this issue.

9. As mentioned during the discussion of the results governing the GP-based
MPC controller, the uncertainty propagation provides a measure of the
uncertainty predicted in the future. However, by utilizing such complex
constraints with introducing the variance as a state variable, we increase
the optimization complexity significantly. It would be interesting to test
a so-called "naive" implementation approach [Kocijan, 2016], where the
Gaussian process-based compensation only considers the prediction of the
mean and not the variance.

6.3 Summary

One of the main contributions of the thesis is to bridge the gap between hy-
draulic and hydrologic modelling, often used individually as two separate prob-
lems for predictive control in wastewater networks. Two data-driven frame-
works have been developed (parametric, and non-parametric) to complement
each other based on hydraulic and hydrologic disciplines. Another main con-
tribution of the works is to meet realistic implementation requirements, often
neglected by the state-of-art, however crucial for practitioners and operators
at the water utilities. It has been achieved by focusing on a framework that is
easy to commission, i.e., the instrumentation and maintenance of the control
problem do not require hard-to-maintain flow sensors spatially distributed in
the sewer network.

While the data-driven and non-parametric parts of the control solution
lack insight into the model, the methods have been successfully applied in
practical research of this work, considering a laboratory environment, yet with
the assumptions on instrumentation and data availability that is likely to meet
when one aims to deploy such advanced control algorithms. Understanding
the robustness of the proposed control strategy is critical to ensure proper
functionality and thereby shift the rule-based paradigm of wastewater control
to a more advanced and data-driven system control approach.
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Abstract—Knowing where wastewater is flowing in drainage networks is
essential to utilize system storage, predict overflows and to optimize system
operation. Unfortunately, flow in gravity-driven sewers is subject to trans-
port delays, and typically influenced by significant disturbances entering the
sewer pipes in the form of domestic, ground and rain inflows. Model-based
optimal control of urban drainage requires knowledge about these inflows, even
though it is often not feasible in operational setups. To this end, we propose
a lumped-parameter hydrodynamic model with a bi-linear structure for iden-
tifying the transport delays, decouple periodic disturbances and to predict the
discharged flow. Pumped inlet and discharged dry-weather flow is used to find
the model parameters. Under mild assumptions on the domestic and groundwa-
ter inflows, i.e. disturbances, the decoupling capabilities of the identified model
are presented. A numerical case study on an EPA Storm Water Management
Model (EPA SWMM) and experimental results on a real network demonstrate
the proposed method.

Keywords—Process identification; Transport delay; Disturbance parame-
ters; Open hydraulics
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1. Introduction

1 Introduction
In sewers, waste water is collected and transported towards treatment plants,
where contaminants are removed before releasing the water back to the environ-
ment [Butler and Davies, 2006]. Flow routing in sewers is a complex task, since
the network is characterized by large spatial dimensions, nonlinear dynamics,
large flow variations and significant time delays. In this work, a nonlinear sys-
tem identification approach is proposed to predict flow and delays based on the
simplified Saint-Venant (SV) equations.

Gravity-driven flow in open channels is represented by a system of coupled
partial differential equations (PDEs). Due to the complexity of these PDEs,
simplified and linearized models are typically used in optimal control design. In
[Xu et al., 2011], the control effectiveness of reduced SV models in Model Pre-
dictive Control (MPC) has been studied. In [Leirens et al., 2010], a linearized
SV model has been proposed for pumped sewer networks. Moreover, linear cas-
cade modelling is a common approach in open water systems, e.g. in irrigation
canals [Litrico and Fromion, 2004], and in inland waterways [Segovia et al.,
2018]. Linearization, however, does not allow flow-dependent delays and the
maximum allowed flow deviation from the steady-state solution is restricted.

In a previous paper, [Kallesøe and Knudsen, 2016], self-calibrating flow es-
timation has been developed for tracking the pump flow at the inlet, and for
the discharged flow at the outlet of gravity pipes. This algorithm utilized in-
formation about wastewater pits and pump operation, hence applicable in any
system configuration. However, prediction of flow dependant delays consid-
ering different disturbance inflows (i.e. domestic- and groundwater) has not
been encountered yet. The current work utilizes this previously-established
flow estimation algorithm as the source of training data, and proposes a mod-
eling method for flow and delay prediction in long gravity sewers. While we do
not explicitly address control strategies, the proposed identification approach is
dedicated for the internal model of a predictive controller. The main compro-
mise of establishing such a model is typically between complexity, accuracy and
the computational burden [Lund et al., 2018]. In recent years, identification-
based modeling has gained more attention, as data has become widely available
at utilities. Yet, reports on Grey-Box modeling of open-channel water systems
are relatively few [Su Ki Ooi and Weyer, 2003], [Weyer, 2001]. Moreover, re-
search on Grey-Box modelling in different domains, e.g. [Sundar and Zlotnik,
2019], considered large-scale natural gas networks where state and parameter
estimation have been developed using data and the underlying network graph.

In many applications in this framework (e.g. irrigation canals, sewage net-
works, etc.), linear physical models are used. In contrast to these approaches,
we propose a nonlinear model structure which can describe a wide range of
flows. The task of finding the correct physical parameters (e.g. length, shape,
slope and friction) disappears with the proposed data-driven approach, thus
enabling scalability to large systems with arbitrary structures.

Our approach is data-driven, yet we establish our proposed model struc-
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ture based on physical considerations, familiar to those working in the water
domain. In contrast to methods utilizing cross-correlation analysis e.g. for
delay detection [Bjorklund and Ljung, 2003], and statistical blackbox models
for disturbance prediction [Troutman et al., 2017], we aim to preserve intuition
by giving physical interpretation of the flows in the system.

The remainder of the paper is structured as follows. Section 2 provides an
overview of the system, whereupon in Section 3 we review the PDE model for
gravity sewers and propose a model for the disturbance flows. In Section 4, we
formulate the estimation as a least squares problem in the form of a Nonlinear
Program (NLP), while in Section 5, we present numerical and experimental
results. Finally, Section 6 sums up the contributions of the work. Throughout
the paper, all quantities mentioned are real. We use boldface letters for sets,
such as s = {s1, ..., sn}, as well as for vectors x = [x1, ..., xn]T ∈ Rn.

2 Sewer systems overview
We consider networks with transport lines over long distances. The layout of
such network is shown in Figure 1.

Figure 1: Topology of a pumped sewer network.

The sewage is first collected at a pumping station. The pumping station
consists of a small storage tank (pit) and one or more pumping units. The
collected water is then pumped through a rising main, whereupon it enters a
long gravity-driven sewer channel. Typically, pumps operate in combination
and deliver flow at a fixed rate governed by local on/off controllers (see [Schütze
et al., 2002]). When the pump state is off and the pit volume reaches the
maximum threshold, the pumps turn on. Then, the pumped flow arrives to the
next pit in line with a delay, thereby forcing the next station to turn on, and
so forth. Exogenous inflows, i.e. disturbances, enter gravity sewers in the form
of domestic waste, rainfall run-off and through leakages allowing groundwater
to infiltrate into the channel.These disturbances are characterized by specific
flow patterns, shown in Figure 2.

Households are common sources of inflows in sewer. Due to the large spatial
dimension of sewers, domestic waste collected from urban areas may enter the
network along the gravity pipes. Domestic waste is typically characterized by a
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diurnal pattern which has an inherent periodicity of 24 hours with peak points
in the morning and in the afternoon (see Pattern a in Figure 2).

a

periodic

F
lo
w

b

constant

c

non-periodic

Figure 2: Disturbances occurring in sewer networks.

Groundwater is present when rain runs off slowly and thereby water ac-
cumulates in the ground. In this case, water may infiltrate gravity channels
through leakages with a nearly constant flow (see Pattern b in Figure 2).

The third type of disturbance flow is due to rainfall run-off. These dis-
charges are disregarded and we rather focus on domestic and groundwater
infiltration. Indeed, this is a common practice (see [Courdent et al., 2018]), as
typically the domestic and groundwater flows are estimated first, using inflow
measurements from dry-weather periods.

3 Modeling

3.1 Flow model
Unsteady, one-dimensional water flow in gravity sewers can be computed ac-
curately by the well-known Saint-Venant PDEs [Schütze et al., 2002]

∂Ax,t

∂t
+ ∂Qx,t

∂x
= qx,t, (1a)

∂Qx,t

∂t
+ ∂

∂x
(
Q2
x,t

Ax,t
) + gAx,t(

∂hx,t

∂x
+ Sf + Sb) = 0, (1b)

where Qx,t denotes the flow inside the channel, qx,t is the disturbance in-
flow, Ax,t is the wetted channel area and hx,t is the water level. Moreover,
Qx,t, qx,t,Ax,t and hx,t are functions from (0, L) ×R+ to R+. The gravitational
acceleration is g ∈ R+, furthermore we assume that Sb ∈ R+ bed slope and
Sf ∈ R+ friction slope parameters are independent of x and t, which is a fair
assumption if the slope variance is small [Schütze et al., 2002].

For simplicity, we assume kinematic waves, meaning that we neglect the first
three terms in eq.(1b) [Singh, 2001], which results in a balance between friction
and gravitational forces. For determining Sf in eq.(1b), we utilize Manning’s
equation [Schütze et al., 2002]. Then, eq.(1b) simplifies to

Sb = Sf(Qx,t, hx,t) =
n2Q2

x,t

A2
x,tR

4
3
x,t

, (2)
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where R = A
P

is the hydraulic radius, P ∈ R+ is the wetted perimeter and n ∈ R+
is the Manning coefficient. Simplification with the Manning formula restricts
the flows to be one-directional, meaning that the phenomena of backwater effect
is not considered. Backwater occurs when the channel is overloaded, thus water
surcharges. This is typically negligible in large gravity lines, transporting waste
water over long distances Singh [2001].

We argue that semi-filled circular sewers are well-approximated by a rect-
angular shape, shown in Figure 3.

hx,t

w

Figure 3: Rectangular channel, where w ∈ R+ is the width.

The hydraulic radius of a channel is parametrized by w and approximated by

Rx,t =
Ax,t

Px,t
≈ whx,t

2hx,t +w
, (3)

where a linear area-level relation is used. The independent variables remaining
in the SV equations are flow and level on the domain (0, L) ×R+, given by

w
∂hx,t

∂t
+ ∂Qx,t

∂x
= qx,t, (4a)

Qx,t =
√
Sb
n

(whx,t)
5
3

(2hx,t +w) 2
3
. (4b)

The equation in eq.(4b) comes from eq.(2) and eq.(3). The coupled PDEs in
equations eq.(4a) and eq.(4b) describe kinematic waves traveling through open
channels. Note, that semi-fillness of the channel is an assumption which does
not always hold. The formulation presented here does not hold for fully-filled
flow conditions.

3.2 Discretized model
We formulate the physical model in a form more amenable to system identi-
fication. The channel is partitioned into Nx equal-sized, non-overlapping δx
segments of length, while hx,t, Qx,t and qx,t are approximated as piece-wise
constant functions of x. The spatial discretization is shown in Figure 4. We
use backward Euler discretization for the spatial and forward Euler for the time
coordinate. The left boundary is defined at x = 0 and the right boundary at
x = L. Discretizing equations eq.(4a) and eq.(4b), the model may be recast as

hx,t+δt = hx,t + αqx,t + β1(Qx−δx,t −Qx,t), (5a)

Qx,t = β2
h

5
3
x,t

(hx,t + γ)
2
3
, ∀ x ∈ (0, L) (5b)
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Q0,t QL,t

x=Lx=0

qx+δx,tqx,t

x+δx x+2δx x+3δx

qx+2δx,t

x+iδxx+(i−1)δx

qx+Nxδx,tqx+(i−1)δx,t

Figure 4: Channel divided into Nx sections, where i ∈ {1,2, ...,Nx}.

where δt is the sampling time and we define the parameters

α ≜ δt
w
, β1 ≜

δt

wδx
, β2 ≜

√
Sbw

5
3

2 2
3n

, γ ≜ w
2
, (6)

where α,β1, β2, γ ∈ R+. Note that the time and spatial steps, δt and δx, are
part of the parameters α and β1. This implies that eq.(5a) and eq.(5b) are
affected by the choice of the sampling time and the section size. Indeed, δt and
δx affects the dynamics by introducing distortion in the traveling wave (see
[Singh, 2001]). Next, we insert the section flows Qx,t from eq.(5b) into eq.(5a),
so we get

hx,t+δt = hx,t + αqx,t + β1β2[
h

5
3
x−δx,t

(hx−δx,t + γ)
2
3
−

h
5
3
x,t

(hx,t + γ)
2
3
] (7)

The state equation in eq.(7) is parametrized by α, β1, β2 and γ. In order to
reduce the number of parameters, and thus avoid non-identifiability, we attempt
to restructure eq.(7) by removing γ from the denominator of the nonlinear
expression. Therefore, we define new states such that

hx,t ≜ γzx,t, ∀ x ∈ (0, L), (8)

where zx,t are the scaled equivalents of the physically measurable water levels
hx,t, i.e. the transformed states. Now let us define a mapping g ∶ R+ → R+

g ∶ (zx,t) ↦
z

5
3
x,t

(zx,t + 1) 2
3
, ∀ x ∈ (0, L). (9)

Utilizing the state transformation and the nonlinear mapping g, we recast the
state equation in eq.(7).
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This yields as a set of coupled bi-linear difference equations, describing the
states in the Nx partitioned sections along the channel.

z0,t+δt = z0,t + q̃0,t + θ1Q0,t − θ1θ2g(zδx,t),
⋮

zx,t+δt = zx,t + q̃x,t + θ1θ2(g(zx−δx,t) − g(zx,t)), (10)
⋮

zL,t+δt = zL,t + q̃L,t + θ1θ2(g(zL−δx,t) − g(zL,t)),

where we defined q̃x,t ≜ α
γ
qx,t as scaled disturbance flows. Furthermore, the task

of parameter estimation has been reduced to find the parameters θ1, θ2 ∈ R+
and the unknown disturbances q̃x,t. The parameters are given by

θ1 ≜
β1
γ
, θ2 ≜ β2γ. (11)

We consider the upstream boundary flow Q0,t (hereinafter Qin), as the control
input. The output of the control model is the downstream flow at the boundary
x = L, which we hereinafter call Qout. The output equation is then

QL,t = θ2g(zL,t), (12)

which is the reformulated Manning equation in eq.(5b).

3.3 Disturbance model
In this application, we consider periodic domestic waste flows coming from ur-
ban areas and groundwater infiltration which we assume to be constant in time.
Here, a Fourier series model is presented to estimate the periodic disturbance
signals q̃x,t entering into the dynamic flow model in eq.(10). It is assumed that
the infiltration of groundwater is uniformly distributed along the partitioned
channel sections, i.e. groundwater enters each section with the same amplitude.
Moreover, it is assumed that we know where residential areas are connected by
pipelines, i.e. where domestic waste water enters the channel. This is a fair
assumption, as typically the piping layout of the infrastructure is stored in, e.g.
a GIS (Geographic Information System) database at most utilities. Hence, the
scaled disturbances entering the ith section at time t are given by

q̃i,t(λ0,λ) ≜ q̃ gndi (λ0) + q̃ domi,t (λ) (13)

≜ λ0 + λ1 +
k

∑
j=1

(λ1jcos(jωt) + λ2jsin(jωt))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fi,t(λ)

where the set of parameters regarding domestic flows are λ ≜ {λ1, λ11, λ21, ...,
λ1k, λ2k} ∈ R, and λ0 ∈ R+ represents constant groundwater flows.
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The angular frequency ω corresponds to a period of one day and k ≥ 2 is the
number of frequency terms in the truncated Fourier series. Furthermore, fi,t(λ)
is a family of functions parametrised by λ, and for each λ, fi,t ∶ (1,Nx)×R+ → R.

Note, that the model describing the scaled disturbances does not correspond
to the real domestic and groundwater flows. In order to calculate the real
disturbances qi,t from the scaled estimates q̃i,t, recall that the disturbance flows
are scaled by the model parameters, such that

q̃i,t ≜
α

γ
qi,t, ∀ i ∈ (0,Nx). (14)

Then, using the estimated parameters defined in eq.(11) and the physical model
parameters in eq.(6), it is seen that

Nx

∑
i=1
qi,tδx =

Nx

∑
i=1

q̃i,t

θ1
=
Nx

∑
i=1

α

β1
qi,t = qi,tδxNx, (15)

where we use θ1 to calculate qi,t. The last term in eq.(15) represents all dis-
turbance flows along the total pipe length.

Now, let us consider the function fi,t(λ) in eq.(13). From this, we form
the vector ft(λ), such that the function at index i is fi,t(λ), i.e. ft ∶ R+ →
RNx . Using the vector representation and the relation shown in eq.(15), we
decompose the domestic and groundwater flows such that

Nx

∑
i=1
qi,tδx =

λ0
θ1
Nx

´¹¹¹¹¹¸¹¹¹¹¶
qgnd(λ0,θ1)

+ 1
θ1
bTft(λ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
qdom(λ,θ1)

, (16)

where qgnd is the ground infiltration flow summed over all pipe sections and
qdom is the total domestic inflow. The vector b ∈ {0,1}Nx has ones in its entries
regarding section points where urban areas are connected, and zeros with no
connection. The number of parameters that we need to identify is 4 + 2k,
depending on order of the Fourier series.

4 System identification
The system identification is given as a constrained nonlinear least squares prob-
lem, where samples, at time ti, i = {0, ...,Nt}, of the pumped inlet flows Qin
and the discharged Qout flows are known and estimated a priori. Let θ ≜ {θ1,
θ2} ∈ R+ denote the set of system parameters and Λ ≜ {λ0,λ} ∈ R denote the
parameters corresponding to the disturbance flows.
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The parameters θ, Λ and the initial states z(t0) are found by solving the NLP

⎛
⎜
⎝

θ∗

Λ∗

z∗(t0)

⎞
⎟
⎠
= argmin
θ,Λ,z(t0)

Nt

∑
i=0

(Qout(ti) − Q̂out(ti))
2 (17a)

s.t.
z(ti+1) = Fθ,Λ(z(ti),Qin(ti)), (17b)
Q̂out(ti) =Hθ2(zL(ti)), (17c)
0 ≤ z(ti) ≤ z, (17d)
0 ≤ θ ≤ θ, (17e)

where z(ti) ∈ RNx is the vector of states in eq.(10) and the dynamics in eq.(17b)
are represented by Fθ,Λ(z(ti),Qin(ti)) ∶ R+ → RNx . The functionHθ2(zL(ti)) ∶
R+ → R+ in equation eq.(17c) represents the scalar output where zL corresponds
to the downstream boundary state. The constraints in eq.(17d) and eq.(17e)
impose bounds on the transformed state variables and parameters, respectively.

In the above NLP, we assumed that the number of states are fixed, i.e.
Nx is given. Instead, we introduce Nx as an auxiliary variable in the model.
Hence, we carry out estimations multiple times on equivalent models but with
different grid sizes as explained in the algorithm below

Algorithm 2 Model evaluation for different Nx
Input: Qin, Qout, z, θ

1: repeat at every iteration k = 1,2,. . . Nx
2: Initialize: θ, Λ, z(t0)
3: Solve: minθ,Λ,z(t0)∑

Nt

i=0 (Qout(ti) − Q̂out(ti))
2

4: s.t. constraints
5: until RMSE(Q̂k−1

out ) < RMSE(Q̂kout)
Output: θ∗,Λ∗,z∗(t0), Nx

The model is evaluated for each trial of Nx using Root Mean Squared Errors
(RMSE) and the algorithm is terminated at the lowest Nx. The estimation
accuracy is shown in Figure 5 for a selection of k iteration steps.
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1

Figure 5: Model accuracy for different Nx tested on real data.

As seen, increasing Nx above a threshold does not increase accuracy.
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To evaluate the convergence of Algorithm 1, the RMSE at each iteration is
calculated.
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Figure 6: Estimation and validation evaluated against Nx.

As seen in Figure 6, there is an optimal selection for Nx where model accuracy
is the highest for the provided training and validation datasets.

5 Results

5.1 Numerical results
Results of applying the method are first presented on a numerical case study
in the EPA SWMM[Rossman, 2015] simulation software. The test model is
depicted in Figure 7.

In this network, a single sewer line is considered, transporting the sewage
from a pumping station to an outlet point, representing either the next pumping
station or the treatment plant. We consider an urban area discharging to the
transportation line at x = L/2. The pumped inlet flows Qin enter the sewer
at the upstream and we observe the discharged flows Qout at the downstream,
indicated in Figure 7. Moreover, measurement noise is added to the simulated
Qout(ti) flows with the property of n ∼ N(0,0.2).

x = L/2

Downstream

Upstream

Pumping
station

Communal
area

Figure 7: Schematics of the EPA SWMM simulation model.

In simulation, we attempt to mimic the behavior of a real scenario, where
the wastewater pit collects non-periodic runoff water with a variety of rain
intensity, forcing the pump to turn on for different time duration.
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The validation of the identified model is shown in Figure 8.
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Figure 8: Discharged downstream flow prediction.

Nx = 4 sections resulted in good model accuracy. Note, that the discharged
flow shown in Figure 8 consists of the delayed non-periodic pumped flows Qin
and the periodic disturbance inflows q. In EPA SWMM, we can access the dis-
turbances q for validating our results. The disturbance q entering the network
at x = L/2 and discharged at the end of the channel is shown in Figure 9.
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Figure 9: Upstream and discharged domestic waste flows.

The domestic waste flow arrives to the downstream with a flow-dependent de-
lay. Using the estimated parameter θ1 and the disturbance model defined in
Section 4, the decoupled domestic flow qdomx=L/2 yields as shown in Figure 10.
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Figure 10: Disturbance decoupling with 2nd (above) and 4th order Fourier series (below).

Figure 10 shows that we are able to estimate the periodic domestic waste flows
and the constant groundwater infiltration at the point where they enter the
system, by using the disturbance model and the identified model parameters.
The disturbances qdom and qgnd in Figure 10 correspond to the decoupled flows
in eq.(16). With higher order Fourier series, the estimation is more precise,
however at the cost of increasing the number of parameters.
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5.2 Experimental results
We also present results of applying the system identification method on a real
world case study. The available data is flow estimation, extracted from a sewer
network, operated by Provas A/S, located in Gram, Denmark. The pipe layout
of the drainage network is shown in Figure 11.

This particular segment of the network consists of seven pits with corre-
sponding pumping stations. The estimation data has been sampled at 1 Hz
and gathered from the gravity sewers connected by PGH103-104 and PGH202-
203 pumping stations. (For detailed explanation of the flow estimation method
utilized in this work, consult [Kallesøe and Knudsen, 2016]). In the two test sce-
narios, urban areas are not connected, therefore our tests have been restricted
to groundwater detection.

PGH104

PGH103

PGH102

PGH101

PGH201

PGH202

PGH203

Figure 11: A segment of a combined sewer network, where blue dots denote waste water
pumping stations.

The model validations are shown for the two tests in Figure 12. The estimation
data covers two days in both cases. In the graph above, groundwater infiltration
is approximately zero, meaning that between each pump cycle the discharged
flow becomes zero, thus the channel dries out. However in the graph below,
groundwater infiltration is significant, meaning that initial water level estima-
tion is necessary. The model error yielded sufficiently small with Nx = 7 channel
sections in both cases. As shown, the model describes the flow-dependent de-
lays accurately under significant ground water infiltration and under a large
variety of pumped input flows.
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Figure 12: Model validation on experimental data. Gravity sewer between PGH103-104
stations above, and between PGH202-203 stations below.

6 Conclusion
The presented paper focused on detecting and decoupling periodic and con-
stant disturbance flows from the total discharge in gravity sewers. To this end,
a data-driven identification method has been proposed based on physical mod-
els. The method has been tested in simulation and on data from a real network.
The implementation has shown that the identification is feasible and that the
estimated models predict flow and transport delays with high accuracy. The
main advantage of the data-driven aspect of the modeling is that the method
becomes scalable to a variety of networks, having different structures and phys-
ical parameters. Additionally, using a physical model carries an advantage of
restricting the parameter space.

In our future work, we focus on stability and identifiability. Note, that
the bound of the physical parameters have been chosen in a heuristic fashion.
Furthermore, the state transformation resulted in loss of insight regarding water
levels. Including the above considerations, we consider utilizing the models in
an MPC framework.
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Abstract—Real-time control of urban drainage networks requires knowl-
edge about stored volumes and flows in order to predict overflows and optimize
system operation. However, using flow sensors inside the pipelines means pro-
hibitively high installation and maintenance costs. In this article, we formulate
two nonlinear, constrained estimation problems for identifying the open-channel
flow in urban drainage networks. To this end, we distribute cost-efficient level
sensors along the pipelines and formulate the estimation problems based on the
spatially-discretized kinematic and diffusion wave approximations of the full
Saint-Venant partial differential equations. To evaluate the capabilities of the
two models, the two approaches are compared and evaluated on modeling a
typical phenomenon occurring in drainage systems: the backwater effect. An
extensive real-world experiment demonstrates the effectiveness of the two ap-
proaches in obtaining the model parameters on a scaled water laboratory setup,
in the presence of measurement noise.

Keywords—System identification; Backwater effect; Kinematic wave, Dif-
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1. Introduction

1 Introduction
Urban Drainage Networks (UDNs) are large-scale systems where sewage is
transported in open-channel conduits towards the root of the network, where it
is treated before being discharged to the environment. In this article, we focus
on pumped systems where the sewage is pumped to overcome the elevation
and levelness of the landscape, then allowed to flow by gravity towards the
next collection pit in line [Schütze et al., 2002]. In order to control the volumes
in UDNs, the flows and stored volumes are essential to know to schedule un-
avoidable overflows and regulate the inlet to the treatment plant [Gelormino
and Ricker, 1994].

Transport in UDNs is a complex process due to its nonlinear nature and to
the large time-delays imposed by long travel times between wastewater pump-
ing stations. The transport processes are modeled by Partial Differential Equa-
tions (PDEs), where the level and flow of water appear as independent vari-
ables. However, these PDEs are often too complex to solve in real-time appli-
cations and require the precise network dimensions or a High Fidelity (HiFi)
model of the UDN [Ocampo-Martinez, 2010], [Litrico and Fromion, 2009].

Some papers report on using the full dynamic PDEs in control of UDNs [Xu
et al., 2012] and modeling of open-channel water infrastructures, e.g., irrigation
canals and river systems. However, using full-PDE models requires a HiFi
simulator or installing several flow sensors along the pipelines, resulting in high
installation and maintenance costs. To overcome the difficulties with model
complexity, some research proposes to use reduced sewer models, relying on
the physical attributes (pipe dimensions, friction, slope) of sewer pipes [Xu
et al., 2011]. The most common approximations of the original PDEs are the
Kinematic Wave (KW) and Diffusion Wave (DW) methods [Singh, 2001], where
the original model is simplified by omitting several physical phenomena in the
model [Evans et al., 2012]. The most common phenomena of this type is the
backwater effect, which is a local flow reversal that occurs inside the pipelines
when the capacity is overloaded and water volumes are accumulating [Litrico
and Fromion, 2009].

Linearizing PDEs around operating points has been extensively used in
slowly-varying water applications such as river control, but also in UDNs
by means of transfer functions capturing the backwater effect in [Litrico and
Fromion, 2006], and by state-space models in [Zou et al., 2015]. Furthermore,
due to its simplicity, delay-models have been used in predictive control in many
UDN applications as well [Balla et al., 2020b]. Data-driven modelling has
been reported in [Balla et al., 2020a] and [Troutman et al., 2017], where KW
approximation-based, grey-box modelling and black-box approaches have been
extensively used to model the gravity-driven sewer flows.

In this article, experiments are carried out for both the KW and DW ap-
proximations of the full PDEs to compare the model performance in system
identification. In contrast to methods relying on flow measurements and HiFi
models, we consider level sensors distributed along the network and utilize flow
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estimation techniques to show the identifiability of the KW- and DW-based
models. Our approach is data-driven, yet the models rely on the hydraulics of
the network, familiar to operators in the open-channel, water infrastructures
industry. Furthermore, the proposed technique using the physically-based pro-
cess models carries an advantage that it only requires data collection under
nominal operation, unlike conventional data-driven methods.

The remainder of the paper is structured as follows. Section 2 introduces the
KW and DW approximation principles of the original PDEs. In Section 3, we
formulate the system identification problem for both cases, whereupon Section 4
describes the case study laboratory setup. The results are provided in Section 5,
where sensor and estimation data from the experiments are utilized. This is
followed by Section 6, where conclusions and future research directions are
provided.

1.1 Nomenclature
Throughout the paper, all quantities mentioned are real values. Boldface letters
are used for sets, such as s = {s1, ...sn} as well as for vectors x = (x1, ...xn)⊺ ∈
Rn. In case of vectors, <,≤,=,>,≥ denote element-wise relations. Moreover, for
a vector x ∈ Rn, ∣∣x∣∣ =

√
x⊺x denotes the Euclidean norm.

2 Modeling
Open-channel flow in UDNs is typically modelled by the shallow water equa-
tions, which are given in uni-directional form by the Saint-Venant (SV) PDEs
[Schütze et al., 2002]. These PDEs describe the mass balance and the mo-
mentum conservation of the fluid, shown in eq.(1a) and eq.(1b), respectively:

∂Ax,t

∂t
+ ∂qx,t

∂x
= d̃x,t, (1a)

1
gAx,t

(∂qx,t
∂t

+ ∂

∂x
(
q2
x,t

Ax,t
))+ ∂hx,t

∂x
+
Kinematic wave
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Sf ∣x,t−Sb

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Diffusion wave

= 0, (1b)

where Ax,t is the wetted area, qx,t is the open-channel flow inside the pipes,
hx,t is the water level and d̃x,t = dx,t/δx represent lateral inflows per unit
length, where dx,t is the lateral inflow, hereinafter referred to as disturbance.
Moreover, all variables mentioned are functions mapping from (0, L) × R+ →
R+, where L represents the total length of the pipe. The gravity constant
is denoted by g and the full dynamic SV-based PDEs are parametrized by
the Sb slope and the Sf ∣x,t friction terms. Note, that Sb is independent of
the spatial and temporal coordinates, as we assume that the slopes of the
modelled pipe segments are close to being constant throughout the pipe length.
Moreover, different approximations to the SV-based PDEs exist, depending on
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which terms are neglected in eq.(1b). In this study, we focus on the Kinematic
and Diffusion wave approximations.

Assumption B1. It is assumed that semi-filled pipe segments with a given ge-
ometry are sufficiently well-approximated with a rectangular pipe shape. Hence,
the wetted area Ax,t and perimeter Px,t are approximated as:

Ax,t(hx,t) ≈ whx,t, (2a)
Px,t(hx,t) ≈ w + 2hx,t, (2b)

where w is the width of the pipe. Note, that the accuracy of the linear approx-
imation varies according to the operating level inside the pipes, i.e., how full
the pipe segment is.

In the following, the KW and DW reduction of the SV-based PDEs and the
geometry simplifications are considered.

2.1 Kinematic wave approximation
When approximating the full SV-based PDEs with kinematic waves, we assume
uniform, quasi-steady flow and neglect the physical phenomena such as the
backwater effect by keeping only the Sf ∣x,t friction and Sb slope terms in eq.(1b).
Hence, the gravitational and friction forces acting on the fluid are equal.

In order to relate the friction to flows qx,t and water levels hx,t, x ∈ (0, L),
we utilize the Manning formula [Roberson and Crowe, 1993]:

Sf ∣x,t = n2 P
4/3
x,t

A
10/3
x,t

q2
x,t, (3)

where Px,t is the wetted perimeter and n is the Manning friction factor. Using
Assumption 1, the friction term in eq.(3) is rewritten as:

Sf ∣x,t = n2 (w + 2hx,t)4/3

(whx,t)10/3 q2
x,t. (4)

Then, isolating qx,t and inserting back into the SV-based PDEs for a square
pipe, the KW approximation yields PDEs of first-order in the form:

w
∂hx,t

∂t
+ ∂qx,t

∂x
= dx,t
δx

, (5a)

qx,t =
√
Sb
n

(whx,t)5/3

(2hx,t +w)2/3 . (5b)

Note that qx,t only depends on hx,t, implying that the mapping from level to
flow is injective.
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To obtain a model structure more amenable to system identification, the
PDEs in eq.(5a) and eq.(5b) are reduced to a system of finite-dimensional
Ordinary Differential Equations (ODEs) by discretizing each pipe spatially as
shown in Figure 1.

x=0 x=L

dδx,t dL,td3δx,td2δx,t

q0,t qL,tqδx,t q3δx,tq2δx,t

δx

Figure 1: Flow balances for a pipe discretized into Nx = 4 sections.

Note that for each segment, the flow balance incorporates the lateral inflows
dx,t, the boundary flows q0,t, the discharge flow qL,t and the section flows qx,t.
The section flows are generated by the water level in each pipe segment.

For the spatial discretization, we apply the backward Euler method with a
spatial step size of δx, such that:

dhx,t

dt
= θ1(qx−δx,t − qx,t + dx,t), (6a)

qx,t = θ2f(hx,t, θ3), (6b)

where the nonlinear map f ∶ R+ → R+ is given by:

f ∶ (hx,t, θ3) ↦
h

5/3
x,t

(hx,t + θ3)2/3 , ∀ x ∈ (0, L), (7)

and the physical constants along with the spatial step δx are gathered in pa-
rameters, where:

θ1 ≜
1
wδx

, θ2 ≜
√
Sbw

5/3

22/3n
, θ3 ≜

w

2
. (8)

Note that the parameters θ1, θ2, θ3 are positive, given that the physical con-
stants and the spatial steps are positive.

In order to obtain a model with water levels as states, the qx,t flows in
eq.(6a) are substituted with water levels from eq.(6b). For ease of notation the
time index t is omitted.
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Then, the reduced KW-based model is given by a set of Nx ODEs, each repre-
senting a section of length of the pipe:

dh1
dt

= θ1(q0 + d1) − θ1θ2f(h1, θ3), (9a)

⋮
dhn
dt

= θ1dn + θ1θ2(f(hn−1, θ3) − f(hn, θ3)), (9b)

⋮
dhNx

dt
= θ1(dNx − qNx) + θ1θ2f(hNx−1, θ3), (9c)

where the flow q0 at x = 0 is considered as a controlled input. As the sec-
tion flows depend only on the water levels in the corresponding segments, the
discharged flow is calculated directly from the level in the last segment:

qNx = θ2f(hNx , θ3), (10)

where hNx is the water level in the last pipe segment.

2.2 Diffusion wave approximation
Unlike the KW-based model, the DW approximation does not neglect the term
∂hx,t/∂x in eq.(1b). Hence, the momentum equation of the SV-based PDEs
becomes:

∂hx,t

∂x
= Sb − Sf ∣x,t. (11)

In case of the DW approximation, the friction term is given by the open-channel
Darcy-Weisbach formula [Schütze et al., 2002]:

Sf ∣x,t = k
Px,t

8A3
x,tg

q2
x,t, (12)

where k is the Darcy-Weisbach friction factor and g is the gravitational accel-
eration.

To show the structure of the DW-based model, first we spatially discretize
the SV-based PDEs in eq.(1). We use the backward Euler method for dis-
cretizing ∂qx,t/∂x in eq.(1a) (as for the KW-based model) and the forward
Euler method for ∂hx,t/∂x in eq.(1b). Then, the SV-based PDEs are reduced
to a system of finite-dimensional, first-order ODEs:

δxw
dhx,t

dt
= qx−δx,t − qx,t + dx,t, (13a)

hx+δx,t − hx,t = z − r(qx,t, hx,t), (13b)

where z ≜ δxSb defines the elevation difference between the equal-sized,
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non-overlapping segments δx and the pipe resistance rx(qx,t, hx,t) ≜ δxSf ∣x,t
due to friction. Applying Assumption 1, the resistance function becomes:

rx(qx,t, hx,t) = k
δx

8g
w + 2hx,t
w3h3

x,t

q2
x,t. (14)

The flows qx,t between pipe segments are expressed similarly to the section flows
in the KW-based model. The inverse of the resistance function r(qx,t, hx,t) is
used to solve the momentum equation in eq.(13b), such that:

qx,t = r−1
x (hx,t + z − hx+δx,t). (15)

As opposed to the KW-based model, the pipe flows qx,t are not only a function
of the local water levels hx,t, but also the water level one spatial step forward
and the elevation between the neighboring sections, as depicted in Figure 2.

x=0 x=L

dδx,t

dL,t

d3δx,t

d2δx,t

q0,t

qL,t

hδx,t

hL,t
h3δx,t

h2δx,t

z

δx

Figure 2: Discretized pipe, indicating level differences generating the flow.

Note that the relation between section flows qx,t and water levels hx,t is not
one-to-one, as it was in the KW-based model. Furthermore, the section flows
are generated by the elevation difference due to the pipe slope, as well as by
the level difference between the interconnected segments.

The spatial discretization of the DW-based model yields:

dhx,t

dt
= λ1(qx−δx,t − qx,t + dx,t), (16a)

qx,t = λ2((hx,t + z − hx−δx,t)g(hx,t, λ3))
1/2
, (16b)

where the nonlinear map g ∶ R+ → R+ is given by:

g ∶ (hx,t, λ3) ↦
h3
x,t

hx,t + λ3
, ∀ x ∈ (0, L). (17)

Here, z is an extra model parameter and the physical constants are collected
in parameters, where:
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λ1 ≜
1
wδx

, λ2 ≜ (4gw3

kδx
)

1/2

, λ3 ≜
w

2
. (18)

Similarly to the KW-based model, the parameters λ1, λ2, λ3 ∈ R+. Note that
the parameters for the KW and DW case only differ in θ2 and λ2.

To obtain a model with water levels as states, the qx,t flows in eq.(16a)
are substituted with water levels from eq.(16b). For ease of notation the time
index t is omitted. Then, the reduced DW-based model is given by a set of Nx
ODEs, each representing a section of length of the pipeline:

dh1
dt

=λ1(q0+d1)−λ1λ2((h1−h2+z)g(h1, λ3))
1
2, (19a)

⋮
dhn
dt

=λ1dn + λ1λ2[((hn−hn+z)g(hn−1, λ3))
1
2 (19b)

− ((hn−hn+1+z)g(hn, λ3))
1
2]

⋮
dhNx

dt
=λ1(dNx − qNx) (19c)
+ λ1λ2((hNx−1−hNx+z)g(hNx−1, λ3))

1
2,

where in a similar manner to the KW-based model, the boundary flows at the
upstream and downstream end of the channel are given by q0 and qNx , respec-
tively. Unlike the KW-based model, the boundary flow downstream cannot be
directly calculated from the water level in the last segment. The DW-based
model inherently incorporates the internal connections between the connected
elements at the Nx and Nx+1 spatial steps, where Nx+1 corresponds to the
connected structure.
Remark B1. Hydraulic structures define the level-flow relation at the bound-
ary points of pipelines. These structures are typically wastewater basins, weirs,
gates or the receiving water body, e.g., the sea.

The mathematical description of hydraulic structures differs for free [Dey,
2002] and submerged flow [Litrico and Fromion, 2009], hence the model struc-
ture and parameters differ too. The outflow-level relation for the two different
cases are given by the function:

qNx =Gµf
(hNx) for free flow (20a)

qNx =Gµs(hNx , hNx+1) for submerged flow (20b)

where hNx
is the water level in the last segment of the pipeline and hNx+1 in the

hydraulic structure. Moreover, µf and µs are vectors of structure parameters
corresponding to free and submerged flows, respectively. Models of hydraulic
structures corresponding to the most common elements in UDNs are reported
in [Litrico and Fromion, 2009].
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2.3 Discrete system model
In this study, discrete-time system dynamics are utilized for solving the system
identification problems for both the KW- and DW-based models. The dynam-
ics of the KW-based model described in eq.(9) and eq.(10) are given for one
pipeline:

ĥ(tk+1) = FKW
θ (ĥ(tk), q0(tk),d(tk)), (21a)

qNx(tk) = θ2f(hNx(tk), θ3), (21b)

where the numerical integration from tk to tk+1 is done by the fixed-step 4th
order Runge-Kutta method. Furthermore, ĥ(tk) ∈ RNx is the vector of states,
representing the water levels in each of the Nx sections. The vector d(tk)
represents lateral inflow disturbances along the pipe line in each segment. The
dynamics are given by FKWθ ∶ RNx × R+ × RNx → RNx . The outlet flows are
given by eq.(21b).

The dynamics of the DW-based model described in eq.(19a) are given for
one pipeline:

ĥ(tk+1) = FDW
λ,z (ĥ(tk), q0(tk), qNx(tk),d(tk)), (22)

where the dynamics are given by FDWλ,z ∶ RNx × R+ × R+ × RNx → RNx . The
discharged flow is given by eq.(20a).

3 System Identification
The system identification problem in both cases is given by a finite-dimensional
constrained Nonlinear Programming (NLP) problem, where the boundary flows
q0, qNx and the disturbances d at ti, i = {0, ...,Nt} are known a priori.

Remark B2. The pumped inlet flows are estimated by the polynomial expres-
sion of fixed-speed wastewater pumps [Kallesøe and Knudsen, 2016], and the
outlet flows are estimated by mass conservation. The flow estimation algorithm
suitable for the application and methodologies presented in this study is detailed
in [Kallesøe and Knudsen, 2016], which the interested reader may refer to for
more details.

Water levels in each sections of the gravity pipe are also known a priori by
means of sensor measurements, given by:

v = Ch + ν, (23)

where C ∈ RN0×Nx is picking out all measured states v from the states h. N0
denotes the number of level sensors and ν ∈ NID(0, σ2) is white Gaussian
measurement noise.

The input vector for the KW-based identification at time instance ti is
given by u(ti) ≜ (q0(ti),d⊺(ti))

⊺, and the corresponding output vector by
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y(ti) ≜ (v⊺(ti), qNx(ti))
⊺. The model parameters are given by θ ≜ (θ1, θ2, θ3)⊺.

Then, the NLP problem for the KW-based model is given by:

( θ∗

ĥ(t0)∗
) = argmin

θ,ĥ(t0)

Nt

∑
i=0

(qNx(ti) − q̂Nx(ti))
2 (24a)

+Ω∣∣v(ti) − v̂(ti)∣∣2

subject to dynamics in eq.(21) and to inequality constraints:

0 < ĥ(ti) ≤ h, (24b)
0 < q̂Nx(ti) ≤ qNx

, (24c)
0 < θ ≤ θ, (24d)

where eq.(24b), eq.(24c) and eq.(24d) impose bounds on states, outputs and
parameters, respectively. Note that the upper and lower bounds in each con-
straint are based on meaningful physical values, e.g., the slope and width of
the channel must be within meaningful physical ranges and the water levels
and flows cannot be negative. Besides, Ω is a weighing constant in eq.(24a),
scaling the water levels to flows.

Unlike the KW-based model identification, the inputs in the DW-based
model at time instance ti are defined by u(ti) ≜ (q0(ti), qNx(ti),d⊺(ti))

⊺, while
the outputs are y(ti) ≜ (v⊺(ti))

⊺. Furthermore, we define the parameter vec-
tor by λ≜ (λ1, λ2, λ3)⊺. Note that instead of using the outflow model defined
at the downstream boundary of pipelines, described in eq.(20a), the estimated
discharged flow qNx is used as an input. This is done in order to avoid introduc-
ing extra µ parameters for hydraulic structures, hence restrict the parameter
space. Instead, the flow qNx is estimated as stated in Remark 2. Then, the
NLP problem for the DW-based model is given by:

⎛
⎜
⎝

λ∗

z∗

ĥ(t0)∗

⎞
⎟
⎠
= argmin
λ,z,ĥ(t0)

Nt

∑
i=0

∣∣v(ti) − v̂(ti)∣∣2 (25a)

subject to dynamics in eq.(22) and to inequality constraints:

0 < ĥ(ti) ≤ h, (25b)
0 < λ ≤ λ, (25c)
0 < z ≤ z, (25d)

where similarly to the KW case, eq.(25b) imposes bounds on the states, and
eq.(25c) and eq.(25d) on the parameters, respectively.

The NLP problems in both cases are solved by using a Gauss-Newton
gradient-based method, detailed in [Wills and Ninness, 2008]. Furthermore,
the auxiliary variable Nx, i.e., the number of sections into which each pipeline
is discretized into are fixed in both NLP problems. Grid size selection can
be evaluated on Monte Carlo simulations for varying step sizes [Balla et al.,
2020a].
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4 Case study
The experimental setup for validating the proposed methodologies is shown in
Fig. Figure 3.
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43
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Figure 3: Sewer modules of the Smart Water Laboratory setup at Aalborg university (left).
Schematics of the experimental setup (right). The sensor placements are indicated for each
individual module with pressure sensor (p), level sensor (h) and flow sensor (q).

The setup represents a scaled version of a typical gravity-driven sewer pipeline
most commonly found in real-life infrastructures. The proposed setup consists
of an open-channel pipeline, along which N0 = 4 level sensors are installed.
The inlet flow q0 is pumped from an upstream tank, while the discharged flow
qNx is calculated from the mass balances of a downstream tank. Auxiliary
tanks are utilized as flow sources to pump the disturbance in the middle point
of the open-channel sewer pipe. Note, that the disturbance enters the pipeline
between the second and third level sensor. Hence, the designed flow event allows
to create backflow in the middle of the channel, which is captured by the second
level sensor and then propagates to the downstream tank. The level and flow
measurement data are obtained and locally managed at each laboratory unit
with a Codesys soft-PLC [ 3S-Smart Software Solutions GmbH], and all local
modules are interfaced in real-time. The data used for system identification is
gathered over a three-hours long experiment and sampled at T = 2[s]. Besides,
both the KW and DW models utilized in the system identification are built up
of a pipeline discretized into Nx = 8 sections.

5 Experimental results
Following the KW and DW model methodologies discussed in Section 2, the
two problems have been verified on data extracted from the same experiment.
The inlet flow q0 and lateral inflow d is shown in Figure 5 (a-b), where the inlet
pumps turn on and off with a fixed speed, while there is a consecutive inflow
event in the middle of the experiment.
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In case of the KW-based model, the output vector y includes the discharged
flow qNx , hence the flow prediction is tested against data. As shown in Fig-
ure 4, the one-step prediction of the KW-based model produces accurate flows
compared to the estimated discharge flow data.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

0.1
0.2
0.3
0.4

Time (2s)

Fl
ow

(l/
s) Flow est. data KW model

1

Figure 4: Identification and validation of discharged flow in the KW model.

The validation results show that the model is predicting precisely the flow-
dependant process delays both in the presence and without the lateral inflows.
Note that the discharged flow increases, when lateral inflow is present along the
pipe. This is due to mass conservation, as extra volume is propagating down
the channel.

The comparison of the one-step state prediction for the KW- and DW-based
models are shown in Figure 5. Note that the first sensor measurement (h1) is
not affected by the backflow, however, as the disturbance is applied to the
system, the sensor at the second position (h2) captures the water volumes ac-
cumulating inside the pipes. This is shown in (e-f), where the KW-based model
assumes the downstream propagation of the disturbance without affecting the
upstream state, i.e. h2. In contrast to that, the DW-based model finds the
correct z parameters, and due to the level difference in the segments, accounts
for the backflow. As shown in Figure 5 (g-h-i-j), both models are equally good
at state prediction after the location where the disturbance enters the channel.
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6. Conclusion

6 Conclusion
In this article, a comparison of two model structures reduced from the Saint-
Venant partial differential equations has been presented to model open-channel,
gravity-driven flow processes with the backwater phenomena. To this end, a
grey-box approach has been proposed using level sensors distributed along the
pipeline and utilizing the spatially discretized kinematic and diffusion wave
approximations of the full dynamic Saint-Venant equations. The constrained
nonlinear system identification problem has been solved for both approaches,
where data has been extracted from a scaled laboratory setup built for control
of water infrastructures. The experimental results corroborate the feasibility of
both approaches and point out the capabilities of the diffusion wave approach
in capturing backflow inside the pipes.
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Abstract—Real-time control of urban drainage networks is a complex task
where transport flows are non-pressurized and therefore impose flow-dependent
time delays in the system. Unfortunately, the installation of flow sensors is eco-
nomically out of reach at most utilities, although knowing volumes and flows
are essential to optimize system operation. In this article, we formulate joint
parameter and state estimation based on level sensors deployed inside man-
holes and basins in the network. We describe the flow dynamics on the main
pipelines by the level variations inside manholes, characterized by a system of
coupled partial differential equations. These dynamics are approximated with
kinematic waves where the network model is established with the water levels be-
ing the system states. Moving horizon estimation is developed where the states
and parameters are obtained via the levels and estimated flow data, utilizing
the topological layout of the network. The obtained model complexity is kept
within practically achievable limits, suitable for nonlinear predictive control.
The effectiveness of the control and estimation method is demonstrated on a
high-fidelity model of a drainage network, acting as virtual reality. We use real
rain and wastewater flow data and test the controller against the uncertainty
in the disturbance forecasts.
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1. Introduction

1 Introduction
Open - channel hydraulic systems are large-scale networks where water is trans-
ported with a free surface in pipes or conduits [Schütze et al., 2002]. In this
work, we focus on Urban Drainage Networks (UDNs), more specifically, on sys-
tems where rain and wastewater are combined, and pumped in open channels.
Pumped UDNs are typical in areas where the gravitation of water is limited
due to the flatness of the landscape [García et al., 2015]. Moreover, combined
sewers carry both domestic and stormwater towards treatment plants, where
the sewage is treated before being released to the environment [Butler and
Davies, 2006]. Combined sewers are present in many large cities and they
are often overloaded due to the under-dimensioned capacity of the infrastruc-
ture induced by fast urbanization and the growing number of end-users [Lund
et al., 2018]. Besides, UDNs are increasingly being pushed to their limits due
to changing weather conditions, resulting in more frequent Combined Sewer
Overflows (CSOs) [Lund et al., 2018]. The changing conditions challenge flow
prediction and raise the question of how to handle the increased load on these
systems.

In the last few decades, several Real-Time Control (RTC) techniques have
been developed for UDN applications. These techniques typically exploit the
available sensor measurements, rain forecasts, and the available physical de-
scription of the network. Many of the applied methods for evaluating the
network capacities and solving optimization problems are typically predictive
model-based control techniques [Mays, 2001; Ocampo-Martinez et al., 2013;
Ocampo-Martinez, 2010]. However, transport flows in open-channel hydraulics
are governed by a set of Partial Differential Equations (PDEs), too complex to
identify with data and often infeasible to adapt to RTC applications in large-
scale problems. Several methods in the literature typically propose the use of
reduced PDE-based models in Model Predictive Control (MPC). These meth-
ods rely on the physical properties available (e.g., pipe dimensions, friction,
and slope parameters) for model calibration with HiFi (High Fidelity) model
simulators [Xu et al., 2011], [Xu et al., 2012]. Simulating gravity-driven flow
with full PDE-based models in large-scale UDNs requires either a HiFi simu-
lation environment or the placement of several flow and level sensors along the
pipelines, meaning prohibitively expensive installation and maintenance costs.

PDEs linearized around an operating point have been used in UDN appli-
cations, where transfer functions [Dalmas et al., 2017], [Litrico and Fromion,
2006] and state-space models [Zou et al., 2015] have been developed. Due to
the complexity of PDE-based control, conceptual models are also used in the
state-of-art, for instance, [Balla et al., 2020b] used algebraic models with a sin-
gle delay parameter, while [Ocampo-Martinez, 2010], [Gelormino and Ricker,
1994], [Mollerup et al., 2016], [Ocampo-Martinez et al., 2013], [Joseph-Duran
et al., 2015] used a dynamic control model where the available capacity of
pipes and tanks have been collectively modelled as virtual buffers. However,
linearized and conceptual internal models do not allow flow-dependent time
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delays, conceptualize the physically measurable levels and flows, furthermore
restrict the flow deviation from steady-state solutions. Data-driven modeling
has been reported in [Balla et al., 2020a] and in [Troutman et al., 2017], where
grey-box and black-box identification have been used, respectively.

In this article, we propose a PDE-based modeling framework, where the
system of PDEs is approximated to obtain a simple representation of the net-
work, preserving the main system dynamics for control. We report on the
modularity of the framework by arguing that using the network topology and
water level sensors, a model suitable for control is obtained. Opposed to the
current state-of-art, the proposed modeling framework captures the inflows to
the UDN through water level measurements. In this way, we disregard the use
of HiFi simulation models for model calibration.

Moreover, a new Nonlinear Model Predictive Control (NMPC) approach is
proposed, based on a data-driven model, reduced from PDEs. In our approach,
a Moving Horizon Estimation (MHE) method is used for constrained parame-
ter and state estimation governing the PDEs, which we spatially discretize to
Ordinary Differential Equations (ODEs). Time periodicity conditions are im-
posed on disturbance inflows, generated by household activity, to incorporate
additional structure in the model dynamics used for predictions in the NMPC.
The proposed control architecture is shown in Figure 1. The Moving Horizon
Parameter Estimation (MHPE) along with the Moving Horizon State Estima-
tion (MHSE) is carried out using easy-accessible level sensors distributed and
placed inside manholes along the main sewer lines. Besides, we utilize flow esti-
mation techniques which allow us to use pumped inlet and gravitated discharge
flows, further detailed in [Kallesøe and Knudsen, 2016]. By using MHPE with
NMPC, the system can re-identify the slowly changing pipe dynamics due to
accumulated sludge in the bottom of sewer pipes. Besides, the NMPC can
adapt to varying flow conditions imposed by the changing rain infiltration due
to seasonality. The MHPE and MHSE problems, similarly to [Joseph-Duran
et al., 2015], [Joseph-Duran et al., 2014], are both formulated as nonlinear
least-squares problems, subject to state and parameter constraints, further de-
tailed in Section 4. As shown in Figure 1, the NMPC is utilized as a global
controller, solving a multi-criteria optimization problem and thereby providing
references to the pumps at the local pumping stations. The proposed control
and estimation methods are demonstrated on a HiFi network, simulated in the
Mike Urban (MU)1 simulation software where we use the catchment dynamics
and the MU runoff engine for generating rain-runoff appearing as the load on
the network. Finding the rain-runoff based on rain intensity forecasts by radars
and numerical weather predictions is an active field of research, which has been
extensively studied in [Ma et al., 2018], [Chang et al., 2001] and its effect of un-
certainty on UDNs in [Löwe et al., 2016], [Löwe et al., 2014]. Moreover, several
works in the literature report on how to handle rain forecast uncertainty, e.g.,

1MIKE Urban is a standard hydraulic simulation and planning tool, used as a planning
tool by many operators at water utilities. The MU simulation environment solves the full
dynamic PDEs for open-channel flow [DHI, 2017].
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in UDNs in [Balla et al., 2020b] and in river applications in [Tian et al., 2017].
In this work, historical events of rain and wastewater are utilized in terms of
real measurements, representing the imperfect weather forecasts.

The proposed data-driven method using the reduced network model and
MHE has two clear benefits:

• First, it is a data-driven method that does not require heavy computation
and difficult calibration procedures opposed to HiFi models, used at many
utilities.

• Second, it is only required to collect data from periods under normal op-
erational behavior, opposed to conventional data-driven methods where
historical data is required for all the abnormal system behaviors.

The rest of the article is organized as follows. In Section 2, a preliminary
overview of the operation of UDNs is presented. Section 3 first presents the
PDE-based model for open-channel flow, followed by the reduced, data-driven
system of the nonlinear ODE model obtained via spatial discretization. Then,
the model of storage elements and the time-periodicity assumption on the dis-
turbance signals are presented with the description of the system as a directed
tree graph. In Section 4, the MHPE and MHSE techniques are detailed, where-
upon Section 5 introduces the NMPC design and establishes the main control
objectives. In Section 6, the results using data from a real-world network are
presented. This is followed by Section 7 and Section 8, where a discussion,
conclusions and future research directions are provided.

1.1 Nomenclature
Let R,Rn,Rm×n, denote the field of real numbers, the set of real column vectors
of length n and the set of m by n real matrices, respectively. Throughout the
paper, all quantities mentioned are real. We use boldface letters for sets, such
as s = {s1, ..., sn}, as well as for vectors x = [x1, ..., xn]T ∈ Rn. The superscript
⊺ denotes transposition, and the operators <,≤,=,>,≥ denote element-wise re-
lations of vectors. Moreover, for a vector x ∈ Rn, ∣∣x∣∣ =

√
x⊺x denotes the

Euclidean norm.
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2. Drainage System overview

2 Drainage System overview
UDNs contain several elements, including gravitation pipes, manholes, pits, and
in some cases, retention tanks. The most widely used actuators in pressurized
sewer networks are pumps, typically installed inside wastewater pits where
the sewage and rain are collected [Schütze et al., 2002]. These units often
consist of one or several pumps in parallel, controlling the transport of the
sewage from pit to pit. First, the water is pumped through a rising main,
whereupon it gravitates through sewer pipes towards a downstream station,
shown in Figure 2.

Station 2

Station 1 Station 4 WWTP

Station 3

(1)
(2) (3)

Figure 2: Tree topology of a pumped sewer network, where (1) illustrates rising mains, (2)
gravity sewer pipes and (3) pumping stations [Butler and Davies, 2006].

UDNs typically have a tree structure, where the Waste Water Treatment Plant
(WWTP) represents the root of the network.

3 System model
The modelling based on physics is introduced to show how the reduced model
is obtained considering simple mass conservation rules and assumptions on the
geometry of hydraulic structures. We aim to obtain a model structure with
a low number of lumped parameters, where the system states are expressed
by water levels. Besides, we show that the proposed internal model structure
allows us to make assumptions on the initial parameters and their upper and
lower bounds.

3.1 Physical transport model
Flow propagation in UDNs can be accurately computed by the full Saint-Venant
(SV) equations, which are non-linear hyperbolic PDEs describing the mass and
momentum of fluid:

∂Ax,t

∂t
+ ∂qx,t

∂x
= d̃x,t, (1a)

∂qx,t

∂t
+ ∂

∂x
(
q2
x,t

Ax,t
) + gAx,t(

Diffusion wave
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∂hx,t

∂x
+ Sf − Sb

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
Kinematic wave

) = 0, (1b)
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where qx,t is the flow in the pipe and d̃x,t = dx,t/dx represents lateral inflows
per unit length, where dx,t is the lateral inflow hereinafter referred to as distur-
bance. Ax,t is the wetted pipe area, hx,t represents the water level, furthermore
qx,t, dx,t,Ax,t and hx,t are functions from (0, L)×R+ → R+, where L is the total
length of the gravity pipe. The gravitational acceleration is denoted with g,
moreover the slope term Sb ∈ R+ and friction term Sf ∈ R+ are assumed to
be independent of x and t, i.e. all pipe segments along the gravity pipe are
modelled with assuming identical physical attributes.

The dynamics of each transport pipe in eq.(1a) and eq.(1b) are coupled
through boundary conditions, hence the problem can become computationally
demanding to solve in the case of complex networks [Xu et al., 2012]. Assump-
tions on the flow characteristics can lead to loss of dynamics, however, can lead
to significant simplifications to the model structure. In this work, we utilize
the Kinematic Wave approximation of the SV equations, thereby removing the
left-hand-side terms of eq.(1b). In this way, we omit the phenomena of wave
attenuation, flow acceleration, and the phenomena of backwater effect2. These
simplifications inherently mean that the considered flow characteristics are uni-
form and hence quasi-steady flow is assumed at all x ∈ (0, L). The momentum
equation in eq.(1b) only considers two terms, i.e.,

Sb = Sf(qx,t, hx,t), (2)

where the friction term Sf is obtained from the Manning equation, which is an
empirical formula for energy balance between gravity and friction, expressed
by the level h and flow q variables [Schütze et al., 2002] as

Sb =
n2q2

x,t

A2
x,tR

4/3
x,t

, (3)

where R = A
P

is the hydraulic radius, P ∈ R+ is the wetted perimeter and n ∈ R+
is the Manning coefficient. Note that by knowing a map f ∶ Ax,t ↦ hx,t, an
expression between qx,t flow and hx,t level is constructed.

Assumption C1. We assume a linear map f between the wetted-area Ax,t and
water level hx,t. It is assumed that semi-filled circular sewers are reasonably
well-approximated by rectangular pipe shapes, i.e.,

Rx,t =
Ax,t

Px,t
≈ whx,t

2hx,t +w
, (4)

where hx,t, x ∈ (0, L) is the water level and the cross section is parametrized by
the w channel width shown in Figure 3.

2Backwater occurs in sewers when the receiving water body becomes overloaded and
therefore water volumes are accumulating at downstream of the connected hydraulic structure
[Munier et al., 2008].
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3. System model

hx,t

w

Figure 3: Semi-filled circular pipe approximated with rectangular geometry.

The independent variables remaining in the simplified SV PDEs in eq.(1a)
and eq.(1b) are reduced to qx,t flow and hx,t level distributions on the domain
(0, L) ×R+, given by:

w
∂hx,t

∂t
+ ∂qx,t

∂x
= dx,t
δx

, (5a)

qx,t =
√
Sb
n

(whx,t)5/3

(2hx,t +w)2/3 , (5b)

which is an approximation of the full dynamic SV-PDEs. Note that Assumption
1 on the pipe geometry means a linear scaling from levels hx,t to flows qx,t,
which leads to inaccuracy for circular pipe profiles. However, the assumption
on the linear geometry profile keeps the model complexity low.

3.2 Reduced, data-driven transport model
In order to formulate the transport dynamics in a form more amenable to sys-
tem identification, the spatial discretization of the approximated SV-PDEs in
eq.(5a) and eq.(5b) is considered. The gravity pipes are partitioned into Nx
non-overlapping δx segments of length, while the signals hx,t, qx,t and dx,t are
approximated as piece-wise constant functions of the spatial coordinate x, as
shown in Figure 4.

q0,t qL,t

x=Lx=0

dx+δx,tdx,t dx+2δx,t dx+Nxδx,tdx+iδx,t

Figure 4: Gravity pipe divided into Nx, equal-sized, non-overlapping segments.

In Figure 4, q0,t and qL,t denote the flows corresponding to the upstream and
downstream boundaries, respectively. Furthermore, dx+iδx,t represents the lat-
eral inflows (disturbances) entering the ith pipe section, where i ∈ {1,2, ...,Nx}.

Remark C1. It is not necessary to partition gravity pipes into equal-sized δx
sections. The length of the spatial step δx can be defined by the placement of
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manholes along the sewer pipes, among which some may be equipped with level
sensors.

Remark C2. Close to the downstream end of gravity pipes (x = L), the dis-
charge conditions of qL,t are influenced by the receiving hydraulic structure and
the corresponding water levels [Roberson and Crowe, 1993], [Dey, 2002]. This
relation imposes dynamics governing the water level hL,t in the last section.
In this study, the effect of these types of dynamics are excluded, hence the
positioning of water level sensors close to x = L are chosen such that

L − x ≥ smin, (6)

where smin ∈ R+ denotes the minimal distance from the end of the channel where
level sensors at position x should be placed. The criteria of choosing smin for
the free fall condition of fluids, based on the diameter of open-channel pipes is
detailed in [Roberson and Crowe, 1993, pp.698-699].

The spatial discretization of eq.(5a) and eq.(5b) is done by the backward
Euler method. The left boundary (upstream) is defined at x = 0 and the right
boundary (downstream) at x = L. Then, the SV-PDEs are reduced to the
following system of finite dimensional ODEs:

dhx,t

dt
= θ1(qx−δx,t − qx,t + dx,t), ∀ x ∈ (0, L), (7a)

qx,t = θ2
h

5/3
x,t

(hx,t + θ3)2/3 , ∀ x ∈ (0, L), (7b)

where the physical constants and the spatial time step are lumped into the
parameters

θ1 ≜
1
wδx

, θ2 ≜
√
Sbw

5
3

2 2
3n

, θ3 ≜
w

2
, (8)

where θ1, θ2, θ3 ∈ R+. Note that θ3 is directly related to the width parameter w
and θ1 would change along the pipe in case of non-equal spatial steps δx. For
the sake of simplicity, the model is presented with fixed δx spatial steps.

Remark C3. Due to the spatial discretization, numerical distortion is intro-
duced in the traveling wave [Xu et al., 2012], which compensates for the flow
attenuation phenomena in gravity pipes. This artificial attenuation vanishes as
δx→ 0.

In order to obtain the state equation with water levels as states, the section
flow distribution qx,t in eq.(7a) is substituted with water levels from eq.(7b),
which yields

dhx,t

dt
= θ1θ2(

h
5/3
x−δx,t

(hx−δx,t +θ3)2/3 −
h

5/3
x,t

(hx,t +θ3)2/3) + θ1dx,t, (9)
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where, opposed to previous work in [Balla et al., 2020a], the flow balance in
the SV equations is reformulated with physically measurable water levels. For
ease of notation, let us define a non-linear map g ∶ R+ → R+ as

g ∶ (hx,t, θ3) ↦
h

5/3
x,t

(hx,t + θ3)2/3 , ∀ x ∈ (0, L). (10)

Then, the transport flow model is completed by introducing the boundary
conditions into the Nx coupled ODEs, i.e.,

dh0,t

dt
= θ1(q0,t + d0,t) − θ1θ2g(hδx,t, θ3),
⋮

dhx,t

dt
= θ1θ2(g(hx−δx,t, θ3) − g(hx,t, θ3)) + θ1dx,t, (11)
⋮

dhL,t

dt
= θ1θ2g(hL−δx,t, θ3) + θ1(dL,t − qL,t),

where dx,t is the unknown disturbances in form of lateral inflows. Besides, the
upstream boundary flow q0,t is subject to control and hereinafter denoted as
u. The downstream boundary flow qL,t is the discharged output, which we
consider as the controlled model output, hereinafter denoted as

y = θ2g(hL,t, θ3), (12)

where hL,t represents the water level at the downstream boundary x = L. Note
that eq.(12) is the parametric form of eq.(3), relating the level to flow.

3.3 Disturbance model
The proposed model described in eq.(11) aggregates the unknown, scaled dis-
turbances in dx,t. The disturbances are typically composed of several different
types of inflows:

dx,t ≜ drx,t + dhx,t + dgx,t, ∀ x ∈ (0, L), (13)

where drx,t denotes rain runoff, dhx,t is the household flow due to human activity
and dgx,t stands for groundwater.

Assumption C2. The disturbance flow generated by households has an in-
herent periodicity, such that dhx,t = dhx,t+T , where T typically corresponds to
one day. Moreover, disturbances generated by groundwater infiltration fulfill
the constraint ∑Nx

i=1 d
g
i,t = Nxd

g
j,t, ∀ j ∈ {1,2, ...,Nx}, i.e. uniformly distributed

along the whole length of gravity sewer pipes.

Remark C4. Seasonality with different time periodicity have been considered
(e.g. weeks, months) in [Livera et al., 2011], where methodologies such as
Fourier models have been used to decompose seasonal components in a broad
range of applications.
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Besides, the rain runoff drx,t is generated by the dynamics of catchments
where the intensity of rain precipitation is typically provided by weather fore-
casts. Several works have been done on relating rain radar forecasts to actual
runoff flow in UDNs, e.g., [Löwe et al., 2016], [Löwe et al., 2014], [Ma et al.,
2018], [Chang et al., 2001].

For modelling the periodic household flows dhx,t and the constant ground-
water dgx,t flows, Fourier series are utilized. For simplicity, let us assume that
drx,t = 0, ∀ x ∈ (0, L), i.e., assuming a dry-weather period. Then, the scaled
disturbances in eq.(11) are defined as:

d̃x,t ≜ d̃gx,t + d̃hx,t (14)

≜ λ0 +
k

∑
j=1

(λ1j cos(jωt) + λ2j sin(jωt)),

where the set of disturbance parameters is λ ≜ {λ0, λ11, λ21, ..., λ1k, λ2k} ∈
R2k+1. The angular frequency ω corresponds to a period of one day and k ≥ 2 is
the number of frequency terms in the truncated Fourier series. The transport
model in eq.(11) and eq.(12), in combination with the disturbance model in
eq.(14) are used to find parameters θ and λ.

3.4 Storage model
Stored volume within the network is represented through wastewater pits,
among which some are specifically constructed to retent extreme peak flows
caused by sudden rainfall runoffs. An example for such storage structure is
shown in Figure 5. These pits are distinguished from single wastewater pits
due to their large capacity and therefore referred to as retention pits in the rest
of this paper. For each storage element at pumping station i ∈ {1, ...,Ns}, the
infinitesimal level change is computed as the sum of all in- and outflows as

dfV (hs,i)
dt

= ds,i +
Ny

∑
j=1

yj − ui, (15)

where ds denotes disturbance inflows to storage tanks, hs is the water level
in storage units and u is the sum of controlled pump flows moving the water
towards the next pumping station in line. Note that u is equivalent to the
inlet flow q0,t of a gravity pipe located between interconnected storage units,
described in eq.(11). Besides, Ny is the number of gravity-driven transport
links discharging to the ith storage unit and yj is the arriving discharge from
the jth upstream pumping station, defined in eq.(12). Ns denotes the overall
number of pumping stations in the UDN. Moreover, let us consider a map
fV ∶ R+ → R+ from water level h to water volume V , where fV is strictly
monotonic increasing.
Assumption C3. For storage elements, fV (h) in eq.(15) is approximated
with a piece-wise linear, strictly monotonic increasing function, parameterized
by the level-flow constant of storage tanks.
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Retention pits classify for the assumption on piece-wise linear behavior, while
the relation between level and volume simplifies to linear in case of single pits.
The piece-wise linear relation along with the hydraulic structure is shown in
Figure 5.

h

V

Retention tank
WW pit

f−1
V

(V )

K1

K2

Figure 5: Level-Volume conversion for waste water pit with retention tank.

Tank constantsK1 andK2 correspond to the slope of the h−V conversion curve,
where K2 is only relevant if pits are equipped with retention tanks. Note that
in dry weather the storage capacity of pits is sufficient, hence wastewater flow
is typically bypassing the retention tank, acting as a single pit.

3.5 Network description
The links between system components define the topology of the network. The
topology considered is a directed tree-graph with nodes representing storage
(except the root) and edges transporting flow in between the nodes towards
the root. The root of the graph is an outlet point, where the flow is discharged
to the receiving environment, e.g., to the WWTP. The tree structure topology
is shown in Figure 6.

WWTP
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g65
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u ≜ {u1, ..., u6} d ≜ {ds, dg}y ≜ {y1, ..., y6}

Figure 6: Graph representation where the filled nodes are pumping stations, empty nodes
are manholes, whereas edges represent transport pipe segments.

Let us denote the set of nodes corresponding to tanks and pits at the pump-
ing stations with S ≜ {si = (hs,i, ds,i, ui) ∣ i ∈ {1, ...,Ns}}, where hs,i is the
water level, ds,i is the unknown flow disturbance defined in eq.(13) and ui is
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the controlled flow of the ith pumping station. The remaining nodes represent
manholes along the gravity sewer transport links. These set of nodes are de-
noted with G ≜ {gij = (hg,ij , dg,ij) ∣ i ∈ {1, ...,Ns}, j ∈ {1, ...,Ng}}, where hg,ij
are the water levels in the jth segment of the gravity pipe rooting from the ith
upstream station. Furthermore, dg,ij are lateral inflows along the ith gravity
pipe, entering through the jth manhole. These disturbance components are
given in eq.(13). The numbering of manholes along the gravity pipes denotes
the upstream pumping station (first digit) from which they are numbered in an
increasing order towards the downstream station (second digit). The connec-
tions between the storage and junction nodes are defined by the piping layout.

Note that the set of G junction points also represents storage by means of
the volume of pipe sections, as the spatially discretized and reduced SV-based
model is equivalent to volumes connected in series, where the set of water levels
{hg,i1, ..., hg,iNg}, i ∈ {1, ...,Ns} relate to water volumes stored in each segment.
However, we distinguish between S and G for the reason that nodes in S are
subject to control u.

3.6 Discrete network model
In this study, discrete-time network dynamics are utilized for solving the MHE
and NMPC problems. The transport and storage dynamics, described in Sec-
tion 3.2 and Section 3.4, are given for each individual network element, respec-
tively, as

ĥg(tk+1) =Fθ,λ(u(tk), ĥg(tk),dg(tk)), (16a)
ĥs(tk+1) =H(u(tk), ĥs(tk), ds(tk), ŷ(tk)), (16b)

ŷ(tk) =Gθ(ĥg(tk)), (16c)

where the numerical integration from tk to tk+1 is done by the fixed step,
4th order Runge-Kutta method. Moreover, ĥg(tk) ∈ RNx is the vector of wa-
ter levels along a transport link between two pumping stations. The system
dynamics corresponding to transport flows in eq.(11) are defined by Fθ,λ ∶
R+ × RNx × RNx → RNx . The discrete storage dynamics are given by H ∶
R+ ×R+ ×R+ ×RNy → R+, where Ny is the number of transport links discharg-
ing to the specific storage node. The outputs are represented by Gθ ∶ RNx → R,
corresponding to the discharged gravity flow previously described in eq.(12).

4 Moving Horizon Estimation
In order to incorporate system knowledge in the state and parameter estimation
in form of constraints, a MHE approach is utilized in this paper. Past data
samples of the inputs, i.e., pump flows {u(tk−He), u(tk−He+1), ..., u(tk)} and the
outputs, i.e., discharged gravity pipe flows {y(tk−He), y(tk−He+1), ..., y(tk)} are
used up to the current time sample tk, where He is the estimation horizon.
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Moreover, for each transport link i ∈ {1, ...,Ns}, let us define hg,i ∈ RNx as the
vector of water levels in all j ∈ {1, ...,Ng} pipe segments. The MHE problem
regarding states (MHSE) and parameters (MHPE) is solved for each transport
link i individually. Therefore, we ease the notation and discard the i and j
indices and we present the parameter and state estimation for a single transport
link.

Additional outputs may be available by means of water level sensor mea-
surements, placed in manholes along the main transporting sewers. Hence, we
define C ∈ RN0×Nx matrix, associated with a linear mapping which picks all the
measured states. N0 is the number of water level sensors along the transport
link. Then, the output vector is given by

zg = Chg + ν, (17)

where ν ∈NID(0, σ2) is white Gaussian noise accounting for measurement cor-
ruption, and zg ∈ RN0 . Past data samples {zg(tk−He),zg(tk−He+1), ...,zg(tk)}
of these outputs are utilized together with the input u and output y flow data.

The main purpose of the MHPE is to identify the unknown dynamics of
each transport link without using information about the physical properties
of sewer pipes, such as pipe diameters, length, slope or roughness. Due to
the linearized level-flow scaling introduced by Assumption 1 in Section 3.1,
fixed model parameters might result in inaccurate flow predictions, based on
whether the pipes are close to being filled or semi-filled. These characteristics
can change over time due to seasonality, hence we utilize the MHPE method,
attempting to adapt the model parameters to varying flow conditions. More-
over, the dynamics might change over time due to sludge accumulating within
certain sections of the pipes, for which the proposed MHPE method is also able
to account. As a natural extension, the states are also estimated in a moving
horizon fashion (MHSE).

In the following, we distinguish between the horizons of parameter and state
estimations. For parameter estimation, we denote the length of the horizon with
Hpe and for state estimation with Hse. Due to the slowly changing dynamics
of sewer pipes, we argue that the MHPE is sufficient to carry out above the
frequency of the NMPC, having at least one day up to a week long Hpe horizon.
However, the MHSE problem is executed with a minimum of one day long
horizon and with the same frequency as the NMPC. The one day long MHSE
horizon is due to the inherent periodicity of the waste water disturbance inflows
dh. Moreover, by calling the MHPE less frequent than the NMPC, we lower
the typically high computation demand of MHE algorithms, where state and
parameter estimations are carried out simultaneously [Allgöwer et al., 1999].

4.1 Parameter estimation
The MHPE problem of transport flows is formulated as a constrained, least-
squares nonlinear minimization problem.
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Remark C5. The control inputs u, depicted in Fig. Figure 6, are estimated
considering the polynomial expression of fixed-speed wastewater pumps in the
form

û = sµ0 + sµ1∆p + sµ2Pp, (18)

where s is the number of running pumps at the pumping station, ∆p is the
differential pressure and Pp is the power consumption of the pumps [Kallesøe
and Knudsen, 2016]. Besides, the outputs y corresponding to discharged flows
in Fig. Figure 6 are estimated using mass conservation, detailed in [Kallesøe
and Knudsen, 2016]. In this work, we use the outcome of the referenced flow
estimation algorithm to provide outputs for the MHE problem.

Let θ ≜ {θ1, θ2, θ3} ∈ R+ denote the set of bounded system parameters and
λ ∈ R denote the parameters corresponding to the Fourier disturbance model.
Then, for each transport link, the initial states ĥg(t0), the parameters θ and
λ are found by solving the following finite-dimensional constrained Nonlinear
Programming (NLP) problem at time tk:

⎛
⎜
⎝

θ∗

λ∗

ĥ∗g(t0)

⎞
⎟
⎠
= argmin
θ,λ,ĥg(t0)

k

∑
i=k−Hpe

(y(ti) − ŷ(ti))
2 (19a)

+W1∣∣zg(ti) − ẑg(ti)∣∣2,

subject to sewer dynamics:

ĥg(ti+1) =Fθ,λ(u(ti), ĥg(ti),dg(ti)), (19b)
ŷ(ti) =Gθ(ĥg(ti)), (19c)
ẑg(ti) =Cĥg(ti), (19d)

and inequality constraints:

0 ≤ ĥg(ti) ≤hg, (19e)
0 < θ ≤ θ, (19f)
0 ≤ ŷ(ti) ≤ y, (19g)

where ĥg(ti) ∈ RNx is the vector of states corresponding to a transport link.
Note that y represents the discharged flow, while hg represents the vector of
water levels in the manholes. Therefore, we use W1 as a weighing constant in
eq.(19a), scaling the water levels to the magnitudes of the discharged flows. The
constraints in eq.(19e), eq.(19f) and eq.(19g) impose bounds on state variables,
parameters and the output, respectively. Note that the states ĥg and the
output variable y correspond to physically measurable water levels and the
discharged flow in sewer pipes, respectively. The water level measurements
addressed in eq.(17) are denoted by zg. The state and output bounds are
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chosen consistent with physically meaningful values, such as water levels and
flows are never negative inside the pipes.

Moreover, the upper bound on the states hg is the maximum allowed water
level in manholes defined by the physical height from the bottom to the surface.
From eq.(8), we know that the pipe parameters θ are positive. Besides, using
eq.(8), we approximate a physically meaningful maximum value for the pipe
diameters, spatial step, time steps, and friction values. In eq.(19g), the flow
is assumed to be non-negative inside the pipe and the maximum is defined
as the physically possible full-pipe flow. The bound constrained nonlinear
minimization problem in eq.(19) is then solved via a gradient descent algorithm.

Note that the number of sections Nx, illustrated in Figure 4, is treated as
an auxiliary variable in the NLP, meaning that the MHPE problem can be
carried out multiple times with different grid sizes to find the optimal number
of sections regarding some performance index, e.g., Root Mean Squared Error
(RMSE). This procedure is not detailed here, as the reader may consult a
previous study focusing on how to choose grid size for a flow-based SV-PDE
model in [Balla et al., 2020a].

4.2 State estimation
Full state measurement in the proposed sewer system model requires sensor
installation inside all available manholes within the network. This is neither
economically feasible, nor required by the control point of view. However, it is
assumed that there is a subset of states zg which are measured. Similarly to
the MHPE problem in eq.(19a), the full system states, i.e., hg water levels are
being reconstructed out of a few output measurements by means of the MHSE.
However opposed to the MHPE problem in eq.(19a), the state estimation is
solved at each control time step tk, thus providing initial state estimates for
the NMPC. The MHSE reconstructs hg(tk−Hse), ...,hg(tk) states, based on the
measured inputs u(tk−Hse), ...,u(tk), measured outputs y(tk−Hse), ..., y(tk) and
zg(tk−Hse), ...,zg(tk) over the horizon Hse, while the dynamics are provided as
constraints. The MHSE is defined by the following optimization problem:

⎛
⎜
⎝

ĥ∗g(tk−Hse)
⋮

ĥ∗g(tk)

⎞
⎟
⎠
= argmin
ĥg(tk−Hse),...,ĥg(tk)

k

∑
i=k−Hse

(y(ti) − ŷ(ti))
2

+W2∣∣zg(ti) − ẑg(ti)∣∣2, (20)

subject to the dynamics in eq.(19b) to eq.(19d), the state constraint in eq.(19e)
and the output constraint in eq.(19g). W2 is a weighing matrix for scaling levels
to flows, similarly as in eq.(19a). Note that from the solution of the MHSE
problem in eq.(20), the estimated state vector at the current time step ĥ∗g(tk)
is used. The same gradient descent algorithm [Wills and Ninness, 2008] is used
to solve the problem in eq.(20), as for the MHPE.
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5 Control design

The vector of control variables is defined by u ∈ RNs , where all individual pump
flows are aggregated at the nodes s ∈ S, representing the Ns pumping stations
in the network. The states correspond to levels along transport links and levels
in storage units, e.g., pits. The state vector is defined by:

h ≜ (h⊺s ,h⊺g,1,h⊺g,2, ...,h⊺g,Ns
)⊺, (21)

where hs ∈ RNs represents the vector of levels in storage elements and for each
i ∈ {1, ...,Ns} transport link hg,i ∈ RNx,i consists of Nx,i entries depending on
how many sections each transport link is discretized into. The outputs, i.e.,
discharged flows at the end of each transport link, are given by:

y ≜ (y1, y2, ..., yNs)⊺, (22)

where the last element yNs is the discharged flow leading to the root of the
network, which we hereinafter denote as yw. Introduced previously, the closed-
loop control scheme together with the MHE problem is depicted in Figure 1.
Note that the rain run-off dynamics along with the weather forecasts provide
flow inputs to the proposed closed-loop control scheme.

5.1 NMPC problem
To account for both the dry- and wet-weather loads in a computationally ef-
ficient way, the NMPC problem is formulated over two subsequent prediction
horizons. To this end, let Hp1 denote the predictions over the near future
(nowcasts) and Hp2 the predictions further in the future (forecasts), respec-
tively. This formulation of the NMPC problem is motivated by the inherent
periodicity of the household disturbances dh, which typically corresponds to
one day. However, the network is exposed to large disturbance loads in terms
of the dr rain run-off, where the so-called nowcasts are reliable only within
a short horizon. According to [Löwe et al., 2014], rainfall radars can provide
sufficient accuracy of spatial and temporal resolution for urban catchments
only up to a 2 (h) horizon. Therefore, computing the decision variables for
T = 24 (h) is unnecessary, and results in high computational costs. Instead, let
Hp =Hp1 +Hp2 be the entire length of the horizon, Ts the time step and let us
define h ≜ [h⊺s ,h⊺g]⊺ as the entire state vector. Then, the NMPC problem for
the entire network is given as
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min
∆u(0),...,∆u(Hp1)

∆u(Hp1+1),...,∆u(Hp−1)

Hp−1
∑
k=0
L(∆u(tk),h(tk), yw(tk)) (23a)

+ S(h(tHp))

subject to transport link dynamics

hg(tk+1) =Fθ,λ(u(tk),hg(tk),dg(tk)), (23b)
u(tk+1) =u(tk) +∆u(tk), (23c)
yw(tk) =Gθ(hg(tk)), (23d)

storage dynamics

hs(tk+1) =H(u(tk),hs(tk),ds(tk),y(tk)), (23e)

state, input and output constraints

V +Vof(tk) ≤ fV (hs(tk)) ≤ V +Vof(tk), (23f)
0 ≤ hg(tk) ≤ hg, (23g)
u ≤ u(tk) ≤ u, (23h)
0 ≤ yw(tk) ≤ yw, (23i)

terminal constraint

V ≤ fV (hs(tHp)) ≤ V , (23j)
0 ≤ hg(tHp) ≤ hg, (23k)

where ∆u(tk) ≜ u(tk+1) − u(tk) is the input change. The integral action ac-
counts for smooth and slow system response, avoiding sudden jumps in the
control action. The proposed optimization problem in eq.(23a) is solved for
[∆u⊺(0), ...,∆u⊺(Hp1)]⊺ ∈ RHp1 , whereas the problem of finding the decision
variables over Hp2 is reduced to finding Hp2/τ number of optimization vari-
ables, where τ defines how many Ts control steps each decision variable is kept
constant. This is due to the fact that the control over Hp2 does not require
the same precision as for the nowcasts over Hp1 . The stage and terminal costs
formulated in eq.(23a) are sums of square-type functions, and the multiple
operational objectives in the stage cost L are detailed in Section 5.2.

The dynamics Fθ,λ, H and Gθ are defined in eq.(16a), eq.(16b), eq.(16c)
for the entire network and the output equation in eq.(23d) is formulated on the
discharged flow yw arriving to the root of the network. The nonlinear level to
volume conversion is kept outside of the optimization, where fV is a piece-wise
linear map from eq.(15). Furthermore, the control is subject to state constraints
on pipe states in eq.(23g) and storage states in eq.(23f), where Vof ∈ RNs is the
vector of slack variables, lifting the upper and lower state bounds. This variable
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is considered as a virtual volume triggered at times when the physical limits
of storage elements are extended. In case of an overflow, the slack variable
lifts both the lower V and upper V state bounds, thereby keeping track of
the excess storage [Gelormino and Ricker, 1994]. The upper bound of states
corresponds to the physically maximum volume capacity in the storage nodes.
The lower limit is defined by the user with the criteria that a minimum volume
of water needs to be kept in the storage tanks at all times to fully cover the
wastewater pumps, hence avoiding the dry-run of pumps.

Remark C6. In case of overflows, the excess water volume leaves the network
immediately. This is assured by constraining the slack variables

0 ≤ Vof(tk), (24)

meaning that spilled sewage escapes all s ∈ S storage nodes.

Furthermore, eq.(23h) imposes physical bounds on the minimum and maximum
flow capacity of pumps. Equation eq.(23i) formulates a constraint regarding
the inflow capacity of the WWTP, where yw is the maximum allowed inflow
defined by the size of the WWTP. For closed-loop stability considerations of
the NMPC, the terminal constrains in eq.(23j) and eq.(23k) are introduced
along with the terminal cost S in eq.(23a) to enforce stability [Allgöwer et al.,
1999]. The formulation in eq.(23a) is solved via a gradient descent algorithm,
where the dynamics are discretized according to Section 3.6.

5.2 Objectives
The control problem addressed in eq.(23) has multiple objectives with different
priorities. For an extensive analysis on choosing objectives in UDN control,
consult [Ocampo-Martinez, 2010; Mollerup et al., 2016]. To prioritize objec-
tives, the stage cost is formulated as a linearly weighted sum and the terminal
cost is given as

L(∆u(tk),h(tk), yw(tk)) ≜
Γ
∑
j=1

λjµjFj(tk), (25a)

S(h(tHp)) ≜ h⊺(tHp)Ph(tHp), (25b)

where λj denotes the scaling weights among the different objectives and Γ is
the total number of the control objectives. The scaling constants µj normalize
each objective term to dimensionless values, such that water levels and flows
become comparable. Furthermore, the terminal cost S is defined for all states,
where the symmetric positive definite matrix P is the solution to the associated
Ricatti equation. Note that P is designed based on the weights λj on the
state and input terms in the stage cost function L. Moreover, the Jacobian
linearization of the network model is considered at an operating point, where
state values are at their 25 % utilization of their upper limit. Furthermore,
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disturbance and input flows are considered at the daily mean of household
wastewater production without rain.

The most common control criteria in sewer network control is related to
overflow minimization

F1(tk) ≜ V ⊺
of(tk)Ω1Vof(tk), (26)

where Vof ∈ RNs is the vector of slack variables, representing overflow volumes.
The overflows Vof between stations are prioritized according to the diagonal
Ω1 matrix, where diag (Ω1) ∈ [0,1]. Note that the weight corresponding to the
overflow objective λ1 is significantly higher than any other weights, in order to
make the use of the overflow slack variables undesirable if possible.

The penalty on water level in storage elements is given by

F2(tk) ≜ h⊺s(tk)Ω2hs(tk), (27)

where hs ∈ RNs is the vector of water levels in storage nodes and Ω2 is the
diagonal weighting matrix, where diag (Ω2) ∈ [0,1]. The level in storage nodes
is minimized to avoid long retention times and thus odor problems occurring
in the waste water tanks. Moreover, the weight matrix Ω2 allows to adjust the
filling sensitivity of storage elements, meaning that sensitive tanks are filled
slower and emptied faster than less sensitive storage tanks.

The inputs are minimized such that

F3(tk) ≜ ∆u⊺(tk)Ω3∆u(tk), (28)

where ∆u ∈ RNs is the vector of input change regarding the aggregated flows
delivered by sewer pumps placed at each network node s ∈ S. Moreover, Ω3 is
the weighting matrix between the network nodes, where diag (Ω3) ∈ [0,1].

The system states in any g ∈ G nodes, i.e., gravity pipe sections are water
levels, representing storage along the edges of the underlying network graph.
Hence, we penalize manholes prone to suffer overflows:

F4(tk) ≜ h⊺g(tk)Ω4hg(tk), (29)

where hg is the vector consisting of selected network nodes which can overflow
under high loads. Similarly to all objectives, diag (Ω4) ∈ [0,1] allows to adjust
priority of overflows and filling sensitivity of manholes.

In this work, we consider the objective of controlling the inflow to the
WWTP, which is formulated as follows

F5(tk) ≜ (yw(tk) −
1
Hp

Hp−1
∑
k=0

yw(tk))
2
, (30)

where the inflow variation to the WWTP is minimized. This is achieved, by
calculating a reference flow as an average inflow over the same time period as the
time periodicity of the dh houshold disturbances, which typically corresponds
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to one day. This objective allows to correct the irregular inflow pattern to the
root of the network, which influences negatively the operation of the WWTP.
An extensive study on the regulation of inlet flow to the WWTP is detailed in
[van Heeringen et al., 2016].

6 Numerical results
We now present the numerical results. The results are related to the closed-loop
control scheme performance when both the MHE and NMPC are considered.
As presented in Section 3.6, the network model uses the fixed step, 4th order
Runge-Kutta method for the finite-difference approximation of the derivative
terms. The optimization problem related to the MHSE and MHPE has been
solved via a Gauss-Newton gradient-based method. This solver is chosen due
to the reliable estimate of the Hessian for least-squares type problems, such as
the MHE formulation in this paper [Wills and Ninness, 2008]. Furthermore, the
optimization problem related to the NMPC has been solved via direct multiple
shooting in the symbolic framework CasADI [Andersson et al., 2019]. A primer-
dual interior point solver IPOPT [Wächter and Biegler, 2006] has been chosen to
solve the nonlinear optimization problem in eq.(23), due to its ability to leverage
sparse linear algebra computations. Since the sampling interval is significantly
short compared to the dynamics and the sampling time of the NMPC, the
optimization problem has been solved by warm-starting at each control time
step. Error tolerance of 10−5 has been chosen in both the MHE and NMPC
problems. Moreover, all the numerical experiments have been carried out on a
2.6 (GHz), Intel Core i7 machine with 16-GB RAM.

Following the model methodology discussed in Section 3, the control-oriented
model is identified based on measurements extracted from a physically-based
HiFi network, shown in Figure 7 (left). The topological representation as a di-
rected graph along with the location of sensors are depicted in Figure 7 (right).
To test the NMPC with the MHE strategy, real rain intensity and wastewater
flow are utilized starting from 1 September 2019 to 30 September 20193. These
data are used as the load to the HiFi case study network.

6.1 Baseline controller
In this work, we follow the guidelines proposed in [Lund et al., 2018] to bench-
mark the MPC performance, where the current state-of-art uses CSO and
flooded volume as an evaluation measure. The proposed NMPC/MHE strategy
is tested against an on/off rule-based controller, most commonly used as base-
line control in both practice and literature [Lund et al., 2018], [García et al.,
2015].

3Rain intensity data have been extracted from the weather archive of the Danish Meteo-
rological Institute (DMI), while the domestic wastewater flow measurement data have been
obtained and scaled down from the municipality of Fredericia, Denmark.
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The switching rule together with the aggregated flow provided by the pumps
at each pumping station under the rule-based control is given by

u(tk) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u, if hs(tk) ≥ hs, ∀tk,
u, if hs(tk) ≤ hs, ∀tk,
u(tk−1), otherwise, ∀tk,

(31)

where hs(tk) is the measured water level in the storage element. Upper and
lower bounds of the inlet flow u,u are equivalent to the bounds in eq.(23h),
corresponding to the maximum and minimum flow capacity of the pumps.
Threshold values hs, hs are equivalent to eq.(23f).

6.2 Case study
The topological properties of the HiFi network shown in Figure 7 are summa-
rized in Table 1. We consider a combined sewer network, where both rain runoff

Attribute Number Variable Unit
Single pits 3 hs (m)
Retention pits 1 hs (m)
Pumping stations 4 u (m3/h) or (m3/s)
Level sensors in manholes 7 hg (m)
Catchment runoff 45 dr (m3/h) or (m3/s)
Waste water inflow 10 dh (m3/h) or (m3/s)
Treatment plants 1 yw (m3/h) or (m3/s)

Table 1: MIKE Urban HiFi simulation properties.

and wastewater enters the sewer via the catchments (yellow areas) and the man-
holes (junction points), respectively. The network consists of 170 manholes, 170
gravity pipes, moreover three single pits (s1, s3 and s4) and a retention pit (s2).
Using the proposed modelling methodology, the tree graph representation of
the UDN and the control variables in the reduced graph representation are
given by:

u ≜(u1, u2, u3, u4)⊺, (32a)
h ≜(hs1 , hs2 , hs3 , hs4 ,h

⊺
g1 ,h

⊺
g2 ,h

⊺
g3 ,h

⊺
g4)

⊺, (32b)
y ≜(y1, y2, y3, yw)⊺, (32c)
d ≜(ds1 , ds2 , ds3 , ds4 , dg13 , dg22 , dg33 , dg43)⊺, (32d)

where the state vector h consists of the gravity pipe subvector states hg1 ∈ R5,
hg2 ∈ R3, hg3 ∈ R4, hg4 ∈ R5. Moreover, the number of pumping stations is
Ns = 4 and the rain and domestic wastewater disturbances are concentrated
on certain network nodes. The control time step of the NMPC is TNMPC =
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10 (min), while the rule-based controllers operate with a TOn/Off = 1 (min)
sampling period. The prediction horizon for nowcasts is Hp1 = 2 (hours) and
for the forecasts Hp2 = 22 (hours), summing up to a total of one-day horizon.

The MHPE is carried out with a horizon Hpe = 2 (day) and utilized with
a Tpe = 6 (hours) period time. At every 6 (hours), the MHPE uses data from
the past two days and updates the θ system and λ disturbance parameters
accordingly. A minimum of two days has been chosen to detect the one-day
periodicity of the household wastewater with the Fourier disturbance model.
The MHSE is carried out with the same horizon as the MHPE, i.e., Hse = 2
(day) and utilized with the same frequency as the NMPC, i.e., Tse = 10 (min).

6.3 Simulation environment
To test the NMPC/MHE controller, the MIKE Urban [DHI, 2017] simulation
software has been used to simulate the HiFi network model depicted in Fig-
ure 7. MIKE Urban allows for the hydraulic and hydrodynamic simulation of
flows and water levels by numerically solving the full SV equations in eq.(1).
The model of the network in MIKE Urban is defined by the true physical pa-
rameters of the hydraulic components. In Figure 7, the catchments (yellow
areas) are connected to manholes, hence water volumes enter the pipe network
through the network nodes. The simulation is done in two steps: First, the
network loads are computed with the catchment dynamics. Then, the rain
runoff together with the household waste and groundwater appears as a load
(marked with red arrows in Figure 7).

In this work, the NMPC/MHE strategy is used as an upper level controller,
where the MIKE Urban model is simulated as a virtual reality. To this end, we
utilize the MIKE 1D Application Programming Interface (API) [DHI, 2019],
[DHI] which allows us for setting flow references to the pumps and reading
flow and level values of hydraulic structures during simulation. These flow
references are calculated at every TNMPC time and then used as set-points for
local PID controllers based on (virtual) flow sensor measurements placed right
after the downstream end of the pumps. The HiFi model runs with a sampling
time of Ton/off, however the set-points for the PIDs are kept constant during
the time interval TNMPC.

6.4 Identification results
To estimate the parameters and the initial states in transport pipes, the mea-
surements z along with the historical data on the estimated inlet and discharged
flows u and y are utilized. To show the capabilities of the MHE approach, the
initial conditions estimated for the problem in eq.(23) are compared to the
measurements in the HiFi simulation, shown in Fig Figure 8.
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Figure 8: One-step prediction of y1, y2 and y3 gravity flows.

The results show 15 days, where the estimated flow ŷ(t0) is the result of the
MHPE and MHSE blocks depicted in Figure 1. Note that instead of showing
the estimated states ĥg(t0), we rather show the discharged flow ŷ(t0), obtained
by eq.(19c). From the application point of view, this is reasonable, since the
water level in the last section of a transport pipe does not indicate how the
volume is affected in the receiving hydraulic structure (storage tanks), opposed
to the volumetric flow rate. Besides, for each transport link g1, g2 and g3, we
show the average pipe fullness along x ∈ L length of the pipes, indicating the
capacity of each pipeline.
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In the HiFi simulation environment, all sewer pipes are circular, hence the
flow-level translation imposed by Assumption 1 (Section 3) is only accurate
for small variations of water level. In order to show the variations of water
levels inside gravity pipes, we illustrate two different operating regions (shaded
areas in Fig. 8.). The middle range of the pipe is defined between 25 − 75
%, moreover the lower and upper regions between 0 − 25 % and 75 − 100 %,
respectively. Small level variations within these regions are expected to yield
accurate flow estimates based on Assumption 1.

As shown in Fig. Figure 8, the one-step predictions of the MHE strategy
produces accurate estimates of the discharged flows ŷ(t0) in comparison with
the flow measurements (y(t0)) from the HiFi model. This is achieved without
using any flow sensor in the network, however, assuming the linear flow-level
relation in the internal model. The prediction results in Figure 8 show in-
accurate flow estimates at certain time steps imposed by the simplified pipe
geometries. This is because the internal model with the simplified geometry
attempts to produce flows close to the ones obtained by the linear flow-level
mapping, rather than the actual flow. This is most visible on y3 at periods
encircled with dashed black lines. During both of these periods, the pipes are
filled up from 25 % to 50 %, where the previous level with the time window
of the MHPE only provides information of low-filled, slow-varying level condi-
tions. Hence, the internal model underestimates the actual flow by calculating
lower volume than there is inside the middle operating range of circular pipes.

6.5 Control results
The control results aim to show the benefits of distributing level sensors along
the network to obtain the data-driven network model from the full SV-PDEs.
The proposed methodology is compared with a traditional, two-point controller
detailed in Section 6.1, most commonly used by water utility operators. The
NMPC acts as a global controller and computes reference points to local con-
trollers (as depicted in Figure 1). To evaluate the closed-loop performance of
the NMPC/MHE strategy, we selected two days with heavy overflows due to
the insufficient capacity in the network. The numerical results are shown in
Figure 9-A and Figure 9-B for each i ∈ {1, ...,Ns} pumping station, showing
the time evaluation of the disturbances, overflows, tank levels and the pumped
inlet flows. In the case study, all Ω weight values are set equal, hence none
of the stations are prioritized over the other. This means that overflow and
the filling sensitivities are not prioritized. As the overflows are not avoidable
over the selected two days period, the overall goal is to reduce the amount of
flooded volume.

The disturbance signals used in the HiFi simulator are historic rain and
wastewater flows. To evaluate the NMPC/MHE performance under uncer-
tainty, we generated imperfect forecasts for the internal model of the NMPC.
To this end, n = 10 different disturbance scenarios have been created by adding
normally distributed random data on top of the historic flow signals.
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As shown in Figure 9-A/B(a), (b), (i), and (j), a set of ensemble of forecasts is
produced, indicating a range of possible disturbances. The characterization of
the uncertainty for each disturbance is given in the Appendix.

To show the deviation between the prediction by the controller and the
state measurement retrieved from the HiFi simulator under uncertainty, we
indicated the one-step predictions in Figure 9-A/B(e), (f), (m), and (n) with
the dashed red line. Note that the upper constraint is violated under overflow
events, due to the slack approximating the volume of overflows. Furthermore,
the lower bounds are violated in case the forecasts indicate higher volumes
than expected, ending up in the dry-run of the pumps. The NMPC/MHE
strategy overflows the upstream tanks (s1, s3 and s4) at times where the rule-
based method avoids overflows. This is depicted in Figure 9-A/B(c), (k) and
(l), where all storage nodes are prepared by being emptied before the load
increases on the network and therefore the controllers distribute the flooded
volumes among the corresponding stations, as shown in Figure 9-A/B(e), (m)
and (n). Opposed to the rule-based strategy, the overflows are intentional and
coordinated, thereby avoiding the overload on the retention tank s2 during
the heavy load period. As the system states (i.e., water levels) show, the
overflows are shifted in time as the storage nodes attempt to hold back water
until their capacity allows. Note that the precise flow-level translation and
the precise discharged flow predictions (y1, y3 and y4) guarantee the proper
management of the pits (s1, s3, s3) and the retention pit (s2), mitigating the
overflow volumes optimally. The comparison of overflow reduction between the
baseline and NMPC controllers is shown in Figure 10. Applying the proposed
NMPC/MHE strategy results in 28 % cumulative overflow volume decrease
over the considered period.
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Figure 10: Overflow comparison throughout the entire network.

To comprehensively illustrate the practicability of implementing the NMPC/
MHE framework, we report on the computational complexity and the dimen-
sions of the optimization problem. To this end, we reduced the network graph
shown in Figure 7, by excluding one and two pumping stations, respectively.

178



7. Discussion

The results, along with the size of the optimization problem, are shown in Table
Table 2.

Num. of
stations

Avg. CPU
time (s)

Max CPU
time (s)

Decision
var. Constr. Param.

4 (s1,2,3,4) 2.14 8.37 5361 8385 1216
3 (s1,2,3) 1.8 4.36 3912 6072 912
2 (s1,2) 1.15 1.86 2608 4192 610

Table 2: Computation complexity with different number of stations.

The optimization problem is carried out on the case study network scaling
from two pumping stations to the full extent of the network. As shown, the
size of the optimization problem is increasing with including more pumping
stations and transport links, however, the computation remains low, as all
constraints can be cast as linear equalities and inequalities. Moreover, the
average and maximum CPU times for the full scale of the network are only
2.14s and 8.37s. This is acceptable in practice, considering that the worst-
case calculations (occurring under overflow events) utilize less than 2 % of the
sampling interval TNMPC = 10 (min).

The numerical results carried out on the HiFi network show the feasibility of
the proposed data-driven design and provide a basis for onward development. A
key outcome of the system identification and control results is that the reduced
physically-based SV-PDE flow model can be obtained based on water level
measurements, moreover, the discharge predictions are accurately computed
via the moving horizon parameter and state estimation.

7 Discussion
Our framework aims to allow operators at wastewater utilities to build inter-
nal models of the main transport lines and storage nodes in UDNs based on
easy-accessible level measurements. Identifying the internal model parameters
automatically from standard measurements is therefore one of our contribu-
tions. The proposed NMPC/MHE strategy has comparable performance as
standard predictive control strategies reported in the literature, benchmarked
with rule-based controllers. For instance, references [Joseph-Duran et al., 2014],
[Joseph-Duran et al., 2015] report on a hybrid strategy where the internal MPC
models exploit all available knowledge from the HiFi network of the UDN. As
opposed to [Joseph-Duran et al., 2014], we report on the modularity of our
approach, focusing on an internal model obtained by water level data.

Practical implementation of using the method includes the fact that wa-
ter level sensors need to be deployed in the network to identify the transport
dynamics between stations and the periodic household disturbances. Further-
more, our identification approach exploits knowledge about the high-level lay-
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out of the network, which is typically available at water utilities. To carry out
the experimental implementation of the work, a reliable mapping between rain
intensity and the actual flow appearing in the system is needed. Besides, an
implementation of a communication strategy is required, where the calculated
flow references are translated to reference signals at the local pumping units.

8 Conclusions and future work
In this article, a new methodology for data-driven predictive control in urban
drainage networks has been presented and tested. The proposed data-driven
modeling approach is based on the physical characteristics of open-channel
unpressurized flow, governed by the reduced Saint-Venant partial differential
equations. A modified version of this model has been used for predicting
the internal water levels in the sewer network, moreover to predict the dis-
charged flows to the storage units. To update the model from data, level
sensors have been distributed in manholes to enhance the internal prediction
performance by taking into account periodic and non-periodic lateral inflows
along the pipelines. Moving horizon parameter estimation has been proposed
to overcome the inaccuracy issues, introduced by the linearization of the pipe
geometries and the approximation of the reduced Saint-Venant partial differ-
ential equations. To overcome the problem of limited sensor measurements in
the network, moving horizon state estimation has been proposed. The nominal
nonlinear multi-objective optimization problem has been solved in a reced-
ing horizon fashion, along with the proposed state and parameter estimations.
The performance of the proposed methodology has been successfully tested on
a high-fidelity sewer network simulator with real rain and domestic wastewater
inflow measurement data.

In future work, the methodology will be tested on urban drainage networks
with different sizes and topologies. Moreover, it will be interesting to investi-
gate the proposed method in different applications, e.g., stormwater collection
networks. Also, an investigation into how rain and domestic wastewater uncer-
tainties can be integrated with the current modeling and control methodology
is a matter of future work.

Appendix

Simulation parameters
In this appendix we provide the numerical values of the control parameters,
the constraint bounds and the main physical attributes of the HiFi simulation
network, given in Table 3, Table 4 and Table 5, respectively.

Note that the values for the upper height constraints h are equivalent to
the diameter of the pipes.
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Attributes Pipe g1 Pipe g2 Pipe g3 Pipe g4 Unit
Geometry circular circular circular circular (-)
Diameter (d) 0.4 0.6 0.45 0.35 (m)
Slope (Sb) 0.03 0.05 0.02 0.02 (-)
Roughness (n) 0.013 0.013 0.013 0.013 (-)
Length (L) 0.9 0.45 2 2.4 (km)

Table 3: Network attributes for pipes.

Attributes Pit s1 Pit s2 Pit s3 Pit s4 Unit
Constant (K1) 21.5 30 30 43 (m2)
Constant (K2) - 130 - - (m2)
Volume (V ) 43 95 60 86 (m3)
Pump flow (u) 162 198 162 90 (m3/h)

Table 4: Network attributes for pits.

TNMPC Ton/off Hp1 Hp2 Hpe Hse Tse

10 (m) 1 (m) 2 (h) 22 (h) 48 (h) 48 (h) 10 (m)
Table 5: Simulation parameters.

The disturbance model uses k = 2 frequency terms and ω = 1 (day) frequency
for all pipes. Moreover, the disturbance signal scenarios are characterized by
normally distributed, zero mean random uncertainty, where σ2

s1 = 30.6, σ2
s2 =

5.4, σ2
s3 = 27 and σ2

s4 = 10.8 (m3/h). The lateral inflows along the gravity
pipelines are all characterized by σ2

g = 15 (m3/h).
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frastructures within the natural water cycle. The most widely applied Real
Time Control (RTC) on these systems is Model Predictive Control (MPC),
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with uncertainty in the expected inflow. First, a generic multi-objective MPC
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problem. The algorithm is verified through a case study by interfacing a high-
fidelity simulator model of a sewer network as virtual reality.

Keywords—Multi-scenario MPC; Combined sewer; Forecast uncertainty

©IEEE. The layout has been revised.

Published in the Proceedings of Conference on Control Technology and
Applications, 2020.

DOI: https://doi.org/10.1109/CCTA41146.2020.9206362

https://doi.org/10.1109/CCTA41146.2020.9206362


Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

1.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
2 Drainage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

3.1 Gravity sewers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.2 Retention tanks . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4 Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.1 Multi-criteria MPC . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.2 Multi-Scenario MPC . . . . . . . . . . . . . . . . . . . . . . . . 193

5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



1. Introduction

1 Introduction
Combined sewers carry domestic wastewater and rain runoff towards treatment
plants, where the sewage is treated before it is discharged to the environment
[Schütze et al., 2002]. Real-Time Control (RTC) of these networks is a challeng-
ing task since the system is characterized by large-scale dimensions, nonlinear
dynamics, and significant time-delays. Besides, UDNs are increasingly being
pushed to their capacity limits due to changing weather conditions, resulting
in increased amounts and more frequent Combined Sewer Overflows (CSO).

Constrained optimal control has been done in several works, mainly con-
sidering MPC. Due to the complexity and the large-scale nature of drainage
networks, typically conceptualized control models are used, considering the
available network volumes [García et al., 2015]. In [Puig et al., 2009] and
[Schütze et al., 2002], the volumetric storage of pipes, manholes, and retention
tanks have been collectively modeled, while in [Gillé et al., 2008] and [Balla
et al., 2020], simplified hydraulic models were proposed, considering gravity-
driven sewage pipes as simple delay elements without storage. In [Gelormino
and Ricker, 1994] and [Fiorelli and Schutz, 2009], the overflows have been con-
ceptualized by introducing an artificial variable, indicating the average over-
flow over a specific horizon. Extending these previous frameworks, [Halvgaard
and Falk, 2017] and [Halvgaard et al., 2017] used an indicator variable which
was forecasting overflow only in case of an actual tank overflow. In [Madsen
et al., 2018], this previously-established, fast-solvable optimisation model has
been successfully utilized in a simulation study, representing a real large-scale
drainage network in Denmark.

The control problem in UDNs consists of multiple criteria. For instance,
[Fiorelli and Schutz, 2009] investigated various ways of weighting control ob-
jectives with regard to different rain conditions. The study in [Mollerup et al.,
2016] proposed a systematic control design and focused on the multi-objective
control performance regarding the choice of optimisation variables and the for-
mulation of the objective function.

Nonetheless, the majority of the research reporting on MPC of UDNs in-
vestigates the performance by considering historical disturbances, i.e. histor-
ical rain data. Works on model-based optimization, taking into account the
uncertainties, are relatively few. Runoff forecast uncertainties in risk-based op-
timization have been considered by using stochastic grey-box models in [Löwe
et al., 2016] and in [Vezzaro and Grum, 2014]. In [Courdent et al., 2015], an
optimization framework has been introduced, which considered the estimated
uncertainty of rain runoff forecasts, thereby estimating the risk of overflows
based on the stored volumes in the system. This framework has used an opti-
mization strategy with a simplified model, while the transport times have not
been considered between pumping stations.

Another way to consider stochastic hydrological processes in optimization
is to assume possible scenarios, estimate their likelihood and test the opti-
mization under these assumptions. A flow control problem has been studied
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in [Tian et al., 2017], where a Multi-Scenario (MS-MPC) approach has been
implemented on a simulation model of a dutch canal system [van Overloop
et al., 2008]. In [Grosso et al., 2017], a chance-constrained, tree-based and
multi-scenario stochastic MPC approaches have been compared and applied to
drinking water networks.

In the present paper, an MS-MPC approach is applied to a high-fidelity
simulator model of a UDN, considering a simplified representation of the net-
work. In contrast to [Vezzaro and Grum, 2014], we implement a fast-solvable
MPC strategy that considers the network delays in terms of the transport flows
between pumping stations. Furthermore, we extend the work in [Puig et al.,
2009] by evaluating the performance of MS-MPC, considering multiple opera-
tional and control objectives. We combine the results of [Mollerup et al., 2016],
where the operational objectives and the tuning of the optimization parameters
have been analyzed.

The remainder of the paper is structured as follows: In Section 2, the pre-
liminary introduction of UDNs and the simulation network are presented. Sec-
tion 3 reviews the simplified network models, whereupon Section 4 introduces
the generic MPC and the proposed MS-MPC control approaches. In Section 5
numerical results and the applied scenarios are presented. Finally, Section 6
provides conclusions and sums up the contributions of the work.

1.1 Nomenclature
Throughout the paper, all quantities mentioned are real. Boldface letters are
used for sets, such as s = {s1, ...sn} as well as for vectors x = [x1, ...xn]T ∈ Rn.
Time dependent variables are denoted by x(t) or x(tk), where t ∈ R+ and
tk ∈ Z+ are the continuous and discrete time variables, respectively.

2 Drainage Systems
Urban drainage systems typically consist of storage elements such as gravity
pipes, retention tanks, catchment areas and one or several outlet points leading
to the treatment plants. The most common actuators in these networks are
pumps and gates. In the present work, networks with multiple retention tanks
are considered, where the stored sewage volumes are controlled by pumps.
Hence, the regulated variable is flow, provided by local, variable-speed pumps.
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3. Network Model

In order to make closed-loop control, a high-fidelity model is used in the
MIKE URBAN1 (MU) simulation environment. The network model is shown
in Figure 1.

T1
T2

- Pumping stations

- Retention tanks

- Gravity sewers

- Treatment plant

- Manholes

- Rain runoff

- Catchments

Figure 1: Schematics of the high-fidelity simulator in MIKE URBAN.

The network consists of two pumping stations, equipped with retention tanks
with a total storage capacity of about 30[m3]. The pumps are operated by local
PID controllers. There is one outlet point representing the treatment plant and
several catchment areas, where rainfall runs off and enters the system through
manholes. The disturbances considered here are domestic sewage and rain
infiltration. In the network, rainfall run-off flow enters the network through
eight inlet points, distributed over the entire network.

3 Network Model

3.1 Gravity sewers
Gravity-driven flow in sewage pipes can be computed accurately by the well-
known Saint-Venant partial differential equations [Schütze et al., 2002]. Due to
their computation burden and complexity, these equations are not well-suited
for large-scale RTC applications. Instead, similarly to [Gillé et al., 2008] and
[Gelormino and Ricker, 1994], the pipes are modelled as pure delay elements.

Qin(t) Qout(t)
Qlat(t)

Figure 2: Delay translation model.

Hence, outflows from a gravity pipe section are the delayed sums of controlled
pump flows and uncontrolled lateral inflows, as shown in Figure 2. (Lateral
inflows are additional flows that enter the pipelines along the length of the
channel.)

1MIKE URBAN is a standard hydraulic simulation and modeling tool, used by operators
at many water utilities. The MU simulation environment solves the full dynamic Saint-Venant
equations for open-channel flow [DHI, 2016].
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The mass balance relation at time t is formulated as follows:

Qout(t) = Qin(t − τ) +Qlat(t − τlat) (1)

where τ ∈ R+ and τlat ∈ R+ are time lags measured from the upstream and
from the point where lateral flows enter the pipeline, respectively. After dis-
cretization, delays are defined in δt sampling steps, hence the delayed flow is
modeled with an augmented state vector consisting of the previous flows. The
state equation, assuming Qlat = 0 (to ease the notation), is given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qout(t + δt)
Qin(t − τ + 2δt)

⋮
⋮

Qin(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qout(t)
Qin(t − τ + δt)
Qin(t − τ + 2δt)

⋮
Qin(t − δt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+BuQin(t) (2)

where Qin inlet flow is subject to control, Qout discharged flow is the output
and the system matrices A and Bu are given by:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 ⋯ ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ 1
0 0 ⋯ ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rτ×τ , Bu =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rτ . (3)

Note, that in case there are Qlat inflows, the augmented state vectors are
stacked together. This simple delay translation model is considered compu-
tationally beneficial and realistic enough for system-wide optimization, even
though the physical phenomena such as flow attenuation and backwater effect
are not incorporated in this formulation.

3.2 Retention tanks
Storage within the network is modeled by conceptual tanks that can account
for overflows, as shown in Figure 3.

Qin(t)

Vcso(t)

Qcso(t) Qout(t)

Figure 3: Linear retention tank with VCSO virtual overflow volume.

Flows to retention tanks (Qin) are considered as (i) forecasted disturbances
and (ii) controlled flows, coming from an upstream pumping station. The
manipulated flow variables are denoted with Qout, furthermore V represents
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the stored volume in the tank. The mass balance for each tank is:

dV (t)
dt

=
N

∑
n=1

Qin,n(t) −
M

∑
m=1

Qout,m(t), (4)

where N and M are the number of inlet points and number of pumps, respec-
tively. The translation between volume and level is done by using the constant
cross section area A.

In order to model overflows, the formulation in eq.(4) is extended with a
virtual volume, similarly as done in [Halvgaard and Falk, 2017] and [Halvgaard
et al., 2017]. Hence, as depicted in Figure 3, the storage model considers two
joint volume elements:

Vt(t) ≜ V (t) + Vcso(t), (5)

where V is the physical volume of fluid and Vcso is the virtual volume accounting
for overflows. To keep track of the physical volumes and to trigger an overflow
in the tanks at the time when the physical limits are exceeded, the following
restrictions apply to the storage model:

Ah + Vcso(t) ≤ Vt(t) ≤ Ah + Vcso(t), ∀tk = 1, ..., T, (6)

where h and h are the physical lower and upper level bounds respectively and
V = Ah. In case of an overflow event, Vcso increases both the lower and upper
bounds, thereby keeping track of the physical storage and moving the overflow
volume into the virtual storage at the bottom of the tank. Furthermore, the
excess water leaves the system immediately. We assure this by letting Vcso ≥ 0,
meaning that the spilled sewage Qcso spills to the environment, thus never
flowing back to the retention tanks.

4 Predictive Control
The terminology used in MPC of UDNs often differs in the literature coming
from different backgrounds. For clarity, all the considered variables of UDNs
are assigned to control-oriented variables, summarized in Table 1.

Type of variable Related symbols
System states (x) V or equivalently h
Virtual states (z) Vcso or equivalently hcso
Control input (u) Qout
Disturbance (d) Qin
Output (y) QW

Table 1

Note, that the term disturbance represents the rain-runoff and domestic wastew-
ater entering the network.
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4.1 Multi-criteria MPC
In the optimization problem, Qout,i is considered as the decision variable, de-
noting the pumped flows of the ith pumping station. The physical system
states are sewage levels hj corresponding to the jth retention tank. In this
study, similarly to [Puig et al., 2009], the objective function is formulated as a
linearly weighted sum. The optimization is given by:

min
Qout(0),...,Qout(Hp)

L(h,Qout,Qin, tk) ≜

Hp−1
∑
tk=0

Γ
∑
j=1

λjFj(tk), (7)

where λj denotes the scaling weights, Hp is the prediction horizon, tk is the
discrete time index, and Γ is the number of control objectives. Note, that we
write h tank levels as the system states, for the reason that levels are directly
measurable in real life.

The first two terms F1 and F2 stand for overflow avoidance and tank emp-
tying, respectively:

F1(tk) ≜
P

∑
i=1
Vcso,i(tk)2 and F2(tk) ≜

P

∑
i=1
V (tk)2, (8)

where P is the number of overflow elements, i.e. retention tanks. Recall,
that the overflow indicator Vcso ≥ 0 is used to keep track of the water running
out of the storage volume, as described in eq.(6). Due to the fact that these
physical level boundaries never decrease, Vcso has to be reset each time when
the problem is resolved over Hp. The weights corresponding to overflows λ1 are
chosen to be significantly higher than the cost of other terms, making the usage
of overflows undesirable if possible. Furthermore, we introduce F2 objective,
as emptying the tanks is necessary to avoid odor problems occurring due to
long retention times. Moreover, the weights on F2 allow to include the filling
sensitivity of retention tanks, meaning that sensitive tanks are filled slower and
emptied faster than less sensitive tanks.

The third objective F3 stands for minimizing the flow variation of the sewage
leading to the treatment plant:

F3(tk) ≜ (QW (tk) −
1
Hp

Hp−1
∑
j=0

QW (j))
2
, (9)

where QW is the sum of controlled and disturbance flows leading to the treat-
ment plant. Furthermore, the second term in eq.(9) is considered as a reference
flow, determined by the mean of the Hp-step ahead outlet flows towards the
treatment plant. This formulation is inspired by [Nielsen et al., 2020], where
the inlet flow variations to the treatment plant has been minimized over a daily
horizon, assuming dry-weather conditions.
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The fourth sub-goal F4 relates to the operation of actuators, where the
control action is minimized. Hence, F4 is:

F4(tk) ≜
L

∑
l=1
Qout,l(tk)2, (10)

where L is the number of pumping stations and Qout is the accumulated out-
flow, provided by pumps at the lth station.

The optimization problem in eq.(7) is formulated as a linear program, sub-
ject to the flow delays in Equation eq.(1) and to the discretized tank dynamics
in eq.(4). Furthermore, the equality constraint introduced in eq.(5) and in-
equality constraint in eq.(6) apply to the tank model, where Vcso is used as a
virtual state in the optimization problem. Additionally, the control problem is
subject to operational and physical constraints in the form:

Q
out

≤ Qout(tk) ≤ Qout, ∀tk = 1, ..., Tk, (11)

where Q
out

and Qout are the physical lower and upper bounds of the accu-
mulated pump flows, respectively. Moreover, the rate of change of the control
variables Qout are constrained, in order to avoid deterioration of the pumps
and pressure shocks in the following pressurized rising mains:

∣Qout(tk+1) −Qout(tk)∣ ≤ ∆Qout, ∀tk = 1, ..., Tk, (12)

where ∆Qout is the maximum allowed control input change, defined respectively
for each pump. The operational constraint regarding the maximum inflow
capacity of the treatment plant reads as follows:

QW (tk) ≤ QW , ∀tk = 1, ..., Tk, (13)

where QW is the maximum flow to the treatment plant.

4.2 Multi-Scenario MPC
Disturbances within an urban drainage framework include rainfall precipita-
tion, groundwater infiltration, and domestic household sewage, among which
rainfall is a stochastic hydrological process. The usage of various forecasting
methods for rainfall infiltration, e.g. numerical weather predictions or radar
rainfall estimates [Courdent et al., 2015], implies that uncertainty is implic-
itly involved in the control of UDNs. For that reason, we extend the generic
Multi-Criteria (MC-MPC) formulation and approximate the solution of the
stochastic optimization problem with a Multi-Scenario (MS-MPC) approach.
The control is then obtained by taking into account several forecasts, thereby
making the decision making more robust towards weather prediction inaccura-
cies. To translate rainfall intensities to runoff flows, the catchment dynamics in
the MIKE URBAN runoff environment are utilized. This engine makes several
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MU
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Optimizer
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Control
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Figure 4: Structure of the implemented MS-MPC approach.

realizations of disturbance inflows based on forecasted rainfall intensities. The
hierarchical structure of such control scheme is shown in Figure 4.
The MU runoff engine incorporates the dynamics of catchments and produces
a surface runoff hydrograph in response to a rain event, similarly as shown in
Figure 5 below.
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Figure 5: Rain run-off computed by the MU engine. The reversed y-axis on the right
denotes the intensity of rain, sampled at an hourly rate.

The optimization is reformulated such that the objectives of all scenarios are
summed and weighted by the likelihood of occurrences. Hence, the MS-MPC
can be recast as:

min
Qout(0),...,Qout(Hp)

Ns

∑
j=1

pjLj(hj ,Qout,Qin,j , tk), (14)

where the subscript j represents the jth scenario, whereas pj is the likelihood
of occurrence. Moreover, Ns ∈ Z+ represents the number of scenarios used
in the optimization. Note, that the cost functions differ in each scenario, as
the different meteorological disturbances create different hj future trajectories.
Thus, there are dynamic and inequality constraints devoted to each scenario.
To solve the MS-MPC problem, a common control Qout is computed, which
attempts to find the best decision for the most likely future states and prepare
the system for possible worst-case events. For solving the problem, CVX is
used [Grant and Boyd, 2013] with the SeDuMi solver [Sturm, 1999].

An issue with the above formulation occurs in the case when a single en-
semble does not predict rain at a certain time tk, while the rest of the fore-
casts imply that there is a future storm event for which the system has to
be prepared. In this case, the optimizer should act based on the likelihood
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5. Numerical results

of the events. However, the hard inequality constraint formulated in eq.(6),
devoted to the no-rain scenario, does not allow to increase the control action,
i.e. Qout(0), ...,Qout(Hp). This is also the case if one scenario has significantly
smaller likelihood than any of the others, but requires to decrease the lower
storage bounds V in order to increase the common control actions. We solve
this problem by inserting a slack variable into the hard inequality constraint
such that:

Ah + Vcso(tk) − ε(tk) ≤ Aht(tk) ≤ Ah + Vcso(tk), (15)

∀tk = 1, ..., Tk, where ε ≥ 0. The slack variable is penalized and it is activated
only when the likelihood of a no-rain event weights significantly less than en-
sembles predicting overflow. Hence, we avoid that an unlikely no-rain scenario
restricts the usage of control actions when likely scenarios require to empty
retention tanks due to heavy loads on the system.

5 Numerical results
The performance of the MS-MPC algorithm is assessed based on the high-
fidelity model shown in Figure 1. The control algorithm is tested against Ns = 4
different weather scenarios, covering a six days long wet-weather period. The
test scenarios have been created based on rainfall intensities corresponding to
realistic design storm events.2

It should be noted, that we do not aim to show how precisely the future
is forecasted. Instead, the goal is to present how plausible future forecasts are
embedded in a standard MPC problem. The combined run-off and domestic
wastewater replicates are depicted in Figure 6.

0 12 24 36 48 60 72 84 96 108 120 132
0

20

40

60

Time [h]

F
lo

w
[m

3
h

] Qin,E1 Qin,E2 Qin,E3 Qin,E4

1

Figure 6: Inflow scenarios computed by MU, using ensemble rain forecasts.

The signals Qin,E1 , ...,Qin,E4 represent four scenarios. The length of the simu-
lation is T = 6 days.

2The data is from https://www.silkeborg-vejret.dk/statistik.php. We deliberately chose
rainy periods between 21-27 April, 2018, from Silkeborg, Denmark. The domestic wastewater
inflow is artificially created and scaled.
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5. Numerical results

The longest travel time within the network is related to the connection
between T1 and T2 stations and is approximately 90 minutes. An Hp = 2 [h]
prediction horizon is used, with a sampling time and control step δt = 5 [min].
Moreover, the likelihoods pj = 0.25,∀j = 1, ...,4 are set equal. The weight
parameters λ1 corresponding to CSO prevention are equal for both T1 and T2
retention tanks, hence we do not prioritize overflows of one tank over another.
(The optimization parameters are listed in the appendix.) The test results are
shown in Figure 7.

The MS-MPC acts as an upper-level controller that computes optimal set-
points (Qref ) to local PID controllers. The signals in Figure 7(c) and Fig-
ure 7(d) show the actual accumulated inflows and the amount of overflows at
T1 and at T2 stations. The control can account for the uncertainties in case the
actual disturbances are close or within the range of the possible scenarios. For
instance, as seen between 108 and 120 [h], T2 overflows since the inflow exceeds
the pumping capacities more than it was forecasted. Besides, Figure 7(c) and
Figure 7(d) show overflows which could not be prevented due to the insuffi-
cient storage and pumping capacity of the network. Between 60 and 72 [h], the
pumps at T1 decrease the flow instead of further emptying the tank. This is for
the reason that the delayed pumped sewage would arrive at T2 in a high-inflow
period, causing heavier overflows at the downstream.

Moreover, with the proposed method, overflows can be prioritized using λ1
corresponding to eq.(8). The CSO reductions in two extreme cases are shown
in Figure 8.

12 24 36 48 60 72 84 96 108 120
0

5

10

Time [h]

F
lo

w
[m

3
h

] Qcso,T2 if λ1,T1 ≫ λ1,T2
Qcso,T2 if λ1,T1 ≪ λ1,T2

1

Figure 8: CSO reduction at T2 in case overflows are prioritized to T1.

To protect T2, the pumps at T1 can hold the sewage back in heavy-load pe-
riods. Nevertheless, in the proposed framework, it should not be expected to
obtain a universal solution that is optimal for all ensemble weather predictions,
especially if there are conflicting objectives. Around 36 [h], for instance, the
first ensemble predicts a potential overflow shown in Figure 7(c), for which the
pumps try to react by keeping the retention level at a minimum. Even though
there is a nearly rain-free period during this time, the flow references to the
pumps (red curves in Figure 7(g) and Figure 7(h)) indicate that the MS-MPC
attempts to prepare the system for potential overflows. The same situation
is observed at 84 [h], where a coupled rain event is expected earlier than it
happens.

197



Paper D.

In addition to CSO prevention, the smoothing of the inflow to the treatment
plant has been considered. This has been done by compensating the variances
on the disturbance flows leading to the treatment plant over the prediction
horizon. The performance is shown in Figure 9.
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Figure 9: Inlet flow (QW ) to the treatment plant.

where QW is the maximum possible inlet flow capacity of the treatment plant
and λ3 is the weighting coefficient from eq.(9). As seen, in contrast to maxi-
mizing the inlet flow towards the treatment plant, F3 attempts to even out the
variations. The pumps at T2 station need to consider the disturbances entering
directly to the treatment plant and attempt to compensate for them. The peak
flows in Figure 9. correspond to periods when the overflow risk is high, there-
fore the pumps at T2 move as much sewage as possible to avoid CSOs. This is
for the reason that F1 and F3 are conflicting objectives and F1 is prioritized
over the flow smoothing to the treatment plant. Hence, the highest potential
for improving the quality of the treatment process is in dry-weather periods
when the risk of overflooding is low.

6 Conclusion
The presented paper studied how the hydrological uncertainties can be tackled
in an RTC problem regarding the control of urban drainage networks. To this
end, we proposed a Multi-Scenario approach as an extension of a standard,
fast-solvable MPC framework. The method has been tested on a high-fidelity
model of a test network and the implementation showed that both the simplified
delay and retention tank models are feasible for on-line storage capacity opti-
mization in UDNs. The MS-MPC has been tested on four different scenarios
and the results showed that MS-MPC has a significant advantage over stan-
dard MPC methods that neglect uncertain weather forecasts. Although some
scenarios can have a low probability of occurrence, the damage may be very
high. Moreover, the results showed that the transport delays affect the MPC
performance significantly, especially when prioritizing overflows and protecting
sensitive waters.

In our future work, we focus on developing a systematic way of tuning the
MS-MPC parameters, including the analysis ofHp size and the penalty gains on
the objectives. Note, that the weights λ have been chosen based on pre-defined
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performance goals in a heuristic fashion. Furthermore, a natural extension
of the treatment plant flow variation objective F3, formulated in eq.(9), is to
extend the prediction horizon to a daily scale, where varying sampling times
are used. This allows for better optimization in dry-weather periods, where
only domestic wastewater is considered with an inherent periodicity of one day.

Appendix
The optimization parameters are shown in Table 2.

λ1,T1 = λ1,T2 = 105[−] hT1 = 1.5[m]
λ2,T1 = λ2,T2 = 103[−] hT2 = 1.4[m]
λ4,T1 = λ4,T2 = 1[−] λ3 = 102[m]

Qout,T1 = Qout,T2 = 21.6[m3

h
] Ns = 4[−]

∆Qout,T1 = ∆Qout,T2 = 10[m3

h
] QW = 30[m3

h
]

Table 2: Optimization parameters.
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Abstract—Many traditional control solutions in urban drainage networks
suffer from unmodelled nonlinear effects such as rain and wastewater infiltrat-
ing the system. These effects are challenging and often too complex to capture
through physical modelling without using a high number of flow sensors. In this
article, we use level sensors and design a stochastic model predictive controller
by combining nominal dynamics (hydraulics) with unknown nonlinearities (hy-
drology) modelled as Gaussian processes. The Gaussian process model provides
residual uncertainties trained via the level measurements and captures the ef-
fect of the hydrologic load and the transport dynamics in the network. To show
the practical effectiveness of the approach, we present the improvement of the
closed-loop control performance on an experimental laboratory setup using real
rain and wastewater flow data.
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1. Introduction

1 Introduction
Real-time control in Urban Drainage Networks (UDNs) allows for the sys-
tematic mitigation of water volumes, typically exploiting the available sensor
measurements, weather forecasts, and, in some cases, the available physical
description of the network. In an urban drainage context, sensors typically
measure flow and level, furthermore, the most common actuators are pumps
and gates. In combined UDNs, the disturbances are considered as the meteo-
rological and human waste water loads. In this article, we focus on combined
UDNs, where the actuators are pumps and both rain and wastewater gravitate
from station to station in open pipes until reaching the Waste Water Treat-
ment Plant (WWTP). To predict the volumes, e.g., avoid overflows and utilize
the system capacity equally, it is essential to measure levels and flows. Here,
we distribute only easy-accessible level sensors in the network and use a Gaus-
sian Process (GP)-based system identification. The proposed approach uses
water level residuals to capture the nonlinearities coming from the behavior of
the pipes and the infiltration of the disturbances. Furthermore, the approach
captures the uncertainties in modelling and the disturbance forecasts.

Modelling UDNs for control is a complex task, given the delays and nonlin-
earities imposed by the flow transport between pumping stations. The flow-to-
level translation inside the sewers requires either a High Fidelity (HiFi) model
or a large number of flow measurements, often economically out of reach for
smaller water utilities. Traditional techniques on conceptual modelling are re-
ported in [Ocampo-Martinez, 2010] and [Litrico and Fromion, 2009], where the
capacity of pipes are collectively modelled as virtual buffers, and in [Joseph-
Duran et al., 2015], where the flow-to-level translation is modelled by polynomi-
als. Grey-box modelling for level propagation in open pipes has been reported
in [Balla et al., 2022], [Balla et al., 2021] and [Xu et al., 2011].

Model Predictive Control (MPC) for UDNs has been reported in [Joseph-
Duran et al., 2015], [Litrico and Fromion, 2009], [Ocampo-Martinez, 2010] and
[García et al., 2015], where the operational constraints and the weather fore-
casts have been considered deterministic. Taking into account disturbance
uncertainties with ensemble forecasts has been reported in [Balla et al., 2021],
while [Grosso et al., 2014] reported on using chance constraints to track the
daily demands of drinking water consumption.

GP regression has been widely used in machine learning [Williams and
Rasmussen, 2006] for applications where an unknown system is given without
structural information. A systematic framework for uncertainty propagation
in real-time control of dynamic systems has been proposed in [Hewing et al.,
2020], while in [Wang et al., 2016], flow forecasting has been done with the use
of GPs in drinking water applications. Learning with data via GPs and using
a nominal model allows identifying the nonlinearities and provides a measure
of uncertainty without any prior knowledge.

The contribution of the article is the following. A model and control
methodology is proposed for UDNs that can characterize the uncertainty along
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with the predictions and reject the meteorological disturbances. To this end,
we utilize level sensors to generate residuals between the unknown part (pipe
dynamics, model, and disturbance uncertainty) and the nominal part (storage
tanks). We incorporate the topological structure between the GP outputs and
select the regressors based on prior process knowledge. To show the practical
feasibility of the problem in UDNs, we carry out experimental tests on a scaled
laboratory setup, where the dimensionality of the uncertainty propagation via
the GPs is reduced by actively selecting the points used for prediction.

The article is organized as follows. In Section 2, an overview of the operation
of UDNs is presented. Section 3 first presents the GP regression, followed by the
formulation of the uncertainty propagation. In Section 4, the stochastic MPC
design is presented, whereupon the point selection algorithm is introduced. In
Section 5, the experiment on the laboratory setup is detailed and results are
presented, using disturbance data from a real-world network. This is followed
by Section 6, where conclusions, and future research directions are drawn.

1.1 Nomenclature
Let R,Rn,Rm×n denote the field of real numbers, the set of real column vectors
of length n and the set of m × n matrices composed of entries in the real
numbers, respectively. The superscript ⊺ denotes transposition and I is the
identity matrix of suitable dimensions. A normally distributed vector x with
mean µ and variance σ is denoted by x ∼ N(µ,σ), and the expected value of a
random variable by E{}.

2 UDN model

2.1 Network representation
We consider stations, where pumps are placed in tanks acting as the actuators.
Moreover, the main piping layout defines the topology of the network. In UDNs,
the tree topology is the most common in practice [Lund et al., 2018], where
the collected wastewater, rain, and groundwater are pumped from station to
station until they reach the root of the network. The root is an outlet point,
where the water is discharged either to a WWTP or to the environment. An
illustration of main transport lines in a UDNs are shown in Figure 1.

Disturbances represent the meteorological load on the sewer network. In
this work, we use forecasts of runoff flow due to rain combined with the wastew-
ater produced by households. These disturbances enter the piping network
through the nodes representing storage tanks or manholes. Note that our rep-
resentation of the network takes into account only the main pipelines, which
connect the pumping stations.

Remark E1. To measure level variation in both tanks and pipes, we distribute
level sensors along the network nodes. The location of the level sensors is
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2. UDN model

based on the high-level piping layout, meaning that we aim to deploy sensors
at network nodes where the disturbances act on the network, e.g., where urban
areas or catchments are discharging.
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Figure 1: Tree topology of UDNs, where filled nodes represent storage tanks.

2.2 Physical component model
Flow propagating in open-channel pipes is most commonly approximated by
the Saint-Venant nonlinear PDEs, describing the mass and the momentum of
the fluid [Litrico and Fromion, 2009]:

∂A(x, t)
∂t

+ ∂Q(x, t)
∂x

= q̃(x, t), (1a)

∂Q(x, t)
∂t

+ ∂

∂x

⎛
⎝
Q(x, t)2

A(x, t)
⎞
⎠
+ gA(x, t)

⎛
⎝
∂h(x, t)
∂x

+ Sf − Sb
⎞
⎠
= 0, (1b)

where Q(x, t) is the flow propagating inside the pipe at location x and time
t and q̃(x, t) = q(x, t)/dx is the lateral inflow per unit length, where we refer
to q(x, t) lateral inflow as a disturbance. A(x, t) is a function describing the
wetted pipe area while h(x, t) is the level of water inside the channel. Besides,
Q(x, t), q(x, t),A(x, t) and h(x, t) are functions from (0, L) ×R+ → R+, and L,
Sb and Sf are the length, slope and friction parameters, respectively.

The stored volumes in the network are modelled by linear tanks, for which
the change in level per time unit is computed as the sum of all in- and outflows,
i.e.,

τ
dht(t)
dt

= qt(t) +Q(t) −Qu(t), (2)
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where Qu(t) denotes the sum of flows generated by pumps, ht(t) is the level
in the tank, qt(t) is disturbance inflow to storage tanks, while Qt(t) is the
incoming gravitated discharge from upstream stations. Besides, τ is the tank
parameter, representing the geometry and size of the tank.

2.3 Data-driven model
The first-principle dynamics of transport pipes in eq.(1) are coupled by means
of boundary conditions and the full PDEs can be computationally expensive to
solve for complex network topology. As an alternative to [Hewing et al., 2020],
we consider a discrete-time representation of the entire UDN in the form,

x(k + 1) = f(x(k), u(k), d(k))
+Bd(g(x(k), u(k), d(k)) +w(k)),

(3)

where the model is composed of a nominal part f , describing integrators, i.e.,
the discrete-time storage tanks in eq.(2), whereas the remaining part defined
by g represents the time and spatially discretized dynamics, i.e., the transport
model for pipes in eq.(1). Besides, x(k) ∈ RNx , u(k) ∈ RNu and d(k) ∈ RNd are
the system state, input and disturbance at time step k, respectively. The pro-
cess noise w ∼ N(0,Σw) is considered independent identically distributed, with
Σw being a diagonal variance matrix. Besides, Bd is a matrix mapping states
corresponding to the pipe dynamics from the full state vector x. Furthermore,
we consider the nominal dynamics to be linear in the standard state-space form:

x(k + 1) = f(x(k), u(k), d(k)) = Ax(k) +Bu(k) +Ed(k), (4)

where A,B and E are constant matrices of suitable dimensions.

3 Gaussian Process Regression
Similarly to [Hewing et al., 2020], we use GPs to identify the unknown dy-
namics g and the uncertainty w in eq.(3). A GP model is a probabilistic, non-
parametric framework, most commonly used in supervised machine learning
for predicting the distribution of output variables [Williams and Rasmussen,
2006]. In order to formulate output data (or target points) for the GPs, we cre-
ate residuals between our measurements and the output of the nominal model
dynamics, using the formulation in eq.(3). We assume that state measurements
xi are available at time step i:

yi ≜ g(xi, ui, d̂i) +wi = B†
p(xi+1 − f(xi, ui, d̂i)), (5)

where d̂i ∈ RNd is the vector of forecasted disturbances and B†
p is the Moore-

Penrose pseudo-inverse. The training set D is constructed from the inputs z
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3. Gaussian Process Regression

and outputs y by collecting data with a nominal controller

D = {y = (y1, . . . , yM)⊺ ∈ RM×Ny

z = (z1, . . . , zM)⊺ ∈ RM×Nz},
(6)

where zi ≜ [x⊺i u⊺i d̂⊺i ]⊺, Nz = Nx + Nu + Nd and M denotes the number of
collected data points. Note that we use the GPs not only for capturing the
model uncertainties w but to take care of the error between the forecasted
and actual disturbances (di and d̂i) as well. Furthermore, we assume that
the residuals for each state are independent, and therefore, we perform a GP
regression for each residual ya with a ∈ {1, . . . ,Ny}. Since each finite collection
of ya is normally distributed, we can write, for each ya,

ya ∼ N(µa(z),Ka
zz + Iσ2

a), (7)

where ya is the ath column of y and σ2
a is the process noise variance. Besides,

µa(z) is the mean and Ka
zz is the Gram matrix such that Ka

ij = ka(zi, zj), with
ka(zi, zj) being a kernel function [Williams and Rasmussen, 2006]. We use the
kernel function to describe the prior of the GP distribution, e.g., the covariance
K between the points belonging to set D in eq.(6). The choice of the kernel
function ka is determined based on knowledge of the physical process. The
squared exponential kernel function is chosen assuming dynamics that exhibit
smooth and continuous behavior [Kocijan, 2016], i.e.,

ka(zi, zj) = σ2
f,a exp(−1

2
(zi − zj)⊺S⊺aΛ−1

a Sa(zi − zj)), (8)

where the hyper-parameter σf,a is the signal variance and Λ−1
a =

diag (σ−2
L,1, ..., σ

−2
L,Nz

) is the length scale matrix. Note that different length-scale
parameters are used on each dimension of z, thereby determining the relative
importance of the contributions made by each input.

Remark E2. Mapping matrices Sai1,...,in ∈ Rn×Nz are introduced for each out-
put dimension a, picking states xi, inputs ui and disturbances d̂i for each resid-
ual yi. The mapping is determined based on the structure of the network, i.e.,
based on the physical network model in eq.(1) and eq.(2). This allows to reduce
the training set for each output dimension, thereby easing the computational
cost due to the high dimension of the training set D.

Given a testing point z∗, we aim to predict the residual y∗ = (g(z∗) +w∗)
given the training set D, i.e., we aim to find the distribution of p(ya∗ ∣ya). The
joint distribution is

( ya

ya∗
) ∼ N(µa, [ Ka

zz + Iσ2
a Ka

zz∗

Ka
z∗z Ka

z∗z∗
]), (9)
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where [Ka
zz∗]i = ka(zi, z∗), Ka

z∗z = (Ka
zz∗)

⊺, and Ka
z∗z∗ = ka(z∗, z∗). The

conditional distribution of the residuals is Gaussian [Girard et al., 2003], where
the mean and variance are given as

ya∗ ∣ya ∼ N(µpa(z∗),Σpa(z∗)), (10a)

µpa(z∗) =Ka
z∗z(Ka

zz + Iσ2
a)

−1
ya, (10b)

Σpa(z∗) =Ka
z∗z∗ −Ka

z∗z(Ka
zz + Iσ2

a)
−1
Ka
zz∗ , (10c)

where µpa and Σpa are the mean and variances of the GP for output dimension
a, respectively. By stacking the predicted residuals ya∗ in a single vector p(z∗),
we can write

p(z∗) ∼ N(µp(z∗),Σp(z∗)), (11)

with mean µp(z∗) = [µp1(z∗), . . . , µ
p
Nx

(z∗)]⊺, and variance Σp(z∗) =
diag(Σp1(z∗), . . . ,ΣpNx

(z∗)).

3.1 Uncertainty Propagation
The iterative, multi-step ahead prediction with the GP model is done by feeding
back the mean and the variance of the predicted states, making each input a
Gaussian random variable. Hence, the prediction of the states is in general
non-Gaussian [Girard et al., 2003], as the probability distribution of the GP
needs to be propagated through the nonlinear kernel function in eq.(8). In this
work, the states and the GP are approximated as jointly Gaussians, where the
predicted mean µxi and covariance Σxi of the states are given by

µxi+1 = f(z̃i) +Bdµpi , (12a)
Σxi+1 = [∇xf(z̃i) Bp]Σi[∇xf(z̃i) Bp]⊺, (12b)

where z̃i ≜ (µxi , ui, d̂i), the mean µp and variance Σp are given by eq.(10), and
Σi is the covariance of the jointly Gaussian approximation of the states and
the GP. Note that the inputs are assumed to be known and therefore treated
as deterministic variables. The mean µi and the covariance Σi of the joint
distribution are then given by

( xi
pi +wi

) ∼ N(µi,Σi) =
⎛
⎝
[µ

x
i

µpi
],[ Σxi Σxpi

Σpxi Σpi +Σwi
]
⎞
⎠
, (13)

where Σpx = (Σpx)⊺ are the cross-covariances between the states and the GP.
Due to the linear nominal dynamics in eq.(4), the mean and variance dynamics
can be simply written with the cross-covariances

µxi+1 = Aµxi +Bui +Ed̂i +Bpµpi , (14a)
Σxi+1 = AΣxiA⊺ +BpΣpxi A

⊺ +AΣxpi B
⊺
p +Bp(Σpi +Σwi )B⊺

p . (14b)
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4. Stochastic MPC Design

To solve the above approximation of the state distribution in a tractable way,
the dynamics of the Gaussian distribution in eq.(12) are found through Taylor
series expansion of eq.(10) around the mean µx. The covariance matrix Σpi for
each GP and the cross-covariances Σxpi between the GP and the states are then
updated such that

µpi = µ
p(z̃i), (15a)

Σxpi = Σxi (∇xµp(z̃i))
⊺ (15b)

Σpi = Σp(z̃i) + ∇xµp(z̃i)Σxi (∇xµp(z̃i))
⊺
, (15c)

where µp(z̃i) and Σp(z̃i) are for each GP dimension a, as stated in eq.(10).
The Taylor approximation used in this work is detailed in [Girard et al., 2003].
Different methods for approximating the posterior of a GP from Gaussian input
have been researched, see for example [Williams and Rasmussen, 2006].

4 Stochastic MPC Design

4.1 Tractable GP-MPC
Introducing the nonlinear kernel and propagating the uncertainties with the
states following a Gaussian distribution xi ∼ N(µxi ,Σxi ) adds complexity to the
optimization problem behind the GP-MPC. To solve the optimization problem
in a tractable way, we formulate the problem as follows:

L(k) = E{
k+Hp−1
∑
i=k

∣∣xi − xri ∣∣2Q + ∣∣∆ui∣∣2R + ∣∣ε∣∣2S}, (16)

where Hp denotes the length of the prediction horizon, the ∆u term is intro-
duced for integral action on flow control of the pumps and xr is a reference
signal for water level in the tanks. The reference is introduced in the state
penalty term to show the effectiveness of the closed-loop behavior. Although
this is somewhat unrealistic regarding the application, we artificially create
reference scenarios to push the controller to its limits when testing under un-
certain forecast signals. The slack variable ε is introduced for state constraint
relaxation for water level violation in storage tanks, where the amount of level
violation is related to the overflow volumes escaping the system. Furthermore,
the weights Q,R and S represent a prioritization between the different ob-
jectives, and the individual terms in eq.(16) are normalized, such that water
level and flow terms are comparable in magnitude. Although the evolution of
the states is stochastic, we chose to implement the optimization problem by
simply considering deterministic state constraints where the slack variables for
overflow provide recursive feasibility to the problem.

Using the approximate distribution of the states and the expected value
of the objective function, we formulate the deterministic optimization problem
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behind the GP-MPC. The optimization problem in eq.(17) is solved in a reced-
ing horizon fashion where the dynamics f are discretized with the fixed step,
4th order Runge-Kutta method. Moreover, the single-shooting method is used
in the symbolic framework CasADI [Andersson et al., 2019] and a primal-dual
interior point solver, IPOPT [Wächter and Biegler, 2006] is used to solve the
non-convex optimization problem. The optimization is solved with warm start
at each time step, given the process is slowly-varying.

min
∆ui

k+Hp−1
∑
i=k

∣∣µxi − xri ∣∣2Q +tr(QΣxi ) + ∣∣∆ui∣∣2R + ∣∣εi∣∣2S (17a)

s.t. µxi+1 = f(z̃i) +Bdµp(z̃i), (17b)
Σxi+1 = [∇xf(z̃i) Bp]Σi[∇xf(z̃i) Bp]⊺, (17c)
∆ui = ui − ui−1, (17d)
Hxµ

x
i ≤ bx +Hεεi, (17e)

Huui ≤ bu, (17f)
µpi , Σi according to eq.(14b), eq.(15), (17g)
µx0 = x(k), Σx0 = 0, (17h)

where i = k, ..., k +Hp − 1, furthermore eq.(17e) and eq.(17f) are 2Nx and 2Nu
dimensional polytopes representing state and input constraints, respectively,
where Hx ∈ R2Nx×Nx, bx ∈ RNx , Hu ∈ R2Nu×Nu , bu ∈ RNu and Hε ∈ R2Nx×Nx.

4.2 Subset of data approximation
The computational complexity of solving the optimization problem presented
in eq.(17) is highly influenced by the GP model representing the unknown pipe
dynamics and the uncertainty of the disturbance load on the network. The
computational burden of propagating the uncertainty depends on the number
of data points M used in eq.(6). To lower the computational complexity, the
data set used for the prediction needs to be used in a computationally efficient
way. Several sparse methods exist for approximating the distribution of GPs
[Snelson and Ghahramani, 2006], among which we use the Subset of Data (SoD)
method, where the computation is reduced to O(M̃3) from O(M3), by using
a subset of M̃ <M data points [Chalupka et al., 2013]. Similar point selection
methods have been used in [Kabzan et al., 2019]. The SoD method is shown
in Figure 2.
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Figure 2: Conceptual point selection scheme, where S is the selected subset.

As opposed to more advanced sparse approximation methods, the computa-
tion with SoD can be reduced drastically, however, to the cost of degrading the
prediction quality. Therefore, we spend the extra resources on using a larger
subset M̃ and selecting new points at each sampling time [Quinonero-Candela
and Rasmussen, 2005]. The proposed approach is detailed in Algorithm 1.

Algorithm 1: Subset of Data point selection
1: input: P = z, i = 0 , I = ∅
2: while i < M̃ do
3: for j = 0 to Hp − 1 do
4: i = i + 1
5: r = argminr ∣∣P(r) − ẑj ∣∣2
6: I = I ∪ r
7: P = P ∖ r
8: if i = M̃ then
9: break
10: end if
11: end for
12: end while
13: return: θ∗,Λ∗,z∗(t0), Nx

At each time step we choose a subset S of the training set P, such that all
points in S are close to the previously predicted trajectory ẑ. In Algorithm
1, the index set I is a set containing the indices r. Here, I is used to index
into the full training data set P, e.g., to find the locations of the data points
closest to the previously predicted trajectory ẑj , where j = (0, ...,Hp − 1). The
SoD method assumes that the selected points are close enough to the solution
trajectory calculated at the previous time step such that the prediction accuracy
for the current time step is sufficient. Using the previous solution trajectory
as the selection criteria is a fair assumption in case of the control of UDNs, as
the dynamics and disturbances are slowly varying with respect to the sampling
time of the controller.
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5 Case Study
The experimental setup for testing the GP-MPC in UDN control is shown
in Figure 3 [Val Ledesma et al., 2021]. This setup of a UDN represents a
1 ∶ 80 scale model of a section of a real-life UDN, meaning that the typical
resolution and time scale of the disturbances, control steps, tank emptying,
and sampling times have been scaled down accordingly. An upstream and
downstream pumping station are connected by a gravity-driven sewer line,
most commonly found in real-life pumped sewer infrastructures [Butler and
Davies, 2006]. The open-channel pipeline is equipped with four level sensors
equivalent to water levels measured in manholes in a real network. As shown
in Figure 3, auxiliary tanks are utilized to pump the disturbances to the points
where they act on the system. Note that in our practical setup we generate
these disturbances by pumping them to the inflow locations, while our controller
knows only the forecast. The level sensor measurements of the pipe and the two
tanks, furthermore the flow of the pumps are obtained and locally managed at
each unit with a Codesys soft-PLC in real-time [ 3S-Smart Software Solutions
GmbH]. The data acquisition is done at every 0.5 s, while the control input
is applied at every 10 minute. The periodic component of the disturbances is
equal to 17 minutes, which corresponds to one day in real life.

Level
sensors

Gravity sewer
pipe

Tank
units

q

q

q

h h

hp
hp
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h
h
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q
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Fig. 3. Sewer modules of the Smart Water Laboratory setup at Aalborg university (left). Schematics of the experimental setup (right). The sensor
placements are indicated for each individual module with pressure sensor (p), level sensor (h) and flow sensor (q).

that the selected points are close enough to the solution
trajectory calculated at the previous time step such that the
prediction accuracy for the current time step is sufficient.
Using the previous solution trajectory as the selection criteria
is a fair assumption in case of the control of UDNs, as the
dynamics and disturbances are slowly varying with respect
to the sampling time of the controller.

V. CASE STUDY

The experimental setup for testing the GP-MPC in UDN
control is shown in Fig. 3 [21]. This setup of a UDN
represents a 1 : 80 scale model of a section of a real-life
UDN, meaning that the typical resolution and time scale of
the disturbances, control steps, tank emptying, and sampling
times have been scaled down accordingly. An upstream and
downstream pumping station are connected by a gravity-
driven sewer line, most commonly found in real-life pumped
sewer infrastructures [22]. The open-channel pipeline is
equipped with four level sensors equivalent to water levels
measured in manholes in a real network. As shown in Fig.
3, auxiliary tanks are utilized to pump the disturbances to
the points where they act on the system. (Note that in our
practical setup we generate these disturbances by pumping
them to the inflow locations, while our controller knows only
the forecast.) The level sensor measurements of the pipe
and the two tanks, furthermore the flow of the pumps are
obtained and locally managed at each unit with a Codesys
soft-PLC in real-time [23]. The data acquisition is done at
every 0.5 s, while the control input is applied at every 10
minute. The periodic component of the disturbances is equal
to 17 minutes, which corresponds to one day in real life.

A. UDN model

Following the methodology in Section II, the states, inputs
and disturbances are given by the physical variables

x = [ht1 ht2 hp1 hp4 ]ᵀ, (17)
u = [Qu1 Qu2 ]ᵀ, (18)

d̂ = [qt1 qp3 ]ᵀ, (19)

where the input set z = [x, u, d̂]ᵀ is constructed as in (6),
where Nx = 4, Nu = 2 and Nd = 2, following the notation

shown in Fig. 3. Note that we utilize only hp1 and hp4 at
the up- and downstream end of the pipeline, for the reason
that the input flow Qu1 from station one and the lateral
disturbance flow qp3 in the middle of the pipeline can be
captured indirectly on these two level measurements. Hence,
excluding hp2 and hp3 eases computation.

The nominal dynamics in (4) are given in the form

A=

[
I2×2 02×2

02×2 02×2

]
, B=


Ts

τt1
0

0 Ts

τt2
02×2

, E=

−
Ts

τt1
0

0 − Ts

τt2
02×2


where A ∈ RNx×Nx , B ∈ RNx×Nu and E ∈ RNx×Nd .
Moreover, Ts is the sampling time of the controller. Note
that the nominal dynamics include the two integrator states
ht1 and ht2 , whereas the remaining entries in the state vector
are zeros, meaning that the nonlinear pipe dynamics are not
part of the nominal dynamics. Hence, the GPs are chosen to
take into account the pipe dynamics, the model uncertainty
of the integrator states and the uncertainty of the forecasted
disturbances d̂. As such, the matrix Bp in (3) is an identity
of suitable dimensions. The uncertainty on the forecasted
disturbances d̂ is designed as an additive white noise on top
of the mean of the forecast. Furthermore, due to the scaled
nature of the Smart Water Laboratory setup, uncertainty and
additional dynamics are present due to the pumps.

The mapping matrices defined in (8) are given for each
GP dimension a = 1, ..., 4, respectively:

S1
i1,...,in1

∈ Rn1×Nz , i ∈ {1, 5, 7}
S2
i1,...,in2

∈ Rn2×Nz , i ∈ {2, 4, 6}
S3
i1,...,in3

∈ Rn3×Nz , i ∈ {3, 5}
S4
i1,...,in4

∈ Rn4×Nz , i ∈ {3, 4, 8}

where n defines the total number of dimensions we pick from
the original Nz dimensional data set.
Furthermore, i specifies the number of entry we pick from
z for each output dimension a, respectively.

B. Experimental results

Following the model and data collection methodology in
Section II, the residuals y are constructed between the level

Figure 3: Sewer modules of the Smart Water Laboratory setup at Aalborg university (left).
Schematics of the experimental setup (right). The sensor placements are indicated for each
individual module with pressure sensor (p), level sensor (h) and flow sensor (q).

5.1 UDN model
Following the methodology in Section 2, the states, inputs and disturbances
are given by the physical variables

x = [ht1 ht2 hp1 hp4]⊺, (18)
u = [Qu1 Qu2]⊺, (19)
d̂ = [qt1 qp3]⊺, (20)
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where the input set z = [x,u, d̂]⊺ is constructed as in eq.(6), where Nx = 4,
Nu = 2 and Nd = 2, following the notation shown in Figure 3. Note that we
utilize only hp1 and hp4 at the up- and downstream end of the pipeline, for the
reason that the input flow Qu1 from station one and the lateral disturbance
flow qp3 in the middle of the pipeline can be captured indirectly on these two
level measurements. Hence, excluding hp2 and hp3 eases computation.

The nominal dynamics in eq.(4) are given in the form

A = [ I2×2 02×2
02×2 02×2

],B =

⎡⎢⎢⎢⎢⎢⎢⎣

Ts

τt1
0

0 Ts

τt2
02×2

⎤⎥⎥⎥⎥⎥⎥⎦

,E =

⎡⎢⎢⎢⎢⎢⎢⎣

− Ts

τt1
0

0 − Ts

τt2
02×2

⎤⎥⎥⎥⎥⎥⎥⎦

(21)

where A ∈ RNx×Nx , B ∈ RNx×Nu and E ∈ RNx×Nd . Moreover, Ts is the sampling
time of the controller. Note that the nominal dynamics include the two inte-
grator states ht1 and ht2 , whereas the remaining entries in the state vector are
zeros, meaning that the nonlinear pipe dynamics are not part of the nominal
dynamics. Hence, the GPs are chosen to take into account the pipe dynamics,
the model uncertainty of the integrator states and the uncertainty of the fore-
casted disturbances d̂. As such, the matrix Bp in eq.(3) is an identity of suitable
dimensions. The uncertainty on the forecasted disturbances d̂ is designed as
an additive white noise on top of the mean of the forecast. Furthermore, due
to the scaled nature of the Smart Water Laboratory setup, uncertainty and
additional dynamics are present due to the pumps.

The mapping matrices defined in eq.(8) are given for each GP dimension
a = 1, ...,4, respectively:

S1
i1,...,in1

∈ Rn1×Nz , i ∈ {1,5,7}
S2
i1,...,in2

∈ Rn2×Nz , i ∈ {2,4,6}
S3
i1,...,in3

∈ Rn3×Nz , i ∈ {3,5}
S4
i1,...,in4

∈ Rn4×Nz , i ∈ {3,4,8}

where n defines the total number of dimensions we pick from the original Nz
dimensional data set. Furthermore, i specifies the number of entry we pick
from z for each output dimension a, respectively.

5.2 Experimental results
Following the model and data collection methodology in Section 3, the residuals
y are constructed between the level measurements x in eq.(18) and the nominal
tank dynamics in eq.(4). The data is collected from the laboratory setup under
a nominal, threshold-based level controller, most commonly found in practice
[Lund et al., 2018]. The hyper-parameters σ2

f and Λ are found for each output
dimension a = 1, ...,Na, using Bayesian optimization with the fitrgp toolbox
in MATLAB. Moreover, Hp = 25 steps are used for prediction, corresponding
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to 5 hours in real life. This is a reasonable horizon length in UDNs, as rainfall
radar predictions can provide sufficient accuracy only up to 2 − 4 hours. The
point selection is done on a data set, where M̃ = 80 points are selected at each
time step for the residual predictions. Besides, the full dataset z from which
we select the points for prediction is continuously updated.

The experimental results of the optimization problem in eq.(17) are shown in
Figure 4-A and Figure 4-B. To evaluate the capabilities of the GP-MPC under
uncertainty, n = 10 scenarios of imperfect rain and wastewater flow forecasts
have been created by adding Gaussian distributed random data on top of the
historic real flow data. The imperfect forecast is provided to the GP-MPC,
whereas the historical flow data is implemented on the laboratory setup. Note
that the pumps at both stations have a lower constraint different from zero,
although in reality pumps can be shut down completely. This is for the reason,
that below the lower limits the flow-based PI controllers cannot keep the given
reference due to the small pressure drop in the test setup. As shown in Figure
4-A (c) and (d), the level references at the two stations are tracked, indicating
that the effect of disturbances and the unknown dynamics are learned well.
As expected, the water level in t2 indicates a higher spread of the uncertainty
in the predictions. This is partly because we use the GPs to model both
the disturbance uncertainty and the nonlinear pipe dynamics providing the
transport between the two stations.

In Figure 4-B (g-l), we show an event, which we observe at t = 1500 time
steps in Figure 4-A (c) and (d). The pumps at the upstream t1 tank reduce the
flow to the lower limit, aiming to retent as much volume upstream as possible.
Hence, the load on tank t2 is eased, where at t = 1500 we operate the station
close to its upper constraint. Note that even though the pumps at t2, shown
in Figure 4-B (l), run at full speed, the water level ht2 is approaching a level,
where constraint violation is likely under the uncertain flow forecasts. The
constraint violation of the upper tank level is highly undesirable, as it relates
to an overflow event, where the slacks ε have to be used in the optimization
to lift the physical upper level of the tanks. The controller recognizes that the
slacks in eq.(17) need to be used to avoid the infeasibility of the optimization
problem, hence the controller rather violates the tracking of the reference in
the tank t1 and shuts down the pump, as shown in Figure 4-B (i) and (k). As
shown in the left column of the results in Figure 4-A and Figure 4-B, the GP
can learn the uncertainty on the forecasts and thereby control the pumps to
the reference.
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6. Conclusions and Future Work

6 Conclusions and Future Work
In this paper, we discussed a predictive control approach in urban drainage net-
works, where Gaussian process regression has been used to model the unknown
dynamics and the disturbance uncertainties. For this purpose, we utilized the
Gaussian process regression framework to learn only the parts where the tra-
ditional predictive control lacks a good first principle modelling approach. To
this end, we used level sensors distributed along the network to learn the dis-
turbance uncertainty and the pipe dynamics from the level variation under
a rule-based nominal controller. The residual prediction through uncertainty
propagation along with the deterministic model predictive controller based on
the known dynamics has been solved in a receding horizon fashion on an exper-
imental laboratory setup, using disturbance flow forecast data extracted from
a real-world waste water utility. The performance of the reference tracking un-
derpinned the feasibility of the practical utility of the Gaussian process-based
predictive controller in sewer networks and showed the robustness capabilities
towards uncertain disturbance forecasts.

An investigation into how the periodic behavior of human disturbances can
be learned from the level sensor data with Gaussian processes and using rain
intensity instead of flow is a matter of future work.
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Abstract—Smart control in water systems aims to reduce the cost of in-
frastructure expansion by better utilizing the available capacity through real-time
control. The recent availability of sensors and advanced data processing is ex-
pected to transform the view of water system operators, increasing the need for
deploying a new generation of data-driven control solutions. To that end, this
paper proposes a data-driven control framework for combined wastewater and
stormwater networks. We propose to learn the effect of wet- and dry-weather
flows through the variation of water levels by deploying a number of level sensors
in the network. To tackle the challenges associated with combining hydraulic
and hydrologic modelling, we adopt a Gaussian process-based predictive control
tool to capture the dynamic effect of rain and wastewater inflows, while ap-
plying domain knowledge to preserve the balance of water volumes. To show
the practical feasibility of the approach, we test the control performance on a
laboratory setup, inspired by the topology of a real-world wastewater network.
We compare our method to a rule-based controller currently used by the wa-
ter utility operating the proposed network. Overall, the controller learns the
wastewater load and the temporal dynamics of the network, and therefore sig-
nificantly outperforms the baseline controller, especially during high-intensity
rain periods. Finally, we discuss the benefits and drawbacks of the approach for
practical real-time control implementations.
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1. Introduction

1 Introduction
The primary function of sewers is to convey wastewater (and stormwater in
case of combined networks) towards treatment facilities before releasing it to
the environment. Population growth, urbanization, and changing precipitation
patterns due to climate change cause major impacts on these networks with
increased wastewater and rain loads [Yuan et al., 2019], [Eggimann et al., 2017].
These loads often result in harmful overflows and degraded treatment perfor-
mance, threatening the ecological health of the water bodies and damaging
the infrastructure [Schütze et al., 2002]. Advanced strategies for sewer control
are designed on historical weather observations, raising the question of how to
operate these infrastructures in the wake of ongoing urbanization and climate
change.

1.1 Motivation
To handle the increased load on old infrastructure (without substantial invest-
ment), a possible solution is to use advanced control methods, relying on real-
time data and system-wide optimization techniques [Yuan et al., 2019]. The
increased collection and utilization of data enabled the real-time management
of urban water systems, forming a basis for advanced decision-making tools
[Kitchin, 2014]. In the context of sewer networks, these tools aim to prepare
the system for high-intensity storm events to optimally utilize the maximum
available storage capacity. From a control-theoretic perspective, proactive con-
trol, e.g., Model Predictive Control (MPC), has high relevance in sewers, how-
ever, in practice reactive control is the most commonly implemented approach
[Lund et al., 2018]. Decision making by using weather forecasts is a widely
used method by researchers in the water community [Campisano et al., 2013].

A significant issue with traditional MPC is the need for a well-maintained
system model. At small utilities, such models are often economically out of
reach, and therefore neither decision-support nor advanced control techniques
are used by the practitioners [Lund et al., 2018]. Easy commissioning, therefore,
has a great impact in practice, yet it is an unresolved issue when it comes to
controlling wastewater networks.

Overflows in sewers often occur due to bottlenecks induced by the slow fill-
ing times of storage elements and the significant delays of the sewage transport
[Ocampo-Martinez, 2010]. The uncertainty associated with the weather fore-
casts is also an issue, often deteriorating the prediction capabilities of MPC.
Consequently, handling the rain and wastewater load via control is a challenging
task, not only due to the forecast uncertainty but also due to the uncertainty
of the modelling.

To justify the need for autonomous and easy-commissionable control strate-
gies, we introduce first the existing methods. Then, we detail our contributions
and specify the control and modelling methods used throughout the paper. Fi-
nally, the proposed approach is evaluated on an experimental setup, using real
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rain and wastewater flow data from real-world utilities.

1.2 State of the Art
Instrumentation forms the basis of system-wide planning and automation in ur-
ban water systems [Eggimann et al., 2017], [Yuan et al., 2019]. The data-driven
transformation of water system management has resulted in the deployment of
a high number of sensors, enabling online monitoring and data processing at
many water utilities [Campisano et al., 2013]. The most widely used instrumen-
tation in sewers is flow and level sensors, often placed in tanks and manholes
[Banik et al., 2017]. Flow sensors are typically used for calibrating hydraulic
models for planning and decision support [Yuan et al., 2019], [Mignot et al.,
2012], as well as for modelling the hydrologic processes, e.g., rain running off the
catchments [Li et al., 2019]. In addition to physical sensors, software sensors
have also been developed for flow estimation, utilizing mainly weather radar
data, pump operation, and the water level variation through level sensors [Kisi
et al., 2013], [Ahm et al., 2016], [Chen et al., 2014], [Kallesøe and Knudsen,
2016], [Rjeily et al., 2017].

Real-time control in sewer networks converts the latest sensor measurements
to operational decisions by the use of controllable assets, e.g., pumps, gates,
and valves [Ocampo-Martinez, 2010]. The foundation of all predictive decision-
making techniques is the underlying dynamic model of the system [Lund et al.,
2018]. The most intuitive approach to obtain such models is to consider the
physics behind the process and apply first-principle hydraulic and hydrologic
laws [Todini, 2007], while maintaining the intuition behind the modelling [Balla
et al., 2022]. However, such models often rely on a high level of detail involv-
ing many parameters, and therefore keeping them up-to-date is expensive and
laborious [Schütze et al., 2002]. Besides, one of the most commonly applied
first-principle modelling techniques relies on sets of partial differential equa-
tions [Xu et al., 2011], [Xu et al., 2012], often requiring prohibitively many
sensors for proper calibration. Other physically-based techniques attempt to
conceptualize parts of the network, e.g., by considering segments of the system
as virtual volumes [Joseph-Duran et al., 2015], [Mollerup et al., 2016], and to
simplify the model based on skeletonization of the network [Zhang et al., 2021],
[Thrysøe et al., 2019].

As a result of the increased data availability, data-driven modelling and con-
trol techniques have gained popularity within the urban water systems commu-
nity [Eggimann et al., 2017]. Data-driven models (often termed as black-box)
are described by their input-output characteristics, where inputs typically com-
prise the rain forecasts, while the outputs are the corresponding flows [Kitchin,
2014]. Neural networks have been applied in modelling the system hydraulics
[Dawson and Wilby, 2001], [Mounce et al., 2014], [Vidyarthi et al., 2020] and
the hydrology as well [Chang et al., 2001],[Duncan et al., 2012], [Rjeily et al.,
2017]. One of the strengths of neural networks in water systems is their gener-
ally high performance of learning complex and nonlinear input-output relations.
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On the other hand, although generating solutions with neural networks is effi-
cient, they lack the physical interpretability of parameters and depend heavily
on data quality.

MPC is a well-suited approach for the optimal mitigation of sewer volumes
and regulating the flows with the use of rainfall forecasts [Beeneken et al., 2013],
[Lund et al., 2018]. Characterization of the forecast uncertainties has been
reported by considering a multiple scenario approach in both sewers and water
resource management [Balla et al., 2020], [Tian et al., 2017]. In [Löwe et al.,
2014], [Löwe et al., 2016] and [Vezzaro and Grum, 2014], the incorporation
of stochastic grey-box models for rainfall-runoff has been considered to reduce
combined overflows. Additionally, characterization of the forecast uncertainties
by learning the underlying dynamics of the flows with Gaussian processes have
been reported in [Wang et al., 2014] for water distribution systems, and in
[Troutman et al., 2017] for flow prediction in combined sewers.

Reinforcement learning has shown promising results in both combined [Ochoa
et al., 2019] and storm water networks [Mullapudi et al., 2020], while iterative
learning control has been used to learn the return periods of rain events [Cui
et al., 2015]. Nevertheless, relatively few studies report on learning-based con-
trol in sewer systems. Learning-based control is therefore an are of research
promising a potential alternative or supplement to the real-time control of
wastewater networks.

1.3 Contribution
This paper aims to enable fully automated decision-making in combined sewer
systems. The key innovation behind the proposed method relates to its ability
to learn and make decisions in real time based on level sensor feeds and weather
forecasts. Specifically, the contributions are the following:

• A novel data-driven control approach based on the combination of hy-
draulic modelling and Gaussian processes,

• An economically and practically feasible predictive controller using solely
in-sewer water level observations,

• Uncertainty assessment regarding the system states via propagating the
uncertainty through the predictions,

• Experimental validation.

The proposed solution has two clear benefits. First, in contrast to black-box
modelling, the basic hydraulic laws are combined with data-driven techniques.
The structure of the model preserves intuition by incorporating the physically
measurable levels familiar to practitioners working in the water sector. By
utilizing the available physical description of the network, we make our method
robust towards forecast uncertainties as well as data deficiency.
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Additionally, the purchase and maintenance costs related to flow sensors
are often expensive in comparison to level sensors [Zhang et al., 2021]. In
this work, the level-to-flow conversion is bypassed by establishing direct rela-
tions between the rain and water levels as well as by relating in-sewer water
level measurements to the level variations in the storage tanks at the pumping
stations.

2 Problem Statement
The overall concept of the method is shown in Figure 1, where in-sewer level
sensors are deployed at critical locations in manholes and basins. The net-
work topology is defined by a directed tree graph [Thrysøe et al., 2019], where
pumping stations are connected via gravity sewers. Note that the topology is
simplified based on the high-level piping layout [Thrysøe et al., 2019], while the
infiltration of rain and wastewater is concentrated on network nodes (manholes)
being affected by the discharge. The discharged waste- and storm-water are
collected and pumped from station to station until the root (treatment plant)
is reached. Specifically, we consider the full scale of the network, however, only
the main sewer lines between the pumping stations are modelled.

The configuration of our proposed control method is shown in Figure 2.
The models behind the controller are the physical model (Section 3.1) and
the data-driven model (Section 3.2). The former incorporates the physical
knowledge about the dimension of basins, while the latter describes the effect
of rain, wastewater and the uncertainties in forms of residuals by using sensor
(h), estimation (Q) and rain forecast (d) data. Opposed to classical methods
that handle the inflows (or disturbances) by building individual forecasting
blocks, we consider the translation of rain to level variation incorporated in
the controller. The Gaussian Process-based MPC controller block (GP-MPC)
(Section 3.4.3) stands for the optimization algorithm behind the MPC problem,
using a relevant cost function (Section 3.4.2) and the operational and physical
constraints (Section 3.4.1). The decision support block (Section 3.4.4) is an
information panel providing performance measures of the closed-loop control
performance to, e.g., network operators in case the algorithm is used as an
offline decision-support tool. As shown, the controller provides flow setpoints
to the pumping stations, where the pumps operating in parallel move the water
volumes at the rate of the optimal flow (Qoptimal). Since only water level sensors
are deployed in the wastewater network, the loop is closed with an observer or
pumpflow estimator, allowing for using soft sensing techniques or estimating
the pump flows in the proposed output-feedback scheme. In the following, we
present the control scheme by describing each building block.
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Figure 2: Closed-loop topology of the GP-MPC controller. Signals denoted with blue are flow variables, green signals are water levels and red
signals denote the rain forecast and time. The pipe network (plant) is represented by the WW network block and each block is labeled by the
number of section where detailed description of the functionality is given.

The discharged flow of each pump at a pumping station can
be accurately approximated with a polynomial expression of
each pump sitting in a basin. The pump flow Q is related to the
power and pressure, described by the following expressions

p = a2Q2 + a1Qω + a0ω
2 + ∆h, (2a)

Pp = b2Q2ω + b1Qω + b0ω
3, (2b)

where Pp is the measured electrical power of the pump, Q is
the flow to be estimated, ω is the rotational speed, ∆h is the
level difference between the wastewater basin and the outlet
point, and p is the relative pressure to atmospheric pressure.
The constants ai and bi are pump parameters, assumed to
be known in this work. Several implementations of flow
estimation in wastewater pumping stations exist, demonstrating
high accuracy in practice (Kallesøe and Knudsen, 2016).

The governing dynamics of the discharged flow propagation
in pipes is assumed to be unknown in the nominal model.
Therefore, the nominal part of the mass-balance for the entire
network is given by the combination of the vector of tank levels
ht and the vector of water levels hp ∈ RNp in manholes, where
system parameters related to pipe dynamics are zero. The full
nominal model is given in the standard linear state-space form

h(t + 1) = f
(
h(t),Q(t)

)
= Ah(t) + BQ(t), (3)

where f represents the known part or nominal dynamics of the
wastewater network and h ∈ RNh is the vector of combined
water levels where Nh = Nt + Np corresponds to the number of
water level sensors deployed in the entire network. Note that
the structure of the state-space model is created based on the
network topology, i.e., using the piping layout. In the case of
several pumping stations connected by transport pipes, building
the mass-balance model can be easily automated by stacking
the vectors of suitable dimensions of water levels in Eq. (1).

3.2. Data-driven modelling
The exogenous effect of dry and wet-weather flows are gov-

erned by unknown dynamics that are excluded from the nomi-
nal model in Eq. (3). These exogenous flows induce variations
in the levels in basins and the manholes. Consequently, the

flow inside the combined sewer conduits is characterized by the
sum of dry-weather discharge (domestic wastewater) and wet-
weather discharge (rainfall-runoff), i.e., q(t) = qr(t) + qww(t),
where qr and qww are the flows generated by rainfall-runoff

and domestic wastewater production, respectively, while q is
the combined flow. This formulation allows to apply it to both
combined and stormwater networks, wherein the latter case the
network is not influenced by dry-weather flow. However, we do
not take into account the groundwater infiltration explicitly as
we rather consider it implicitly in the dry-weather flows.

Given water level sensor data h, pump flow estimate Q
and rainfall forecast d, the problem is formed by the need
to learn the model parts which can complement the nominal
dynamics described in Eq. (3). With the learned model, we
aim to predict the evolution of water levels, i.e., the system
states. For this reason, we assume that the entire network
dynamics are composed of a nominal and an additive, unknown
part. The former represents the known hydraulics of the sewer
network, while the latter represents the rain and wastewater
flow infiltrating into the system, the pipes transporting the water
volumes, moreover the forecast and model uncertainty. The
combined network model is given by

h(t + 1) = f
(
h(t),Q(t)

)
+ Bp g

(
h(t),Q(t), d(t), t

)
+ w(t), (4)

where g is a nonlinear vector function governing the unknown
dynamics, d ∈ RNd is the vector of rainfall forecasts at Nd

different locations and w is the process noise w ∼ N(0,Σw),
following Gaussian white noise distribution. Besides, Bp is
a matrix mapping the nonlinear dynamics g to the full state
vector h. Simply stated: if there is a storage tank where the
level variation h is not affected by uncertain inflows, Bp maps
the lower dimensional outputs of the function g to the full state
vector h by simply contributing zero to the nominal dynamics.

To generate input data for learning the unknown function g,
we use the level sensor measurements h, the flow estimates Q,
and the forecast of rainfall d. Note that the weather forecasts
indicate how rainfall infiltrates and appears as flow qr in the
sewers. Since the dry-weather flow qww generated by domestic
wastewater production typically follows a diurnal pattern, the
cyclical behavior correlates to time, i.e., it is likely that the

4

Figure 2: Closed-loop topology of the GP-MPC controller. Signals denoted with blue are
flow variables, green signals are water levels and red signals denote the rain forecast and
time. The pipe network (plant) is represented by the WW network block and each block is
labeled by the number of section where detailed description of the functionality is given.

3 Methods

3.1 Physical modelling
The nominal model structure is described by the physical laws of wastewater
transport. The information we use are the the topological layout of the network,
the size of storage tanks, and the estimated pump flow. Hydraulic storage
elements are described with simple mass-balances. Specifically, the level change
induced by pump operation is given by

ht(t + 1) =Atht(t) +BtQ(t), (1)

where ht ∈ RNt is the vector of water levels in storage tanks at discrete time
t, with Nt being the number of tanks and Q ∈ RNQ is the vector of pump
flows representing the sum of flows for each pump at the NQ pumping stations.
The parameter matrices At ∈ RNt×Nt and Bt ∈ RNt×NQ are defined by the
physical size of the storage elements, i.e., the diameter and the discretization
time step or sampling time. The mass balance is described by eq.(1) with the
exception that the effect of inflows, i.e., rain runoff and domestic wastewater
are in general unknown, hence not considered as part of the nominal storage
dynamics.

The discharged flow of each pump at a pumping station can be accurately
approximated with a polynomial expression of each pump sitting in a basin.
The pump flow Q is related to the relative pressure, the power and the speed
of the pump, described by the following expressions:

Q = sa0
1
ω
+ sa1

∆p
ω

+ sa2
Pp

ω2 + sa3ω, (2)
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where Q is the flow to be estimated in m3/s, ω is the rotational speed in rad/s,
∆h is the level difference between the wastewater basin and the outlet point,
and p is the relative pressure to atmospheric pressure, obtained by measuring
the inlet pressure and the level in the wet well. Note that p is in mWc, i.e.,
meter water column. Constants ai are pump parameters describing the pump
curve of the specific pump, assumed to be known in this work. Furthermore,
sPp is the sum of the power consumption of Pp of individual pumps, s denoting
the number of running pumps. Several implementations of flow estimation in
wastewater pumping stations exist, demonstrating high accuracy in practice
[Kallesøe and Knudsen, 2016].

The governing dynamics of the discharged flow propagation in pipes is as-
sumed to be unknown in the nominal model. Therefore, the nominal part of the
mass-balance for the entire network is given by the combination of the vector
of tank levels ht and the vector of water levels hp ∈ RNp in manholes, where
system parameters related to pipe dynamics are zero. The full nominal model
is given in the standard linear state-space form

h(t + 1) = f(h(t),Q(t)) =Ah(t) +BQ(t), (3)

where f represents the known part or nominal dynamics of the wastewater
network and h ∈ RNh is the vector of combined water levels where Nh = Nt+Np
corresponds to the number of water level sensors deployed in the entire network.
Note that the structure of the state-space model is created based on the network
topology, i.e., using the piping layout. In the case of several pumping stations
connected by transport pipes, building the mass-balance model can be easily
automated by stacking the vectors of suitable dimensions of water levels in
eq.(1).

3.2 Data-driven modelling
The exogenous effect of dry and wet-weather flows are governed by unknown
dynamics that are excluded from the nominal model in eq.(3). These exogenous
flows induce variations in the levels in basins and the manholes. Consequently,
the flow inside the combined sewer conduits is characterized by the sum of dry-
weather discharge (domestic wastewater) and wet-weather discharge (rainfall-
runoff), i.e., q(t) = qr(t) + qww(t), where qr and qww are the flows generated
by rainfall-runoff and domestic wastewater production, respectively, while q
is the combined flow. This formulation allows to apply it to both combined
and stormwater networks, wherein the latter case the network is not influenced
by dry-weather flow. However, we do not take into account the groundwater
infiltration explicitly as we rather consider it implicitly in the dry-weather flows.

Given water level sensor data h, pump flow estimate Q and rainfall forecast
d, the problem is formed by the need to learn the model parts which can
complement the nominal dynamics described in eq.(3). With the learned model,
we aim to predict the evolution of water levels, i.e., the system states. For this
reason, we assume that the entire network dynamics are composed of a nominal
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and an additive, unknown part. The former represents the known hydraulics
of the sewer network, while the latter represents the rain and wastewater flow
infiltrating into the system, the pipes transporting the water volumes, moreover
the forecast and model uncertainty. The combined network model is given by

h(t + 1) = f(h(t),Q(t)) +Bpg(h(t),Q(t),d(t), t) +w(t), (4)

where g is a nonlinear vector function governing the unknown dynamics, d ∈
RNd is the vector of rainfall forecasts at Nd different locations and w is the
process noise w ∼ N(0,Σw), following Gaussian white noise distribution. Be-
sides, Bp is a matrix mapping the nonlinear dynamics g to the full state vector
h. Simply stated: if there is a storage tank where the level variation h is not
affected by uncertain inflows, Bp maps the lower dimensional outputs of the
function g to the full state vector h by simply contributing zero to the nominal
dynamics.

To generate input data for learning the unknown function g, we use the
level sensor measurements h, the flow estimates Q, and the forecast of rainfall
d. Note that the weather forecasts indicate how rainfall infiltrates and appears
as flow qr in the sewers. Since the dry-weather flow qww generated by domestic
wastewater production typically follows a diurnal pattern, the cyclical behavior
correlates to time, i.e., it is likely that the flow patterns are similar at the same
time of the day at a different week. For this reason, when we consider the
implicit formulation of g, we assume that time t is also an input. In this way,
we provide time as an additional input indicating the variation of the dry-
weather flow patterns. For ease of notation, let us define the input data as a
vector

z = [h⊺,Q⊺,d⊺, t]⊺. (5)
To generate output data for learning, we use the additive feature of the nominal
and unknown dynamics defined in eq.(4). To create residuals, we use the data
provided by the level sensors and subtract the nominal dynamics, i.e.,

y(t) = g(z(t)) +w(t) =B†
p(h(t + 1) − f(h(t),Q(t))), (6)

where y ∈ RNy is the vector of residuals of size Ny, corresponding to the num-
ber of states or water levels influenced by either dry- or wet-weather inflows.
Besides, the mapping matrix B†

p is inverted with the Moore-Penrose pseudo-
inverse. The main benefit of constructing the residuals y is that we remove the
already known dynamics from the signal while obtaining a more clear picture
of the impact of dry- and wet-weather flows on the level variations. Simply
stated: by using the level sensors distributed in the network, we aim to capture
as much dry- and wet-weather flow dynamics as possible.

The training set is constructed by collecting the input-output data pairs
under nominal operation, i.e.,

D = {(z(i),y(i)) ∣ i = 1, ...,M}, (7)

232



3. Methods

where M is the number of collected data points.
A powerful way to represent the input-output mapping of g by taking into

account the forecast uncertainties is to model the relation as a Gaussian Pro-
cess. Rather than claiming that the input-output relation above belongs to a
specific mathematical model structure, a Gaussian Process is a nonparametric,
probabilistic model, based on data. Instead of parametrizing g, we characterize
the distribution of all possible functions of g, i.e., the residuals we generated
with eq.(6). Hence the GP model representing one dimension of the residual y
is given by

y ∼ GP (m(z),ΣGP + Iσ2
n), (8)

where the distribution of the Gaussian process is fully characterized by its mean
function m(z) and covariance ΣGP . We consider the mean m(z) as a constant
function, equivalent to a model bias in case of a zero mean GP. The noise
variance is denoted by σ2

n and I is the identity matrix of suitable dimension.
The mean and covariance are defined by

m(z(i)) = E{g(z(i))}, (9a)

ΣGP (i, j) = cov (g(z(i)), g(z(j))) ≈ k(z(i),z(j)), (9b)

where the mean m(z) and the covariance matrix ΣGP are obtained by evalu-
ating the mean and covariance functions given all measured data pairs in D.
The expected value operator is denoted by E{⋅}. The covariance function or
kernel k establishes a measure of similarity between the function values of g.
Specifically, our model makes use of the kernel to approximate the covariance
of the residual signals. In this setting, we assume that the sewer dynamics ex-
hibit smooth and continuous behavior (based on the slow sewer dynamics), and
therefore a squared exponential kernel is used to approximate the covariance
function in eq.(9) [Rasmussen and Williams, 2018]. It is however straightfor-
ward to use any other differentiable kernels which characterize well our initial
knowledge or belief about the function g. The squared exponential kernel is
given by

k(z(i),z(j)) = σ2
f exp( − 1

2
(z(i) − z(j))

⊺
S⊺Λ−1S(z(i) − z(j))), (10)

where the kernel is characterized by its hyper-parameters σ2
f and Λ−1 =

diag(σ−2
L,1, ..., σ

−2
L,Nz

) denoting the signal variance and the length scale matrix,
respectively. Note that we use automatic relevance determination, meaning
that we use different length scale parameters for different dimensions of the
input vector z [Rasmussen and Williams, 2018]. Hence, the relative importance
of contribution for each input is assessed.

Using all input dimensions in eq.(5) for characterizing each residual is com-
putationally demanding, considering that each level sensor and pumping data
is used to evaluate the kernel function even if some of the information is irrele-
vant. Consequently, the mapping matrix S is constructed by using the topology
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of the network for each residual. These mapping matrices embed information
about how the network components are connected and thereby map only the
relevant dimensions of the training set D.

It can be shown that the posterior distribution over all possible realization
of the function g is given by Bayes’ Rule

P{g ∣z,y} = P{g}P{y ∣z,g}
P{y ∣z} . (11)

Given our problem formulation, the posterior distribution simplifies to [Ras-
mussen and Williams, 2018]

P{g ∣z,y} ∼ GP (m(z),ΣGP + Iσ2
n). (12)

The hyper-parameters of the above problem are learned by maximizing the
marginal likelihood P{y ∣z}, typically done via numerical approximations, as
the analytical evaluation of the above problem is intractable [Chalupka et al.,
2013].

Once the hyper-parameters are identified, the Gaussian process model is
used to predict the residual y∗ at a test point z∗, using the relation y∗ = g(z∗).
The problem of predicting the residual corresponds to finding the probability
distribution of P{y∗ ∣D,z∗}, given the training data D, a testing input z∗
and the hyper-parameters. By using the kernel to approximate the covariance
between the training and testing points, the mean and variance of the Gaussian
process are reformulated, i.e.,

µGP (z∗) =m(z∗) +Kz∗z(Kzz + Iσ2
n)

−1(y −m(z)), (13a)

ΣGP (z∗) =Kz∗z∗ −Kz∗z(Kzz + Iσ2
n)

−1
Kzz∗ , (13b)

whereKzz∗ =k(z, z∗) andKz∗z =K⊺
zz∗ are the covariances between the training

and testing points, furthermoreKz∗z∗ is the autocovariance of the testing point.

3.3 Probabilistic prediction model
Adopting the Gaussian processes, we aim to predict the effect of wet- and
dry-weather discharges on the water levels over multiple prediction steps. Pre-
dicting multiple steps ahead with the GPs representing g and nominal model
f means that the mean and the variance of the previously predicted states
are used to predict the next states. Hence, we feed back stochastic variables
as inputs. In general, the resulting water level distribution is non-Gaussian,
as we propagate the stochastic states through the nonlinear kernel stated in
eq.(10). The resulting distribution is approximated, such that the water levels
h and the GP dynamics are approximated at each prediction step t as jointly
Gaussian, i.e.,

( h(t)
GP (t) ) ∼N(µ(t),Σ(t)) =

⎛
⎝
[ µh(t)
µGP (t)], [

Σh(t) Σh,GP (t)
ΣGP,h(t) ΣGP (t) ]

⎞
⎠
, (14)
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where Σh,GP = (ΣGP,h)⊺ are the cross-covariances between the states and
the Gaussian process, µh(t) is the vector of mean levels and Σh(t) is the
covariance matrix of the water levels at time t . The pump flows Q are treated
as deterministic variables.

To find the transition probability of the system states, we apply the first-
order Taylor expansion of the approximated joint Gaussian distribution shown
in eq.(14) around the mean µh(t) of the states at time step t [Hewing et al.,
2020]. Then the mean and variance dynamics of the water levels h result in

µh(t + 1) = f(µh(t),Q(t)) +µGP (t), (15a)

Σh(t + 1) = [∇hf(µh(t),Q(t)),Bp]Σ(t)[∇hf(µh(t),Q(t)),Bp]
⊺
, (15b)

where Σ is the joint covariance matrix in eq.(14) and ∇h denotes the first-order
partial derivative with respect to the water levels. Then, the mean and variance
dynamics become

µh(t + 1) =Aµh(t) +BQ(t) +BpµGP (t), (16a)
Σh(t + 1) =AΣh(t)A⊺ +BpΣGP,h(t)A⊺

+AΣh,GP (t)B⊺
p +BpΣGP (t)B⊺

p , (16b)

where the co-variance update and the cross co-variance between the Gaussian
process and the water levels are given by

µGP (t) = µGP (z̃(t)) (17a)

Σh,GP (t) = Σh(∇hµGP (z̃(t)))
⊺

(17b)

ΣGP (t) = ΣGP (z̃(t)) + ∇hµGP (z̃(t))Σh(t)(µGP (z̃(t)))
⊺
, (17c)

where the input vector is given by z̃ = [µ⊺h,Q⊺,d⊺, t]⊺.

3.4 Predictive control
Regarding the control of large-scale water systems, the popularity of MPC is
to a great extent due to the fact that physical and operational constraints are
handled in the optimization problem. According to the predictions with the
model and the rain forecasts, the MPC algorithm optimizes the manipulated
variables (flows or levels) over a given prediction horizon Hp of chosen length.
The optimal inputs are computed to obtain a future response of the water
system. The calculated inputs are then sent to the actuators (pumps or gates)
and the entire process is repeated in a receding horizon fashion. In our work,
constraints are formed on the physical flow limits of pumps and the physical
dimensions of the network, e.g., the capacity of storage tanks and manholes.
The disturbances are considered as the wet- and dry-weather flows affecting the
sewer network in terms of wastewater flow and rain runoff, among which the
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latter is of highly stochastic nature. The forecast of these exogenous signals is
typically done in terms of nowcasting and forecasting. Nowcasts are obtained
by rainfall radars, providing sufficient spatial and temporal reliability up to
two hours, while forecasts span over a longer time horizon.

3.4.1 Constraints

Both physical and operational constraints are formulated for the optimization
problem associated with the GP-MPC strategy. We consider the sum of each
pump unit at the pumping station, hence the constraint on the manipulated
flows is given by

HQQ(t) ≤ bQ, (18)

where bQ = [Q⊺
max,Q

⊺
min]⊺ ∈ R2NQ is the vector of upper and lower flow bounds

at each pumping station, i.e., the maximum and minimum sum of flow that a
station can provide. Furthermore, the matrix HQ = [INQ

,−INQ
]⊺ maps the

vector of pump flow variables Q to the suitable dimensions of bQ.
Constraints on the system states pose limitations on the maximum and

minimum water levels. Often the bounds correspond to the capacity of a man-
hole or a basin. From the physical point of view, it is evident that a combined
wastewater network is best prepared for a high-intensity rain event if basins are
emptied beforehand. Keeping the water levels as low as possible is particularly
important before a storm event, as water volumes might need to be used to the
maximum capacity of the piping network. Considering the uncertain nature of
rain forecasts and the dynamic nature of wastewater flow patterns, the goal of
the controller is to reject the wet- and dry-weather inflows. In this study, we
adapt some ideas from predictive control in water distribution networks [Grosso
et al., 2014], [Wang et al., 2016], where we introduce an operational constraint.
This operational criterion keeps the levels in storage tanks within a specific
safety range instead of forcing them to a reference. The functionality of this
constraint is to allow the controller to operate the level freely by penalizing
only level values which violate the safety bounds. The safety bounds and the
operating capacity are illustrated in Figure 3.

Safety
region

Physical
capacity

ht,max

ht,min

hs,min

hs,max

ε

ξ

h(t)

t

Safety
violation

Overflow

Figure 3: Safety and capacity constraints, where blue and red arrows
are constraint relaxations for overflow (ε) and safety violation (ξ).

(Furthermore to limit odor problems due to retention.) While
finding the optimal placement of the safety region is out of
scope here, it is reserved for future simulation studies.

Introducing the nonlinear kernel and propagating the uncer-
tainties with the Gaussian processes result in system states (wa-
ter levels) being probabilistic, following a Gaussian distribu-
tion. Hence the state constraints need to be treated stochastic.
In this study, we formulate probabilistic constraints in terms of
chance constraints (Wang et al., 2016a), i.e.,

P{Hh(t) ≤ b} ≥ α, (19a)
P{Hsh(t) ≤ bs} ≥ αs, (19b)

where Eq. (19a) describes the constraint on the physical
capacity of storage elements while Eq. (19b) describes the
constraint on the safety region. The operator P{} is the
probability that the inequality is satisfied with α and αs being
the confidence levels. Furthermore, the mapping matrices
Hh = [INh ,−INh ]ᵀ and Hs = [INht

,−INht
]ᵀ map the vector

of water levels h to suitable size of b = [hᵀ
t,max, h

ᵀ
t,min]ᵀ and

bs = [hᵀ
s,max, h

ᵀ
s,min]ᵀ water level bounds, respectively.

Under our assumptions that h is jointly Gaussian with
the residuals y, the above probabilistic expressions can be
reformulated as convex, deterministic constraints (Wang et al.,
2016a, Hewing et al., 2020). The constraints are given by

Hµh(t) ≤ b + Hεε(t) − c � H diag
(
Σh(t)

) 1
2 , (20a)

Hsµh(t) ≤ bs + Hξξ(t) − cs � Hs diag
(
Σh(t)

) 1
2 , (20b)

where the actual water level values are replaced by their
expected or mean values µh. Furthermore, we introduce a term
called the vector of critical values c = φ(α)−1, where φ(·) is the
vector of inverse cumulative distribution function (or quantile)
of the standard Gaussian distribution evaluated at α. These
quantiles can be precomputed and used as constant values. The
operator � denotes element-by-element multiplication and the
slack terms ε = [εᵀmax, ε

ᵀ
min]ᵀ and ξ = [ξᵀmax, ξ

ᵀ
min]ᵀ denote

vectors of relaxation variables standing for safety violation and
overflow, respectively. The mapping matrices H ∈ R2Nh×Nh

and Hs ∈ R2Nt×Nt map the mean water level µh and variance
Σh to the suitable dimensions of the maximum and minimum
water level bounds b and bs. Note that the additional term in
Eq. (20) corresponds to the tightening of the original bounds,
conditioned on the evolution of the water level variances along
the prediction horizon. As expected, the longer we predict into
the future, the higher the variances grow due to the model and
forecast uncertainties. To avoid recursive infeasibility, the slack
variables ξ and ε are utilized to soften the constraints.

3.4.2. Cost function
The cost function is the key component in the design

of the GP-MPC. In general, the formulation of the control
problem relates to the manipulation of water volumes to avoid
undesirable overflows and water surges outside the main sewer
lines. From the control point of view, we focus on the
rejection of the stochastic meteorological (rain-runoff) and
human (wastewater flow) loads, aiming to avoid the physical
constraint violations resulting in overflows or water surges.
Although here we propose a specific objective function, there
is a flexibility of either removing or adding control objectives
simply by adding new control goals. For example, the control
strategy may vary according to the infrastructure design, e.g.,
the inclusion of treatment plant objectives may be crucial to
add in combined networks with high wastewater load. In this
work, we focus on the following operational and management
criteria (listed in decreasing order of priority)

I. Minimise overflow in storage elements
II. Minimise safety volume violation
III. Minimise the water level in storage elements
IV. Minimise the control action of pumps

The predefined objectives are aggregated in a multi-objective
cost function to fulfill all control criteria. As the evolution of
the water levels is described by an approximated joint Gaussian
probability distribution, the cost function is formulated on
stochastic variables. The overall cost of the control problem
is formed as expected values, given by

L(t)=E
{
W1||ε(t)||2λ1︸      ︷︷      ︸

I.

+W2||ξ(t)||2λ2︸      ︷︷      ︸
II.

+W3||h(t)||2λ3︸      ︷︷      ︸
III.

+W4||∆Q(t)||2λ4︸         ︷︷         ︸
IV.

}
(21)

where the different control objectives are prioritized through
the W weighting constants. Furthermore, these weights also
normalize each objective such that water levels and flows
become comparable in magnitude. Cost I. represents the
overflow penalty, where the use of slack variable ε represents
the water level exceeding the physical bounds of the basins.
The amount of overflow shared between pumping stations is
prioritized with the diagonal λ1 matrix, where λ1 is diagonal
and 0 ≤ λ ≤ I, similarly to all λ matrices. Moreover,
the weight constant W1 is significantly higher than any other
weights, as using the overflow variables is undesirable. Cost
II. corresponds to the safety slack, while Cost III. penalizes
the level in storage tanks and manholes. By adjusting λ3, the
filling sensitivity of storage tanks or manholes can be adjusted,
meaning that storage nodes prone to overflows are filled slower
and emptied faster than less sensitive storage elements. Note
that Cost IV on minimizing the pumpflows is formulated on the
variation of the signal ∆Q(t) = Q(t) − Q(t − 1), accounting for
integral action enabling smooth system response.

The slack variables representing overflow ε and the safety
violation ξ are decision variables, similarly to the change of
flow ∆Q for pumps. The decision variables are considered
deterministic, therefore the only stochastic term in Eq. (21) is
Cost III.

7

Figure 3: Safety and capacity constraints, where blue and red arrows are constraint relax-
ations for overflow (ε) and safety violation (ξ).

While the minimum and maximum level values of the physical capacity con-
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straints are evident, the determination of the safety bounds is crucial to achiev-
ing a proper performance of the closed-loop control strategy. We argue that
the safety bounds are placed best at the lower region of tanks, as the system
remains emptied and prepared in case of an unexpected storm event. (Fur-
thermore to limit odor problems due to retention.) While finding the optimal
placement of the safety region is out of scope here, it is reserved for future
simulation studies.

Introducing the nonlinear kernel and propagating the uncertainties with the
Gaussian processes result in system states (water levels) being probabilistic, fol-
lowing a Gaussian distribution. Hence the state constraints need to be treated
stochastic. In this study, we formulate probabilistic constraints in terms of
chance constraints [Wang et al., 2016], i.e.,

P{Hh(t) ≤ b} ≥ α, (19a)
P{Hsh(t) ≤ bs} ≥ αs, (19b)

where eq.(19a) describes the constraint on the physical capacity of storage
elements while eq.(19b) describes the constraint on the safety region. The op-
erator P{} is the probability that the inequality is satisfied with α and αs being
the confidence levels. Furthermore, the mapping matrices Hh = [INh

,−INh
]⊺

and Hs = [INht
,−INht

]⊺ map the vector of water levels h to suitable size of
b = [h⊺t,max,h

⊺
t,min]⊺ and bs = [h⊺s,max,h

⊺
s,min]⊺ water level bounds, respectively.

Under our assumptions that h is jointly Gaussian with the residuals y, the
above probabilistic expressions can be reformulated as convex, deterministic
constraints [Wang et al., 2016], [Hewing et al., 2020]. The constraints are given
by

Hµh(t) ≤ b +Hεε(t) − c⊙H diag (Σh(t))
1
2 , (20a)

Hsµh(t) ≤ bs +Hξξ(t) − cs ⊙Hs diag (Σh(t))
1
2 , (20b)

where the actual water level values are replaced by their expected or mean
values µh. Furthermore, we introduce a term called the vector of critical values
c = φ(α)−1, where φ(⋅) is the vector of inverse cumulative distribution function
(or quantile) of the standard Gaussian distribution evaluated at α. These
quantiles can be precomputed and used as constant values. The operator ⊙
denotes element-by-element multiplication and the slack terms ε = [ε⊺max, ε

⊺
min]⊺

and ξ = [ξ⊺max,ξ
⊺
min]⊺ denote vectors of relaxation variables standing for safety

violation and overflow, respectively. The mapping matrices H ∈ R2Nh×Nh and
Hs ∈ R2Nt×Nt map the mean water level µh and variance Σh to the suitable
dimensions of the maximum and minimum water level bounds b and bs. Note
that the additional term in eq.(20) corresponds to the tightening of the original
bounds, conditioned on the evolution of the water level variances along the
prediction horizon. As expected, the longer we predict into the future, the
higher the variances grow due to the model and forecast uncertainties. To
avoid recursive infeasibility, the slack variables ξ and ε are utilized to soften
the constraints.
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3.4.2 Cost function

The cost function is the key component in the design of the GP-MPC. In
general, the formulation of the control problem relates to the manipulation
of water volumes to avoid undesirable overflows and water surges outside the
main sewer lines. From the control point of view, we focus on the rejection
of the stochastic meteorological (rain-runoff) and human (wastewater flow)
loads, aiming to avoid the physical constraint violations resulting in overflows
or water surges. Although here we propose a specific objective function, there
is a flexibility of either removing or adding control objectives simply by adding
new control goals. For example, the control strategy may vary according to
the infrastructure design, e.g., the inclusion of treatment plant objectives may
be crucial to add in combined networks with high wastewater load. In this
work, we focus on the following operational and management criteria (listed in
decreasing order of priority)

I. Minimise overflow in storage elements

II. Minimise safety volume violation

III. Minimise the water level in storage elements

IV. Minimise the control action of pumps

The predefined objectives are aggregated in a multi-objective cost function to
fulfill all control criteria. As the evolution of the water levels is described by
an approximated joint Gaussian probability distribution, the cost function is
formulated on stochastic variables. The overall cost of the control problem is
formed as expected values, given by

L(t) = E{W1∣∣ε(t)∣∣2λ1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I.

+W2∣∣ξ(t)∣∣2λ2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

II.

+W3∣∣h(t)∣∣2λ3
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

III.

+W4∣∣∆Q(t)∣∣2λ4
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

IV.

} (21)

where the different control objectives are prioritized through the W weighting
constants. Furthermore, these weights also normalize each objective such that
water levels and flows become comparable in magnitude. Cost I. represents the
overflow penalty, where the use of slack variable ε represents the water level
exceeding the physical bounds of the basins. The amount of overflow shared
between pumping stations is prioritized with the diagonal λ1 matrix, where λ1
is diagonal and 0 ≤ λ ≤ I, similarly to all λ matrices. Moreover, the weight
constantW1 is significantly higher than any other weights, as using the overflow
variables is undesirable. Cost II. corresponds to the safety slack, while Cost
III. penalizes the level in storage tanks and manholes. By adjusting λ3, the
filling sensitivity of storage tanks or manholes can be adjusted, meaning that
storage nodes prone to overflows are filled slower and emptied faster than less
sensitive storage elements. Note that Cost IV on minimizing the pumpflows is
formulated on the variation of the signal ∆Q(t) = Q(t) −Q(t − 1), accounting
for integral action enabling smooth system response.
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The slack variables representing overflow ε and the safety violation ξ are
decision variables, similarly to the change of flow ∆Q for pumps. The decision
variables are considered deterministic, therefore the only stochastic term in
eq.(21) is Cost III. Taking the expected value of the quadratic term results in
the following expression [Hewing et al., 2020]:

E{W3∣∣h(t)∣∣2λ3
} =W3[∣∣µh(t)∣∣2λ3

+ tr{λ3Σh(t)}], (22)

where tr{} is the trace operator and the expected value results in the mean µh
and the covariance Σh of the water level values.

3.4.3 Optimization problem

Bringing together the approximations of the water levels and the Gaussian
processes, furthermore the expected values of both the constraints and cost
function, we introduce the tractable form of the optimization problem behind
the GP-MPC algorithm (indicated in Figure 2). The problem is given by

Minimize
∆Q(0),...,∆Q(Hp−1)
ε(0),...,ε(Hp−1)
ξ(0),...,ξ(Hp−1)

i+Hp−1
∑
t=i

W1∣∣ε(i)∣∣2λ1
+W2∣∣ξ(i)∣∣2λ2

+W3[∣∣µh(i)∣∣2λ3

+ tr{λ3Σh(i)}] +W4∣∣∆Q(i)∣∣2λ4
, (23a)

subject to

µh(i + 1) = f(µh(i),Q(i)) +µGP (i), (23b)

Σh(i + 1)=[∇hf(µh(i),Q(i)),Bp]Σ(i)[∇hf(µh(i),Q(i)),Bp]
⊺
, (23c)

∆Q(i) =Q(i) −Q(i − 1), (23d)
HQQ(i) ≤ bQ, (23e)

Hµh(i) ≤ b +Hεε(i) − c⊙H diag (Σh(i))
1
2 , (23f)

Hsµh(i) ≤ bs +Hξξ(i) − cs ⊙Hs diag (Σh(i))
1
2 , (23g)

ε(i) ≥ 0 and ξ(i) ≥ 0, (23h)
µGP (i), ΣGP (i) according to eq.(13) (23i)
Σ(i) according to eq.(14) (23j)
µh(0) = h(i), Σh(0) = 0, (23k)

where the minimization is solved at time t for every i = 0, ...,Hp − 1 along the
prediction horizonHp in a receding horizon fashion. Note that the optimization
problem is subject to the dynamic network equations in eq.(23b) and eq.(23c),
forming equality constraints. After solving the optimization problem in eq.(23)
at state h(0), the resulting decision variables form an optimal control sequence
of the change in pumpflows u = [∆Q⊺(0),∆Q⊺(1), ...,∆Q⊺(Hp − 1)], where
only the first row of u is used. Note that the vector of slacks ε and ξ are also
decision variables obtained via the optimization.
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3.4.4 Key performance indicators

The proposed approach is aimed for the online, automatic control of com-
bined or separated wastewater networks. The approach, however, serves as a
toolchain not only for closed-loop control but as a decision support for water
practitioners (information panel in Figure 2). We aim to support decision mak-
ing by providing Key Performance Indicators (KPIs) for predicting overflows,
assess the uncertainty of the predicted water levels and to provide information
about the safety region in storage tanks. The KPIs are given by

KPIξ =
1
Hp

NQ

∑
k=1

Hp−1
∑
i=0

ξk(i), (24a)

KPIε =
1
Hp

NQ

∑
k=1

Hp−1
∑
i=0

εmax,k(i), (24b)

KPI∆Q = 1
Hp

Hp−1
∑
i=0

∆Q⊺(i)∆Q(i), (24c)

KPIΣ = 1
Hp

Hp−1
∑
i=0

tr{Σh(i)}, (24d)

where the performance indicator in eq.(24a) is related to the safety bound
violation, the KPI in eq.(24b) for overflows, eq.(24c) assesses the smooth per-
formance of the pumping and the KPI in eq.(24d) is related to the amount
of uncertainy along the prediction horizon Hp, respectively. The KPI indicat-
ing the level of potential overflow is only assessed for the slack variable εmax,
corresponding to the level violation for the upper capacity limit of basins and
manholes. Note that all KPIs are averaged along the prediction horizon and
considered for the entire wastewater network. Ideally, the KPIs accounting for
overflows and safety violation should be zero, meaning that the pumps coun-
teract the wet and dry-weather flow disturbances and they respect the safety
requirements. In practice, the stochastic disturbances are complicated to fore-
cast and the uncertainty in the model and in the forecast are always present.

3.4.5 Implementation

The control algorithm and the interfacing software to the experimental setup
are available on an open-source web repository
(https://github.com/csocsidior/LB-GP-based_WWnetwork_control). The
data collected during the experiments have also been attached to the web repos-
itory to allow practitioners and researchers to evaluate our implementation.
Additionally, a simulator environment replicating the topology of our labora-
tory equipment is also provided. The algorithm has been implemented on a
Windows OS desktop computer with a 3.6 (GHz), Intel Xeon machine with 64
GB RAM, and the software has been written in Matlab. The real-time con-
trol algorithm has been interfaced with Simulink, and the data was obtained
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4. Case Study

and locally managed at each unit of the experimental setup with a CODESYS
soft-PLC in real time [ 3S-Smart Software Solutions GmbH]. The optimization
problem related to the GP-MPC controller has been solved via direct multi-
ple shooting in the symbolic framework CasADI [Andersson et al., 2019] with a
pimer-dual interior point solver IPOPT [Wächter and Biegler, 2006]. For finding
the hyperparameters of the Gaussian processes, we used the fitrgp toolbox in
Matlab.

4 Case Study
To show the practical feasibility of the learning-based framework, the controller
is deployed on a laboratory setup, emulating a combined wastewater network.
This laboratory setup enables us to prototype our control solution serving as
proof-of-concept without the risk of compromising the operation of real-world
infrastructure. (A detailed description of the test setup can be found in [Val
Ledesma et al., 2021].) Besides, the experimental tests conducted in this paper
are inspired by a real wastewater network topology located in Gram, Denmark,
proposing a realistic control problem. The configuration is shown in Figure 4.

The replicate of the network segment is a 1 ∶ 80 scale of the real infrastruc-
ture. Therefore, the resolution of the time scale and the wet- and dry-weather
flows are scaled down accordingly. Specifically, the diurnal pattern of wastew-
ater is scaled to 19 minutes, corresponding to one day in real life. While the
data acquisition is done at every 0.5 second, the control time step is 10 seconds,
equivalent to sending a control signal every 12 minutes in real life. Besides, the
data used in the experiment are real wastewater and rain precipitation1.

The experimental setup consists of an upstream and downstream pumping
station connected via a sewer pipe, where the water volumes are transported
with pumps. Lateral inflow from household areas enters the system by dis-
charging wastewater at the middle point of the pipeline. As indicated in Fig-
ure 4, the laboratory setup is equipped with level sensors distributed along the
open-channel pipes and storage tanks together with flow sensors at the pump-
ing stations. Although flow estimation is given by eq.(2), we simply use the
available sensors on the setup.

Following the methods in Section 3, the nominal model of the network is
assessed. Specifically, we have NQ = 2 pumping stations, Np = 1 level sensor
in pipes and Nt = 2 at the stations. The dry- and wet-weather flows enter the
system at Nd = 2 points, where rain infiltrates the system at pumping station
t1. The training data array for identifying the data-driven part of the model in
eq.(5) is constructed as z(t) = [h⊺(t),Q⊺(t), d(t), t]⊺, where the level and flow
signals at time t are given by

1The rain data has been obtained through the Danish Meteorological Institute’s Open
Data application interface (https://confluence.govcloud.dk/display/FDAPI). The wastew-
ater data has been obtained from the utility Fredericia Spildevand og Energi A/S in Den-
mark.
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5. Results and discussion

h(t) = [ht1(t), ht2(t), hp3(t)]⊺, (25a)
Q(t) = [Qt1(t),Qt2(t)]⊺. (25b)

Out of the four available level sensors in manholes, we use hp3 placed after
the connection of the lateral inflow pipe. We argue that the sensor measurement
located at this point captures sufficient information to model how the pump
Qt1 , and disturbance flows qp3 enter the channel. Then, the nominal parameters
of the wastewater network are given by

A = [ I2×2 02×1
01×2 0 ],B =

⎡⎢⎢⎢⎢⎢⎢⎣

Ts

τt1
0

0 Ts

τt2
01×2

⎤⎥⎥⎥⎥⎥⎥⎦

, (26)

where Ts denotes the sampling time of the controller, while τ1 and τ2 are the
storage tank parameters representing the geometry and size of the tanks. It
is important to note that the experiments are carried out such that the water
recirculates in the system, meaning that the flows and volumes need to be
balanced. For this reason, the controlled pumps cannot turn off to zero flows,
as expected in a real-world implementation. Instead, the operating range of the
pumped flows is lifted to a value where the network can run for long experiments
without emptying the Rain inflow and Household area auxiliary tanks.

5 Results and discussion

5.1 Residual model training
Given the physical model, the residuals y ∈ R3 can be constructed based on
the water level measurements h ∈ R3. As stated in Section 3.2, beyond the
sensor availability, knowledge of the physical system plays a significant role in
the training efficiency of the model. To find the hyperparameters for each GP,
the dimension of the training data set is reduced according to eq.(10) by using
the slicing matrices. These matrices define which dimensions of the original
training set z influence the given residual based on the topological layout of
the system, i.e.,

S1
i1,...,in1

∈ Rn1×Nz , i ∈ {4,6,7}, (27a)

S2
i1,...,in2

∈ Rn2×Nz , i ∈ {3,5,7}, (27b)

S3
i1,...,in3

∈ Rn3×Nz , i ∈ {4,7}, (27c)

where i is the index of the predictor in the input set z. As an example, to train
the GP on residual y1 (corresponding to the upstream tank t1), the predictors
Qt1, (i = 4), the rain forecasts d, (i = 6), and the time t, (i = 7) are used. This
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is well-aligned with our physical insights, as we can observe from the visual
inspection of the water level variation in the upstream tank that both the dry-
and wet-weather flows and the corresponding pumps influence the signal. The
illustration of the feature selection is shown in Figure 5.
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Fig. 1. Caption.

Figure 5: Validation of the GP model with the residuals regarding the level variations in the two tanks and in the sewer pipe, respectively.

where Ts denotes the sampling time of the controller, while
τ1 and τ2 are the storage tank parameters representing the
geometry and size of the tanks. It is important to note that
the experiments are carried out such that the water recirculates
in the system, meaning that the flows and volumes need to be
balanced. For this reason, the controlled pumps cannot turn
off to zero flows, as expected in a real-world implementation.
Instead, the operating range of the pumped flows is lifted to a
value where the network can run for long experiments without
emptying the Rain inflow and Household area auxiliary tanks.

5. Results and discussion

5.1. Residual model training

Given the physical model, the residuals y ∈ R3 can be
constructed based on the water level measurements h ∈ R3. As
stated in Section 3.2, beyond the sensor availability, knowledge
of the physical system plays a significant role in the training
efficiency of the model. To find the hyperparameters for each
GP, the dimension of the training data set is reduced according
to Eq. (10) by using the slicing matrices. These matrices define
which dimensions of the original training set z influence the
given residual based on the topological layout of the system,
i.e.,

S 1
i1,...,in1

∈ Rn1×Nz , i ∈ {4, 6, 7}, (28a)

S 2
i1,...,in2

∈ Rn2×Nz , i ∈ {3, 5, 7}, (28b)

S 3
i1,...,in3

∈ Rn3×Nz , i ∈ {4, 7}, (28c)

where i is the index of the predictor in the input set z. As
an example, to train the GP on residual y1 (corresponding to
the upstream tank t1), the predictors Qt1, (i = 4), the rain
forecasts d, (i = 6), and the time t, (i = 7) are used. This
is well-aligned with our physical insights, as we can observe
from the visual inspection of the water level variation in the
upstream tank that both the dry- and wet-weather flows and the

corresponding pumps influence the signal. The illustration of
the feature selection is shown in Fig. 6.

ht1 ht2 hp3 Qt1 Qt2 d t
1. 2. 3. 4. 5. 6. 7.

Full set z

Selected
entries

4. 6. 7.
Qt1 d t

7.5.3.
hp3 Qt2 t

7.4.
Qt1 t

S 1 S 3
S 2

Figure 6: Feature selection with the slicing matrices S .

The collected measurement data for training is obtained
under the nominal operation of the network. We consider the
nominal operation of pumping stations when pumps operate
with threshold-based control rules, most commonly applied
by wastewater utilities (Lund et al., 2018). To test the
modelling capabilities of the Gaussian process model fitted
to the residuals, the collected data have been divided into a
training and validation sets. The GP models have been trained
on 80% of the collected data set, corresponding to 60 days
of on/off operation. The rest of the data (15 days) have been
used for validating the results. Fig. 5 shows the three residuals
constructed from the measurement data h obtained via the
level sensors. It is seen from these results that the predictions
with the GP model match the level residual observations
within the validation period in the two tanks and the pipes.
Furthermore, except for some outlier points, the confidence
interval characterized by the variance of the GP process covers
the distribution of the data points well. The variations in the
data are primarily due to the noise and the measuring precision
of the sensors.

As seen in residual y1, removing the effect of the nominal
dynamics from the original level signal results in the daily
diurnal level variation patterns induced by the dry-weather
discharges, and level peaks due to the wet-weather rain
precipitation. It is worth noting that the performance of our
level predictions using rain forecasts is underpinned by the
fact whether we observed rain episodes similar to the current
forecast before. Besides, note that our experimental test setup

10

Figure 5: Feature selection with the slicing matrices S.

The collected measurement data for training is obtained under the nominal
operation of the network. We consider the nominal operation of pumping sta-
tions when pumps operate with threshold-based control rules, most commonly
applied by wastewater utilities [Lund et al., 2018]. To test the modelling ca-
pabilities of the Gaussian process model fitted to the residuals, the collected
data have been divided into a training and validation sets. The GP models
have been trained on 80% of the collected data set, corresponding to 60 days of
on/off operation. The rest of the data (15 days) have been used for validating
the results. Figure 6 shows the three residuals constructed from the measure-
ment data h obtained via the level sensors. It is seen from these results that
the predictions with the GP model match the level residual observations within
the validation period in the two tanks and the pipes. Furthermore, except for
some outlier points, the confidence interval characterized by the variance of
the GP process covers the distribution of the data points well. The variations
in the data are primarily due to the noise and the measuring precision of the
sensors.

As seen in residual y1, removing the effect of the nominal dynamics from
the original level signal results in the daily diurnal level variation patterns in-
duced by the dry-weather discharges, and level peaks due to the wet-weather
rain precipitation. It is worth noting that the performance of our level predic-
tions using rain forecasts is underpinned by the fact whether we observed rain
episodes similar to the current forecast before. Besides, note that our exper-
imental test setup has physical limitations of how different rain flow profiles
we can create. This might partly explain why our final model exhibited such
suitable performance in predicting the combined level variations (e.g., residual
y1 in Figure 6).

The data describing residual y2 varies due to the discharged pump flow
coming from the upstream station t1 and the lateral inflow coming from the
household area. However, note that all dynamics due to the pumping have been
removed from the signal. It is seen from the signal that the diurnal lateral flows
(qp3) coming from upstream induce the level variations in the downstream tank,
while some effects of the gravitated discharge flow from the pump activity break
the periodicity of the signal.
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Lastly, residual y3 describes exactly the level variations in the pipe without any
modifications, as the dynamics of flow propagation in pipes are not character-
ized by any physically-based nominal dynamics in our study. Incorporating
physical knowledge (e.g., travel time, level attenuation) into the pipe residual
model is of course possible in specific cases, but ignored in this initial eval-
uation; investigation of this will be reserved for future studies. As seen, the
variations mainly occur due to the dry-weather lateral inflow from the house-
hold area (which we desire to capture through this signal), while the jumps
observed in both the predictions and the data are due to the pumping cycles
coming from the upstream station.

So far, we verified our assumptions on the input selection based on our
physical insights. However, it is crucial to make sure that our model cap-
tures the correlation between each input dimension of the training set z used
for the residual predictions. Since the GP models are used to solve an op-
timization problem through multiple-step predictions, we need to make sure
that the decision variables are properly captured in the model. Hence, the
following measure is introduced to measure the relevance of each input on the
corresponding residuals:

ri =
exp(−σL,i)
∑NL

j=1 σL,j
, (28)

where ri is the normalized relevance of the ith predictor selected with the slicing
matrices in eq.(27) and NL is the number of length-scale hyperparameters used
for the given output residual. The relevant data inputs receive positive values
between one and zero, while a value close to zero indicates irrelevant input
data. The comparison of input relevance corresponding to each GP model is
shown in Figure 7.
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Fig. 1. Caption.

Figure 7: Relevance of the regressors showing the effect of the input data on the residuals.

has physical limitations of how different rain flow profiles we
can create. This might partly explain why our final model
exhibited such suitable performance in predicting the combined
level variations (e.g., residual y1 in Fig. 5).

The data describing residual y2 varies due to the discharged
pump flow coming from the upstream station t1 and the lateral
inflow coming from the household area. However, note that
all dynamics due to the pumping have been removed from the
signal. It is seen from the signal that the diurnal lateral flows
(qp3 ) coming from upstream induce the level variations in the
downstream tank, while some effects of the gravitated discharge
flow from the pump activity break the periodicity of the signal.
Lastly, residual y3 describes exactly the level variations in
the pipe without any modifications, as the dynamics of flow
propagation in pipes are not characterized by any physically-
based nominal dynamics in our study. Incorporating physical
knowledge (e.g., travel time, level attenuation) into the pipe
residual model is of course possible in specific cases, but
ignored in this initial evaluation; investigation of this will be
reserved for future studies. As seen, the variations mainly
occur due to the dry-weather lateral inflow from the household
area (which we desire to capture through this signal), while the
jumps observed in both the predictions and the data are due to
the pumping cycles coming from the upstream station.

So far, we verified our assumptions on the input selection
based on our physical insights. However, it is crucial to make
sure that our model captures the correlation between each input
dimension of the training set z used for the residual predictions.
Since the GP models are used to solve an optimization problem
through multiple-step predictions, we need to make sure that the
decision variables are properly captured in the model. Hence,
the following measure is introduced to measure the relevance
of each input on the corresponding residuals:

ri =
exp(−σL,i)∑NL

j=1 σL, j
, (29)

where ri is the normalized relevance of the ith predictor selected
with the slicing matrices in Eq. (28) and NL is the number of
length-scale hyperparameters used for the given output residual.
The relevant data inputs receive positive values between one
and zero, while a value close to zero indicates irrelevant input
data. The comparison of input relevance corresponding to each
GP model is shown in Fig. 7. As seen in residual y1, the
time input t (used to describe the diurnal variation of wet-
weather flows) is dominant compared to the rain forecasts d
and to the pumping activity Qt1 . This fact is in line with our

expectations as the majority of the residual data incorporates
information about the diurnal wastewater activity, while the rain
peaks appear less often in the time series. It is also seen that the
pump flow data are quite irrelevant when we predict with the
model. This verifies our method since the effect of the pump
dynamics is part of the nominal model, hence it should not
affect the residual.

The relevance bars of residual y2 show that the level variation
in the sewer pipe discharging to the downstream tank (hp3 ) has
a high relevance, verifying our initial assumptions, as the only
discharge source is the flow gravitated down from the upstream
tank. Note, however, that our model shows some correlation
between the nominal pump flows Qt2 and the time input t. A
possible explanation for this fact might be that in case of high
loads, both pumping stations turn on approximately at the same
time, meaning that Qt2 and hp3 inhabit similar characteristics.
Moreover, we select the time input to model each residual,
in case there are some additional periodic components in the
signal not described by the level sensor in the gravity pipe.
Lastly, the water level variation in the sewer pipe is induced by
the pumps upstream Qt1 and by the lateral inflow qp3 , which
we model inherently by providing time t as an input. It is
worth noting that we do not distinguish between weekdays
and weekends. This means that the predicted diurnal patterns
represent an average model, which considers the similarity
between any days in our training set.

5.2. Closed-loop control experiment

The experimental evaluation of the learning-based predictive
controller has been carried out with an Hp = 20 steps horizon,
which is equivalent to a four-hour ahead prediction in real life.
It should be noted that the computational complexity of solving
the optimization problem in Eq. (22) is highly dependent on
the GP model used for learning the dry-weather flows and the
unmodelled dynamics. From the implementation point of view,
propagating the uncertainty depends on the number of data
points that we use in our optimization problem, as µGP and ΣGP

are conditioned on the observed data and therefore evaluating
Eq. (13) has a cost growing with the number of points. To
overcome this issue, we select a subset of M = 80 data points
from the D training set with a criteria that these points need to
be close to the previously predicted state trajectories. Hence,
we assume that the previous solution trajectory will lie close
to the current one, which is fair considering that wastewater
networks inhabit slowly-varying dynamics. Although several
sparse GP approximations exists (Hewing et al., 2020), here we

11

Figure 7: Relevance of the regressors showing the effect of the input data on the residuals.

As seen in residual y1, the time input t (used to describe the diurnal variation
of wet-weather flows) is dominant compared to the rain forecasts d and to the
pumping activity Qt1 . This fact is in line with our expectations as the majority
of the residual data incorporates information about the diurnal wastewater
activity, while the rain peaks appear less often in the time series. It is also seen
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5. Results and discussion

that the pump flow data are quite irrelevant when we predict with the model.
This verifies our method since the effect of the pump dynamics is part of the
nominal model, hence it should not affect the residual.

The relevance bars of residual y2 show that the level variation in the sewer
pipe discharging to the downstream tank (hp3) has a high relevance, verifying
our initial assumptions, as the only discharge source is the flow gravitated
down from the upstream tank. Note, however, that our model shows some
correlation between the nominal pump flows Qt2 and the time input t. A
possible explanation for this fact might be that in case of high loads, both
pumping stations turn on approximately at the same time, meaning that Qt2
and hp3 inhabit similar characteristics. Moreover, we select the time input to
model each residual, in case there are some additional periodic components in
the signal not described by the level sensor in the gravity pipe. Lastly, the
water level variation in the sewer pipe is induced by the pumps upstream Qt1
and by the lateral inflow qp3 , which we model inherently by providing time t
as an input. It is worth noting that we do not distinguish between weekdays
and weekends. This means that the predicted diurnal patterns represent an
average model, which considers the similarity between any days in our training
set.

5.2 Closed-loop control experiment
The experimental evaluation of the learning-based predictive controller has
been carried out with an Hp = 20 steps horizon, which is equivalent to a four-
hour ahead prediction in real life. It should be noted that the computational
complexity of solving the optimization problem in eq.(22) is highly dependent
on the GP model used for learning the dry-weather flows and the unmodelled
dynamics. From the implementation point of view, propagating the uncertainty
depends on the number of data points that we use in our optimization problem,
as µGP and ΣGP are conditioned on the observed data and therefore evaluating
eq.(13) has a cost growing with the number of points. To overcome this issue,
we select a subset of M = 80 data points from the D training set with a criteria
that these points need to be close to the previously predicted state trajectories.
Hence, we assume that the previous solution trajectory will lie close to the
current one, which is fair considering that wastewater networks inhabit slowly-
varying dynamics. Although several sparse GP approximations exists [Hewing
et al., 2020], here we implement the most simple version and reserve more
advanced sparse approximations for future studies. Furthermore, we add new
level, pump flow and forecast points at every second control step to our data
dictionary D, i.e., we continuously learn new state-action-forecast pairs. Note
that the controller is launched after the model is pre-trained on the 60 days of
training data previously obtained from the nominal operation, hence the point
selection already has a wide feature-space to select from.

The closed-loop control results obtained from our experimental setup aim
to show the benefits of distributing the water level sensors in combination with
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using the residual-based physical and GP-based data-driven techniques to learn
the dynamics of a network-scale control problem. To assess the performance
of the GP-MPC, the method is compared with a standard baseline controller,
meaning that we emulate the same scenarios and run the two different con-
trollers under the same physical and control properties. In our implementation,
both controllers act globally and compute the flow reference signals to the local
PI controllers governing the pumps. To stretch both controllers to their capac-
ity limits, a period equivalent to 18 days in real life with heavy rain periods
has been chosen, forcing the network to overflow due to its insufficient storage
capacity. The results of the experiment are shown in Figure 8. The figure
compares both control scenarios by showing the forecasts and the discharged
inflows entering the system (a-b), the water level in each tank (c-d), the vol-
ume of actual overflow escaping from the tanks (e-f), and finally the control
decisions at the two pumping stations made by the learning-based GP-MPC
(g-h) and by the on/off baseline controller (i-j).

Overflows are triggered several times while running the baseline controller
due to the lack of collaboration between the upstream and downstream pump-
ing stations. Opposed to on/off operation, it is clear that the GP-MPC at
the upstream tank shifts the timing of the pumping under heavy rain events.
Note that the controlled flow at the upstream station Qt1 rarely reaches its
upper flow limit and often reduces the outflow, thereby saving the capacity
downstream. By delaying the flows from the upstream station, the GP-MPC
controller allowed the downstream tank to drain and to spend less time over-
flowing. This shift in time and the flow reduction is observed between Day
1 − 2, and between Day 14 − 17.
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Looking at the control actions between the latter period (Day 14 and 15),
the system is exposed to an extreme event, where a high-intensity and long-
duration rain event is about to be forecasted. During this episode, the control
actions at the upstream pumping station start to oscillate when the controller
realizes that the safety bounds need to be violated and the upstream tank
need to use the slack variables for overflows to reduce the overall accumulated
spilled volumes. The KPI corresponding to the control actions is verifying
this behavior, shown in Figure 9. For various practical reasons, this action is
undesirable. However, the upstream pumping station indeed overflows at Day
16, while the water levels at the downstream basin hover just below the upper
physical level limits. A possible explanation for this behavior might be the type
of rain event forecasted at Day 14. In Figure 9 in the last row, the uncertainty
predicted by the controller is assessed in comparison to the different forecasts.
Short uncertainty peak can be explained by the low performance of the point
selection, meaning that the points selected from the feature space D are not
suitably representing the currently forecasted scenario. This is visible at most
times instants under rain forecasts. However, the uncertainty remains high
during the two longest rain events between Day 1− 2 and 14− 16, respectively.
This indicates that even though our simple point selection with M = 80 points
makes it possible to solve the optimization problem in under 2 seconds on
average, the prediction quality and thereby the smoothness of the control action
are significantly degraded. Moreover, our experimental tests confirm that the
performance of the GP-MPC is quite sensitive to the formulation and tuning
of the objective function. As seen from the KPIs between Day 14 − 15, the
uncertainty remains high during the rain events, indicating that the points
we use for the predictions do not describe the forecasted scenario in a proper
way. At the same time, the rain has a long duration and its intensity triggers
overflow in the predictions. However, as the uncertainty grows due to the bad
description of the data, the controller attempts to minimize the variance to the
cost of not reporting overflows.

Note that between Day 9 − 14 there is a relatively dry period, where the
controller at both stations makes the outflows of the pumps mimic the daily
diurnal flow variations induced by the wastewater flowing into the system.
This indicates that the Gaussian process part of the model predicts an average
wastewater inflow with an uncertainty bound that fits the actual inflows quite
well. Thereby the pumps exhibit smooth control actions resulting in smooth
variations inside the safety region defined in the tanks (marked with the blue
area in Figure 8 (c-d)).
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Paper F.

The results illustrated here show a number of benefits and challenges to us-
ing the GP-MPC scheme to learn and predict the dry- and wet-weather flows
from the level variations occurring in combined wastewater networks. Arguably,
the major benefit of learning from the level data is the ability to launch the con-
troller without developing control models relying on the level to flow conversion.
However, as the experimental tests have shown, the adoption of the method is
challenged by several practical issues. Since the effect of the inflows is handled
by the Gaussian processes, the contribution of the data-driven decision-making
cannot be easily explained and explicit guarantees cannot be given. However,
using sparse approximations of the available training data sets is anticipated to
increase the quality of predicting the residuals. To further improve the robust-
ness of the controller, instead of choosing M exact points for the covariance
matrices, it is anticipated that approximating the original training data matrix
with anM dimensional sparse matrix based on the point selection will improve
the uncertainty propagation.

6 Conclusions
This paper introduced a Gaussian process-based predictive control algorithm
for the real-time control of wastewater networks. While flow modelling with
Gaussian processes has been successfully used in water systems before, to our
knowledge this is the first instance where the methods have been applied and
verified experimentally in real-time control without the use of any flow sensors.
The methods proposed here and our experimental tests showed promising re-
sults in using the domain knowledge combined with the data-driven model to
make automated decisions on a network scale. The proposed control architec-
ture has the potential to serve as either an online or an offline decision-support
tool to control actuators in wastewater networks, predict overflows and assess
the uncertainty of the decisions. To that end, the formulations and real-time
results provided by this paper should serve as a basis to support data-driven
predictive control as a feasible solution in wastewater networks.
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A Toolchain for the Data-driven Decision
Support in Waste Water Networks – A

Level-based Approach
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Abstract—This paper aims to enable automated decision-making in com-
bined wastewater and stormwater networks. The proposed concept is based on
the deployment of in-sewer water level sensors distributed at critical locations
in basins and manholes. With the use of level sensors and weather forecast
feeds, we aim to learn how rain infiltrates into the network and build decision
support to optimally manage the operation of storage elements, i.e., basins.
For that, a data-driven probabilistic framework based on Gaussian Processes
is developed. The presented framework enables practitioners to build system
knowledge (actuator state, tank dimensions) into the design while leaving the
uncertain parts (rain runoff) to be handled by the Gaussian Processes. The
paper highlights the practical feasibility of the toolchain through a pilot project
with Ishøj Spildevand in Denmark, where the prediction capabilities are tested
for five months period, providing proof of the proposed concept.

Keywords—Decision support, Smart Water systems, Data-driven mod-
elling, Climate adaptation
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1. Introduction

1 Introduction
Up to today, most sewer systems operate without any form of global supervision
or optimization. Utilities, however, are constantly challenged by the increased
amount of wastewater and the more frequent high-intensity precipitation due to
growing urbanization and climate change. Nonetheless, thanks to the ongoing
digital developments in the water sector, wastewater operators have adopted
advanced data acquisition and data processing for system monitoring, raising
the question of how to build decision-making tools in the wake of the digital
transformation in the urban water sector [Eggimann et al., 2017].

2 Motivation and background
One way to handle intensive load on sewer systems (without infrastructure ex-
pansion) is to use system-wide optimization based on real-time data to avoid
or, at least, attenuate water surges. From the control perspective, proactive
methods, such as predictive control has high relevance in preparing the sewers
for high-intensity rain events. However, reactive techniques (based on simple
feedback rules) are the most widely implemented methods in practice [Eggi-
mann et al., 2017]. An issue with predictive control is often the need for a
well-calibrated high-fidelity or physical network model. Such models are avail-
able at some mid- or large-size water utilities, but often economically out of
reach for smaller operators. For that reason, neither decision support nor con-
trol tools are used by practitioners, which clearly shows that Plug and Play
solutions have a high impact in practice.

3 Methods
The proposed model behind the toolchain consists of a nominal part (a hy-
draulic description of basins and the flow provided by controllable assets, e.g.,
pumps) and an unknown part (rain, wastewater, forecasts uncertainty, and all
hidden dynamics, described by Gaussian processes). Opposed to other tra-
ditional toolchain approaches that handle the wet and dry-weather flows as
separate forecast blocks, we consider the translation of rain intensity to level
variation incorporated in the control design. Hence, the data-driven part of
the model is only fitted to the difference of the measured water levels and the
known nominal dynamics, i.e., to the residuals. For this, the available level
measurements, information about the controllable assets, the high-level topol-
ogy of the network, and the rain forecast feeds are used. Using a nonparametric
and stochastic modelling tool, such as Gaussian Processes, enables us to use
only the measured and forecasted data to conclude our control decision. A
simplified diagram of the proposed toolchain is shown in Figure 1.
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Wastewater Network

Rain forecast

Actual rain

Automatic decision

Forecast
(future)

Measured
(now)
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Actuator state

Actuator
setpoint

Level
sensors

Figure 1: Closed-loop automatic decision support strategy using water level sensors and
feedback from actuators.

The decision (support) algorithm evaluates the forecasts, the actual rain, and
the actual level measurements. Based on a similarity measure between the
observations, the algorithm provides predictions of the water levels in the net-
work, which can be used for decision on the network operation. Simply stated:
the similarity between rain and wastewater patterns between historic data and
current forecasts are evaluated, meaning that the current forecast will likely
result in an observation similar to those historic rain events having the same
length and intensity. Hence, we do not only conclude on mean value predic-
tions but also provide our decision confidence to the utility. If similar events
happened before then our confidence of the prediction is high, while if a new
event is observed that is not learned yet, the confidence is low.

4 Case study
The experimental evaluation of the toolchain has been carried out in a pilot
project under the collaboration of Grundfos Holding A/S, Aalborg University,
and Ishøj Spildevand in Denmark. Five level sensors have been deployed in the
network for a period spanning five months, providing 30 seconds measurement
resolution, while the rain data has been obtained from the Danish Meteorolog-
ical Institute’s (DMI) service at a 1 minute resolution. The area and the sensor
placements are shown in Figure 2.

The network is a stormwater system transporting the water from the city
of Ishøj to the sea. There is a main transport line, along which there are
stormwater basins with high volume capacity. The main focus of the utility is
to carry out climate adaptation on their system, partly due to the following
operational management issues:

• Water volumes accumulate downstream, increasing the risk of flooding in
case of high intensity rain events and high sea levels downstream ,

• Without control, the capacity of Basin 1. is not utilized, therefore all
volumes are bypassing and propagate downstream.

262
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Level
sensors

Basin 1.
Basin 2.

Discharge
to the sea

Figure 2: Storm water network in Ishøj, where red dots denote water level sensors.

To solve these problems, better information about the behaviour of the
system is needed. For this reason, we deployed level sensors in the two basins
and three sensors between the basins to learn how rain infiltrates into the
network, and most importantly: how the upstream level variations affect the
levels downstream.

5 Results
A visualization interface has been developed on top of the Grafana time series
visualization package [Grafana Labs, 2018] shown in Figure 3.
From the collected dataset, we chose 12 rain periods, which we used to eval-
uate the predicting capabilities of the proposed approach. An example of the
training and validation results is shown in Figure 5. As shown, the water levels
are trained and validated on approximately half of the collected data, respec-
tively. An interesting event is encircled in blue where the predictions show high
uncertainty before a long and high-intensity rain event. This is partly because
such an event has not been encountered in the data we used for the training.
Moreover, 1-hour predictions are shown in Figure 5.
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Figure 3: Grafana visualization interface developed for the case study.
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Figure 4: Example of model training and predicted water level response with character-
ization of the uncertainty based on the 12 rain events over a five months test period from
16-June-2020 to 27 October 2020.

6 Conclusions
The results show that the current solution is capable of predicting reasonable
levels and uncertainty measures with solely using water level and historical
rain gauge measurements as forecasts. (Note, that testing on real forecasts is
anticipated as future work.) A next step is to deploy controllable assets at
Basin 1. and Basin 2. to build the control capabilities at the utility from our
toolchain, serving as a backbone.
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