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Abstract

This thesis is about statistical analysis of spatial point pattern data sets. A
point pattern is a finite subset of some space S; in this thesis, S ⊆ Rd for
some dimension d. In most application examples d = 2 or d = 3. Examples
of point pattern data could be positions of trees in a forest or positions of cells
in a human brain. It is often of interest to investigate whether a point pattern
exhibits significant deviations from the case where all points are positioned
completely at random. Such deviations can occur when the point pattern
exhibit clustered and/or regular behaviour. This is usually investigated by
means of functional summary statistics. A point pattern is considered to be
a realization of a point process, which is a stochastic countable subset of S,
and a statistical analysis of a point pattern may include fitting an appropriate
point process model to the data. The task of estimating unknown parameters
in a point process model is often difficult because the likelihood function is
only tractable for very simple models, so likelihood based methods are often
impractical. Therefore, there are many different estimation procedures for
point process models including maximum pseudo-likelihood estimation and
minimum contrast estimation. Which estimation method it is preferred to
use depends on the point process model and the available theoretical knowl-
edge for that particular model. This thesis contributes to the field of statistical
analysis of spatial point patterns by introducing two new point process mod-
els, introducing a new procedure for estimating parameters in point process
models, providing a discussion about whether to condition on the observed
number of points when analysing point patterns, and providing an interest-
ing application example of point pattern analysis involving the spatial organ-
isation of pyramidal cells in the human cerebral cortex.

The thesis consists of two parts: Part I is an introduction, and Part II
consists of six research papers. Part I provides some background information
regarding statistical analysis of point patterns which is relevant in order to
better understand the papers in Part II and their scientific contribution.

The most common and popular spatial point process models are mod-
els for either clustering or regularity. In Papers A and F, we introduce point
process models exhibiting both clustering and regularity. In Paper A, we pro-
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pose a doubly stochastic spatial point process model called an LGCP-Strauss
process which combines a log-Gaussian Cox process with a Strauss process
in order to obtain a model with repulsion at small scales and aggregation at
a larger scale. Estimating parameters in this model is challenging because of
a lack of theoretical knowledge, so we illustrate how to make Bayesian infer-
ence by means of the method of approximate Bayesian computations which
is a method based entirely on the ability to simulate under the model for
given parameters. In Paper F, we propose a cluster point process model with
regularity between clusters thus yielding a model with clustering at a small
scale and regularity at a larger scale. We call this class of models determi-
nantal shot noise Cox processes since they are the special case of generalized
shot noise Cox processes where a determinantal point process is used for the
point process of cluster centres. We are able to derive various moment re-
sults, which are particularly tractable when either a Gaussian determinantal
point process or a scaled Ginibre point process is used for the center process.
These results can be used to easily estimate unknown parameters by means
of minimum contrast estimation.

Inspired by the challenges we had with estimating parameters in LGCP-
Strauss processes in Paper A, I suggest a method for estimating parameters
in spatial point process models by means of neural networks in Paper E.
The method is generally applicable to all point process models since the only
requirement is the ability to simulate under the model. Through a simulation
study, I compare the neural network approach to the most commonly used
existing methods for some popular examples of point process models and
conclude that the suggested neural network approach recovers parameters
well.

In most applications of point pattern analysis, there is only one observed
point pattern to analyse, that is, only one realization of an assumed generat-
ing spatial point process. It is thus impossible to validate any claims about
the distribution of the number of points in the point pattern, but the com-
mon practice is still to directly or indirectly assume a model for the number
of points. In Paper D, we discuss this practice and investigate whether we
should instead condition on the number of points when modelling spatial
point patterns. Regarding parameter estimation, we conclude that it is incon-
venient to condition on the number of points. Concerning model validation
with global envelopes, we conclude that when using some functional sum-
mary statistics, it will be an advantage to condition on the number of points;
however, for the most popular choices of summary statistics for model vali-
dation it makes no real difference to condition on the number of points.

In Papers B–C, we investigate the spatial organisation of pyramidal cells
in the human cerebral cortex by analysing three dimensional point patterns
of cell positions. By means of the functional summary statistic called the
cylindrical K-function, we were able to find evidence of a columnar structure



in the data. In Paper C, we also compared point patterns of cells from control
subjects, subjects with a depression, subjects with schizophrenia, and sub-
jects who had committed suicide, but the analysis was unable to detect any
significant differences in the spatial organisation of pyramidal cells between
groups.





Resumé

Denne afhandling omhandler statistisk analyse af rumlige punktmønstre. Et
punktmønster er en endelig delmængde af et rum S. I denne afhandling er
S ⊆ Rd for en dimension d. I de mest almindelige eksempler på anvendelser
er d = 2 eller d = 3. Som eksempler på punktmønstre kan nævnes træers
placering i en skov eller cellers placering in menneskehjernen. Det er ofte re-
levant at undersøge, om et punktmønster udviser signifikante afvigelser fra
den situation, hvor alle punkter er placeret fuldstændigt tilfældigt. Sådan-
ne afvigelser kan opstå, hvis punktermønstret ideholder tegn på klustering
og/eller regularitet. Dette undersøges tit ved at benytte relevante summary
statistics. Et punktmønster betragtes som en realisation af en punktprocess,
hvilket er en stokastisk tællelig delmængde af S, og en statistisk analyse af
et punktmønster kan inkludere, at en passende punktprocessmodel tilpas-
ses data. Opgaven med at estimere ukendte parametre i en punktproces-
smodel er ofte vanskelig, fordi likelihoodfunktionen kun er håndterlig for
meget simple modeller, hvilket bivirker, at det ofte er upraktisk at benytte
likelihoodbaserede estimationsmetoder. Derfor findes der mange forskellige
estimationsmetoder for punktprocessmodeller, inklusiv maksimum pseudo-
likelihood estimation og minimum kontrast estimation. Hvilken estimations-
metode, det er bedst at bruge, afhænger af punktprocessmodellen og den
tilgængelige teoretiske viden for denne specifikke model. Denne afhandling
bidrager til området inden for statistisk analyse af rumlige punktmønstre ved
at introducere to nye punktprocessmodeller; introducere en ny estimations-
metode for punktprocessmodeller; give en diskussion af, hvorvidt man bør
betinge med det observerede antal punkter, når man analyserer punktmøn-
stre; og give en interessant anvendelsesmulighed for punktmønsteranalyse,
som omhandler organiseringen af pyramideceller i menneskets cerebrale cor-
tex.

Afhandlingen består af to dele: Del I er en introduktion, og Del II består
af seks artikler. Del I indeholder en del baggrundsinformation om statistisk
analyse af punktmønstre, som er relevant for bedre at kunne forstå artiklerne
i Del II og deres videnskabelige bidrag.

De mest almindelige og populære rumlige punkt process modeller er mo-
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deller for enten klustering eller regularitet. I Artikel A og F introducerer vi
punktprocessmodeller, som både indeholder klustering og regularitet. I Ar-
tikel A foreslår vi en dobbeltstokastisk rumlig punktprocessmodel kaldet en
LGCP-Straussprocess, som kombinerer en log-Gaussisk Cox process med en
Strauss process for at opnå en model med repulsion på lille skala og aggrege-
ring på større skala. At estimere parametre i denne model er udfordrenden
på grund af manglende teoretisk viden, så vi illustrerer, hvordan man kan
lave Bayesiansk inferens ved hjælp af metoden approximate Bayesian com-
putations, som er baseret udelukkende på muligheden for at simulere under
modellen for givne parametre. I Artikel F foreslår vi en klusterpunktproces-
smodel med regularitet mellem klustrene, hvilket giver en model med kluste-
ring på lille skala og regularitet på større skala. Vi kalder denne modelklasse
determinante shot noise Cox processer, fordi de er det specialtilfælde af ge-
neraliserede shot noise Cox processer, hvor en determinant punkt process
benyttes for klustercentrene. Vi er i stand til at udlede forskellige momen-
tegenskaber, som er særligt håndterlige, når der enten benyttes en Gaussisk
determinant punktprocess eller en skaleret Ginibre punktprocess som center-
process. Disse resultater kan bruges til nemt at estimere ukendte parametre
med minimum kontrast estimation.

Inspireret af de udfordringer, som vi havde med at estimere parametre
i LGCP-Strauss processer i Artikel A, foreslår jeg i Artikel E en metode til
at estimere parametre i rumlige punktprocessmodeller, som benytter neurale
netværk. Metoden kan generelt bruges for alle punktprocessmodeller, efter-
som det eneste krav er, at det er muligt at simulere under modellen. Igennem
et simulationsstudie sammenligner jeg den nye metode med de mest almin-
deligt brugte eksisterende estimationsmetoder for nogle populære eksempler
på punktprocessmodeller og konkluderer, at den foreslåede fremgangsmåde
med neural netværk giver gode parameterestimater.

I de fleste anvendelser af punktmønsteranalyse er der kun et observeret
punktmønster at analysere. Det vil sige, at der kun er en realisation af en an-
taget frembringende rumlig punktprocess. Det er derfor umuligt at validere
påstande omhandlende fordelingen af antal punkter i punktmønstret, men
det mest almindelige er alligevel at enten direkte eller indirekte antage en
model for antal punkter. I Artikel D diskuterer vi denne praksis og undersø-
ger, om vi i stedet burde betinge med antallet af punkter, når vi modellerer
rumlige punktmønstre. Hvad angår parameterestimation konkluderer vi, at
det er upraktisk at betinge med antal punkter. Med hensyn til modelvalide-
ring ved brug af globale envelopes konkluderer vi, at når man bruger nogle
summary statistics, er det en fordel at betinge med antal punkter, men når
man bruger de summary statistics, som er mest populære, når det kommer
til modelvalidering, gør det ingen nævneværdig forskel at betinge med antal
punkter.

I Artikel B–C undersøger vi den rumlige organisering af pyramideceller



i menneskets cerebrale cortex ved at analysere tre-dimensionelle punktmøn-
stre bestående af cellernes placering. Ved brug af den summary statistic, som
kaldes den cylindriske K-funktion, var vi i stand til at finde evidens for en
søjlestruktur i data. I Artikel C sammenlignede vi også punktmønstre for cel-
ler fra emner med en depression, emner med skizofreni, emner som begik
selvmord, og emner fra en kontrolgruppe, men analysen var ikke i stand til
at finde nogen signifikante forskelle i den rumlige organisering af pyramide-
celler mellem grupperne.
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This thesis contains the scientific research conducted by me and my collabora-
tors during my time as a PhD student at the Department of Mathematical Sci-
ences, Aalborg University. The work is partially funded by The Danish Coun-
cil for Independent Research | Natural Sciences, grant DFF – 7014-00074
‘Statistics for point processes in space and beyond’. The research concerns
different aspects in relation to statistical analysis of spatial point patterns,
including new spatial point process models, estimation procedures, practical
and philosophical considerations, and examples of applications. Part I pro-
vides some background on spatial statistics related to the analysis of point
patterns which helps to understand the scientific contributions of the thesis
and to put it into perspective. Part II is a collection of the six research papers:

A: Vihrs, N, Møller, J, and Gelfand, A. E. Approximate Bayesian inference for
a spatial point process model exhibiting regularity and random aggregation.
Scandinavian Journal of Statistics (2022), 49, 185–210.

B: Larsen, N. Y., Li, X., Tan, X., Ji, G., Lin, J., Rajkowska, G., Møller,
J. , Vihrs, N., Sporring, J., Sun, F., and Nyengaard, J. R. Cellular 3D-
reconstruction and analysis in the human cerebral cortex using automatic se-
rial sections. Communications Biology (2021), 4, article number 1030.

C: Larsen, N. Y., Vihrs, N., Møller, J., Sporring, J, Xueke, T., Xixia, L., Ji, G.;
Rajkowska, G., Sun, F., and Nyengaard, J. R. Layer III pyramidal cells in
the prefrontal cortex reveal morphological changes in subjects with depression,
schizophrenia, and suicide. Submitted to Translational Psychiatry.

D: Møller, J. and Vihrs, N. Should we condition on the number of points when
modelling spatial point patterns? Accepted for publication in Interna-
tional Statistical Review. ArXiv preprint available at https://arxiv.
org/abs/2108.10051

E: Vihrs, N. Using neural networks to estimate parameters in spatial point pro-
cess models. Spatial Statistics (2022), 51, 100668.
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F: Møller, J. and Vihrs, N. Determinantal shot noise Cox processes. Submit-
ted to Stat. ArXiv preprint available at https://arxiv.org/abs/2112.
04204
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Introduction

This introduction provides the relevant background for understanding the
contribution of this thesis. It consists of a brief overview of some of the
basic aspects of statistical analysis of spatial point patterns and explains how
Papers A-F contribute to this field. Note however that the papers in Part II are
fully self-contained, and that there may be some inconsistencies in notation
between this introduction and Papers A–F.

1 Point processes and point patterns

In brief, a (simple) spatial point process X on a space S can be thought of
as a stochastic countable subset of S, often S ⊆ Rd. When thinking of a
point process in this way, measure theoretical details are avoided. For a
more thorough introduction to point processes see e.g. Daley and Vere-Jones
(2003), Møller and Waagepetersen (2004), and Diggle (2013). Let n(x) denote
the cardinality of a subset x ⊂ S. In this thesis, attention is restricted to
the case where X takes values in the set of locally finite point configurations
Nlf = {x ⊆ S : n(x ∩ B) < ∞ when B ⊆ S is bounded}.

A realization x of X is called a point pattern, and it is usually only ob-
served on an observation window W ⊆ S, meaning that only a realization
of X ∩ W is available. The elements of x are referred to as points or events.
In most real life applications, only a single realization x is available, which
means that it is practically impossible to make any conclusions about for in-
stance the distribution of n(X) even though the models we use to model point
patterns (see Section 2) either directly or indirectly assumes such a distribu-
tion. In Paper D we discuss the consequences of this practice and conclude
that it is however convenient to make such an assumption for mathematical
and computational reasons.

It is quite often assumed or showed that a point process is stationary or
isotropic. A point process on Rd is stationary if its distribution is invariant
under translations; it is isotropic if its distribution is invariant under rota-
tions.
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A common question of interest is whether a point process or point pat-
tern is clustered/agrregated or repulsive/regular, or maybe both. It is quite
intuitive what is meant by these terms, but it is difficult to make a precise
definition of clustering and repulsiveness, and in some point patterns it is
also difficult to spot by a mere visual inspection. The most common way to
make statements about clustering and regularity is to consider the theoretical
summary functions and functional summary statistics in Section 3. Another
way to learn more about a point pattern is to find a point process model
which fits the point pattern well. Section 2 describes some popular classes
of point process models, Section 4 concerns the estimation of parameters in
point process models, and Section 5 describes a method to validate a fitted
model.

2 Point process models

2.1 Poisson processes

A Poisson process is maybe the simplest example of a point process model.
It is the case where there is no interaction between points, and it is specified
in terms of a function ρ : S → [0, ∞) which satisfies that

∫
B ρ(u)du < ∞

when B ⊆ S is bounded, i.e. that ρ is locally integrable. A process X is a
Poisson process with intensity ρ if for any B ⊆ S satisfying

∫
B ρ(u)du < ∞

the following is satisfied:

1. n(X ∩ B) follows a Poisson distribution with rate
∫

B ρ(u)du, or n(X ∩
B) = 0 if

∫
B ρ(u)du = 0,

2. conditioned on n(X ∩ B) = n, the n points in X ∩ B are independent
and identically distributed with unnormalized density function ρ.

The function ρ is called the intensity function, and note that

E[n(X ∩ B)] =
∫

B
ρ(u)du (1)

In general for any point process X, a locally integrable non-negative function
ρ satisfying (1) is called the intensity function (or sometimes just intensity) of
X. Point processes with constant intensity are said to be homogeneous; oth-
erwise, they are inhomogeneous. If a Poisson process on Rd is homogeneous,
it is both stationary and isotropic. The Poisson process is also known as the
case of complete spatial randomness, and statements about the behaviour of
point processes and point patterns are often based on comparisons with a ho-
mogeneous Poisson process, for example as described in Section 3. A Poisson
process with ρ = 1 is called the unit rate or standard Poisson process.

4



2. Point process models

2.2 Cox processes

A Cox process (Cox, 1955) is driven by a stochastic intensity Z = {Z(u)}u∈S
which is a non-negative random field satisfying P

(∫
B Z(u)du < ∞

)
= 1 for

all bounded B ⊆ S. A process X is a Cox process driven by Z if X con-
ditioned on Z is a Poisson process with intensity Z. Popular examples of
Cox processes are log-Gaussian Cox processes where Z = exp(Y) for a Gaus-
sian random field Y (Møller et al., 1998) and shot noise Cox processes on Rd

where Z(u) = ∑(c,γ)∈Φ γk(c, u) for a kernel k and a Poisson process Φ on
Rd × (0, ∞) (see e.g. Møller, 2003). Shot noise Cox processes are examples
of cluster point processes, and in this case X conditioned on Φ is the super-
position ∪(c,γ)∈ΦX(c,γ) of independent Poisson point processes X(c,γ) with
intensity function γk(c, ·). The process X(c,γ) is called the cluster with center
c and intensity γ, and the set C = {c : (c, γ) ∈ Φ} is called the centre process.
Cox processes are usually considered as models for clustering, see Section 3.

2.3 Markov point processes

Markov point processes were introduced in spatial statistics by Ripley and
Kelly (1977). I here give a brief overview of Markov point processes (also
known as Gibbs point processes) and refer to Møller and Waagepetersen
(2004) and the references therein for more details.

Markov point processes on a bounded set S, i.e. |S| < ∞, are defined
in terms of their density with respect to a unit rate Poisson process. When
I henceforth write density in connection with a spatial point process, it is
always the density with respect to a unit rate Poisson process on S. Note that
since S is bounded, X takes values in the set of finite point configurations
Nf = {x ⊆ S | n(x) < ∞}. The density function f of a point process X is the
function which satisfies that

P(X ∈ F) = E[1[Y ∈ F] f (Y)], F ⊆ Nf,

for a unit rate Poisson process Y. Often, it is only possible to get a closed
form expression for a density up to proportionality in which case we may
consider an unnormalised density h such that f (x) = h(x)/c, x ∈ Nf, for a
normalising constant c which does not depend on x.

An important characteristic which is based on the density function f is
the Papangelou conditional intensity

λ(x, u) =
f (x ∪ {u})

f (x)
, x ∈ Nf, u ∈ S \ x.

Since any normalising constant will cancel in this expression, the Papangelou
conditional intensity can be derived if only the density is known up to pro-
portionality. This can be a great advantage since many densities of point
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processes involve an intractable normalising constant. This can for instance
be used in connection with parameter estimation as will be described in Sec-
tion 4.2. A heuristic interpretation of the Papangelou conditional intensity is
that λ(x, u)du is the probability that X has a point in an infinitesimal region
Bu around u of size du conditional on X ∩ (S \ Bu) = x. The Papangelou
conditional intensity can be used to make statements about clustering and
repulsiveness in a point process as follows: Let x, y ∈ Nf and x ⊂ y. If
λ(x, u) ≤ λ(y, u), X is considered clustered; if λ(x, u) ≥ λ(y, u), X is consid-
ered repulsive.

The definition of a Markov point process requires a neighbour relation ∼
on S. This is a reflexive and symmetric relation, i.e. for all u, v ∈ S, u ∼ u and
u ∼ v ⇒ v ∼ u. An example of an often used neighbour relation is u ∼ v ⇔
∥u− v∥ ≤ R for some R > 0. This will be referred to as the R-close neighbour
relation. If u ∼ v, the points u, v ∈ S are said to be neighbours and the
neighbourhood of a point u ∈ S is the set Nu = {v ∈ S : u ∼ v} consisting of
all neighbours to u. A Markov point process is a point process whose density
function f is a Markov function with respect to some neighbour relation ∼
on S which means that

• f is hereditary, i.e. f (x) > 0 ⇒ f (y) > 0 for y ⊂ x, and

• for all x ∈ Nf where f (x) > 0 and all u ∈ S \ x, λ(x, u) only depends
on x through x ∩ Nu.

When f is hereditary, there is a one-to-one correspondence between f and λ.
An example of a Markov point process is a pairwise interaction point

process where
f (x) ∝ ∏

u∈x
φ(u) ∏

{u,v}⊆x
φ({u, v}) (2)

for a nonnegative function φ which makes (2) integrable with respect to a
standard Poisson process. It is a Markov point process with respect to the
R-close neighbour relation where

R = inf{r > 0 : ∥u − v∥ > r ⇒ φ({u, v}) = 1 for all u, v ∈ S}. (3)

The expression in (3) is known as the range of interaction or the interaction
radius. Usually, φ({u, v}) ≤ 1, in which case it can be seen from the Papan-
gelou conditional intensity

λ(x, u) = φ(u) ∏
v∈x

φ({u, v})

that pairwise interaction point processes are most often models for repulsion.
The special case of a pairwise interaction point process where φ(u) = β

and φ({u, v}) = γ1[∥u−v∥≤R] for parameters β, R > 0 and γ ∈ [0, 1] is known
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2. Point process models

as a Strauss process (Strauss, 1975, Kelly and Ripley, 1976). The density of a
Strauss process is thus

f (x) ∝ βn(x)γsR(x) (4)

where sR(x) = ∑{u,v}⊆x 1[∥u − v∥ ≤ R] is the number of R-close pairs in x.
The Strauss process is a well known and much used example of a repulsive
point process.

Note that since I have only defined Markov point processes on a bounded
set S, they cannot be stationary. It is possible to extend the definition of a
Markov point process to Rd, but since this is rather involved and technical, I
will not go into details in this introduction and refer instead to Ruelle (1969),
Preston (1976), the review in Møller and Waagepetersen (2004) and the refer-
ences therein for details about infinite Gibbs point processes.

2.4 Determinantal point processes

The general notion of determinantal point processes was introduced in Mac-
chi (1975), and they have been studied from a statistical point of view in
Lavancier et al. (2015). Determinantal point processes are defined in terms
of their moment properties, specifically by means of the n’th order intensity
functions, n = 1, 2 . . .. The n’th order intensity function of a point process X
on a Borel set S ⊆ Rd is a locally integrable function ρ(n) : Sn → [0, ∞) which
satisfies that for any Borel function h : Sn → [0, ∞),

E

[
,

∑
x1,...,xn∈X

h(x1, . . . , xn)

]
=
∫

S
· · ·

∫
S

ρ(n)(x1, . . . , xn)h(x1, . . . , xn)dx1 · · ·dxn

where the sum is over pairwise distinct x1, . . . , xn (as indicated by the sign ,
over the sum).

Consider now a kernel K : S × S → C. Let [K](x1, . . . , xn) denote the
matrix with K(xi, xj) as entry (i, j). Then X is a determinantal point process
with kernel K if ρ(n), n = 1, 2, . . ., is given by

ρ(n)(x1, . . . , xn) = det[K](x1, . . . , xn), (x1, . . . , xn) ∈ Sn. (5)

For a Borel set B ⊆ S the restriction X ∩ B is also a determinantal point pro-
cess whose kernel is the restriction of K to B × B. The kernel K has to be a
non-negative definite function. If it is furthermore continuous and Hermi-
tian, it is known that K restricted to a compact set B ⊂ Rd has a spectral
representation

K(x, y) =
∞

∑
k=1

λB
k ϕB

k (x)ϕB
k (y), (x, y) ∈ B × B (6)
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with real eigenvalues λB
k and eigenfunctions ϕB

k which form an orthonormal
basis for the set of square integrable functions. Then the existence of a de-
terminantal point process with kernel K on Rd is equivalent to λB

k ≤ 1 for
all compact B ⊂ Rd and all k = 1, 2, . . .. If one only needs the determinantal
point process on a specific compact set B, it is enough to check the above
criterion for existence for this set B.

The spectral representation (6) can be used to simulate X on B and for
specifying the density of X defined on B, see Lavancier et al. (2015) for details.
The eigenvalues can furthermore be used to make inference about n(X ∩ B)
since

n(X ∩ B) ∼
∞

∑
k=1

Bk (7)

where Bk are independent Bernoulli variables with mean λB
k .

Lavancier et al. (2015) suggest several determinantal point process models
where the kernel K is a real function, including the Gaussian determinantal
point process where K(x, y) = ρ exp(−∥(x − y)/α∥2) for parameters α > 0
and 0 ≤ ρ ≤ (

√
πα)−d. For all the suggested models, the spectral represen-

tation (6) is unknown, and it is thus necessary to approximate the kernel in
order to simulate and evaluate the density, see Lavancier et al. (2015).

A particularly tractable example of a determinantal point process with a
complex Kernel is an α-Ginibre point process which has kernel

K(z, w) = ρ exp
(
−ρπ

α

(
|z|2 + |w|2

2
− zw̄

))
, z, w ∈ C, (8)

where ρ > 0, α ∈ (0, 1], and | · | denotes the modulus of a complex number.
This can be used as a point process on the plane since C ≃ R2. When α = 1
and ρ = π−1, X is a standard Ginibre process (Ginibre, 1965). Note that
ρ(1)(z) = ρ(z) = K(z, z) = ρ so the parameter ρ is the intensity of X. It can be
shown that X is both stationary and isotropic, see e.g. Appendix B in Paper F.
Eigenfunctions satisfying (6) for an α-Ginibre point process restricted to the
disc b(0, r) ⊂ C around zero with radius r ∈ (0, ∞) are

ϕ
b(0,r)
k (z) =

√
ρ

αγ(k, ρπr2/α)
exp(−ρπ|z|2/(2α))

(√
ρπ

α
z
)k−1

where γ(k, x) =
∫ x

0 tk−1 exp(−t)dt is the incomplete lower Gamma function,
and the corresponding eigenvalues are

λ
b(0,r)
k =

αγ(k, ρπr2/α)

(k − 1)!
. (9)

The spectral representation on b(0, r) is thus known, which is an advantage
over the models in Lavancier et al. (2015) since it is thus unnecessary to ap-
proximate the kernel when simulating the process or evaluating the likeli-
hood function when the process is considered on a disc.
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3. Summary functions and functional summary statistics

2.5 Point process models exhibiting both regularity and clus-
tering

The above classes of point process models are typically used to model ei-
ther repulsion or clustering, but sometimes a model exhibiting both regu-
larity and clustering is needed. In this regard, Lavancier and Møller (2016)
suggested a model obtained by a dependent thinning of a repulsive point
process, thereby obtaining repulsiveness at small scales and clustering at a
larger scale. Their work was partly based on Stoyan (1979). It is also possible
to obtain this behaviour in certain Gibbs point processes, see e.g. Baddeley
et al. (2013) and Goldstein et al. (2015). However, models with this feature are
not as well studied or as plenty as models with only clustering or repulsion.
Papers A and F contribute with two new classes of point process models ex-
hibiting both regularity and clustering. In Paper A, we introduce the LGCP-
Strauss process model which is a combination of a Strauss process and a
log-Gaussian Cox process. This model exhibits regularity at small scales and
random aggregation at a larger scale. In Paper F, we introduce determinantal
shot noise Cox processes, which are like shot noise Cox processes except that
a determinantal point process is used for the centre process instead of a Pois-
son process. Determinantal shot noise Cox processes are thus cluster point
processes with repulsion between clusters. Thereby we obtain clustering at
small scales and some regularity at a larger scale, which yields realisations
with more clearly separated clusters than in shot noise Cox processes.

3 Summary functions and functional summary sta-
tistics

Summary functions are often used to make statements about the features
of a point process model, and their empirical estimates, referred to as func-
tional summary statistics, are widely used when analysing point patterns.
Summary statistics are for example used to make statements about cluster-
ing/regularity, to suggest appropriate models, and to estimate and validate
models. Summary functions and/or functional summary statistics play an
important role in all the papers in Part II. In this section, I define the summary
functions which we use, discuss how they can be used to make statements
about clustering/regularity, and explain how to estimate these empirically
and non-parametrically. For a more thorough introduction to summary func-
tions and functional summary statistics see e.g. Møller and Waagepetersen
(2004), Diggle (2013), and Baddeley et al. (2015).
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3.1 Theoretical summary functions

Since I have already defined the n’th order intensity function in Section 2.4,
which includes the intensity ρ = ρ(1), it is straight forward to define the pair
correlation function

g(u, v) =
ρ(2)(u, v)
ρ(u)ρ(v)

when ρ and ρ(2) exist and using the convention that g(u, v) = 0 if ρ(u)ρ(v) =
0. The intuitive interpretation of ρ(2) is that ρ(2)(u, v)dudv is the probability
of simultaneously observing a point from the process X in both of the balls
centred at u and v of sizes du and dv, respectively. It is known that for a
Poisson process ρ(2)(u, v) = ρ(u)ρ(v), so the pair correlation function is in
this case g(u, v) = 1. Many pair correlation functions of interest only depend
on u, v through their euclidean distance ∥u − v∥, in which case the notation
g(u, v) = g(∥u − v∥) = g(r) is used. Then g(r) > 1 indicates that it is more
likely to simultaneously observe a point near both u and v, for ∥u − v∥ = r,
than it is in a Poisson process, which is therefore interpreted as an indication
of clustering at interpoint distance r. If g(r) < 1, it is similarly interpreted as
an indication of regularity at interpoint distance r.

If the pair correlation function exists and is invariant under translations,
in which case the notation g(u, v) = g(u − v) = g(u) is used, the second
order reduced moment measure is

K(B) =
∫

B
g(u)du (10)

for a bounded Borel set B ⊂ Rd. When letting B be a ball, we obtain Ripley’s
K-function K(r) = K(b(0, r)). If the process X is stationary with intensity
ρ, ρK(r) is the expected number of further points from X falling in b(0, r)
given that X has a point at the origin. Because of the stationarity, 0 can be
thought of as a typical point of the process. In the case of a Poisson process,
it is known that K(r) = ωdrd where ωd is the volume of the d-dimensional
unit ball, so the transformation L(r) = (K(r)/ωd)

1/d is often considered.
This transformation is a well-known summary function in itself referred to
as the L-function. If L(r) > r, it suggests that we expect to see more points
in b(0, r) when it is given that 0 ∈ X than in a Poisson process, and it thus
indicates clustering in the process at interpoint distance r. Similarly, L(r) < r
indicates regularity in the process at interpoint distance r. If one instead uses
a cylinder cu(r, t) with midpoint 0, direction u, radius r, and height 2t as B
in (10), the cylindrical K-function Ku(r, t) = K(cu(r, t)) is obtained (Møller
et al., 2016). Its interpretation follows that of Ripley’s K-function just with a
cylinder instead of a ball. The cylindrical K-function is the most important
functional summary statistic which we use to analyse the spatial structure of
pyramidal brain cells in the human cerebral cortex in Papers B and C since
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3. Summary functions and functional summary statistics

the cylindrical K-function has proven to be particularly useful for detecting
a columnar structure in point pattern data and such brain cells are widely
believed to be organized in columns.

Other summary functions are based on interpoint distances. There are
three such summary functions which are common in use. The first one is the
empty space function, also known as the F-function, and it is defined by

F(r) = P(X ∩ b(0, r) , ∅), r > 0.

For a stationary Poisson process with intensity ρ it is known that F(r) =
1 − exp(−ρ|b(0, r)|). If F(r) < 1 − exp(−ρ|b(0, r)|), it indicates more empty
space than in a Poisson process, which usually suggest clustered behaviour.
Similarly if F(r) > 1 − exp(−ρ|b(0, r)|), it indicates less empty space than in
a Poisson process, which usually suggest regularity.

The second one is the nearest neighbour function, also known as the G-
function, and it is given by

G(r) =
1

ρ|A|E
[

∑
u∈X∩A

1[(X \ {u}) ∩ b(u, r) , ∅]

]
, r > 0, (11)

which does not depend on the choice of A ⊂ Rd with 0 < |A| < ∞. The G-
function can also be expressed in terms of the so-called reduced Palm distri-
bution at 0 denoted by P!

0. To give a precise meaning to P!
0 is rather technical,

and I refer the reader to Appendix C in Møller and Waagepetersen (2004).
However, P!

0 can be interpreted as the conditional distribution of X \ {0}
given that 0 ∈ X. It is known that

G(r) = P!
0(X \ {0} ∩ b(0, r) , ∅) = P(X \ {0} ∩ b(0, r) , ∅ | 0 ∈ X).

Because of stationarity, 0 can be thought of as a typical point of the process,
and G(r) is thus interpreted as the probability that there will be another
point within distance r of a typical point. For a stationary Poisson process
G(r) = F(r) = 1 − exp(−ρ|b(0, r)|). If G(r) > 1 − exp(−ρ|b(0, r)|), it means
that it is more likely to see another point within distance r of a typical point
than in a Poisson process, and it thus suggest clustering. Similarly, if G(r) <
1 − exp(−ρ|b(0, r)|), it indicates regularity.

The last summary function I will mention is the J-function

J(r) =
1 − G(r)
1 − F(r)

,

which is only defined when F(r) < 1. For a stationary Poisson process,
J(r) = 1. If J(r) > 1, it means that it is more likely to find no further points
in b(0, r) given that 0 ∈ X than it is to find no points in b(0, r) which suggests
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repulsive behaviour between points. Similarly, J(r) < 1 indicates aggregation
of points.

As explained, it is possible to derive the theoretical summary functions
mentioned in this section for a Poisson process. It is also possible to derive
closed expressions of some of these theoretical summary functions for some
other point processes. Consider for example an α-Ginibre point process X,
which was defined in Section 2.4. It follows from (5) and (8) that the second
order intensity function is

ρ(2)(z, w) = ρ2
(

1 − exp(−ρπ|z − w|2/α)
)

.

Thus the pair correlation function is

g(z, w) = 1 − exp(−πρ|z − w|2/α). (12)

Note that g only depends on z, w through the distance r = |z − w| so it will
be denoted g0(r). Since the pair-correlation function is isotropic, Ripley’s
K-function is

K(r) = 2π
∫ r

0
tg0(t)dt = πr2 − (α/ρ)(1 − exp(−πρr2/α)).

To derive F, it can be used that X ∩ b(0, r) is a determinantal point process
whose kernel has a known spectral representation. It thus follows from (7)
and (9) that

F(r) = 1 − P(n(X ∩ b(0, r)) = 0) = 1 −
∞

∏
k=1

(1 − λ
b(0,r)
k ). (13)

To derive G, it ca be used that the reduced Palm distribution of a deter-
minantal point process X at the origin is known to be a determinantal point
process with kernel

K0(x, y) =
K(x, y)K(0, 0)− K(x, 0)K(0, y)

K(0, 0)

which in the case of an α-Ginibre point process gives

K0(z, w) = (exp(ρπzw̄/α)− 1)ρ exp(−πρ(|z|2 + |w|2)/(2α)).

In this case, the kernel K0 has the same eigenfunctions as K on the disk b(0, r)
(I show this in Appendix A), and the corresponding eigenvalues

λ
0,b(0,r)
k =

{
0, for k = 1

λ
b(0,r)
k , for k > 1

, (14)
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so it follows from (7) that the G-function of X is

G(r) = 1 − P!
0(n((X \ {0}) ∩ b(0, r)) = 0)

= 1 −
∞

∏
k=1

(1 − λ
0,b(0,r)
k )

= 1 −
∞

∏
k=2

(1 − λ
b(0,r)
k ).

(15)

By combining (13) and (15), the J-function is

J(r) =
(

1 − λ
b(0,r)
1

)−1
= (1 − α(1 − exp(−ρπr2/α)))−1.

It is usually also possible to derive expressions of the pair correlation
function (and thereby Ripley’s K-function in the stationary case) for Cox pro-
cesses by utilizing that ρ(u) = E[Z(u)], and ρ(2)(u, v) = E[Z(u)Z(v)] for
u, v ∈ S. For instance for a shot noise Cox process,

g(u, v) = 1 +

∫ ∞
0

∫
Rd γ2k(c, u)k(c, v)ρΦ(c, γ)dcdγ

ρ(u)ρ(v)
(16)

where ρΦ is the intensity function of the Poisson process Φ. For a log-
Gaussian Cox process where the covariance function of the Gaussian random
field is c,

g(u, v) = exp(c(u, v)). (17)

3.2 Non-parametric estimates

Non-parametric estimates of the summary functions in Section 3.1 are often
used to make statements about clustering and regularity from a point pattern
by following the interpretations of the theoretical summary functions. These
non-parametric estimates are referred to as functional summary statistics. In
this section, I give some of these non-parametric estimates in the case were
the intensity ρ is assumed to be constant and a point pattern x = {x1, . . . , xn}
on an observation window W is given. They all involve some kind of edge
correction to account for the unobserved points in S \ W, but since Baddeley
et al. (2015) noted that it is not so important which edge correction method
to use as long as some correction is used, I will not go into to much detail
about this.

A non-parametric estimate of the pair-correlation function is

ĝ(r) =
|W|

σdrd−1n(n − 1)

n

∑
i=1

n

∑
j,i,j=1

kb(r − ∥xi − xj∥)eij(r)
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where σd is the surface area of the d-dimensional unit ball, kb is a smooth-
ing kernel with bandwidth b, and eij(r) is an edge correction weight. This
estimate is sensitive to the choice of bandwidth, and it is thus sometimes
preferred to use other functional summary statistics when analysing point
patterns.

A non-parametric estimate of Ripley’s K-function is

K̂(r) =
|W|

n(n − 1)

n

∑
i=1

n

∑
j,i,j=1

1[∥xi − xj∥ ≤ r]eij(r)

where eij(r) is again an edge correction weight. After estimating K(r) it is
straight forward to estimate L(r) by following its definition.

One way to do edge correction when estimating the F- and G-functions
is to use border correction by considering the eroded window W⊖r = {u ∈
W : b(u, r) ⊆ W}. The border corrected estimate of F based on some sample
locations {u1, . . . , uk} ⊂ W⊖r, usually these are points on a fine grid, is

F̂(r) =
1
k

k

∑
i=1

1[x ∩ b(ui, r) , ∅].

If the points from x falling in W⊖r are {x1, . . . , xm}, then the border corrected
estimate of G is

Ĝ(r) =
1
m

m

∑
i=1

1[(x \ {xi}) ∩ b(xi, r) , ∅].

It is straight forward to use these estimates to obtain an estimate of J based
on its definition.

3.3 Discussion of summary functions in relation to clustering
and regularity

As mentioned in Section 1 there is no clear definition of what is meant by the
terms clustering and regularity in connection with spatial point processes and
point patterns. If an expression for the pair correlation function can be found
for a point process model, it is a very popular way to make claims about
clustering and regularity in the process. For instance we see from (16) that the
pair correlation function of a shot noise Cox process is greater than or equal to
1, which shows that when following this convention shot noise Cox processes
are examples of point process models for clustering. In a log-Gaussian Cox
process the covariance function c is often a non-negative function, and it then
follows from (17) that g(u, v) ≥ 1, so we again obtain a model for clustering.
In the case of a determinantal point process, it follows from (5) that g(u, v) =
1 − K(u,v)K(v,u)

K(u,u)K(v,v) when K(u, u)K(v, v) > 0. If K is Hermitian, i.e. K(u, v) =

14



3. Summary functions and functional summary statistics

K(v, u), which is often the case, g(u, v) ≤ 1, so the process is considered to
be regular.

However, as explained in Section 3.1, other summary functions than the
pair correlation function are commonly used to make statements about clus-
tering and regularity, and such statements may not agree entirely. For in-
stance Figure 1 shows the pair correlation function and L-function for an
example of a determinantal shot noise Cox process (the class of models intro-
duced in Paper F). The pair correlation function suggests clustering at small
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Fig. 1: Plots of pair correlation function (left) and L(r)− r (right) for an example of a determi-
nantal shot noise Cox process.

scales, but it is also below 1 for a range of larger r-values, which suggests
regularity at a larger scale; however, L(r)− r never gets below 0 for the con-
sidered range of r-values, so the conclusion made from the L-function would
thus be that the process is only clustered since L(r)− r > 0.

The use of other functional summary statistics than the estimated pair
correlation function is especially common when making statements about
clustering and regularity in point patterns because the estimate of the pair
correlation function is sensitive to the choice of bandwidth. Of course one is
not limited to consider only one summary function and functional summary
statistic when analysing point processes and point patterns, and different
functional summary statistics are often considered in order to summarise
different aspects.

It is also worth mentioning that statements about clustering made from
theoretical summary functions may be unintuitive as the following example
with a pair correlation function shows. In the case of an α-Ginibre point pro-
cess X, it follows from (12) that g0(r) < 1, which is interpreted as that X is
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regular, which is in agreement with intuition when investigating realisations
of this process. Impose now a distribution on the parameters (α, ρ) so that X
conditioned on (α, ρ) is still an α-Ginibre point process. Specifically, assume
that α and β = ρ/α are independent, with β ∼ Γ(β1, β2) following a gamma
distribution with shape parameter β1 > 0 and rate (inverse scale) parameter
β2 > 0, and α following some distribution on [0, 1]. The intensity of X be-
comes ρX = E[ρ] = E[α]E[β] = E[α](β1/β2) and X has an isotropic pcf given
by

g0(r) = E
[
α2
]

E
[

β2
(

1 − exp
(
−πβr2

))]
/ρ2

X , r ≥ 0,

where

E
[

β2
(

1 − exp
(
−πβr2

))]
=

β1(1 + β1)

β2
2

−
β1(1 + β1)β

β1
2

(πr2 + β2)β1+2 .

If

c =
E[α2]

E[α]2
1 + β1

β1
,

then

g0(r) = c

[
1 −

(
β2

πr2 + β2

)β1+2
]

.

(The above doubly stochastic model and derivation of its theoretical sum-
mary functions are based on discussions with Jesper Møller.) Since g0 is a
smooth strictly increasing function with range [0, c) where c > 1, there is
regularity at a small scale and clustering at a larger scale if one follows the
usual interpretation of the pair correlation function. Notice however that any
single realization of the suggested process will be indistinguishable from a
realization of an α-Ginibre point process. The α-Ginibre point process is a
regular process; therefore, any realisation will look regular, and the apparent
clustering at larger scale will not be visible. This means that it is questionable
whether it is meaningful to deduce such a behaviour from the pair correla-
tion function in this case. However, this interpretation is based on comparing
the pair correlation function of X with the pair correlation function of a Pois-
son process. Considering how X is constructed, it may be more appropriate
to compare X with a process Y defined in the following way: Let ρ = αβ,
where α and β are distributed as above, and Y conditioned on ρ be a Poisson
process with intensity ρ. Then the intensity, second order intensity, and pair
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4. Estimation

correlation function of Y are

ρY = E[αβ] = E[α]
β1

β2
,

ρ
(2)
Y = E[α2β2] = E[α2](Var(β) + E[β]2) = E[α2]

β1(1 + β1)

β2
2

,

gY(r) =
E[α2]

E[α]2
1 + β1

β1
= c,

respectively. This shows that g0(r) < gY(r). Based on this comparison, it
may be more correct to say that X is regular. Note that following the usual
interpretation one would actually claim that Y, which is an example of what
is known as a mixed Poisson process, is clustered since gY(r) > 1 even though
any realization is a realization of a stationary Poisson process where points
are completely random. These examples show that clustered and regular
behaviour deduced from summary functions of a process may not be visible
in a single realization from the process.

The above remarks are just made to point out that some care should be
taken when interpreting summary functions in relation to clustering and reg-
ularity, and that one should not forget to consider the intuition behind such
statements. When making statements about clustering and regularity in point
processes and point patterns, a sensible approach must be chosen in the spe-
cific situation. For instance in Paper F the pair correlation function is express-
ible on closed form for determinantal shot noise Cox processes and can thus
be used to describe the behaviour of such processes, whereas in Paper A we
cannot derive any expressions for any summary functions for LGCP-Strauss
processes and thus chose to explore the behaviour of the process by calcu-
lating functional summary statistics for some simulations instead. Since the
estimate of the pair correlation function is sensitive to the choice of band-
width, we decided to make this exploration of LGCP-Strauss processes based
on the L-function instead of the pair correlation function.

4 Estimation

4.1 Maximum likelihood estimation

Recall from Section 2.3 that when I write density of a point process in this
introduction, it always means the density with respect to the unit rate Pois-
son process. If the density of a point process is known, it can be used to
estimate unknown parameters by means of maximum likelihood estimation.
Unfortunately, densities of point processes are often intractable. For exam-
ple are the densities of Markov point processes usually only known up to
proportionality since they involve an intractable normalising constant which
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makes likelihood based inference difficult. Maximum likelihood estimation
can be done by using Markov chain Monte Carlo methods, but easier alterna-
tives are often preferred. For more information about maximum likelihood
estimation for spatial point process models see e.g. Geyer (1999) and the ref-
erences therein.

One case for which likelihood based inference is easy is in the case of a
Poisson process since a Poisson process on a bounded set S with intensity
function ρ has density

f (x) = exp
(
|S| −

∫
S

ρ(u)du
)

∏
u∈x

ρ(u).

If ρ = ρθ depends on an unknown parameter vector θ and a point pattern x
is observed, the log-likelihood function is thus

l(θ) = |S| −
∫

S
ρθ(u)du + ∑

u∈x
log(ρθ(u)), (18)

and it can be maximised in order to find the maximum likelihood estimate
of θ. It may be necessary to approximate the integral in (18) by numerical
methods, but if ρ is a constant, it is easily seen that the maximum likelihood
estimate is ρ̂ = n(x)/|W| for a point pattern x observed in a window W.
This estimate of the intensity is clearly unbiased, and it is also often used in
situations where it cannot be shown to be the maximum likelihood estimate.
I will sometimes refer to this estimate as the natural estimate of the intensity.

Another example where the likelihood function is known is a determinan-
tal point process X on a compact set S with known spectral representation (6).
Let

K̃(x, y) =
∞

∑
i=1

λS
i

1 − λS
i

ϕS
i (x)ϕS

i (y), x, y ∈ S × S. (19)

Then the density of X is

f (x) = exp(|S|)det[K̃]({x1, . . . , xn})
∞

∏
i=1

(1 − λS
i ). (20)

When evaluating this likelihood in practice, it may be necessary to truncate
the sum in (19) and the infinite product in (20). Furthermore, the determinant
in the likelihood means that it can be very time consuming to evaluate this
expression, and one might thus prefer to use the faster alternative of min-
imum contrast estimation, as will be described in Section 4.3. If a spectral
representation for the kernel is not known, the kernel has to be approxi-
mated resulting in an approximate likelihood function, see Lavancier et al.
(2015).
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4. Estimation

4.2 Maximum pseudo-likelihood estimation

If the density is intractable but it is possible to derive a closed form expres-
sion for the Papangelou conditional intensity λ, maximum pseudo-likelihood
estimation (Besag, 1975, Ripley, 1988, Jensen and Møller, 1991) is a fast and re-
liable alternative to maximum likelihood estimation. The pseudo-likelihood
function for an observed point pattern x is

PLA(θ) = exp
(
−
∫

A
λθ(x, u)du

)
∏

u∈x∩A
λθ(x \ {u}, u)

for some set A ⊂ S chosen in order to account for edge effects. The pseuod-
likelihood function can then be maximised in order to find the maximum
pseuod-likelihood estimate of θ. Usually this involves some numerical meth-
ods. The method of maximum pseudo-likelihood estimation is the most com-
mon way to make inference for Markov point processes since their density is
usually known up to proportionality but involves an intractable normalising
constant which cancels in the Papangelou conditional intensity.

4.3 Minimum contrast estimation

Minimum contrast estimation (Diggle, 1983, Diggle and Gratton, 1984) do not
require any knowledge of the density. Instead it requires that it is possible to
derive an expression for a theoretical summary function which depends on
the parameters θ which are to be estimated. Also, a non-parametric proce-
dure for estimating the chosen summary function is needed. If Tθ is such a
summary function, which could for instance be any of the functions in Sec-
tion 3.1, and T̂ a non-parametric estimate, the minimum contrast estimate of
θ is

θ̂ = arg min
θ

{∫ a2

a1

|Tθ(r)q − T̂(r)q|p dr
}

for some user specified 0 ≤ a1 < a2 and exponents p and q. Any summary
function can be used, but the choice will usually affect the behaviour of the
estimate as illustrated in the example below. Thus, there might be reasons to
prefer a specific summary function in some cases.

As explained in Section 3.1, it is often possible to derive parametric ex-
pressions of summary functions in the cases of Cox and determinantal point
processes. Therefore, minimum contrast estimation is the most common es-
timation procedure in these cases because it is much faster and easier than to
do maximum likelihood estimation. For example in the case of an α-Ginibre
process we have closed form expressions for both the pair correlation, K-,
and J- functions, as shown in Section 3.1. These expressions depend on both
α and ρ and can thus all be used to estimate both unknown parameters with
minimum contrast estimation. The following simulation study compares the
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estimates obtained with these different summary functions and also shows
a comparison to maximum likelihood estimation, which is feasible for an
α-Ginibre point process on a disc but time consuming. The summary statis-
tics were calculated and the minimum contrast estimates found using the
methods implemented in spatstat(Baddeley et al., 2015) with the default
settings (except in estimating the pair correlation function where the argu-
ment divisor = "d" was used since it seemed to improve the results).

I considered simulations on the unit disc b(0, 1) (in order to do maxi-
mum likelihood estimation it is necessary that the observation window is
a disc) of α-Ginibre point processes with parameters α = 0.1, 0.5, 0.9 and
ρ = 100/π, 200/π, 300/π. I made 500 simulations for each combination of
parameters. Figure 2 shows a boxplot of the errors in the estimates of ρ ob-
tained with the different estimation methods including the natural estimate
ρ̂ = n(x)/|b(0, 1)|. Overall, the natural estimate and the maximum likeli-
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Fig. 2: Boxplot of the error (estimate minus true value) in ρ using the estimation methods
maximum likelihood estimation (MLE), the natural estimate, and minimum contrast estimation
based on K (MC:K), J (MC:J), and the pair correlation function (MC:pcf).

hood estimate shows a similar behaviour, and they are to be preferred above
the estimates obtained with minimum contrast estimation since these exhibit
more variation in the error. The maximum likelihood estimate of ρ cannot
be found analytically for an α-Ginibre process, and an interesting question is,
whether the maximum likelihood estimate is or is close to the natural esti-
mate in this case. Figure 3 shows a comparison of the natural estimates of ρ
and the maximum likelihood estimates. Overall, these estimates are similar
and they approaches each other as α gets smaller which is in agreement with
the fact that the α-Ginibre process approaches a Poisson process. Since the
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Fig. 3: The natural estimate of ρ plotted against the maximum likelihood estimate where the
true values of α and ρ are stated at the top of each plot. The solid line is the identity line.

natural estimate is easy and fast to calculate and shows good performance,
I prefer to use this. Then, estimating α with maximimum likelihood or min-
imum contrast estimation means solving an optimization problem with re-
spect to just one variable, which is also easier than solving the optimization
problems for both α and ρ. Figure 4 shows boxplots of the obtained esti-
mates of α using different techniques where I have found the optimal value
of α ∈ (0, 1] (for numerical reasons I more precisely considered α ∈ [0.01, 1]
and α ∈ [0.01, 0.999] in the optimization problems for minimum contrast and
maximum likelihood estimation, respectively). Maximum likelihood estima-
tion provides the most accurate estimates, but the method is slow and only
works when the observation window is a disc. Using the K-function for min-
imum contrast estimation shows a tendency for overestimating α whereas
using the pair correlation function gives more accurate estimates in some of
the cases. However, the best overall strategy for the α-Ginibre point process is
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Fig. 4: Boxplots of the estimated values of α using the estimation methods maximum likelihood
estimation (MLE) and minimum contrast estimation based on K (MC:K), J (MC:J), and the pair
correlation function (MC:pcf). The true value of ρ is stated at the top of each column, and the
true value of α is stated to the right of each row. The horizontal lines indicate the true value of
α.

to use the J-function since the medians of the obtained estimates are in good
agreement with the true values in all cases.

4.4 Purely simulation based methods

If the density, the Papangelou conditional intensity, and theoretical summary
functions are all intractable, there is still the possibility to use estimation
methods whose only requirement is the ability to simulate under the model.
Since it is usually possible to simulate under point process models, such
estimation methods are widely applicable.

In a Bayesian setup, there is the method of approximate Bayesian compu-
tations (ABC), which can be used for any parametric model (not just point
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5. Global envelopes

process models) which it is possible to simulate under. The simplest ABC
method is the following rejection sampling procedure for a parametric model
with parameter θ and given observed data xobs:

1. Specify some summary statistic S (not necessarily related to the idea of
functional summary statistics in Section 3; here, S is just some chosen
way to summarize aspects of data) and a distance function χ.

2. Repeat sampling θ′ from its prior distribution and simulating x′ under
the specified model with parameter θ′, until χ(S(x′), S(xobs)) < ε where
ε is a chosen tolerance.

3. Return θ′ as an approximate sample from the posterior distribution.

The above procedure can be repeated a number of times in order to ob-
tain a desired number of approximate samples from the posterior distribu-
tion. Such a sample can then be used to make statements about the poste-
rior distribution. If the inequality in item 2. is replaced by the statement
S(x′) = S(xobs) and S is either the identity function or a sufficient statistic,
the algorithm returns an exact sample from the posterior distribution, but
usually this is not a feasible approach, and the result will instead be a sample
from an approximate posterior distribution, referred to as the ABC posterior.
How well the ABC posterior resembles the true posterior will depend on the
choice of ε and S. There exist many different ABC techniques, see e.g. Beau-
mont (2010) for an overview of some, but they all have in common that the
only requirement for the model is the ability to simulate under it. In Paper A,
we used ABC to make inference for our new class of point process models
called LGCP-Strauss processes because it is an example of a process for which
the other estimation procedures which I have described are infeasible.

In Paper E, I contribute with another method for parameter estimation
based entirely on the ability to simulate. I consider the task of estimation
as a prediction problem where the true parameter must be predicted from a
realization of the process. This prediction problem can then be solved with
machine learning techniques where I illustrate how to do it for point process
models by using neural networks. In order to train the neural network, train-
ing data is needed, and it is for this task that the ability to simulate is used
since this makes it possible to construct a large number of realizations where
the true parameters are known.

5 Global envelopes

Presently, the most popular way to validate spatial point process models is
to use global envelopes and corresponding tests. Global envelopes are calcu-
lated from a number of simulations under the model which is to be tested. It
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is usually based on a functional summary statistic which is calculated from
the observed data and then compared to the same functional summary statis-
tic calculated for the simulations. Briefly, a (100 − α)% global envelope is a
region in which the observed curve falls completely if and only if the global
envelope test cannot be rejected at level α%. For details about how to cal-
culate a global envelope I refer to Myllymäki et al. (2017), Myllymäki and
Mrkvička (2019), and Mrkvička et al. (2020). I show an example of a global
envelope in Figure 5 where the first plot shows a point pattern consisting
of the positions of 448 white oak trees which is part of the lansing data
set available in spatstat, and the second plot shows a 95% global envelope
and the p-value of the corresponding test based on the extreme rank length,
the L-function, and 2499 simulations under a homogeneous Poisson process.
It is clear from the p-value, that the hypothesis of a homogeneous Poisson
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Fig. 5: Left: The positions of 448 white oak trees in a square region (scaled to a unit square)
of Lansing Woods, Clinton County, Michigan USA. Right: 95% global envelope for testing the
hypothesis of a homogeneous Poisson process. The envelope is the gray area, the solid curve is
L̂(r)− r for the observed data, the dashed curve is the mean of L̂(r)− r calculated from 2499
simulations, and the p-value of the global envelope test is indicated at the top.

process is rejected. The real advantage of the envelope is that it provides an
explanation for, why the test is rejected. It is seen that the observed values of
L̂(r)− r are significantly higher for a large range of r-values than is to be ex-
pected under a homogeneous Poisson process. Following the interpretation
in Section 3, it thus follows that the point pattern of white oak trees show
significant signs of clustering. Such a statement can be used to suggest an
appropriate model for this data, and in Paper F we find several cluster point
process models which fit this data well, including the examples of determi-
nantal shot noise Cox processes which are presented in this paper.

As exemplified above, global envelopes comparing a point pattern to a
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A. Details for deriving the G-function for an α-Ginibre point process

homogeneous Poisson process are very valuable for making statements about
clustering and regularity, and we use this procedure to make such statements
about the spatial organization of pyramidal brain cells in the human cerebral
cortex in both Papers B and C.

Global envelopes are not restricted to the task of validating models, but
can be used to perform any test where one wishes to base the test on a sum-
mary statistic which is a curve. In Paper C where we studied the spatial or-
ganization of pyramidal cells in the human cerebral cortex from subjects with
and without certain mental illnesses, we for instance used global envelopes
to perform a permutation test for whether there were significant differences
in functional summary statistics between the different groups of subjects.

A Details for deriving the G-function for an α-Gi-
nibre point process

Here I show that K0 for an α-Ginibre point process has the same eigenfunc-
tions ϕ

b(0,r)
k as K. This is seen by the following calculations: Let Cϕk =√

ρkπk−1

αkγ(k,ρπr2/α)
. Then∫

b(0,r)
K0(z, s)ϕb(0,r)

k (s)ds

=
∫

b(0,r)
K(z, s)ϕb(0,r)

k (s)ds −
∫

b(0,r)
ρ exp(−πρ(|z|2 + |s|2)/(2α))ϕ

b(0,r)
k (s)ds

= λ
b(0,r)
k ϕ

b(0,r)
k (z)−

Cϕk ρ exp(−πρ|z|2/(2α))
∫ r

0
exp(−πρ(t2)/(α))tk

∫ 2π

0
exp((k − 1)θi)dθdt

where i is the imaginary unit. When k > 1, the last integral equals zero, so∫
b(0,r)

K0(z, s)ϕb(0,r)
k (s)ds = λ

b(0,r)
k ϕ

b(0,r)
k (z), k > 1.

When k = 1,∫
b(0,r)

K0(z, s)ϕb(0,r)
1 (s)ds

= λ
b(0,r)
1 ϕ

b(0,r)
1 (z)− Cϕ12πρ exp(−πρ|z|2/(2α))

∫ r

0
exp(−πρ(t2)/(α))tdt

= λ
b(0,r)
1 ϕ

b(0,r)
1 (z)− Cϕ1 exp(−πρ|z|2/(2α))α

∫ πρr2/α

0
exp(−q)dq

= ϕ
b(0,r)
1 (z)

(
λ

b(0,r)
1 − αγ(1, ρπr2/α)

)
= 0.
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This also shows that the eigenvalues are as in (14).
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1. Introduction

Abstract

In this paper, we propose a doubly stochastic spatial point process model with both
aggregation and repulsion. This model combines the ideas behind Strauss processes
and log Gaussian Cox processes. The likelihood for this model is not expressible in
closed form but it is easy to simulate realisations under the model. We therefore ex-
plain how to use approximate Bayesian computation (ABC) to carry out statistical
inference for this model. We suggest a method for model validation based on poste-
rior predictions and global envelopes. We illustrate the ABC procedure and model
validation approach using both simulated point patterns and a real data example.

1 Introduction

Spatial point patterns are usually divided into three cases: regularity/repul-
siveness, complete spatial randomness, and aggregation/clustering. There
is a wide selection of point process models suitable for these situations, see
e.g. the overview in Lavancier and Møller (2016, Section 1) and the refer-
ences therein. However, some point patterns show repulsiveness between
the points at small scale and aggregation at a larger scale, see Lavancier and
Møller (2016) for a detailed discussion. In this regard, Lavancier and Møller
(2016) suggested a model for this situation obtained by a dependent thinning
of a repulsive point process. It is also possible to construct certain Gibbs point
processes with this behaviour, see e.g. Baddeley et al. (2013) and Goldstein
et al. (2015).

1.1 The log Gaussian Cox Strauss process

In this paper, we present a model for regularity at small scale and aggregation
at larger scale which is a combination of a pairwise interaction point process
and a log Gaussian Cox process. It is constructed by the following two steps.

First, we consider a pairwise interaction point process defined as follows.
Let X be a spatial point process viewed as a finite random subset of a given
bounded region W ⊂ R2 (we think of W as an observation window). Then X
is a pairwise interaction point process if X follows a density (with respect to
the unit rate Poisson process on W) of the form

f (x | ψ, φ) =
1

Cψ,φ

n

∏
i=1

ψ(xi)∏
i<j

φ(∥xi − xj∥) (1)

for all point patterns x = {x1, . . . , xn} ⊂ W with 0 ≤ n < ∞ (if n = 0 then
x = ∅ is the empty point pattern), where the notation means the following:
ψ : W → [0, ∞) is a so-called first order interaction function; φ : [0, ∞) →
[0, ∞) is a so-called second order interaction function; ∥ · ∥ denotes usual
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Euclidean distance; and Cψ,φ = 1/ f (∅ | ψ, φ) is the normalising constant
which is required to be positive and finite. Usually, φ(·) ≤ 1, in which case
the density is well defined and results in a model for repulsion between the
points. The first order interaction function may be used to model systematic
aggregation of points.

Second, we consider a doubly stochastic construction, by replacing ψ with
a random function Ψ in order to introduce random aggregation to the model.
This is an extension of a Cox process (the case φ = 1, cf. Cox, 1955), and
such a model was considered in Berthelsen and Møller (2008) when Ψ is the
stochastic intensity function of a shot noise Cox process. Instead, we use the
random intensity function of a log Gaussian Cox process (LGCP, see Møller
et al., 1998), which is a popular model for random aggregation. Specifically,
we let

Ψ(u) = exp(Z(u)), u ∈ W, (2)

where Z B {Z(u)}u∈W is a Gaussian random field (GRF) with constant mean
µ ∈ R and exponential covariance function

c(u, v) = σ2 exp (−∥u − v∥/s) , u, v ∈ W.

Here, σ2 ≥ 0 is the variance and s > 0 is a scale parameter. For σ2 > 0,
the flexible stochastic process Ψ(u) may account for aggregation caused by
unobserved covariates. Note that Ψ(u) = exp(µ) if σ2 = 0.

For the second order interaction function in (1), Berthelsen and Møller
(2008) used a piecewise linear function, whereas we will use the much sim-
pler second order interaction function of a Strauss process (Strauss, 1975,
Kelly and Ripley, 1976). This gives us a density for X (with respect to the
unit rate Poisson process on W) of the form

f (x | θ) = E

[
1

Cθ(Z)

n

∏
i=1

exp (Z(xi))∏
i<j

γ1[∥xi−xj∥≤R]

]
, (3)

where θ =
(
µ, σ2, s, γ, R

)
is the parameter vector. Here, the expectation is

with respect to the GRF; Cθ(Z) is the normalising constant obtained by con-
ditioning on Z; 1[·] denotes the indicator function; and we use the convention
00 = 1. The parameter R > 0 is called the interaction radius and the parame-
ter γ ∈ [0, 1] controls the repulsion between points. This model for X will be
referred to as an LGCP-Strauss process.

The model includes some well-known special cases:

(a) Conditioned on Z, X is an inhomogeneous Strauss process.

(b) If σ2 = 0, X is a usual Strauss process. If in addition γ = 0, X is a hard
core Gibbs process with hard core parameter R; or if in addition γ = 1,
X is a homogeneous Poisson process on W with intensity exp(µ).
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(c) If γ = 1, X is an LGCP.

The following coupling result becomes useful when interpreting the
meaning of γ and when we later discuss simulation of the LGCP-Strauss
process. To stress the dependence on γ, we write X = Xγ. Then, using a de-
pendent thinning technique (Kendall and Møller, 2000) it follows that there
exists a coupling of the LGCP-Strauss processes Xγ for all γ ∈ [0, 1] such that
Xγ ⊆ Xγ′ whenever 0 ≤ γ < γ′ ≤ 1. In particular, the special case of the
LGCP X1 (item (c) above) dominates any of the LGCP-Strauss processes Xγ.
The intensity of X1 is exp(µ+ σ2/2) (Møller et al., 1998), so exp(µ+ σ2/2)|W|
provides an upper bound on the expected number of points in Xγ. Here, |W|
denotes the area of W.

Note that if we are not in any of the above special cases (a)–(c), both the
intensity and other moment characteristics of X, the density (3), and the Pa-
pangelou conditional intensity (see e.g. Møller and Waagepetersen, 2004) are
not expressible in closed form. Therefore, in general, usual approaches for
estimation based on likelihood, pseudo-likelihood, composite likelihood, and
minimum contrasts (see the review in Møller and Waagepetersen, 2017) are
not feasible for the LGCP-Strauss process. This makes statistical inference
challenging. Finally, note that for a Poisson process ‘everything is known’,
whilst for a Strauss process the Papangelou conditional intensity but not the
moment characteristics are expressible in closed form, and for an LGCP the
moment characteristics but not the Papangelou conditional intensity are ex-
pressible in closed form, cf. the above-mentioned references.

1.2 Objective and outline

In this paper, we show how to use approximate Bayesian computation (ABC)
to make statistical inference for spatial point process models such as the
LGCP-Strauss process model. In brief, ABC is a flexible method for ap-
proximate inference in a Bayesian framework, which does not require the
likelihood to be expressible in closed form. Instead, it is based on the ability
to make simulations under the assumed model, which are then compared to
the observed data by using summary statistics.

In previous work on ABC in the setting of spatial point process models,
Shirota and Gelfand (2017) explained how ABC can be used for Strauss pro-
cess models and determinantal point process models. For the Strauss process
model they estimated the interaction radius using maximum profile pseudo
likelihood and then kept the interaction radius fixed at this estimate dur-
ing the ABC procedure. Further, Soubeyrand et al. (2013) presented an ABC
method using functional summary statistics such as the pair correlation func-
tion, which they exemplified for a Thomas process model and a marked point
process model. Finally, Stoica et al. (2017) presented an ABC method for spa-
tial point process models dealing with an intractable normalising constant in
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the likelihood. This method will not help for the LGCP-Strauss process since
it is not only a normalising constant but also the expectation in (3) which
makes the density intractable.

In contrast to Shirota and Gelfand (2017), the method we use for statistical
inference is based entirely on ABC, and unlike Shirota and Gelfand (2017)
and Soubeyrand et al. (2013) we do not fix any of the unknown parameters
during the ABC procedure. Furthermore, we provide a discussion of the
choice of summary statistics for ABC when making statistical inference for
the LGCP-Strauss process. We also suggest a method for model validation
and comparison based on posterior predictions and global envelopes. We
use this in a simulation study to assess the quality of ABC results for LGCP-
Strauss processes and to investigate whether realisations of the LGCP-Strauss
process can be distinguished from LGCPs and Strauss processes.

The remainder of this paper is organized as follows. Section 2 presents
simulated examples of LGCP-Strauss processes. In Section 3, our chosen
method for ABC model fitting is specified. Section 4 contains ABC analyses
for simulated data. Section 5 contains a real data example using a point
pattern of oak trees which suffer from frost shake. Section 6 concludes with
a brief summary and paths for future work.

The open source software R (R Core Team, 2019) is used for all statistical
computations. Most plots are created with the R-package ggplot2 (Wickham,
2016) and some of the functionalities of the R-package spatstat (Baddeley
et al., 2015) are used to handle spatial point patterns.

2 Simulation study of the LGCP-Strauss process

Consider an LGCP-Strauss process X on the observation window W with
density (3), which depends on the parameter vector θ = (µ, σ2, s, γ, R). We
simulate data under this model in two steps: First, a realisation z of Z is
simulated (see e.g. Schlather (1999)). In R, this can be done with the func-
tion RFsimulate from the R-package RandomFields (Schlather et al., 2015,
2019). Second, a realisation of X given Z = z is simulated using an MCMC
algorithm, namely a birth-death Metropolis-Hastings algorithm (Geyer and
Møller, 1994, specifically, a birth is proposed with probability 1/2 and oth-
erwise a death is proposed; for a birth proposal, the new point is generated
from a density proportional to exp (z); and for a death proposal, the point to
die is selected uniformly from the current point pattern).

Figure 1 shows six examples of simulated realisations of the LGCP-Strauss
process on the unit square (using a burnin of 20 000 in the MCMC algorithm)
plotted on top of the corresponding realisation of Z. The processes generating
the first three point patterns only differ by the value of γ and the ones gener-
ating the last three only differ by the value of σ2; the remaining parameters
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are specified in the caption.
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Fig. 1: First and third row: simulated LGCP-Strauss processes on the unit square (white points)
and the corresponding realisation of Z (grey scale image). In the first row, the parameters are
µ = 5, σ2 = 2, R = 0.03, s = 0.3, and γ is as specified at the top of each plot. In the third row,
the parameters are µ = 5, R = 0.03, s = 0.2, γ = 0.3, and σ2 is as specified at the top of each plot.
Second and fourth row: empirical L-function minus the identity for the point pattern directly
above the plot (solid curve) and for 49 different simulations of the same process (grey curves)
plus their mean (dashed curve).

To asses the degree of clustering and regularity we consider the L-function
L(r) =

√
K(r)/π, where r > 0 denotes inter-point distance and K is Ripley’s

K-function (Ripley, 1976, 1977). The L-function is commonly used to sum-
marise important aspects of the second order moment properties of spatial
point processes. Since L(r) = r for a Poisson process, one usually considers
T(r) B L(r)− r. The L-function is often used to make statements about clus-
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tering/regularity as follows: If L(r) < r (L(r) > r), this indicates that X is
regular/repulsive (aggregated/clustered) at inter-point distances r (for more
detailed explanations, see e.g. Baddeley et al. (2015)).

Figure 1 also shows plots of empirical estimates of the L-functions of
the point patterns using Ripley’s isotropic edge correction (Ripley, 1977)(an
alternative to displaying the empirical L-functions would show the empirical
pair correlation functions though they are sensitive to choice of bandwidth).
Each of these plots also includes the empirical L-functions of 49 different
realisations of the process in question plus the mean of these in order to
assess the general behaviour of the estimator (note that the mean does not
necessarily represent the behaviour of the theoretical L-function because the
estimator is biased). As expected, the point patterns exhibit both regularity
and aggregation. The first three point patterns show a decreasing degree of
regularity at small to moderate distances as γ increases, but a similar degree
of aggregation at large distances. However, the general behaviour of the
empirical L-function suggests a tendency to a higher degree of clustering at
large distances as γ increases. The last three point patterns show a similar
degree of regularity at small to moderate distances and an increasing degree
of clustering at large distances as σ2 increases. We also see that the variance
of the estimator of the L-function at large distances apparently increases as σ2

increases. Note that the empirical L-function of the first point pattern, which
is generated from the LGCP-Strauss process where σ2 = 0.5, would not be
uncommon for realisations of the LGCP-Strauss processes where σ2 = 1.25
or σ2 = 2 either. This suggest that it may be difficult to see the effect of σ2 on
the clustering when looking at a given realisation. Notice that in general the
repulsive behaviour of the point patterns to some extent obscures the finer
variations in Z (especially for strong repulsion), so overall we may expect
that it will be difficult to make inference for the parameters of the GRF.

3 ABC for spatial point process models

ABC is a method used to make approximate Bayesian inference for a para-
metric model with an intractable likelihood by developing an approximate
posterior sample of the parameters. Instead of having to evaluate the like-
lihood, it is only necessary to be able to simulate from the model in or-
der to do ABC. The most basic ABC technique is ABC rejection sampling
which goes as follows: for a parametric model with parameter θ and ob-
served data xobs, specify a summary statistic S and a distance function χ;
repeat sampling θ′ from its prior, and x′ given θ′ from the likelihood, until
χ(S(x′), S(xobs)) < ε where ε is a chosen tolerance; then return θ′. If the
inequality χ(S(x′), S(xobs)) < ε is replaced by S(x′) = S(xobs) and S is either
the identity function or a sufficient statistic, θ′ will be an exact sample from
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the posterior distribution. When this ideal situation is not achievable, the
sample will instead be from an approximation to the posterior distribution,
referred to as the ABC posterior. The quality of this approximation will de-
pend on the choice of ε and S. There exist many different ABC techniques
and some even circumvent the need for summary statistics, see e.g. Jiang
et al. (2018), Park et al. (2016), and Bernton et al. (2019). However, it does not
seem to be straightforward to apply these methods to the setting of spatial
point process models.

In this paper, we illustrate how ABC can be used to make inference for the
LGCP-Strauss process. A relatively simple ABC method is successful for this
illustration; it is specified in Section 3.1. So, we need not discuss or compare
different ABC techniques. For a more detailed overview of ABC and some of
the different techniques, see e.g. Beaumont (2010).

3.1 Specification of the ABC procedure

Consider a spatial point process X defined on a bounded region W ⊂ R2

and which follows a parametric model with parameter vector θ. Assume a
realisation xobs of X is observed. Our chosen procedure for ABC is speci-
fied in Algorithm 1 below. It is inspired by Shirota and Gelfand (2017) and
the semi-automatic approach by Fearnhead and Prangle (2012). Shirota and
Gelfand (2017) used a Markov chain Monte Carlo method for the ABC sam-
pling whereas we choose ABC rejection sampling, because of its simplicity
and ability to be run in parallel. The semi-automatic part refers to the fact
that the user specified summary statistics are only used in a pilot run instead
of directly in the ABC rejection step.

In Algorithm 1, n(x) is the number of points in a point pattern x, and in
the first and last for loop we demand that n(x) > m for each simulated x.
This is not strictly necessary for ABC, but it is a way to insure that summary
statistics are not calculated for point patterns with very few points. Most
summary statistics for spatial point patterns can only be calculated or con-
sidered reliable if there is a reasonable number of points in the point pattern.
In the examples of Sections 4 and 5, m = 10 was found to be sufficient.

In the second for loop of Algorithm 1, we choose to fit the linear models
approximating the posterior means E[θi | x], i = 1, . . . , p, with a special case
of a relaxed Lasso (Meinshausen, 2007): First, a model is fitted with Lasso
regression, where the penalty term is chosen based on a cross-validation
argument using the ‘one-standard-error rule’ (see e.g. Hastie et al., 2015,
Chapter 2). Let β̂i,Lasso

j , j = 1, . . . , d, be the resulting estimate of βi
j and set

Ti,Lasso(x) =
{

Tj(x) | β̂i,Lasso
j , 0, j = 1, . . . , d

}
. Second, the summary statis-

tics in Ti,Lasso are used as predictors in a linear model fitted with ordinary
least squares, which results in the final model for approximating E[θi | x].
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Algorithm 1: Procedure for ABC
Input : Data xobs, a prior distribution π(θ) for θ = (θ1, . . . , θp), a

procedure for simulating from the likelihood π(x | θ), a
summary statistic T(x) = (T1(x), . . . , Td(x)), positive integers
kpilot and kABC, and a non-negative integer m.

Output: A sample θABC,1, . . . , θABC,kABC from the ABC approximate
posterior distribution.

Calculate Tobs = T(xobs).
Pilot run:
For i = 1, . . . , kpilot

repeat
sample θpilot,i ∼ π(θ) and xpilot,i ∼ π(x | θpilot,i)

until n(xpilot,i) > m.

For j = 1, . . . , p

based on the sample
{(

θpilot,i, xpilot,i
)}kpilot

i=1
, fit a linear model for

the posterior mean

E[θj | x] ≈ θj(x) B αj + βjT
(T(x)− Tobs)

where x is a realisation of X, αj ∈ R, and βj = (β
j
1, . . . , β

j
d) ∈ Rd.

Let θ̂j(x) be the estimate of θj(x) when αj and βj are replaced by
the estimates α̂j and β̂j.

Define the distance measure

χ
(
θ̂(x), θ̂(xobs)

)
=

p

∑
j=1

(
θ̂j (x)− θ̂j (xobs)

)2

ˆvar
(
θ̂j
) =

p

∑
j=1

(
θ̂j (x)− α̂j)2

ˆvar
(
θ̂j
)

where θ̂(x) = (θ̂1 (x) , . . . , θ̂p (x)) and ˆvar
(
θ̂j
)

is the empirical

variance of
{

θ̂j(xpilot,i)
}kpilot

i=1
.

Choose ε as the empirical 1% percentile of
{

χ(xpilot,i, xobs)
}kpilot

i=1
.

ABC rejection sampling:
For i = 1, . . . , kABC

repeat
repeat

sample θABC,i ∼ π(θ) and xABC,i ∼ π(x | θABC,i)
until n(xABC,i) > m.

until χ(θ̂(xABC,i), θ̂(xobs)) < ε
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We employ a Lasso regression approach because we want to use a relatively
large number of summary statistics (see Section 3.2).

3.2 Choice of summary statistics in the case of LGCP-Strauss
process models

An important part of ABC is the selection of appropriate summary statistics.
It is not possible to find sufficient statistics for the LGCP-Strauss process,
since it does not have a closed form density and, therefore, it is not obvious
which summary statistics to use. We emphasize that there are limitless pos-
sibilities for choosing such summary statistics. The following describes one
choice which, based on some theoretical knowledge and numerical experi-
ments, we believe is an appropriate set of summary statistics when imple-
menting ABC for LGCP-Strauss processes.

Recall from Section 1.1 that exp(µ + σ2/2)|W| provides an upper bound
on the expected number of points for an LGCP-Strauss process on |W|. We
may therefore expect that especially the parameters µ and σ2 are related to the
number of points in a point pattern generated by an LGCP-Strauss process.
We therefore include the number of observed points as a summary statistic.

Recall also the L-function from Section 2 which is a theoretical tool com-
monly used to asses the degree of clustering and regularity. Since these prop-
erties are related to many of the parameters of the LGCP-Strauss process, we
consider an empirical estimate of the L-function among the summary statis-
tics for ABC (see (b)-(c) below). A simulation study suggested that for realisa-
tions of an LGCP-Strauss process, the empirical estimate of L(r)− r often has
a global minimum when r is close to the interaction radius R, at least when
there is strong to moderate repulsion in the model. In this regard, see Fig-
ure 1 for some examples of empirical L-functions associated with realisations
of LGCP-Strauss processes. We take this into consideration when choosing
the summary statistics (see (b) below).

Furthermore, numerical experiments suggested that it may be particularly
difficult to learn much about the GRF based on a realisation (see also the dis-
cussion in Section 2). The GRF mainly affects the clustering, so we would like
to include some further summary statistics which can capture this. For this
purpose, assume for ease of exposition that W is a square with side length h.
Then we split W into q2 squares Wi,j of side length h/q, i, j = 1, . . . , q, and let
n(x ∩ Wi,j) be the number of points in x falling in Wi,j. We choose summary
statistics which describe how n(x∩Wi,j) varies (see (d) below) and which are
calculated for a user-specified finite range of q-values.

Specifically, for a point pattern x (either xobs or one of the simulated point
patterns in Algorithm 1), we chose the following summary statistics.

(a) nlog B log(n(x)).
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(b) Lmax B max(L̂(r)− r),
Lmin B min(L̂(r)− r), and
Larg min B arg min(L̂(r)− r),
where L̂ is a non-parametric estimate of the L-function evaluated over
a user-specified finite range of r-values.

(c) L̂(r)− r evaluated at m equally spaced values of r between 0 and 0.2h
referred to as L1, . . . , Lm.

(d) Cmax,q B max
i,j=1,...,q

({
n(x ∩ Wi,j)/n(x)

})
,

Cmin,q B min
i,j=1,...,q

({
n(x ∩ Wi,j)/n(x)

})
, and

Clog var,q B log
(

ˆvar
({

n(x ∩ Wi,j)/n(x)
}q

i,j=1

))
,

where again ˆvar means empirical variance.

We have chosen these specific forms of the summary statistics based on some
numerical experiments. In the examples of Sections 4 and 5, m = 40 and q =
2, . . . , 5. This means that the vector of summary statistics T in Algorithm 1
has dimension equal to 1 + 3 + 40 + 3 · 4 = 56.

4 ABC for simulated realisations of LGCP-Strauss
processes

4.1 Prior specification and numerical considerations

We will now illustrate how the procedure in Algorithm 1 can be used to make
ABC for the simulated realisations of LGCP-Strauss processes in Figure 1. In
order to do this, it is required to specify a (proper) prior distribution for the
parameter vector θ = (µ, σ2, s, γ, R) of the LGCP-Strauss process. For the
examples in this section, we considered three different prior distributions for
θ which we refer to as P1, P2, and P3. In each case, a priori we assume the
five parameters µ, σ2, s, γ, and R are independent.

1. P1: µ ∼ Unif(3, 6), σ2 ∼ Unif(0, 4), s ∼ Unif(0.01, 0.5), γ ∼ Unif(0, 1),
and R ∼ Unif(0, 0.05);

2. P2: µ ∼ Norm(3.5, 1), σ2 ∼ Gamma(1, 1), s ∼ Gamma(1, 6),
γ ∼ Beta(1, 2), and R ∼ Gamma(1, 50);

3. P3: µ ∼ Norm(5, 1), σ2 ∼ Gamma(10, 4), s ∼ Gamma(7, 20),
γ ∼ Beta(2, 1), and R ∼ Gamma(10, 250).

Here, Unif(a, b) is the uniform distribution on the interval (a, b), Norm(a, b)
is the normal distribution with mean a and variance b, Gamma(a, b) is the
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gamma distribution with shape a and rate b, and Beta(a, b) is the beta dis-
tribution with the shape parameters a and b. For computational reasons, we
have chosen to truncate all the prior distributions for the parameters to the
intervals of the uniform distributions of P1. For example, the computational
reasons include a consideration of the number of points in simulations. The
more points a simulated point pattern has, the more computationally expen-
sive the simulation procedure will be (see below). Recall that exp(µ + σ2/2)
is an upper bound on the expected number of points in the unit square. By
limiting the range of µ and σ2 in their prior distributions, we ensure that
point patterns simulated during the ABC procedure will not yield unreason-
ably many points compared to the number of points in our observed point
patterns. Further, this ensures that the simulated point patterns can achieve
regularity similar to that in the observed point patterns.

In order to use the MCMC algorithm when a realisation z = {z(u)}u∈W
of the GRF is given (see Section 2), it is necessary to choose a burn-in which
can be used for all simulations in the ABC procedure. In order to choose this
burn-in, we considered 30 samples of the parameters drawn from the prior
distribution P1; used the MCMC algorithm for all these samples; and consid-
ered trace plots of the number of points and R-close pairs. Figure 10 shows
these plots for three different prior samples for illustration. We choose to ini-
tiate the MCMC algorithm at the empty point pattern and at a realisation of
an inhomogeneous Poisson process on W with intensity function exp(z(u))
(these initial states are extreme because of the coupling result mentioned in
Section 1.1). It seems that the higher the number of points, the slower the con-
vergence. The burn-in should be high enough for the MCMC algorithm to
have converged given any prior sample, but increasing the burn-in will also
increase the computation time. Considering all 30 examples, 20 000 appears
to be an appropriate overall burn-in. All following simulations are iteration
20 001 of the MCMC algorithm initiated at the empty point pattern.

4.2 Posterior results

We used Algorithm 1 on the six point patterns in Figure 1 with kpilot = 10 000
and kABC = 1 000 (the same choice as in Shirota and Gelfand, 2017). In some
cases, one or two pilot samples had to be excluded afterwards because some
summary statistics yielded infinite values. For a single point pattern, in our
situation, it usually took about 10 hours to run the ABC procedure in parallel
on 45 cores (evidently, run time will depend heavily on the given situation
and software). Figures 2 and 3 show kernel density estimates of the resulting
(approximate) marginal posterior distributions of the parameters, using a
Gaussian kernel and a bandwidth chosen with the method by Sheather and
Jones (1991).

From Figure 2, we see the following.

43



Paper A.

• As the true value of γ increases, the ABC posterior distributions of µ
become more and more left skewed. The choice of prior seems to have
small influence on the general behaviour of these. The ABC posteriors
corresponding to the prior P2 are very different from the prior in all
three cases, whereas the ABC posteriors corresponding to the priors P1
and P3 seem to become increasingly different from their corresponding
priors as γ increases.

• The ABC posterior distributions for σ2 and s look rather similar to their
prior distributions, except near zero in the situations of the priors P1
and P2 where the ABC posteriors are considerably smaller than their
corresponding priors. This suggests that even though it may be difficult
to infer with precision about the values of σ2 and s, we are able to learn
that they have a small probability of being near zero, which means that
we can detect a clustering effect in the point patterns.

• When the true value of γ is 0, the ABC posteriors of γ are very concen-
trated near 0. We see a tendency for the spread of the ABC posteriors
to increase as γ increases. The choice of prior seems to have small in-
fluence on the overall behaviour of the ABC posteriors in the first two
cases. Especially for the prior P1, the maxima of the ABC posteriors
seem to be in good agreement with the true value in all three cases.

• The posterior distributions for R seem to approach the corresponding
priors as γ increases. In all three cases, the maxima of the posterior
distributions corresponding to the prior P1 are in good agreement with
the true value.

From Figure 3, we see the following.

• The overall behaviour of the ABC posteriors for µ seems to be rather
unaffected by the choice of prior, and the ABC posteriors seem to be in
good agreement with the true value. The spread of these ABC posteri-
ors seems to increase slightly as σ2 increases.

• For σ2, the ABC posteriors corresponding to the prior P3 are quite simi-
lar to the prior. The posteriors corresponding to the prior P1 are getting
closer to the prior as the true value of σ2 increases. The spread of the
posteriors corresponding to the priors P1 and P2 seems to be increas-
ing as σ2 increases. Again, we see that the posteriors corresponding to
the priors P1 and P2 place less mass near zero than the corresponding
priors.

• For s, the results are very similar to those in Figure 2.
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Fig. 2: Estimated marginal ABC posterior densities (black curves) when using different prior
distributions (grey curves) for the parameters of the LGCP-Strauss model used for the first
three point patterns in Figure 1. The vertical lines indicate the true parameter values. For each
marginal ABC posterior distribution, the corresponding prior distribution is plotted using the
same linetype (solid for P1, dashed for P2, and dotted for P3). Each row represents a parameter
(stated to the left of the row), and each column represents one of the three point patterns, as
indicated by the true value of γ.
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• For γ, the choice of prior seems to have little influence on the ABC pos-
teriors, and overall the spread of the ABC posteriors seems to decrease
slightly as σ2 increases.

• For R, the prior seems to have some influence on the ABC posteriors
and the spread of the ABC posteriors seems to be decreasing when σ2

is increasing.

Figure 4 shows the means and medians of the ABC samples, where in
all cases the posterior mean and median are close. Furthermore, we see the
following:

• For µ, all the posterior means and medians for the different priors and
point patterns look similar except in the case γ = 0.6 where they are
somewhat higher than in the other cases. Overall, they are in fairly
good agreement with the true values.

• For σ2 and s, we again see that it is quite difficult to obtain much preci-
sion about these parameters from data.

• For γ, the prior has the smallest influence when the true value of γ is
relatively low and the true value of σ2 is relatively high, in which case
the ABC posterior means and medians are also very close to the true
value.

• For R, the prior has the smallest influence when the true value of γ
is small. Considering the priors P1 and P3, the means and medians
are generally close to the true value. For the prior P2, the means and
medians seem to become increasingly smaller than the true value of R
as the true value of γ increases.

Overall, the ABC procedure seems to be most successful for estimating
µ, γ and R, especially when the true value of γ is relatively small and the
value of σ2 is not too small. However, the success of the procedure will
depend on the specific combination of the true parameters. Note that when
fitting a Strauss process to a point pattern, Shirota and Gelfand (2017) first
estimated R by maximum pseudo-likelihood and then used this value of R
in their ABC procedure; in contrast, we found no need to fix R when fitting
an LGCP-Strauss process with our ABC procedure.

Zhang (2004) demonstrated that some of the parameters in the Matérn
model (which includes the exponential covariance function) may not be con-
sistently identified in an increasing density infill asymptotics framework, but
that the parameter σ2/s may be consistently identified. This might explain
why the ABC procedure is not so successful when it comes to identifying the
scale and variance parameters of an exponential covariance function. There-
fore, we made the same analysis as in Figure 2 using the prior P1 when s = 0.3
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Fig. 3: Estimated marginal ABC posterior densities (black curves) when using different prior
distributions (grey curves) for the parameters of the LGCP-Strauss model used for the last three
point patterns in Figure 1. The vertical line indicates the true parameter value. For each posterior
distribution, the corresponding prior distribution is plotted using the same linetype (solid for
P1, dashed for P2, and dotted for P3). Each row represents a parameter (stated to the left of the
row), and each column represents one of the three point patterns, as indicated by the true value
of σ2.
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Fig. 4: Posterior means (indicated by +) and medians (indicated by x) of the ABC samples for
the point patterns in Figure 1 (which are referred to by the true value of γ for the first three and
the true value of σ2 for the last three). Each row represent a parameter, which is stated to the
left of the row. The prior distribution is stated on the y-axis and the x-axis correspond to the full
range of each parameter.

is given. However, the posterior marginal distributions of the remaining pa-
rameters (not shown) looked very similar to those in Figure 2.

Table 1 summarises the estimated coefficients of the linear models fitted
in the ABC procedure, cf. Algorithm 1. For each parameter, there are a total
of 18 fitted linear models (one for each time the ABC procedure was run, that
is, one for each combination of point pattern and prior). The table shows
for each parameter the mean (over all 18 linear models) of the estimated co-
efficient for each summary statistic. In order to make the coefficients for
different summary statistics comparable in this table, the linear models were
fitted to a scaled version of the training data (the scaling was done by sub-
tracting the mean and dividing by the standard deviation). As expected, nlog

is most influential in the models for µ and σ2. Of the summary statistics
of the type Clog var,q, Cmin,q, and Cmax,q, it appears that Clog var,5 is the most
important one. For all parameters, some values of the empirical L-function
seem to have some influence in the linear models. The summary statistic
Lmin is most influential in the models for γ, which is in agreement with the
fact that it describes the degree of regularity. Interestingly, Larg min does not
appear to be very influential in the models related to R, in contrast to what
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might be expected.

Summary statistic γ µ R s σ2

nlog -0.001 0.662 -0.168 0.05 0.337
Clog var,2 -0.043 0.005 - 0.046 -
Clog var,3 - - - 0.179 -
Clog var,4 0.035 -0.002 -0.046 0.046 0.088
Clog var,5 0.225 -0.133 -0.179 -0.017 0.171
Cmin,2 - -0.008 - -0.08 -0.009
Cmin,3 -0.004 0.001 -0.009 -0.036 -0.061
Cmin,4 -0.015 0.058 0.004 - -0.029
Cmin,5 0.029 0.076 -0.033 0.038 -0.027
Cmax,2 0.008 - - 0.006 -0.057
Cmax,3 0.023 0.025 - - -0.058
Cmax,4 0.031 - -0.02 - -0.077
Cmax,5 - 0.036 - - -0.146
L2 0.093 -0.032 0.052 -0.067 0.054
L3 0.064 -0.018 0.021 -0.039 0.053
L4 0.055 -0.005 0.035 -0.044 0.014
L5 0.059 -0.026 0.039 -0.024 0.023
L6 0.091 -0.011 0.058 -0.024 0.007
L7 0.117 -0.007 -0.035 -0.004 -0.013
L8 0.072 -0.074 -0.145 -0.031 -0.075
L9 0.041 -0.007 -0.201 - -0.032
L10 0.044 -0.058 -0.388 -0.044 -0.064
L11 - - -0.008 -0.014 -
L12 -0.039 - - -0.022 0.022
L13 -0.036 - - -0.064 0.045
L14 -0.045 -0.001 - -0.055 0.06
L15 -0.011 - 0.015 -0.14 0.078
L16 - - - -0.006 0.052
L17 -0.027 - 0.103 - 0.023
L18 - - 0.009 -0.008 0.089
L19 -0.01 - - - 0.062
L20 -0.049 - 0.023 - 0.044
L21 -0.023 - - - 0.008
L23 -0.089 - 0.003 - 0.026
L24 - - 0.022 - 0.026
L26 -0.011 - 0.056 - -
L27 -0.009 - 0.008 - -
L28 - 0.01 0.074 - 0.039
L29 -0.01 0.027 -0.024 - -
L30 - 0.002 0.039 - -
L31 -0.036 - - - -
L32 - -0.002 - - -
L33 0.023 - - - -
L34 -0.043 -0.002 -0.001 - -
L35 -0.104 - 0.02 - -
L37 - - 0.034 - -
L38 0.019 - - - -
L39 - 0.005 0.016 0.01 -
L40 -0.021 -0.018 0.04 0.148 -
Larg min -0.087 -0.01 0.009 0.001 0.041
Lmin 0.12 0.027 0.017 0.085 -0.085
Lmax - - 0.035 0.161 -0.005

Table 1: Table of mean of estimated coefficients in the linear models fitted in the ABC procedure
for each parameter. The data was scaled before the models were fitted in order to make the
coefficients comparable. Summary statistics whose coefficients were zero in all models are not
included.

We also investigated the estimated intercept (on the original scale) of the
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linear models for each parameter, point pattern, and prior. According to
the model specification in Algorithm 1, the intercept represents a linear ap-
proximation to the expected value of the parameter given the observed point
pattern. Overall, these estimated intercepts were similar to the ABC posterior
means in Figure 4 and are therefore not shown.

We now investigate how the ABC procedure for fitting an LGCP-Strauss
process works when the data is generated from some of the special cases of
this process. For this purpose, we simulated a realisation of an LGCP with
parameters µ = 5, σ2 = 2, and s = 0.3, and a realisation of a Strauss process
with parameters µ = 5, γ = 0.3, and R = 0.03. Notice that when simulating
under an LGCP, there is no need to employ the MCMC algorithm described
at the beginning of Section 2. We used the faster method implemented in
the function rLGCP from the package spatstat (Baddeley et al., 2015), which
meant that we were able to run this ABC procedure for a single point pattern
in about 40 minutes (again using 45 cores). We used the same ABC proce-
dure as above with the specified uniform priors for fitting an LGCP-Strauss
process to these point patterns and the posterior results can be seen in Fig-
ure 5. For the point pattern generated from an LGCP, the true value of µ
seems to be identified well when fitting the LGCP-Strauss process. The pos-
terior marginal distribution of γ is rather concentrated near 1, and a plot of
the posterior samples of γ and R (not shown) shows that very small values of
γ appear together with very small values of R. This indicates that the fitted
LGCP-Strauss process is close to the special case of an LGCP, which is the
true model. Again, it seems to be difficult to identify σ2 and s.

For the point pattern generated from a Strauss process, the marginal ABC
posterior distribution for σ2 is very concentrated near zero, which is the true
value. The true values of µ and R seems to be well identified, and the median
and mean of the marginal posterior distribution of γ are quite close to the true
value, but the maximum value of this ABC posterior distribution is somewhat
smaller than the true value. For the Strauss process, s should be irrelevant,
which is in agreement with the nearly uniform ABC posterior distribution
for s.
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Fig. 5: Panels 2-6 and 8-12 show estimated marginal posterior distributions (black curves) and
corresponding prior distributions (grey curves) for the parameters (as stated on the top) when
fitting an LGCP-Strauss process to the realization of an LGCP in panel 1 (corresponding to panels
2-6) and the realization of a Strauss process in panel 7 (corresponding to panels 8-12). The point
processes are defined on the unit square. The dashed and dotted vertical lines indicate the
medians and means, respectively; the solid vertical lines indicate the true values, when relevant.

4.3 Model checking and comparison

We are interested in whether the point patterns in Figure 1 can be distin-
guished from realisations of an LGCP and a Strauss process, so for compari-
son we also fitted an LGCP and a Strauss process to each point pattern, using
the ABC procedure in Algorithm 1. We used the same summary statistics as
for the LGCP-Strauss process and the prior P1 specified in 4.1 on the rele-
vant parameters (that is, the parameters µ, σ2, and s when fitting the LGCP,
and the parameters µ, γ, and R when fitting the Strauss process). Again,
when simulating under an LGCP, we used the faster method implemented in
spatstat.

For model checking and comparison we first suggest to make global enve-
lope tests based on posterior predictions as follows. For each ABC realisation
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of θ, a realisation x of the process in question given θ is simulated. For each x,
a functional summary statistic is estimated. These empirical curves are then
used to construct global envelopes and corresponding tests based on extreme
rank lengths (Myllymäki et al., 2017, Mrkvička et al., 2020, note that we only
used 1 000 simulations instead of the recommended 2499, because the ABC
procedure is rather time consuming). The R-package GET (Myllymäki et al.,
2017) was used for this purpose.

In order to compare the fitted LGCP-Strauss, LGCP, and Strauss process
models, we used 95% global envelopes based on posterior predictions and the
empirical L- and J-function, with J(r) = (1− G(r))/(1− F(r)) where F is the
empty space function and G is the nearest-neighbour distribution function
(see van Lieshout and Baddeley, 1996). We also tried to use the F- and G-
functions for model validation but these functional summary statistics were
unable to distinguish between the models (just reflecting the well-known fact
that the J-function contains other information than each of the F- and G-
functions).

Figures 6 and 7 show 95% combined global envelopes for the L- and J-
function, meaning that, under the LGCP-Strauss process, the probability that
both empirical curves are within their respective envelopes is approximately
95%. To combine the envelopes we have used the two-step combining proce-
dure described in Myllymäki and Mrkvička (2019). The posterior predictions
of the LGCP-Strauss processes are for the ABC samples from Section 4.2 ob-
tained with the prior P1. Note that the J-function can only be estimated
reliably for all simulations for r-values in a relatively small interval, whereas
the L-function can be estimated reliably on a larger interval.

In all cases, the p-values of the global envelope tests are highest in the
situation of the LGCP-Strauss process, which may indicate that they provide
the best fit to data. Considering Figure 6, the LGCP is rejected in the cases
where γ = 0 and γ = 0.3 because the empirical J-functions in these cases are
above the 95% global envelopes at small inter-point distances. This indicates
that the point patterns are more regular at small inter-point distances than
what would be expected under the fitted LGCPs. For the case γ = 0.6 (the
case with weakest inhibition), the LGCP cannot be rejected. Notice that the
p-values of these tests are increasing as γ increases which is in agreement
with the fact that the LGCP-Strauss process approaches the special case of
an LGCP. Considering Figure 7, the LGCP is only rejected in the case where
σ2 = 1.25, but the p-values are also rather small in the other two situations.
In all three situations, the behaviour of the empirical J-function indicates that
the point patterns are somewhat more regular than what is typical under the
fitted LGCP.

The Strauss process model is rejected in all six cases because the empirical
L-function clearly shows that the point patterns are more clustered at mod-
erate to large inter-point distances than what can be modelled with a Strauss
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process. In the cases γ = 0.3 in Figure 6 and σ2 = 2 in Figure 7, the empir-
ical J-functions also show this, but for the remaining cases, the J-function is
contained completely within the envelopes.

Overall, it appears that the J-function is best at criticizing the LGCP and
the L-function is best at criticizing the Strauss process. The later may have
something to do with the fact that the J-function can only be estimated on a
relatively small interval. So, it is less likely to capture the aggregation, which
happens on a larger scale, than the L-function which can be estimated on a
bigger interval. When we use the L-function for model validation we keep
in mind that it was also used in the ABC procedure which might lead us to
conclude that the model fits better to data than it actually does.

−0.05

0.00

0.05

0.10

J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

0

1

2

3

4

LG
C

P
−

S
tr

au
ss

Global envelope test: p =  0.811

True  γ = 0

−0.05
0.00
0.05
0.10
0.15

J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

0.0
0.5
1.0
1.5
2.0
2.5

Global envelope test: p =  0.939

True  γ = 0.3

0.00

0.05

0.10

J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

0.0
0.5
1.0
1.5
2.0

Global envelope test: p =  0.824

True  γ = 0.6

−0.05
0.00
0.05
0.10

J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

0.4

0.8

1.2

LG
C

P

Global envelope test: p =  0.003

0.00
0.05
0.10
0.15

J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

0.0

0.5

1.0

1.5

Global envelope test: p =  0.027

0.00

0.05

0.10

0.15

J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

0.0
0.5
1.0
1.5
2.0
2.5

Global envelope test: p =  0.603

−0.03
−0.02
−0.01

0.00
0.01
0.02
0.03

J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

1

2

3

4

S
tr

au
ss

Global envelope test: p =  0.008

−0.02
−0.01

0.00
0.01
0.02

J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

0.5

1.0

1.5

2.0

Global envelope test: p =  0.001

−0.01

0.00

0.01

0.02
J(r) L(r) − r

0.00

0.02

0.04

0.06

0.00
0.05
0.10
0.15
0.20
0.25

0
1
2
3
4

Global envelope test: p =  0.001

Fig. 6: Combined global envelopes based on the empirical J- and L-function for LGCP-Strauss,
LGCP, and Strauss processes fitted with ABC to the three point patterns in Figure 1. The choice
of the fitted model is stated to the left of each row and each column represents a different
point pattern, as indicated by the true value of γ. The solid curves are the empirical functional
summary statistics for the observed point patterns and the dashed curves are the means obtained
from 1 000 posterior predictions. Each shaded area indicates a 95% global envelope based on the
extreme rank length. At the top of each plot, the p-value of the corresponding global envelope
test is stated.

The global envelope tests are mainly a method for model validation, but
they may be used for model comparison by comparing p-values and conclud-
ing that the model with the highest p-value provides the best fit. However, it
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Fig. 7: Combined global envelopes based on the empirical J- and L-function for LGCP-Strauss,
LGCP, and Strauss processes fitted with ABC to the last three point patterns in Figure 1. The
choice of the fitted model is stated to the left of each row and each column represents a different
point pattern, as indicated by the true value of σ2. The solid curves are the empirical functional
summary statistics for the observed point patterns and the dashed curves are the means obtained
from 1 000 posterior predictions. Each shaded area indicates a 95% global envelope based on the
extreme rank length. At the top of each plot, the p-value of the corresponding global envelope
test is stated.

should be kept in mind that a higher p-value may be a result of overfitting.
In order to investigate this, we also fitted an LGCP to the first point pat-

tern in Figure 5 and a Strauss process model to the second point pattern in
Figure 5 and compare them to the fitted LGCP-Strauss process models (the
global envelopes are not shown). For the realisation of an LGCP, the p-values
of the 95% combined global envelope test for the fitted LGCP-Strauss and
LGCP were 0.933 and 0.766, respectively. Since the data is generated from an
LGCP, both models should fit the data equally well, so the higher p-value for
the LGCP-Strauss process is probably a result of the fact that it is overfitting.
For the realisation of a Strauss process model, the p-values of the 95% com-
bined global envelope test for the fitted LGCP-Strauss and Strauss process
were 0.46 and 0.766, respectively. In this example, the p-values do not reveal
the fact that the LGCP-Strauss process is overfitting.

We also consider an ABC method for model comparison, using the method

54



4. ABC for simulated realisations of LGCP-Strauss processes

of ABC model choice via random forests (ABC-RF) and the corresponding
R-package abcrf from Pudlo et al. (2015). In short, the idea is to make a
number of prior predictions (including a model index); calculate summary
statistics for these; create a reference table with model indices and calculated
summary statistics; and finally use this table to train a random forest classi-
fier for predicting the model from the summary statistics. This classifier is
then used on the summary statistics of the observed data to choose a model.
Pudlo et al. (2015) also described how to approximate the posterior proba-
bility of the chosen model. According to Pudlo et al. (2015), the method is
robust to the number and choice of summary statistics.

We used this method for the point patterns in Figures 1 and 5, using a
uniform prior on the three models in consideration (LGCP-Strauss, LGCP,
and Strauss), the uniform priors of P1 for the relevant parameters, the sum-
mary statistics from Section 3.2, and 30 000 prior predictions (whereof eight
were afterwards excluded because some summary statistics yielded infinite
values). The number of prior predictions are in agreement with the recom-
mendations in Pudlo et al. (2015). We used the default settings from the
abcrf package for the remaining choices concerning the ABC-RF method.

The results are in Table 2. The true model is chosen in all cases, and the
approximate posterior probabilities are very high in the cases where the true
model is LGCP-Strauss or Strauss. When the true model is an LGCP, the
approximate posterior probability is somewhat smaller.

Point pattern Selected model Approximate posterior probability
True γ = 0 LGCP-Strauss 0.97
True γ = 0.3 LGCP-Strauss 0.99
True γ = 0.6 LGCP-Strauss 0.88
True σ2 = 0.5 LGCP-Strauss 0.96
True σ2 = 1.25 LGCP-Strauss 0.98
True σ2 = 2 LGCP-Strauss 0.99
True LGCP LGCP 0.65
True Strauss Strauss 0.94

Table 2: Selected model and its approximate posterior probability when using ABC-RF for the
point patterns in Figures 1 and 5.

Note that this method is intended for choosing between different types of
models. Whether a model of the chosen type actually fits the data is assessed
by the global envelope test. So, a model choice method such as ABC-RF may
then be particularly useful for choosing between different types of models
which according to the global envelopes all fit the data.
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5 Data example

The first panel in Figure 8 shows the locations of 256 oak trees which suffer
from frost shake (frost shake refers to cracks in the trunk of the tree) in a
125 × 188 m rectangular region of Allogny in France. This data set is part of
the Allogony data set from the R-package ads (Pélissier and Goreaud, 2015).
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Fig. 8: The first panel shows the frost shake oak point pattern dataset where the observation
window is a 125× 188 m rectangle. The other panels show the estimated marginal ABC posterior
distributions (black curves) and the prior distributions (grey curves) for the five parameters, with
each parameter stated at the top of each plot. The dashed and dotted lines indicate the medians
and means, respectively.

We used Algorithm 1 on this oak data set. Here, independent uniform
prior distributions are chosen for µ on the interval (−7,−3), σ2 on (0, 4), s
on (1.25, 62.5), γ on (0, 1), and R on (0, 6.25). Notice that the observation
window for the oak data is much larger than the ones in Section 4.1, and the
prior distributions are chosen to take this into account. Furthermore, when
calculating the summary statistics for the ABC procedure, Wi,j, i, j = 1, . . . , q,
are now rectangular sets of the same size (see Section 3.2). Trace plots as
those in Figure 10 (supplied in an appendix) suggested that 20 000 iterations
of the MCMC algorithm is a sufficient burn-in for this example. Again, a
pilot sample of 10 000 simulations was used and the resulting ABC posterior
sample consists of 1 000 draws from the approximate posterior distribution.

The marginal posterior distributions, which are estimated from the ABC
sample, can be seen in Figure 8. They are all clearly different from their
uniform priors. The posterior distributions of µ and R look approximately
normal, whilst the posterior distributions of σ2, s, and γ are right skew. Note
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that the posterior distribution of γ indicates strong repulsion between the
points. The posterior distribution of σ2, particularly its heavy tail, suggests
some aggregation among the splited oaks.

We now consider the techniques for model checking from Section 4.3.
The first plot in Figure 9 shows 95% combined global envelopes for the fitted
LGCP-Strauss process as described in Section 4.3. The overall behaviour of
the observed point pattern seems to be captured well by the LGCP-Strauss
process, and the p-value is very high. For comparison, Figure 9 also shows
the corresponding 95% envelopes for an LGCP and a Strauss process model
fitted with the ABC procedure in Algorithm 1. The combined global en-
velopes indicate that the LGCP model provides a poor fit to data, but the
Strauss process model also fits well. However, the p-value is lower than the
corresponding p-value for the LGCP-Strauss process, indicating that the later
may provide a better fit.
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Fig. 9: Combined global envelopes based on the empirical J- and L-function for different fitted
models to the splited oak point pattern (as indicated at the top of each plot). The solid curves
correspond to the splited oak point pattern and the dashed curves are the means obtained from
1 000 posterior predictions. The shaded area indicate a 95% global envelope based on the extreme
rank length. At the top of each plot, the p-value of the corresponding global envelope test is
stated.

When we used the method of ABC-RF, the selected model is an LGCP-
Strauss process and the approximate posterior probability is 0.7 showing a
relatively high confidence in the chosen model.

All things considered, it seems that the fitted LGCP-Strauss process cap-
tures the behaviour of the splited oak point pattern very well, that it provides
a much better fit than the LGCP process, and that it provides a somewhat bet-
ter fit than the Strauss process.

6 Summary and future work

We have proposed a novel spatial point process model which enables cap-
turing of regularity through pairwise interactions and aggregation through
a Gaussian process realization. This doubly stochastic spatial point process
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generalizes both the customary log Gaussian Cox process and the customary
Gibbs process. Because the likelihood is intractable for this model we have
developed model fitting through an ABC method. We have provided both
simulation investigation and a real data application in order to reveal the be-
haviour of process realizations and also our ability to fit the model and do
full inference for given point pattern realizations.

Future work may compare the quality of ABC inference with more tra-
ditional MCMC based posterior inference which indeed will be much more
time consuming. By this, we mean using a missing data MCMC approach for
the case of the LGCP (which is then included into the posterior) or the ancil-
lary variable method by Møller et al. (2006) (see also Murray et al., 2006) for
the Strauss process. However, this will be time consuming, especially when
we have to make perfect simulations of the Strauss process for the ancillary
variable method. Further future opportunities may consider inhomogeneous
point patterns (e.g. by including covariate information into the mean func-
tion of the Gaussian process), and marked point patterns or so-called multi-
type versions of our model (see e.g. Møller and Waagepetersen, 2004). Such
multi-type modelling may allow attraction or inhibition within types but also
introduce attraction or inhibition between types. A different direction would
consider space-time versions. That is, a realization of the process is seen as a
spatial point pattern by integrating over a window of time.
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A Trace plots for accessing the burn-in for the sim-
ulation algorithm

Figure 10 shows trace plots of the number of points and R-close pairs for
the MCMC algorithm when simulating an LGCP-Strauss process for differ-
ent draws of the parameter vector θ from it’s prior distribution P1 which is
described in Section 4.1. For each prior sample of θ, a realisation z of the GRF
was simulated, and the MCMC algorithm was used to simulate the LGCP-
Strauss process given Z = z. This analysis was used to choose an appropriate
burn-in in Section 4.
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Fig. 10: Trace plots of the number of points (top) and R-close pairs (bottom) for 30 000 iterations
of the MCMC algorithm for simulating an LGCP-Strauss process on the unit square with param-
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MCMC algorithm was initiated at the empty point pattern (black curves) or a realisation of an
inhomogeneous Poisson process with intensity function exp (z(u)) (grey curves).
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Myllymäki, M. and Mrkvička, T. (2019). GET: Global envelopes in R. arXiv
preprint arXiv:1911.06583.
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1. Introduction

Abstract

Techniques involving three-dimensional (3D) tissue structure reconstruction and
analysis provide a better understanding of changes in molecules and function. We
have developed AutoCUTS-LM, an automated system that allows the latest ad-
vances in 3D tissue reconstruction and cellular analysis developments using light
microscopy on various tissues, including archived tissue. The workflow in this pa-
per involved advanced tissue sampling methods of the human cerebral cortex, an
automated serial section collection system, digital tissue library, cell detection using
convolution neural network, 3D cell reconstruction, and advanced analysis. Our
results demonstrated the detailed structure of pyramidal cells (number, volume, di-
ameter, sphericity and orientation) and their 3D spatial arrangement organized in a
columnar structure. Our pipeline for these combined techniques provides a detailed
analysis of tissue and cells in biology and pathology.

1 Introduction

Life science aims at a better understanding of multiple biological functions,
such as healthy organ development with cellular proliferation, migration and
organization, tumour formation and general pathology. Several techniques
have been developed to study biological structure in 3D like serial block-
face scanning Electron Microscopy (EM), focused ion beam scanning EM,
serial-section transmission EM, Automatic Tape-collecting Ultra Microtome-
scanning EM, and many types of light microscopy with or without tissue
clearing (Denk et al., 2004, Escovitz et al., 1975, Hayworth et al., 2014, Burel
et al., 2018). In life science, EM is widely used to explore the subcellular
components, which are several orders of magnitude smaller than the spatial
neuron networks. Clearing techniques can be very helpful in attempting to
explain neuron networks in greater brain volumes, such as the adult mouse
brain, in an entire state without disassembly (Ariel, 2017, Chung and Deis-
seroth, 2013). However, some of the disadvantages for tissue clearance are
that immunostaining of archival tissues is usually complicated as a result
of the antigen masking due to formaldehyde protein crosslinking (Lai et al.,
2018). Furthermore, practicing immunostaining with tissue clearing remains
difficult in human tissues due to factors such as inadequate antibody pene-
tration depth, physicochemical properties, and tissue composition (Lai et al.,
2018, Marx, 2016).

A typical human neuron has thousands of complex connections with
neighboring neurons, which is essential for normal function, yet the orga-
nization of these neurons is still under debate (Hawkins and Ahmad, 2016).
The cellular organization in the human neocortex has been described as a
local network of vertical columns containing neurons. Neurons with similar
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functions are grouped together and according to different theories, these cor-
tical columns may contain smaller columns known as minicolumns, which
are the smallest unit capable of processing information in the cerebral cor-
tex (Mountcastle, 1957, Molnár and Rockland, 2020). Cortical columns are
radially oriented cell bodies that span through the laminar pattern perpen-
dicular to the pial surface and can be seen using regular Nissl preparations
or another cell body-revealing histological procedures. The introduction of
minicolumns was in response to studies of the patterning of apical dendrites
of pyramidal cells with somata situated in layers II, III, and V (Fleischhauer
et al., 1972, Peters and Walsh, 1972). Studies have attempted to character-
ize and analyze the morphology of minicolumns with a 2D computerized
method designed to detect subtle differences among patient groups such as
schizophrenia, autism, and Alzheimer (Chance et al., 2008, Casanova et al.,
2003, McKavanagh et al., 2015, Raghanti, 2010). As a result, much of our
understanding of cellular organization is focused on 2D histological images,
which could potentially misrepresent biological structures and malposition-
ing of cells in 3D-space.

This paper aims to create a method that is accessible to the broader science
community and analyze 3D tissue organization through the use of archival
tissue to make detailed inferences about pathologies. In the present study,
we developed Automatic Collector of Ultrathin Sections for Light microscopy
(AutoCUTS-LM) to determine the neuronal cell morphology and their spatial
organization in 3D-space of archived tissue. This is accomplished by modify-
ing and adjusting the original AutoCUTS, which was designed for scanning
EM array tomography (Shen et al., 2019, Liu et al., 2019, Li et al., 2017), to
image archival human brain tissues(∼20 years) in layer III of Brodmann Area
46 (BA46). BA46 was chosen since it involves working memory, attention and
has been the subject of studies related to mental disorders like schizophrenia
and depression (Fuster, 1997, Selemon et al., 1998, Cruz et al., 2004, Dean
et al., 2012, Udawela et al., 2017, Gibbons et al., 2009, Trojak et al., 2014,
Dean et al., 2014). Myelinated axon bundles are potentially cortical efferents
that originated in layer II/III pyramidal cells as these bundles descend to the
white matter (Peters and Sethares, 1996). In both corticocortical and thalam-
ocortical circuitry, layer III pyramidal neurons play a key role and have been
suggested to be most affected by these disorders as it is the most prominent
layer in BA46 (Levitt et al., 1993, Rajkowska et al., 1998, Glantz and Lewis,
2000).

Here, we report the applied technical workflow that is able to uncover
morphological properties of pyramidal neurons in human brain autopsy tis-
sue: First, we identified BA46 and applied advanced sampling procedures of
biopsies. Next, we embedded biopsies in resin, AutoCUTS-LM sliced them
automatically into semi-thin sections (300 and 400 nm), and on tape. Sections
were stained and mounted on glass slides, and a library for each sample was
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organized. The digitalization of sections was stored, aligned, and stacked as
a volumetric structure. Then, we detected neurons using the UNetDense ar-
chitecture. Finally, the 3D spatial arrangement and structural parameters of
pyramidal neurons in layer III of BA46 were analyzed in three human brains
applying recently developed methods.
Our findings present valuable insight into neuronal morphology and archi-
tecture by characterizing pyramidal neurons in 3D from old archived human
brain tissue. We discovered that pyramidal cells are not randomly distributed
but are clustered in small columnar structures, which may be relevant for un-
derstanding the formation and function of the cortical network.

2 Results

2.1 Sampling strategy and preparation of tissue

A block of tissue from the dorsolateral prefrontal cortex that contained all of
BA46 was removed from each brain (Rajkowska and Goldman-Rakic, 1995b),
see Fig.1. We used the Matlab method we developed to delineate BA46 and
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Fig. 1: Sampling of biopsies at BA46. (A) Formalin-fixed tissue from three human brains were
selected from the brain collection at Aarhus University Hospital. The red box marks the excised
area of the tissue. (B) Fixed coronal block of tissue containing BA46. (C) Manual delineation of
BA46 performed by MATLAB. (D) Infused image between global threshold image and sample
area. The filtered surface of a coronal block of tissue containing BA46 was marked with a red
and yellow map that shows the available sample area. (E) Summation of all white pixels for
each row of the binary picture of the sample area. The 1st, 2nd and 3rd quarter of pixels were
marked with a green dashed line. (F) The two biopsies can only be sampled in either the 1st and
3rd quarter(white area) or the 2nd and 4th quarter(red area). In this case, random points in the
2nd and 4th quarters, marked with blue dots, were chosen by the algorithm. (G) The two chosen
biopsies are marked with blue dots on the original block of tissue from (B).

sample two biopsies on a highly complex surface like the brain, with the sec-
ond biopsy kept as a reserve. The cortical columns of neurons in the cortex
could be successively extracted by a biopsy perpendicularly to the cortical

67



Paper B.

surface; therefore, only neurons from gyri and not sulci were analyzed, illus-
trated with the yellow color in Fig.1D. The sampling area was divided into
four quarters to avoid any overlap or adjacent biopsies, see Fig.1E-F.
The brain tissue samples were obtained by using a biopsy punch positioned
on the two sampling points with a diameter of 1.5 mm and a depth around 3-5
mm. This meant that a sample included all six layers of the cerebral cortex.

The tissue samples were fixed in resin and not stained with osmium since
osmium fixation reduces the contrast of sections during light microscopy, see
Fig.S1.

Our strategy to successfully find neurons in the supragranular layers (I-
III) and layer IV, Region Of Interest (ROI), requires that the sample be posi-
tioned in such a manner that all six layers in the neocortex appear in every
section during the AutoCuts-LM procedure. Consequently, the biopsy was
placed at the bottom of the embedding form such that the pial surface was
perpendicular to the cutting direction, see Fig.S2.
This orientation decreased the number of sections approximately 2-3 times
relative to alternate orientations, thus shortened the time spent collecting and
capturing images with the microscope. We used a light microscope to locate
and measure the ROI by first examining and staining the outermost section
of the block to delimit the area for collecting semi-thin sections (100-500 nm).
We precisely trimmed the excess embedding resin around the sample to avoid
wrinkles while cutting and removed layer V-VI, which resulted in an ROI of
around 1.5 mm2.

2.2 Collection and preparation of serial brain sections on tape

We have modified and adapted the automatic serial section technique, which
was originally developed for scanning EM (Shen et al., 2019, Liu et al., 2019,
Li et al., 2017), so it operates for light microscopy. The main changes were
the replacement of the double-sided conductive tape with a plasma cleaned
transparent tape and mounting tape strips containing the sections on glass
slides instead of on a silicon wafer. The transparent polyester tape was 7
mm wide and was put through plasma treatment, which influenced the hy-
drophilicity of the tape. The hydrophilicity was found to not only reduce
wrinkles of the brain sections produced during the collection process (Li
et al., 2017), but also made the sections more adhesive to the tape. Thus,
the sections would later stick to the tape during collection and staining.

Automated collection of the resin-embedded material was achieved us-
ing a combined ultramicrotome attached to a custom tape collection device
(AutoCUTS-LM). We collected around 2400 serial sections with a total tissue
depth of about 0.7 mm for each subject. The three human subjects’ cutting
thickness was chosen to be 400 nm for subject 1 and 300 nm for subjects 2 and
3 (sectional area was about 1.5 mm2, and the total volume was approximately
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1 mm3). Sections were cut continuously with a diamond knife (Diatome,
Switzerland) with an indoor humidity around 85%, see Fig.2A. The pulling

A

B C E

D

Fig. 2: Image of the AutoCUTS-LM and sample preparation on tape.(A) The supply-reel of the
AutoCUTS-LM contains a transparent plastic tape that collects sections from the knife boat to
the final take-up reel. (Red inset) Close-up view of the tape conveyor belt positioned in front
of the knife boat with the mounted sample.(B) Collected sections on the transparent tape before
staining. (C) Sections have been stained with toluidine blue. (D) Setup to glue the sections
on the microscopic glass slide. (E) Stained sections glued on a microscopic slide and ready for
image acquisition.

motion from the collecting tape moved the sections from the water onto the
tape’s surface, and its adhesiveness affected how flat these sections lay on the
tape. Around 800 sections were collected per hour with our settings. Hence,
we used less than three hours to cut a tissue sample that is around 0.7 mm
thick. It is important to notice that the ultramicrotome calibrates itself after
sectioning the maximum useful range of 200 µm and had to be manually
reset. In our case, a tissue sample to a depth of 0.7 mm could be sectioned
with only three interruptions, and it was possible to move the sample to a
different knife-edge, as dulling of the knife affects the section quality. Collect-
ing thousands of sections was possible without any loss of tissue. However,
we observed different technical and environmental factors that could gener-
ate wrinkles and disfigure the sections during cutting. The indoor humidity
level was one of the main factors (see Methods).

Following section-collection, we chose to stain our sections with toluidine
blue, since it interacts with most cells in the brain (both neurons and glial
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cells) and is thus excellent for revealing the neuronal patterns. However,
to assess other biological results, methods such as immunolabeling or EM
may also be used with the same AutoCUTS strategy, see Fig.S3. The spools
holding the tape with attached sections were dried overnight in an oven at
50◦C. Sections were then stained with toluidine blue, and the tape with
attached sections was cut into three consecutive strips with approximately 60
serial sections and glued onto a standard microscope slide (Fig.2B-E). Each
sample resulted in a section library of approximately 40 glass slides, which
were digitalized.

2.3 Data acquisition

Digital images were acquired using the Apiro Versa 200 platform from Leica.
The scanning speed was approximately 15 min per glass slide and required
about 10 hours to complete a section library of glass slides. We only sam-
pled every second and third section because a distance of 800 (subject 1) and
900 (subject 2 and 3) nm between sections was considered sufficient for 3D-
reconstruction of pyramidal cells, which have an average somal diameter of
approximately 13 µm (Rajkowska and Goldman-Rakic, 1995a), see Fig.3A.
The microscope included the commercial software Aperio ImageScope (Le-
ica Biosystems Imaging, Inc., USA), which visualized the whole microscope
slide image with high resolution. However, the user had to extract a region
manually before an image could be exported as a TIF file. The uncompressed
images were then automatically processed, ordered, and exported as indi-
vidual images of each section using a MATLAB algorithm we developed, as
shown in Fig.3B. These individual images were then aligned and stacked by
sequential image registration using our custom MATLAB scripts (Rosenfeld
and Kak, 1982). Next, the stack of images was prepared for further analysis
by cropping tissue regions, see Fig.3C.

2.4 Pixelwise performance of deep learning model for seg-
menting pyramidal cells

We worked with UNetDense, a deep learning framework, which has pro-
vided promising results for image segmentation of pyramidal cells (Lin, 2019).
The performance of the UNetDense model was measured by reporting sensi-
tivity, precision, and F1-score. Neither recall nor accuracy was calculated be-
cause the number of cell pixels was dominated by background pixels render-
ing these measures less informative. These measures were calculated based
on the confusion matrices shown in Table 1. In general, the output of using
individual models per subject showed a better predictive result than pre-
dicting pyramidal cells using one combined model, see Table 2. In general,
individual models for each subject performed well with sensitivity, accuracy
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Fig. 3: Image acquisition and 3D-stacks of aligned sections. (A) Overview of a microscopic
glass slide with the commercial Leica software. Systematic sampling of every third section was
manually marked with three local points for the autofocus calibration. (B) In MATLAB, a TIF
image was loaded where each second was of interest, which is different from (A) but easier to
visualize as an example (i). Next, we used an entropy filter to detect sections of interest (ii).
Binary masks have been computed for each section of interest and the images are ready for
export (iii). The output of each exported section (iv). (C) Individual sections were aligned and
stacked on top of each other. The stacked block of sections was then cropped down to a specific
ROI (1.05x1.05 mm) which only contains tissue.
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Model
1 (A) 0 (A)

Subject 1 Subject 2 Subject 3 Subject 1 Subject 2 Subject 3
Individual

Models
1 (P) 128937 TP 83370 TP 91266 TP 11710 FP 14400 FP 10717 FP
0 (P) 19923 FN 17810 FN 11512 FN 4033734 TN 4078724 TN 4080809 TN

Combined
Model

1 (P) 119351 TP 77409 TP 92189 TP 9506 FP 12994 FP 12337 FP
0 (P) 29509 FN 20717 FN 8931 FN 4035938 TN 4083184 TN 4080847 TN

Table 1: Pixelwise validation. Pixel to pixel comparison between an MS and UDP image
(2048x2048) for each subject. The confusion matrix is used to validate the UNetDense model
on images that the model has not encountered before. The result shows the performance of indi-
vidual trained UNetDense models for each subject and a combined UNetDense model used for
all subjects. Pixels belonging to the background have label 0, those belonging to the pyramidal
cells have label 1, (A) stands for Actual (value in MS image), and (P) stands for Predicted (value
in UDP image).

Model Metrics Subject 1 Subject 2 Subject 3

Individual
Models

Sensitivity 0.87 0.82 0.89
Precision 0.92 0.85 0.89

F1 0.89 0.84 0.89

Combined
Model

Sensitivity 0.80 0.79 0.91
Precision 0.93 0.86 0.88

F1 0.86 0.82 0.90

Table 2: Performance of pixelwise validation. Precision, sensitivity and F1 score of 2048x2048
pixel image for each subject with individual trained UNetDense models and one combined
UNetDense model. Pixel evaluation is based on the confusion matrix of table 1.

and F1-score above 0.8.

2.5 Objectwise performance of 3D-reconstruction of segmen-
ted pyramidal cells

The performance of detecting pyramidal cells as 3D objects were evaluated by
measuring the sensitivity, precision, and F1-score based on 3D-reconstructions
of cells from a stack of 30 images. Manually Segmented (MS) and UNetDense
Predicted (UDP) 3D-reconstructions were compared by checking whether es-
timated centroids from the MS cells fell within a cell profile of the UDP cells
and vice versa. The sensitivity, precision and F1-score were 0.98, 0.93 and
0.95 respectively after removing data points from first and last three images,
see Table 3. Thus, the 3D-reconstruction of pyramidal cells demonstrated a
high performance across all three measurements.
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3D-stack TP FN FP Sensitivity Precision F1
Original 472 19 33 0.96 0.93 0.95
Filtered 368 6 29 0.98 0.93 0.95

Table 3: Performance of objectwise validation. Validation of segmentation of pyramidal cells
based on 3D-reconstruction. Precision, sensitivity, and F1-scores were calculated based on 491
reconstructed pyramidal cells from 30 stacked 2048x3840 manually marked images. Original
refers to the case where centroid points from all 30 images are included. Filtered refers to the
case where centroid points from the first and last three images of the stack were excluded.

2.6 3D-reconstruction and morphological analysis of pyrami-
dal cells

Layer III was located using a density plot of a 2D-projection of the centroids
of every 3D-reconstructed neuron, with yellow representing areas of high
density and blue representing areas of low density, see Fig.4. Layer I got
a very low density of neurons, while II and IV are denser than layer III in
BA46. As Layer III has a smaller density than Layer II and Layer IV, the ROI
is specified between the two dense yellow areas for our analysis. Further
classifications into pyramidal or non-pyramidal neurons were needed as the
UDP detects all neuronal shapes from 2D images. This is necessary because
pyramidal cells’ top and bottom image profiles can be mistaken for smaller
neurons/glial cells, as seen in Fig.S4. The Gaussian mixture model(GMM)
was used to classify the 3D-reconstructed pyramidal and non-pyramidal cells
based on estimated sphericity and volume, see Fig.5B. Big objects/cells were
classified as outliers if the maximum Feret Diameter in 2D or 3D measure-
ments was three standard deviations from the mean. As a result, a total of
1, 19, and 28 datapoints for each subject were deemed outliers and hence
excluded from the pyramidal cell data. The percentage of objects/neurons
excluded from analysis using GMM and outlier detection accounted for 23%,
25%, 37%, and 23% of the total number of detected objects for each dataset,
as shown in Tab.S1. The mean density of pyramidal cells in layer III of BA46
after filtering was 28155 mm−3, and the GMM categorization and data con-
taining outliers are shown in Fig.S5-S6. The measurements and calculations
for each subject’s entire stack were examined just for the classified pyramidal
cells, with the number of cells and the size of the ROI window for each sub-
ject shown in table S1. Table 4 provides information on the size, shape, and
orientation of pyramidal cells of layer III in BA46 for all three subjects.

The average neuronal volume across all three subjects is 795 µm3, and the
shapes of pyramidal cells were assessed by approximating sphericity, giving
an average value of 0.35 (Wadell, 1935). The orientations of pyramidal cells
relative to the direction of the vector pointing towards the pial surface had
an average of 29◦, and some examples of orientation vectors are shown in
Fig.5E.
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Fig. 4: Visualising the steps to identify layer III. (A) Illustration of four layers of BA46 and
the observation window for the analysis is marked in green. (B) Raw image image of a section.
Scale bar=300 µm.(C) Binary image of the output from the Deep learning model. (D) Position
of centroids from 200 images projected to the x- and y-plane. (E) Density-map of the positions
of neurons to visualize the different layers in the cerebral cortex and the yellow color represents
areas of high density, whereas the blue color represents areas of low density. The density was
high at the yellow areas, which indicate the position of layer II and layer IV (from left to right)
and low at the blue areas, which indicate fewer neurons and show a part of layer I and layer III.
The volumetric stack of images was cropped within the squared marked with the red dashed
lines that was selected by a user. (F) The part of the image in C, which is chosen for analysis.
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A B

C D
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F
Pyramidal cells
Non-pyramidal cells

Fig. 5: Illustration of 3D-reconstruction of neurons and segmentation of pyramidal cells. (A)
Visualisation of the 3D-reconstruction of one layer neurons with a window height of 31 µm. (B)
Zoomed image of the segmented pyramidal and non-pyramidal cells. Scale bar=20 µm. (C) Over-
lay image of the binary segmented image with the gray-scale image of a section. Scale bar=200
µm. (D-E) Close-up view of the overlay picture and 3D-reconstruction of pyramidal cells, with
yellow lines representing orientations. Scale bar=15 µm. (F) Measurement of diameter from the
longest cell profile DiaL was utilized to construct 3D spherical objects with their corresponding
3D-reconstructed cell. The graphic indicates that the difference in 3D volume space between the
spherical approximation and the 3D-reconstructed item is similar. Scale bar=20 µm.
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Brain Volume (µm3) Orientation (◦) Sphericity DiaL (µm) DiaAll (µm)
Subject 1 867 ± 960 34 ± 23 0.38 ± 0.08 11.13 ± 3.46 7.23 ± 3.26
Subject 2 709 ± 806 28 ± 22 0.33 ± 0.07 11.13 ± 3.74 6.49 ± 3.1
Subject 3 808 ± 893 24 ± 18 0.35 ± 0.06 11.27 ± 3.61 7.37 ± 3.1
Mean 795 ± 65 29 ± 4.1 0.35 ± 0.02 11.17 ± 0.07 7.03 ± 0.39
CV 0.08 0.14 0.06 0.01 0.06

Table 4: Quantitative values for pyramidal neurons from the entire stack of each subject. The
table shows the neuronal volume, diameter, orientation and sphericity of pyramidal cells for
each subject based on the data which is summarised in Fig.S7. The entries for each subject state
the average and ± one standard deviation. Mean is the average measurement for each column,
Coefficient of variation CV = SD/mean.

The diameter was calculated using the nucleator probe by measuring the
segment length from the largest cell profile(DiaL) and the average segment
length from all cell profiles(DiaAll). The average neuronal diameter for DiaL
and DiaAll were 11.17 µm and 7.03 µm, respectively. Estimated spheres
of length DiaL were constructed and displayed with their matching 3D-re-
constructed cell in Fig.5F. Histograms of the different measurements can be
found in Fig.S7 and as log-normal transformed in Fig.S8.

2.7 2D vs 3D comparison of pyramidal cells sizes

The exact same neurons were used to compare the 2D and 3D analyses for
each subject. The volumes of pyramidal cells from 2D images were approx-
imated by constructing a spherical object based on the estimated radii mea-
sured by the nucleator probe.
The volumes of cells from the three subjects were calculated from 2D images
using the estimated segment length from the largest cell profile (VolL) and all
cell profiles (VolAll). The average neuronal volume in 3D (Vol3D), VolL and
VolAll are 795, 730, and 183 µm3, respectively.
An approximation to the mean diameter of a cell Dia3D was estimated from
the mean volume Vol3D under the assumption that it is the volume of a
perfect sphere. Dia3D was then assessed and compared to the diameter mea-
sured from the largest cell profile (DiaL ) and all cell profiles (DiaAll). Be-
cause the nucleator probe is derived from the mathematical fact that length
of isotropic test lines between a unique point and the cell border, it provides
the most accurate one-to-one comparison. The average diameter for Dia3D,
DiaL and DiaAll are 11.48, 11.17, and 7.03 µm3, respectively. The values for
the 2D vs 3D comparison of volume and diameter can be seen in Tab.S2-S3.

2.8 Point pattern analysis of pyramidal cells

The coordinates of the centroids for the 3D analyzed pyramidal cells in layer
III of BA46 form a spatial point pattern. We considered four such point
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patterns, which we refer to as 1_1, 1_2, 2, and 3 and they correspond to the
three subjects (Subject 1 was divided into two parts since it was collected over
two different days).

In order to detect possible columnar structures in the data sets, we esti-
mated the cylindrical K-function for each data set, and compared it to the
95% global envelope obtained by simulations under the null hypothesis of
complete spatial randomness (CSR). The results can be seen in Fig.6. We
considered the empirical cylindrical K-function in the directions of the three
main axes. When the empirical cylindrical K-function is above the envelope,
it indicates cylindrical clusters of points (centroids of cell locations) in the
corresponding direction.

There were signs of columnar clusters in all three directions for all sub-
jects. However, it was most pronounced in the direction of the x-axis, which is
the expected direction of the possible columnar structure of pyramidal cells,
especially when looking at radii between 5 and 20 µm and heights between
20 and 80 µm. There were areas where the empirical curves were below the
envelopes suggesting some repulsive behavior in the data. This was not un-
expected since the point patterns only represent the centroids of cells, since
cells cannot overlap, it was thus natural to see some repulsion between the
points. The global envelope tests corresponding to the situations in Fig.6A all
yielded p-values below 0.05, and the tests corresponding to the situations in
Fig.6B all yielded p-values below 0.001, indicating that all data sets exhibited
large deviations from CSR.
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Fig. 6: Results of analyses with the cylindrical K-function for the spatial point patterns of
centroids of pyramidal cells. Each row represents a dataset which from top to bottom are:
Subject 1_1, 1_2, 2 and 3.(A) 95% global envelopes (shaded area) for the cylindrical K-function,
with t = 80 fixed, and using 2000 CSR simulations. The theoretical value of the cylindrical
K-function under CSR was subtracted from the curves for better visualization. The three curves
correspond to the empirical cylindrical K-function for each dataset, in the direction of the x-axis
(solid lines), y-axis (dotted lines) or z-axis (dashed lines). (B) Summary of 95% global envelopes
for the four data sets based on the cylindrical K-function when varying both the height t and
radius r. The envelopes are each based on 4000 CSR simulations. The direction of the cylinders is
stated at the bottom of each plot. The plots indicate whether the empirical cylindrical K-function
for the observed point pattern is above the envelope (black), within the envelope (grey) or below
the envelope (white).
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2.9 Tissue deformation

Every single-cell location research technique is vulnerable to tissue deforma-
tion. Epon embedding is used for the analysis in this paper to minimize
shrinkage. We compared the tissue area of three Epon-embedded biopsies
before and after processing. The human grey matter brain biopsies showed
an areal shrinkage equal to 0.1%, 4.2% and 7.9%, respectively. Based on these
data and our previous publications (Tang et al., 1997, Dorph-Petersen et al.,
2001), it was decided not to correct our results for shrinkage.

3 Discussion

The presented method can reveal fundamental characteristics of specific brain
areas, which can be used to improve our understanding of neuronal morphol-
ogy and their spatial relationship. A variety of efforts have been made toward
developing technologies for revealing the intricate patterns of neural circuits.
By using different slicing or optical methods to recreate neuronal tissues,
multiple studies have provided 3D data on the microscopic morphology or
gene expression of neurons (Chung and Deisseroth, 2013, Knott et al., 2008,
Mayerich et al., 2008, Li et al., 2010, Keller and Dodt, 2012, Becker et al., 2012,
Amunts et al., 2013, Osten and Margrie, 2013). Due to a number of difficul-
ties, such as size limitations of the slide scanner and microtome, low homo-
geneity of serial whole organ sectioning and staining, the time-consuming
design of the operation, computer constraints, and limited digital process-
ing capability, the entire human brain is difficult to recreate entirely on a
mesoscopic scale. High resolution, 3D models of animal and human brains is
difficult to acquire. Chemical clearance methods make the tissue transparent
and enable the entire mouse brain to be reconstructed (Becker et al., 2012,
Chung and Deisseroth, 2013), but 3D-reconstruction and digitization of fine
neuronal morphology continue to be challenging. One explanation is that
in the nervous system, cells are closely arranged, making it difficult to dis-
tinguish one from another. Applying Golgi-staining, a 3D structural dataset
of the entire mouse brain was also collected by Micro-Optical Sectioning To-
mography, which can conduct imaging and sectioning simultaneously on
centimeter-sized tissues (Li et al., 2010).
However, such a section-based method demands costly specialized instru-
ments, relatively long periods of sample treatment (weeks or months), and
for a single brain imaging time can approach even one month (Gong et al.,
2013). Based on the reconstruction of histological sections of a human brain
preserved in paraffin, Amunts et al. developed a 3D model of the whole
human brain called BigBrain with a spatial resolution of 20 µm (Amunts
et al., 2013). The tissue was embedded in paraffin, which can shrink tissue
volume up to 50-60% (Dorph-Petersen et al., 2001), and it is challenging to
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study neuronal morphology with a spatial resolution of 20 µm. To date, no
optimal approach to the analysis and processing of the whole human brain
with micro-resolution has been achieved. The majority of the approaches dis-
cussed above share the use of immunolabeling in order to detect and localize
antigens or proteins within a cell at a specific location.
The fundamental constraint of immunolabeling is that milder fixation condi-
tions and a shorter detergent permeabilization incubation time are required
to allow antibodies to penetrate the tissue. This is particularly important
for soluble proteins in the cytoplasm, which are frequently damaged or de-
stroyed during incubation. Hence, it is challenging to create neuronal an-
tibodies that work in postmortem brains that have been in the fixative for
months or years (Lyck et al., 2007). Another well-known concern is that many
histological procedures can cause tissue samples to shrink and deform, po-
tentially altering cell size, shape and organization. Keeping the dimensions
of the tissue is especially essential if studies want to assess changes in the size
and distances of any cells or organelles within the tissue. Our methodology
provides an effective technique for imaging smaller pieces of most archival
tissue from semi-thin serial sections into a functional dataset with hardly any
tissue deformation. Researchers have with our method a unique opportunity
to study archived tissue samples, enabling researchers to investigate tissue
and disease development in great detail.
An automated section collection EM system has been altered into a unique
3D-reconstruction method for light microscopy, AutoCUTS-LM. We used his-
tological staining to visualize cytoarchitecture and an autonomous slide scan-
ner to produce high-resolution images of the brain tissue. Via deep learning,
pyramidal neurons were characterized and their spatial distribution analyzed
using advanced techniques. Our application provides valuable information
on the neuronal 3D architecture from archived human brain tissue.
We systematically sampled the tissue for our setup to reduce the scanning
time and the processing of data. A thickness of 800 and 900 nm provided
sufficient axial spatial resolution to detect and reconstruct pyramidal cells.
The UNetDense architecture was applied to detect the pyramidal cells in our
images, as threshold-based segmentation techniques typically yield poor out-
put in medical image analysis for low-contrast images, unexplained noise,
blurred boundaries, and different light condition (Tsai, 2007, Malarvizhi,
2017). The variation between brains made it challenging to create a model
that suited all three brains since flaws occurred mainly along the edges of
the images, and where the contrast was low due to less staining absorption.
Therefore, we trained a individual UNetDense model for each subject in this
study since the sensitivity, precision, and F1-scores for both pixelwise and
objectwise segmentation were above 0.82 and 0.93, respectively. Overall, the
results of the combined model showed smilar precision and F1-scores but
lower sensitivity compared to the individual models. That being said, for
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this study, sensitivity was prioritized as it shows how well the model detects
the neurons that are in data, which is essential for ensuing the point pattern
analysis.
The risk of having three models is overfitting. Overall, the validation-findings
from the sensitivity, precision and F1-scores showed that the outcomes of the
three models are reliable. One reason for the difference between subjects was
that the brains absorb staining differently, and this may be due to different
ages, postmortem intervals and long fixation time. With this limitation in
mind, one model might be adequate if the captured images did not alter too
much or if we annotated more images to train the model.

We measured the volume, sphericity, orientation and diameter of pyrami-
dal cells and used the cylindrical K-function to identify columnar structures.
The average volume was 795 µm3 with an equivalent diameter equal to 11.48
µm. The neuronal diameters of pyramidal neurons in layer III of BA46 have
received little attention in the literature. Nonetheless, Rajkowska et al. ex-
amined 150-200 neurons in this region using stereological techniques and
determined an average diameter of 13.45 µm. The process for measuring
neuron radii was comparable to the nucleator probe as they measured the
border outlines of cell profiles to compute the associated diameter. Similar
to the procedure in this study, they only assessed neurons in the crown of a
gyrus. The differences in radii could be related to the fact that we sampled
pyramidal cells from a small concentrated area. In contrast, they quantified
neurons in broader regions of BA46 using a succession of counting boxes.
Compared to 11.48 µm our method provides information of thousands of
counted neurons per subject compared to 150-200 neurons counted by Ra-
jkowska et al. (Rajkowska and Goldman-Rakic, 1995a). In BA46, counting
fewer neurons from smaller sample sizes over a broader area may overes-
timate neuronal radii. This is due to the fact that smaller pyramidal cells
dominate layer III over bigger ones, resulting in a stronger proclivity towards
smaller radii. The difference in radii measurements across individuals might
also be related to biological variance for subjects, brain storage period, or
different embedding media, as the difference is roughly 17%.
Different factors such as age, disease, and toxicity have been reported to af-
fect neuron volume in the cerebral cortex across other studies, however, they
do not give any detail on how the shape of the neurons are affected (Janson
and Møller, 1993, Bundgaard et al., 2001, Jansen et al., 2007, Rudow et al.,
2008).
A literature search revealed that no quantitative values to quantify the spheric-
ity and orientation of pyramidal cells had previously been published. As a
result, such measurements were not comparable to those of other studies.
Sphericity is valuable as a general shape descriptor since it also applies to
objects having holes, such as a torus. Yet, the main reasons sphericity is
used for measuring shape are as follows: sphericity is a unit less number,
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hence is scale invariant. Further, it is simple to compute since MATLAB eas-
ily calculates the surface area and volume of cells, which are fundamental
descriptors of cells in their own right. Estimation of sphericity does not pre-
sume any shape before examining a 3D object, making it an appealing tool
for differentiating between distinct forms. As a result, we implement spheric-
ity estimates to comprehend a natural cell shape. The average sphericity of
0.35 found in this paper indicates that pyramidal cells appear elongated and
far from spherical.
The average angle between the vector that represents the orientation of the
pyramid cell and the x-axis, which points to the pial surface, is 29◦, suggest-
ing that pyramidal cells are focused perpendicular to the pial surface.
Quantities such as cell sphericity and orientation in follow-up studies with
different disease groups could be utilized to understand the morphological
alterations induced by these disorders.

The volumes of pyramidal cells calculated from 3D reconstruction images
were compared to the results of the nucleator probe measurements for the
same pyramidal cells, which estimate the mean cell volume from 2D images.
It is crucial to keep in mind that the volume estimates are based on two sepa-
rate methodologies, and the volume may be overestimated or underestimated
with either approach.
The 3D approach measures every cell profile, and if a cell profile on the edge
of a pyramidal cell is not recognized, this approach may underestimate the
volume (top or bottom cell profile). On the other hand, the nucleator relies
on measurements from a unique position (e.g. nucleolus), assuming that the
section or cell is isotropic. If this criterion is not fulfilled, the estimate may
be biased.
The average estimated volumes of pyramidal cells were 795, 730, and 183
µm3 for Vol3D, VolL, and VolAll , respectively. The difference between Vol3D
and VolL is 8.7%, whereas the difference between Vol3D and VolAll is 77%. It
appears that using the nucleator probe on the largest cell profile to estimate
volume yields a comparable overall result, but employing the nucleator probe
on all cell profiles causes a huge difference. The estimated average volumes
varies greatly depending on the approach used.
The estimated diameter of pyramidal cells changed less than the volume es-
timates, with results of 11.48. 11.17, and 7.03 µm for Dia3D, DiaL, and DiaAll ,
respectively. The difference between Dia3D and DiaL is 2.9%, whereas the
difference between Dia3D and DiaAll is 39%. Hence, if we look at estimated
radii when employing the largest cell profile compared to the 3D estima-
tion, there is no substantial disagreement between those two approaches for
calculating diameter because the difference is nearly equivalent to the 272
nm pixel size. In contrast, estimating the average radius from all cell pro-
files makes a notable difference. As the neurons are not spherical in reality,
comparing neuronal size based on volume rather than diameter is a more
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appropriate parameter to quantify changes in neuronal size in future refer-
ences. Nevertheless, if only a 2D technique is available, adopting a spherical
approximation by assuming general isotropy of these human pyramidal cells
to estimate neuronal volume is not entirely inaccurate. It is vital to notice
that a slight change in the radius can substantially change the volume value
considering the radius is raised to the power of three while computing the
volume.
Even though the nucleator is a 2D procedure, it is nevertheless based on a
3D sampling methodology since the biggest cell profile detected during the
sample is required before the analysis can be completed. The nucleator is
therefore a helpful tool to use when it is challenging to distinguish smaller
cell profiles at the edges and only larger cell profiles are required.
Another important consideration is that the nucleator will be less sensitive to
tissue shrinkage in the direction of the z-axis as it estimates the volume from
a single 2D plane. The nucleator is advantageous for estimating volumes
compared to other embedding materials that are sensitive to shrinkage, such
as frozen sections or vibratome sections, which rarely deform in the x- and
y-axes but shrink in the z-axis.

The observed pyramidal neuron density in layer III of BA46 after the clas-
sification between pyramidal and non-pyramidal cells is 28160 mm−3. A
stereology study by Francine M. Benes found a neuronal density of 36800
mm−3 in layer III of postmortem brains from nine healthy controls in the pre-
frontal cortex (Benes, 1986).
Cullen et al. estimated a neuronal density of 37000 mm−3 in the prefrontal
cortex of 10 adults with no history of mental illnesses, similar to Benes et al.
However, Cullen et al. also measured the density of pyramidal cells in layer
III to be 25650 mm−3, a difference of 30% compared to the total neuronal
density.
Rajkowska et al. characterized and mapped the cytoarchitecture of BA46
in 17 healthy people. They were able to estimate a neuronal density of
51510 mm−3 by blending cortical layers I-III (Rajkowska and Goldman-Rakic,
1995a). Because the density in layer II varies from 48000-78000 mm−3 and
covers a smaller area than layer III, it is reasonable to assume that the den-
sity in layer III would be about 36000-44000 mm−3 (Benes, 1986, Cullen et al.,
2006). If the difference between neuronal and pyramidal density is roughly
30%, then the projected density should be approximately 25200-30800mm−3,
which is consistent with our findings.
One thing all of the three studies listed above have in common is that they
solely measured prefrontal cortex neuronal density (Benes, 1986, Rajkowska
and Goldman-Rakic, 1995a, Cullen et al., 2006). Number densities indicate
changes in the number of cells as well as tissue volume under considera-
tion, because they are ratios. It is commonly assumed that as the number
of detected objects rises, so does the density. However, the density increases
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as well if the number of identified objects remains constant, but the exam-
ined volume shrinks. As noted in other studies, making any definite claim
regarding changes in 3D structures based purely on density estimates may
lead to questionable findings (Brændgaard and Gundersen, 1986, Swaab and
Uylings, 1987, Oorschot, 1994).
Because this assumption is so widespread, the phrase "reference trap" refers
to circumstances in which wrong conclusions are drawn only on the basis of
density. As a result, comparing densities should be handled very carefully.

Some studies have shown that pyramidal cells are organised in columns
that are perpendicular to the pial surface of the cerebral cortex (Mountcas-
tle, 1997, Casanova, 2013, Opris et al., 2017, Casanova and Casanova, 2018),
other studies suggest otherwise (Slimp and Towe, 1990, Swindale, 1990). It
is an attractive idea to explain the neuronal organization because intercon-
nected neuron groups typically share similar physiological properties, and
the conditions that excite a neuron are also likely to excite a considerable
fraction of its afferent input. The loss or changes in the spatial organization
of neurons may interfere with information processing between distributed
networks, thereby promoting cognitive decline. The spatial distribution of
pyramidal neurons was analyzed with the use of the cylindrical K-function,
which does not assume any columnarity a priori, and where we applied the
cylindrical K-function on much larger point pattern datasets than so far an-
alyzed in the literature (Møller et al., 2016, Rafati et al., 2016, Christoffersen
et al., 2021). Our results suggest that there is evidence of a columnar struc-
ture in the directions of the x-, y-, and z-axes for all three subjects, but it was
most pronounced in the direction of the x-axis, which is pointing towards
the pial surface. Thus, the results support the theory of a columnar pattern
perpendicular to the pial surface. The method can be used to detect potential
cytoarchitectural distortions that may impact the neuronal columnar organi-
zation in the brain cortex. However, more human brains need to be studied
in order to draw any final conclusions.

Technical and environmental factors could affect the sampling quality of
our sections. The plasma treatment required the transparent collection tape
to be hydrophilic to ensure that the sections would adhere to the tape (Li
et al., 2017, Kubota et al., 2018). If the tape was too hydrophilic, the sections
would not have time to unfold before they landed on the tape and folds were
unavoidable. Variations in density between tissue samples and resin meant
that the remaining blank resin had to be trimmed off (Hildebrand et al., 2017,
Li et al., 2017, Burel et al., 2018). We observed the advantage of higher indoor
humidity, which provided a favorable environment for collecting sections.
The impact of induced folds can be seen with a humidity level about 10%,
60% and 90% in Fig.S10-S11. The test showed that a stable indoor humidity
level around 80% and 90% could help avoid folds.

If larger structures were to be explored in the future, the use of an op-
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timized resin embedding protocol that could be used for thicker sections (>
500 nm) would ease the workload. Applying a resin ratio test to match the
tissue density and select the most suitable one before collecting samples with
AutoCUTS-LM would have a beneficial effect on reducing the folds in the
section. Reducing the hardness of the resin to suit a particular tissue type
can be achieved by controlling the ratio of two different anhydride curing
agents(Dodecenyl Succinic Anhydride and NADIC Methyl Anhydride). This
could avoid the excessive cutting of thousands of needless sections, which
would result in the sharpness of the knife being extended, using less tape,
and a reduced workload for data collection and image processing. Other
labeling methods can also be carried out with the AutoCUTS-LM, as our
sections can be combined with immunofluorescence labeling to identify the
distribution and co-localization of proteins as shown in Fig.S3A, and it may
also be combined with in situ hybridization in order to localize a specific
DNA or RNA sequence (Baccetti et al., 2005). Due to the use of a hard resin,
sections can also be viewed in an electron microscope, Fig.S3B, in which case
cellular ultrastructure can be visualized. In essence, this methodology can
be designed for both light microscopy and electron microscopy to bridge the
localization of important molecules with cellular ultrastructure.

In conclusion, the AutoCUTS-LM method could benefit research in cell
and developmental biology, model organism analysis to address mechanisms
as cell migration, 3D tissue modeling, and morphological changes between
animal/patient groups. This method is applicable for any disease and can po-
tentially enhance the research of normal and disease processes, particularly
those involving morphological alterations or in which the spatial interaction
of disease features is essential.

4 Methods

4.1 Subjects

Three healthy human brains (two women, one male) aged 30, 53 and 58 (Sub-
jects 1, 2 and 3) with no history of psychiatric or neurological diseases were
selected from the brain collection at Core Centre for Molecular Morphology,
Section for Stereology and Microscopy, Aarhus University Hospital, Aarhus,
Denmark. These archived brains have been stored for 19, 21 and 21 years,
respectively in 4% formaldehyde in phosphate buffer at neutral pH and were
collected in compliance with Danish law and with approval from the Central
Denmark Area Health Research Ethics Committees (license number: M-2017-
91-17).
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4.2 Sample extraction

We have developed an algorithm in MATLAB that can assist any user in de-
lineating a ROI in a block of tissue and systematically sample two (or more)
points for biopsies on the cortex, see Fig.1. The user had to capture a pic-
ture of the tissue block and define the biopsy diameter. Then the image was
transformed into grayscale, and the ROI was delineated to produce the sam-
ple area. This picture was then transformed into a binary image indicating
the sample area by means of a global threshold. Next, to prevent the biopsy
from being placed on the crown of the gyrus, the edges of the binary image
were removed. This was done by using morphological erosion with a filter
size equivalent to the biopsy diameter and is shown with the red color in
Fig.1 D. The sampling area was divided into four quarters. The two biopsy
punches should either be performed in the first and third quarters or in the
second and fourth quarters to avoid overlapping biopsies. The four quarters
were determined by considering the accumulation of white pixels by rows
and detect when they reached 25%, 50% and 75%, see Fig.1 E. A 1.5 mm di-
ameter biopsy punch was used to sample brain tissue covering all six layers
of the cerebral cortex.

4.3 Sample embedding and block preparation

The biopsies were first immersed in Phosphate-buffered saline (pH 7.3) with
sucrose for one day and then washed two times in 0.05 Mol maleate buffer(pH
5.2), 5 min each time, at room temperature. Osmium is traditionally used
to stain samples for epoxy resin embedding for EM. However, we discov-
ered that it decreased the sample’s signal-to-noise ratio (SNR) when it was
applied for light microscopy, see Fig.S1. Samples were processed and em-
bedded inside the Leica EM TP Automated Tissue Processor (Leica Microsys-
tems, Brønshøj, Denmark). Here, they were stained with 1% uranyl acetate in
maleate buffer for one hour and dehydrated through a graded ethanol series
(70%, 86%, 96% and 99%, 20 min each). Following the completion of dehy-
dration, samples were washed three times with 100% acetone for ten minutes,
followed by infiltration in 100% acetone/epon 1:1 with constant rotation for
12 hours overnight. Infiltrated samples were incubated in pure Resin 812
for one hour and placed in embedding molds in a pre-warmed oven (60◦C)
to polymerize for 24 hours. The biopsies were placed in the bottom of the
embedding form, such that the pial surface was perpendicular to the cut-
ting direction of the knife, as sectioning all six layers in the neocortex was
preferred. This reduced the number of sections by approximately 2-3 times
compared to alternative orientations, which ease the time spend on captur-
ing images for 3D-reconstruction. After the resin had fully cured, most of
the white resin from the embedded sample was roughly trimmed by a high-
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speed milling system (EM TRIM2, Leica) with an angle set to 60◦. A glass
knife was used for fine adjustment to trim around a 1.1× 1.4 mm rectangle
with a depth of 0.7 mm (1 mm3), resulting in a sample where only neurons
in the supragranular layers and layer IV were included, see Fig.S2. It was
essential to trim all the blank epoxy-resin away since the density difference
between the tissue and epoxy can generate wrinkles while cutting. Supple-
mentary Note 1 describes in detail how to prevent wrinkles and optimize
section quality, as seen in Fig.S9-S14.

4.4 Transparent collection tape

Collection tape with different settings was tested to find the most suitable
tape for our needs. A roll of PEN tape 300 mm wide, 45 m long and 50
µm thick was chosen for this study attributable to heat treatment and the
feature of a protective coat on both sides, which prevents dirt(South China
Science& Technology Co., Ltd, China). This tape was slit into 7 mm wide
strips (Tianjian Xinhua Electronic Material Co. LTD. China). Adjusting the
tape hydrophilicity was essential since it reduced wrinkles of the brain sec-
tions on the tape and made the sections more adhesive to the tape, so they
did not fall off during collection and staining. The system parameters for the
plasma treatment (Beijing Jiaruntongli Technology Co., Ltd., China) were set
with the values: power 120 W, frequency 40 kHz, speed time 4 mm/s, and
processing time of about 2 h for 20 m tape.

4.5 Automatic serial section collection

An ultramicrotome (EM UC7, Leica) connected to a custom-tape collection
system (AutoCUTS) was used to automatically cut the resin-embedded ma-
terial into serial sections. Serial sections with a thickness of 400 and 300 nm
were cut by a 45◦ Histo diamond knife (Diatome, Switzerland) and floated
onto the water surface, see Fig.2A. The tape’s reel speed and cutting speed
were set to 1, and 2 mm/s, respectively, which gives a distance of 1 mm be-
tween every section on the tape. The pulling motion from the collection tape
brings the sections from the water to the surface of the tape, and the adhe-
siveness of the tape affects the flatness of these sections.
We collected about 800 sections per hour with our current settings. Hence, it
takes less than three hours to finish around 0.7 mm of dense tissue. A video
camera was attached to the AutoCUTS to monitor and record the process to
ensure a more comfortable experience for the user by displaying the cutting
process onto a computer screen. It was possible to collect thousands of sec-
tions without any loss of tissue.
Different technical and environmental factors were observed that could gen-
erate wrinkles and disfigure the sections during cutting as described in Sup-
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plementary Note. We found that sections with a cutting thickness above 300
nm were more susceptible to generate these wrinkles during the cutting pro-
cess. The impact of wrinkles was also affected by a combination of room
humidity level and tape hydrophilicity.

4.6 Section Library

The spool that contains the tape with attached sections had to be completely
dry before staining was applied to prevent any sections from falling off dur-
ing this process. Hence, the spool was placed in a sealed plastic bag and
placed inside a 50◦C oven overnight. The toluidine blue staining was ab-
sorbed differently in each brain. Consequently, we had to check the optimal
staining time for every brain before running the protocol. Some sections
would be stained at room temperature for 20 minutes to decide which time
the pyramidal cells had the best signal-noise ratio. Hereafter, the tape was
segmented into smaller pieces and placed in a petri dish (20 cm diameter)
filled with 1% toluidine blue without the tape sticking togetherFig.2B. During
the staining period, a cover was placed on top of the petri dish to condense
moisture and prevent dust or dirt from mixing with the blue toluidine solu-
tion. Toluidine blue residues on the tape segment were washed away (once
with 80% ethanol, twice with purified water), and the tape segment was then
dried with a hairdryer (Fig.2C). It was important not to let the tape dry nat-
urally since water stains would then be developed on the plastic surface of
the tape, which generates hazy white spots on the surface. The tape segment
was cut into smaller strips and glued onto a typical 75 mm by 25 mm micro-
scope slide(Fig.2D,E). The sequence of the serial sections was numbered from
the bottom right corner to the top left corner. Beforehand, each glass slide
was cleaned of dust and other particles in pure acetone and alcohol. Differ-
ent glues were bought and tested for their ability to adhere PEN tape to the
microscopy glass slide. For this study, we chose the glue from Krazy glue
(Krazy Glue All Purpose Super Glue Pen, Fine Tip, 3 Grams) due to its high
adhesive level and because it was non-toxic and convenient to use. Krazy
glue does not require a fume hood, which can generate turbulence and blow
away the cutting strips. Besides, the pen shape made it easier to use than a
standard plastic pipette(Fig.2D). Note that sometimes air bubbles could be
generated between the glass and tape, so it was essential to press the tape as
flat as possible with a pair of rubber-tipped tweezers. The 7 mm wide tape
was chosen for this specific reason since it was more convenient to glue 3x7
mm parallel strips onto a 25 mm glass side compared to the traditionally 8
mm wide tape.
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4.7 Data acquisition

Images of the sections were acquired using Leica’s Apiro Versa 200 Digi-
tal Pathology Scanner. The Apiro Versa 200 is equipped with a 200-slide
autoloader and a robotic arm that allows any user to capture pictures unsu-
pervised.
First, it captured a low-resolution overview image of the whole slide. Sub-
sequently, three focal points were positioned manually on each observable
section for autofocus adjustment. Next, the microscope collected images at
higher magnifications (lens 20x, NA 0.8) with pixel size down to 272 nm,
which did not lose any details because the pixel size was below the expected
resolution for this system’s optics. Systematic sampling of our sections was
done by only chosen every second (subject 1) and every third section (subject
2 and 3). This choice was based on the chosen cutting thicknesses of 400
nm and 300 nm, which correspond to a sample interval of 800 and 900 nm,
respectively.
The output files were named based on the positions of the glass slides in
the loader, e.g., Slide1 for position 1, and the output files could be read from
the commercial software Aperio ImageScope (Leica Biosystems Imaging, Inc.,
USA) that was part of the microscope interface. Aperio ImageScope could vi-
sualize the whole slide image and keep the high-resolution image. However,
the user had to manually select a region before sections could be exported
as individual image files. As a result, we built a script that could load large
image files containing multiple sections and export the individual sampled
sections as uncompressed TIF files in order, see Fig.3B (Larsen, 2020a).
The output images for each glass slide were roughly 2-4 GB in total if im-
ages for each stripe were exported, and it is thus recommended to break the
photographs into smaller segments for each glass slide. First, the large image
files were converted to grayscale, followed by a Gaussian blur. An entropy
filter was then applied to measure randomness, which was used to charac-
terize the texture of the input image. This could be used to detect sections of
interest since pixel values of sections in focus varied a lot due to the presence
of various fine details, while sections out of focus were blurry and showed
more homogenous pixel values. After that, a binary mask for each section
was created by replacing all values above the globally defined threshold with
1 and filtering out smaller connected components. Each section detected was
then exported as an individual file and prepared for alignment.

4.8 Alignment of sections

The alignment of the segmented sections for each subject was accomplished
by a sequential slice-to-slice image-based registration approach. Regions in
image pairs were matched by translating and rotating images following a
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precise registration. First, we converted the RGB image of a section into
grayscale and then employed a median filter to remove the noise. Then, we
did a rough registration followed by a fine-registration using rigid intensity-
based image registrations with different optimizer and metric configuration
properties (Rosenfeld and Kak, 1982). In MATLAB, we set the imregconfig
function, which determines the optimizer and the metric configuration, to
the multimodal configuration, as images may have varying intensity distri-
butions. The function imregconfig was set to its default values for the rough
registration, while the growth factor, initial radius and maximum iterations
were updated to 1.02, 2 × 10−3 and 300 respectively for the fine registration.
For the image registration, images were downscaled by a factor of four in all
directions before any transformations were done in order to increase the reg-
istration speed. After the transformation matrix calculation, the images were
upscaled again in order to recover the original scales. After all the images
were aligned, a window in which only the tissue remained was chosen. The
images were chopped to this window and prepared for analysis, see Fig.3 C.

4.9 Data analysis pipeline

The research pipeline for processing microscope images are depicted in
Fig.S15, where the key steps in the pipeline are explained in the follow-
ing subsections. First, we manually annotated microscope images and aug-
mented those images to produce a sufficient amount of images for the train-
ing and validation set used to train the UNetDense model. After all aligned
images were segmented with the UNetDense model, a density map was used
to identify multiple layers of neurons in the neocortex, which made it possi-
ble to identify and crop out layer III for further study. Then, we performed
3D-reconstruction and calculated morphological parameters for all cells from
the segmented neurons in layer III. On the basis of the 3D-reconstruction
cells, pyramidal cells were detected and ready for analysis. Finally, 3D co-
ordinates of the centroids of pyramidal cells were investigated for columnar
patterns by using the cylindrical K-function.

Annotation

Data annotation is the method of labeling objects of interest that are de-
tectable. The entire process for marking the pyramidal cells for our dataset
was performed on 35 random cropped images from the aligned stack of each
subject, is illustrated in Fig.S16. Here, the annotation was manually per-
formed by an expert (NYL) using Photoshop’s quick selection tool for each
subject, but any image labelling program can be used, e.g. open-source tools
such as VGG Image Annotator or ImageJ. Moreover, the Image Labeler pro-
gram in MATLAB or employing the inbuilt function ginput to mark the bor-
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der of a cell and then applying the imfill function to mask the cell may also
be useful for labeling cells.
Next, we used MATLAB to read the Manually Segmented (MS) images as
binary images where pixels in pyramidal cell profiles equaled one, and all
other pixel values equaled zero.

Deep learning architecture

Deep neural networks, in particular, convolutional neural networks (CNN),
are commonly used for tasks of image classification (Rawat and Wang, 2017).
For the research of this paper, we have chosen to continue working with
the network described in the thesis ’Statistical analysis of pyramidal cells in
brain tissue’ where the code was published on GitHub (Lin, 2019). The deep
learning framework, UNetDense, is a modified version of the original UNet
architecture and consists of several dense blocks, transition blocks and merg-
ing blocks adopted by the pre-trained DenseNet-121 to compute pixel-level
predictions for neurons (Ronneberger et al., 2015, Huang et al., 2017). The
Adam optimizer was used with a learning rate of 1 × 105, the loss function
was Binary Cross Entropy plus Dice Loss, and the code was run on Google
Colaboratory (Kingma and Ba, 2014, Lin, 2019). Cell profiles from 35 anno-
tated images from each model were each sliced into 200 image patches of
256x256 pixels without redundancy, giving a total of 7000 (35x200) images.
The 7000 images were augmented by adjusting brightness and contrast and
were then divided into a training set of 5600 images and a validation set
of 1400 images. The differences in tissue from different subjects make it be
difficult to train one combined model to segment the data of all subjects,
see Table 2. Hence, we compared a combined model with individual mod-
els trained for each subject. Only the model for Subject 1 was trained from
development, after which transferred learning was applied to the other two
models afterward.

Pixelwise validation

We classified our predicted pixel values into four categories: true-positive
(TP), false-positive(FP), true-negative(TN), and false-negative(FN).

TP: The total number of pyramid-pixels correctly identified by UNet-
Dense model.

FP: The total number of pyramid-pixels wrongly identified by UNet-
Dense model.

TN: The total number of non-pyramid-pixels correctly identified by
UNetDense model.
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FN: The total number of non-pyramid-pixel wrongly identified by UN-
etDense model.

For validation, the model was used to segment neurons from images that had
also been manually segmented. The difference was then measured between
the MS image and the UDP image, see Fig.S17-S19. The performance of each
UNetDense model for segmenting 2D images was assessed using metrics of
sensitivity, precision, and F1-score.

Sensitivity = TP/(TP + FN) (1)

Precision = TP/(TP + FP) (2)

F1 − score =
2 · (Sensitivity · Precision)

Sensitivity + Precision
(3)

Objectwise validation

For validating the predictions of 3D-reconstructed cells, a new validation set
was produced of 30 stacked images (2048x3840x30), which took about one
week to complete. The data obtained was just a small portion of stacked
images from Subject 1 and had not been seen by the UNetDense model
before. The 3D-reconstruction from a stack of binary images and perfor-
mance of the objectwise validation was done using custom MATLAB scripts,
where we used the built-functions bwconncomp and regionprops3 for the
3D-reconstruction. After being reconstructed as 3D objects, the manually
marked and predicted pyramidal cells were compared.
For this comparison, observed structures that did not appear in more than
three consecutive images were omitted, corresponding to a height below 3
µm. Then, for both the MS and UDP images, we calculated the centroid of
all detected pyramidal cells. A case where a MS centroid fell within a cell
profile of the UDP 3D-reconstruction was denoted TP, while a case was de-
noted as FN when an MS centroid did not fall within such a cell profile. The
FP case was defined to be the situation where a centroid of the UDP 3D-
reconstruction did not fall within a cell profile of the MS 3D-reconstruction
since these are falsely detected cells in the UDP. Based on these definitions,
sensitivity, precision and F1-scores were calculated.
The validation set contained 491 reconstructed and labeled pyramidal cells,
which contains 5556 cell profiles in total, and we observed that the first and
last three images of the data set predominantly contained false-negative neu-
rons, see Fig.S20. The cause for this error was that centroids for cells ex-
tending beyond the image borders were poorly estimated. Thus, these were
removed.
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Defining layer III

The aligned segmented images from the output of the deep learning model
were examined with custom MATLAB scripts. In this research, pyramidal
cells in layer III were of primary interest. Thus, we identified a ROI con-
taining only layer III by plotting a density map of a projection of estimated
neuron centroids. These estimates were made from a total of 200 images
loaded from the beginning, middle and end of our complete aligned stack.
We used the built-in function regionprops3 to estimate neuron centroid val-
ues from such images. Segmented 3D objects that were smaller than eight
voxels were considered as artifacts and were thus filtered out just like cen-
troid points from the first and last three images.
The density map depicts where the majority of cells were located, with yel-
low representing regions of high density and blue representing areas of low
density. Layer III of the neocortex has a lower density than layer II and layer
IV, then the ROI was specified between the two dense yellow areas for our
analysisFig.4D. After a user had clicked on the top left and the bottom right
corner to define the ROI, red dashed lines appeared to show the cropping
frame, see Fig.4D. This semi-automatic approach was chosen due to its re-
producibility and effectiveness.

3D-reconstruction and quantitative measurement of pyramidal cells

The use of custom MATLAB scripts completed the study of morphological
features and visualized the 3D-reconstruction of pyramidal cells, as shown in
Fig.5.
Quantitative analytical values for each pyramidal neuron were then approxi-
mated based on the entire stack of images, such as volume, centroid, diame-
ter, maximum Feret diameter, orientation, surface area, and sphericity, where
most values were calculated using the built in function regionprops3.
Each cell’s shape was assessed by approximating the sphericity, which does
not have any prior assumption of shape and is independent of cell size. The
sphericity is a dimensionless ratio, and the formula is given in Eq.4, where
V and A are the volume and surface area of the segmented cell. If a cell has
sphericity equal to 1, it resembles a perfect sphere (Wadell, 1935).

ψ =
π1/3(6V)2/3

A
(4)

It was necessary to classify the detected neurons into pyramidal or non-
pyramidal neurons as the UDP detects all neuronal shapes. This is because
the top and bottom parts of a pyramidal cell have smaller profiles and can
appear to be part of minor neurons or glial cells, as seen in Fig.S4.
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A Gaussian mixture model (GMM) clustering algorithm was used to dif-
ferentiate pyramidal and non-pyramidal neurons based on 3D measurements.
The data used for the GMM consisted of the estimated volume and sphericity
in 3D. The choice of data for the GMM is based on the idea that spherical ob-
jects with a smaller volume resemble smaller neurons or glial cells and hence
non-pyramidal cells. For the dataset used for the GMM, we decided to only
use the observed cells below the average volume of the dataset to ensure that
only small round cells were evaluated.
The data set was fitted to the GMM using the default settings in the in-
built fitgmdist function in MATLAB. After the GMM separated the dataset
into two, the cells in the cluster with the lowest measurements were consid-
ered non-pyramidal cells and were excluded for all three subjects, see Fig.S5.
Sometimes two cells were very close to each other and such merged cells
were detected as one cell. Non-cellular structures like big vessels may also
look like one cell. Such large, undesirable items were detected by identifying
elements that had a log-transformed maximum Feret diameter measurement
in 2D and 3D were greater than three standard deviations from the mean.
This is particularly effective for distinguishing artifacts of unusual length be-
cause the maximum Feret diameter is the most extensive distance between
two points in the convex hull, see Fig.S6 for the filtered data.
Finally, the orientation vector of a pyramidal cell is defined to be the unit
vector u in the direction of the maximum Feret Diameter, Eq.5. The maxi-
mum Feret diameter provides information about the most extended length
of a cell in a particular direction, usually towards the apical dendrite. The
orientation angle θ is then defined to be the angle between u and the unit
vector u0 = (1, 0, 0) which points in the direction of the x-axis. This means
that if a pyramidal cell has orientation angle 0, its orientation vector points
towards the pial surface. The orientation vector for each pyramidal cell can
be calculated by

u =
d − c

||d − c|| , (5)

where c and d are the vectors of the coordinates that define the maximum
Feret diameter of the cell.
The orientation angle can be calculated by

θ = cos−1 (u0 · u) (6)

Quantification of pyramidal cells sizes in 2D

The 2D analysis was performed on the precise same cells as the 3D analysis
after removing non-pyramidal cells and outliers. Each identified cell consists
of consecutive cell profiles that become a 3D cell entity after being combined,
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see Fig.S4. The volume of a given cell in 2D can be estimated by using
Eq.7, where l equals the mean segment length from the centroid to the cell
boundary, and n equals the number of segments.

Volume =
4
3

πl
3
n (7)

This method is based on the well-known nucleator probe in stereology, which
is used in biological research to estimate mean cell volume for quantitative
histology (Gundersen, 1988). This volume obtained by the nucleator probe
relies on the mathematical fact that the mean intersection length, l̄n, between
a unique point and the cell border by isotropic test lines can be viewed as a
radius.
Two procedures were applied to test the 2D-analysis. For the first procedure,
the largest cell profile was detected within the stack of profiles for each cell,
which is usually near the middle of a cell.
The nucleator probe was then applied on the largest cell profile and five seg-
ment lengths were randomly positioned with a spacing between each other
of 72◦ (360◦/5), see Fig.S21.
For the second procedure, the nucleator probe was employed on every pro-
file of a cell and the average segment length was used to calculate the cell
volume.
The diameters for both procedures were estimated by Eq.8.

Diameter = ln · 2 (8)

Point pattern analysis

The statistical analysis was conducted with R (R Core Team, 2019). For each
of Subjects 1_1, 1_2, 2 and 3, the 3D coordinates for locations of the centroids
of pyramidal cells in layer III of BA46 form a 3D spatial point pattern that
was analyzed using statistical methods (Møller and Waagepetersen, 2004).
We used the cylindrical K-function (Møller et al., 2016), as was previously
done in Rafati et al. (2016) and Christoffersen et al. (2021), to detect columnar
structures in each 3D point pattern. In order to use the cylindrical K-function,
we assumed that each point pattern was homogeneous. We assessed this as-
sumption by looking at histograms of the projections of data onto the x-, y-,
and z-axis and kernel smoothed intensity functions of the projections onto
the xy-, xz, and yz-plane. Based on that, the point patterns seemed reason-
ably homogeneous. We denote the cylindrical K-function as Ku(r, t) which
makes it clear that it depends on a direction u (a unit vector in 3D space), a
radius r, and a height t, and we estimated it by the non-parametric approxi-
mation defined in Møller et al. (2016). Let ρ be the intensity (mean number of
points per volume unit). Then ρKu(r, t) is interpreted as the expected number
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of further points inside a cylinder centered at a ’typical point’ (intuitively a
randomly selected point of the point process) with direction u, base radius
r, and height 2t, as exemplified in Fig.S22. If there is a columnar structure
in a point pattern, the estimate of Ku(r, t) is expected to be particularly high
for the direction of the columnar structure for a range of r and t values.
In order to decide whether Ku(r, t) was significantly high, we compared it
to the situation of Complete Spatial Randomness (CSR), meaning that there
is no structure in data (a so-called homogeneous Poisson process), using a
test called the extreme rank length global envelope test with a correspond-
ing 95% global envelope (Myllymäki et al., 2017, Mrkvička et al., 2020). This
global envelope consists of a lower and upper curve such that the empirical
cylindrical K-function for data falls entirely between these bounding curves
if and only if the global envelope test cannot be dismissed at level 5% (more
specifically at approximately 5% because we obtained the envelope based on
simulations). When the empirical curve for Ku(r, t) falls above the envelope,
it means that it is higher than expected under CSR, which in turn indicates
that there are cylinder-shaped clusters in the direction u. If the curve falls
below the envelope, it indicates repulsive behavior between the points. In
our analysis, we looked at the directions corresponding to the three main
axes, and we expected to find a columnar structure in the direction of the
x-axis. We considered two situations for the global envelopes: First, we al-
lowed r and t to vary and estimated the cylindrical K-function on a 64 × 64
grid where r ∈ [0, 25] and t ∈ [0, 80]. We used 4000 simulations under CSR
for the envelopes in this situation. Second, we fixed t = 80, meaning that
Ku(r, t) only depends on r ∈ [0, 25]. We estimated the function for 64 r-values
and used 2000 simulations under CSR for the envelopes. (These numbers of
simulations follow the recommendations in the references above)

4.10 Tissue deformation

One biopsy with a diameter of 1.5 mm was taken from the grey matter of
three human autopsy brains. The tissue area was carefully measured before
and after it was dehydrated, embedded, sectioned and stained. The area, A,
of the tissue was estimated as:

A = ∑ P × (a/p)

where ∑ P is the number of test points hitting tissue and (a/p) the area
associated with each test point (Tang et al., 1997, Dorph-Petersen et al., 2001).
The areal shrinkage was estimated as:

Areal shrinkage = [(area before)− (area after)]/(area before) (9)
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4.11 Statistics and reproducibility

Biopsies were obtained and examined from three subjects (n=3), as stated
throughout the article. The average, standard deviation and coefficient of
variation were used for the morphological measurements of pyramidal cells
in layer III of BA46 for each subject. Calculations of the pixelwise and ob-
jectwise performance of the UNetDense architecture are described in the
Method section. Figures, tables and histograms of this data were done us-
ing custom code via MATLAB. Statistical analysis of the spatial point pat-
tern for each subject was performed using R (R Core Team, 2019) and fig-
ures were produced using the package ggplot2 (Wickham, 2016). We em-
ployed the extreme rank length global envelope test with level 95% to de-
termine whether Ku(r, t) was significantly different from complete spatial
randomness using 4000 simulations when constructing the envelopes. Sta-
tistical significance was defined as a p-value less than 0.05. All data sets
presented in this work are available for download in our GitHub repository,
https://doi.org/10.5281/zenodo.4287469 (Larsen, 2020a,b).

Data availability

The source data used to produce graphs and figures, and tables of quantita-
tive measurements that support the current study’s key findings are available
from the corresponding author on reasonable request or in the GitHub repos-
itory, https://doi.org/10.5281/zenodo.4287469 (Larsen, 2020a,b).

Code availability

Source code of custom MATLAB and R scripts that support the findings
of this study with image examples are available in the GitHub repository,
https://doi.org/10.5281/zenodo.4287469 (Larsen, 2020a,b).
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A Supplementary Note 1

Improving section quality: avoiding wrinkles

Problems in sectioning can compromise both the sample quality and the re-
liability of the subsequent analysis. The presence of many wrinkles on the
sections can make the data analysis challenging to quantify and can poten-
tially destroy the image dataset. Two types of wrinkles were observed during
section collection on tape with the AutoCUTS-LM denoted macro-folds and
micro-folds. Macro-folds deform the section and may cover a large area of
the ROI. Micro-folds, on the other hand, can appear anywhere on the sec-
tion. Suggestions will be given on how to prevent and minimize the effect of
factors that influence the creation of wrinkles in sections during cutting.

Sample size and tissue heterogeneity

If the sections are small, they develop fewer wrinkles since they have a
smaller surface where wrinkles can be generated. In Fig.S9, large wrinkles
around excess embedding resin surrounding the tissue were generated due
to density differences between the sample and the empty resin. Therefore,
we recommend removing all excess resin by trimming the block as close to
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the sample as possible until there is only a rectangular block of embedded
tissue. Nevertheless, it is challenging to remove resin around smaller non-
homogeneous samples, such as C. elegans or Drosophila. For them, it is
better to reduce the hardness of the resin so that the sections can be easily
flattened as they are cut.

Section thickness

The quality of sections depends a lot on the cutting thickness. Ultra-thin
sections (30-100 nm) generate few or no micro-folds compared to semi-thin
(100-500 nm) sections. Sections with a cutting thickness above 300 nm were
more susceptible to generate micro-folds compared to thinner sections when
collected on tape, as shown in Fig.S10. Furthermore, thick sections generated
more wrinkles but provided increased contrast of cells compared to thinner
sections, which generated fewer micro-folds but also provided less contrast
of cells.

Tape damage

Deformation on the tape, such as scratches or other damage caused by the
AutoCUTS-LM reel-to-reel conveyor belt, could result in micro-folds on sec-
tions, Fig.S12. This problem was avoided by removing the protective coat on
the section-collection side during the collection of sections. Other research
groups have experienced wrinkles by using an automated tape-collecting ul-
tramicrotome, and it could be caused by tape damage. In our case, we were
using transparent tape, and it was easy to spot any damage compared to the
solid coating tape used for Scanning EM.

Humidity and hydrophilicity

One of the main factors that could cause wrinkles on a section was the in-
door humidity level. The tissue in Fig.S10 was sampled with a humidity level
around 10-20% because of the drying effect of the air condition in the room.
If the tape’s surface was exceptionally hydrophilic and the indoor environ-
ment was dry, it could cause any section to adhere without time to expand,
see Fig.S13. Indoor temperatures above 20◦C and a humidity level above
60% have a fundamental impact in decreasing the flexural and compressive
strength of the epoxy. Hence, a softer resin reduces the amount of natu-
rally generated wrinkles for semi-thin sections. We purchased a humidifier
(YADU Company, China) to monitor and retain a humidity level of between
80-90% during section collections. Sections with a cutting thickness above
300 nm were more susceptible to generate wrinkles during the cutting pro-
cess, as shown in Fig.S11. This was caused by a combination of the humidity
in the room, section thickness and hydrophilicity of the tape. Nevertheless, a

99



Paper B.

too high humidity level (>90%) can have a devastating effect on the samples.
This is shown in Fig.S14, where some areas of the section can adhere to the
tape due to the hydrophilicity and other areas might move around on the
tape. This will cause the section to be unstable and generate many folds. We
suggest keeping the humidity level around 85% to avoid folds.

B Supplementary Tables

Brain Window (µm) Nr. Total Nr. Pyramidal Nr. Non-pyramidal Nr. Outliers Excluded (%) Pyramidal cell density(mm−3)
Subject 1_1 635 × 1013 × 334 8872 6864 2008 0 23 31952
Subject 1_2 507 × 1001 × 511 12587 9501 3085 1 25 32569
Subject 2 488 × 1216 × 682 17534 11111 6404 19 37 27455
Subject 3 664 × 1055 × 725 16393 12586 3779 28 23 24764
Mean 28160±3101
CV 0.11

Table S1: Measurements and classification of identified objects for the entire stack of im-
ages for each subject. The dimensions of the observation windows (x,y,z), the total num-
ber of cells/objects, pyramidal cells, non-pyramidal cells, outliers. The density was calcu-
lated by the total number of pyramidal cells pr. volume for each subject of layer III. Ex-
cluded (%) is percentage of excluded datapoints for each subject, where Excluded (%)=(Non-
pyramidal+outliers)/Total·100. The entries for the pyramidal cell density state the mean and ±
one standard deviation. Mean is the average measurement at n=3, Coefficient of variation CV =
SD/mean. The average for Subject 1_1 and Subject 1_2 were used for subject 1.

Brain Vol3D (µm3) VolL (µm3) Difference (%) Vol3D (µm3) VolAll (µm3) Difference (%)
Subject 1 867 721 17 867 198 77
Subject 2 709 721 1.7 709 143 80
Subject 3 808 749 7.3 808 210 74
Mean 795 ± 65 730 ± 13 8.7 ± 6.3 795 ± 65 183 ± 29 77 ± 2.45
CV 0.08 0.18 0.72 0.08 0.06 0.03

Table S2: The table shows the volume comparison between 2D vs 3D approches from the
values in Table 4. Vol3D is the directly measured volume based on voxel counts. VolL and VolAll
are calculated from the average segment length measured from the nucleator probe. Difference
(%) is the relative change in percentage Diff =(Volx − Vol3D)/Vol3D ·100 where Volx is either
VolL or VolAll , Mean is the average measurement for each column, Coefficient of variation CV =
SD/mean.
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Brain Dia3D (µ) DiaL (µ) Difference (%) Dia3D (µ) DiaAll (µ) Difference (%)
Subject 1 11.83 11.13 5.9 11.83 7.23 39
Subject 2 11.06 11.13 0.6 11.06 6.49 41
Subject 3 11.56 11.27 2.5 11.56 7.37 36
Mean 11.48 ± 0.32 11.17 ± 0.07 2.9 ± 2 11.48 ± 0.32 7.03 ± 0.39 39 ± 2
CV 0.03 0.01 0.68 0.03 0.06 0.05

Table S3: The table shows the volume comparison between 2D vs 3D approaches from the
values in Table 4. Dia3D is the equivalent diameter of an approximated sphere equal to Vol3D .
DiaL and DiaAll are the average segment length measured from the nucleator probe. Difference
(%) is the relative change in percentage Diff =(Diax − Dia3D)/Dia3D ·100 where Diax is either
DiaL or DiaAll , Mean is the average measurement for each column, Coefficient of variation CV
= SD/mean.

C Supplementary Figures

A

B

D
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E

Fig. S1: The influence of osmium staining and section contrast. Osmium has not entirely
infiltrated the entire biopsy and gives us the ideal opportunity to test its effect on sections that
need to be later stained with toluidine blue. (A) Biopsy stained with osmium(black color) where
no osmium was present in the middle part of the block. (B) Biopsy section with osmium from
the top part of the block stained with toluidine blue. Scale bar=400 µm. (C) Magnified view
of the red box where the contrast between the neurons and the background is not evident.
Scale bar=200 µm. (D) Biopsy section stained with toluidine blue from the middle part of the
block, where osmium only appears in the right and left side of the section (marked with yellow
lines). Scale bar=400 µm.(E) Magnified view of the red box for comparing the contrast between
neurons and background in areas with and without osmium (right and left side of the yellow
line, respectively). Scale bar=200 µm.

101



Paper B.

IIIIII
IV

VVI1.5 mm

3 mm{

{
Gray matter

White matter B CPial surface Trimmed 
area{A 3 mm

Fig. S2: Sample embedding. (A) Illustration of the biopsy with a diameter of 1.5 mm and a
length of ∼3 mm. (B) Sample inside the epoxy resin. The red area indicates the trimmed part of
the biopsy after the ROI was located from the outermost section. (C) Trimmed block of sample.
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Fig. S3: Light microscopy and EM imaging on biopsy from BA46. (A) Immunolabeled and
toluidine blue-stained section. (i) Fluorescently immuno-label staining of cells containing glial
fibrillary acid protein was observed with a red channel.(ii) Toluidine blue staining on the same
sections. The stained vessel served as an alignment reference to combine the first and second
image. Overview image: scale bar=200 µm. Zoomed in image: scale bar=50 µm. (B) EM imaging
on a section. (i) Overview image with a horizontal field width (HFW) that is 160 µm. (ii)
Neurons were manually marked with green color as an overlay on the original image. Scale
bar=40 µm
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A

B

i ii

Fig. S4: Demonstrate that additional cell filtering is necessary based on 3D measurements.
(A) 3D-reconstruct of a series of image profiles from pyramidal (green) and a non-pyramidal
(red) cell (i). If the reconstruction is not accomplished, single image profiles near the edge can
imitate sections of smaller cells/gial cells (ii). (B) Pyramidal (green) and non-pyramidal (red)
cell image profiles were used to create the 3D reconstruction. Scale bar=20 µm.

103



Paper B.

Volume (µm3)

Sp
he

ric
ity

Volume (µm3)

Sp
he

ric
ity

Volume (µm3)

Sp
he

ric
ity

Volume (µm3)

Sp
he

ric
ity

Subject 1_1 Subject 1_2

Subject 2 Subject 3

Fig. S5: Displaying filtration of data. K-means clustering algorithm was performed to filter
smaller neurons and artefacts from the dataset. The data was segmented into non-pyramidal
and pyramidal neurons employing estimations of neuronal volume (x-axis) against sphericity (y-
axis). For each subject, The data points for non-pyramidal and pyramidal cells are represented
by the red and blue points, respectively.
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Fig. S6: Displaying points for pyramidal, non-pyramidal and outliers for each subject. The
graphs show plots of the largest cell profile (x-axis) against the maximum Feret Diameter in 3D
(y-axis) of each neuron. For each subject, the data points for pyramidal cells are shown as blue
points, while the red and black points are non-pyramidal cells, as classified with the k-means
method, and outliers, respectively.
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Fig. S7: Quantitative measurements of pyramidal neurons. Histograms showing neuronal
volume, sphericity, orientation and diameter of pyramidal cells in BA46 in layer III for each
subject. The columns correspond to Subjects 1, 2, and 3, respectively.
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Fig. S8: Quantitative measurements of pyramidal neurons log-normal transformed. His-
tograms showing the log-normal transformed neuronal volume, sphericity, orientation and di-
ameter of pyramidal cells in BA46 in layer III for each subject. The columns correspond to
Subjects 1, 2, and 3, respectively.
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Fig. S9: The connection between cutting surface density and folds. A section (2.8x1.3 mm) was
trimmed four times to visualise the relationship between section area and macro-folds. Macro-
folds will most likely be generated in more extended sections and around the blank resin area.
The room temperature and indoor humidity were, 20◦C and 50%, respectively. Scale bar=500
µm.

500nm 400nm 300nm

Fig. S10: The connection between section thickness and folds. The number of folds and
staining penetration was reduced along with the cutting thickness. The sections were stained
all together with toluidine for 15 mins. The room temperature and indoor humidity were,
respectively, 20◦C and 10%. Scale bar=400 µm.

108



C. Supplementary Figures

A

B

500 nm

500 nm 400 nm

400 nm

300 nm

300 nm

Fig. S11: Test sections with a section thickness that range from 500 to 300 nm with different
indoor humidity. (A) Sections were cut with an indoor humidity of 60% and thinner sections
generate fewer folds. (B) Sections were cut with a humidity between 85-90% and there are few
to none folds on the 300 nm thick section. All sections were stained together with toluidine blue
for 15 min in room temperature at the same time. Scale bar=400 µm.

A B

Fig. S12: Damage on tape caused by AutoCUTS-LM could generate folds on the sections due
to the deformation of the tape. (A) The damage to the tape creates pronounced lines that impact
the three collected sections. Scale bar=2 mm.(B) The three visible lines were on the underside of
the tape and not on the upper-side where the sections were collected. Scale bar=200 µm.
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TapeWater

Diamond knife Thin section Plasma treatment

TapeWater

A

B

Fig. S13: Illustration of section flatness caused by humidity and tape adhesion. After a section
was cut with the diamond knife, it would expand in the water. (A) In a dry environment, sections
did not have enough time to expand since they adhere to the tape almost immediately after the
cutting. (B) Condensation on the tape surface can develop when the indoor humidity is raised,
allowing the sections to expand.

Fig. S14: The impact of sampling sections with too high humidity. High humidity above
90% made the sections unstable as they fell of the collection tape. One part of the section may
have been attached to the more dry sections of the tape, and some pieces of the section may
have moved around. Due to the unstableness of the sections during the set, several folds were
formed. Scale bar=500 µm.
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Aligned images Annotation Augmentation

UNetDenseSegmentationDensity plotCrop layer III

3D-reconstruction Cell centroid The cylindrical K-function

Fig. S15: The data analysis pipeline for this study. First, we would manually annotate pyrami-
dal cells from 35 images. To produce the training (5600) and validation (1400) set, each of those
35 images was subsequently augmented into 200 images with a scale of 256x256 pixels. Based
on those images, the UNetDense model trained itself and segmented neurons for each subject.
A density map of the centroids was used to identify the ROI and crop the stack of images.
Pyramidal cell parameters were then determined based on their 3D-reconstruction, and the 3D
point pattern consisting of the centroids was analyzed with the cylindrical K-function in order
to detect columnar structures.

A B

C

D E

Fig. S16: Manual annotation of pyramidal cells. (A) displays the original picture and the area
we want to annotate is displayed in the red boundary frame. Scale bar=35 µm. (B) Photoshop’s
fast selection tool was used to identify the pyramidal cell annotation region. Scale bar=10 µm.
(C) A green-colored mask was placed on top of the original image of each pyramidal cell. Scale
bar=10 µm. (D) The annotation of cells was repeated for the rest of the image in A until all cells
were labeled in green. Scale bar=35 µm.(E) mask images were translated to binary images in
MATLAB where the pixel value of the annotated cells was equal to 1. Scale bar=35 µm.
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Fig. S17: Validation images that were used to test the combined and individual UNetDense
models. These images show the differences between sections from different subjects after stain-
ing. The images from left to right correspond to Subjects 1, 2, and 3, respectively. Scale bar=140
µm.

Manual Predicted FP FN

Manual Predicted FP FN

Manual Predicted FP FN

Fig. S18: Test of performance of individual UNetDense models on validation images. Pyra-
midal cells from Fig.S17 were manually marked by (NYL), and the same images were processed
using individual UNetDense models to predict and segment pyramidal cells. The figure shows
pixels which have been measured as FP, FN, and quantitative comparisons can be found in Table
1. The rows correspond to Subjects 1, 2, and 3, respectively.
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Manual Predicted FP FN

Manual Predicted FP FN

Manual Predicted FP FN

Fig. S19: Test of performance of combined UNetDense model on validation images. Pyramidal
cells from Fig.S17 were manually marked by (NYL), and the same images were processed using
the combined UNetDense model to predict and segment pyramidal cells. The figure shows pixels
which have been measured as FP, FN, and quantitative comparisons can be found in Table 1.
The rows correspond to Subjects 1, 2, and 3, respectively.
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Fig. S20: Detection of FN centroids from the objectwise validation. Number of FN centroid
points from 30 MS images that was not detected in 30 UDP images(FN cases). The graph shows
the number of FN cases in each picture.

A B C

Fig. S21: 2D measurement of each neuron using the nucleator. (A) Gray-scale image of a cell
profile. Scale bar=20 µm. (B) Overlay image of the gray-scale image and the segmented image
output from UNetDens algorithm. (C)The nucleator probe was applied to a cell-profile. In this
case, the reference point was the centroid. A random boundary point of the cell was selected,
whereas five segments with a spacing between each other of 72◦ (360◦/5) was superimposed on
top of a cell. The average line segment was then calculated to estimate the cell average radius.
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A B

Fig. S22: Illustrations of the cylinders of the cylindrical K-function. (A) A cylinder with radius
r, height 2t, and direction u, which is the structuring element of the cylindrical K-function. (B)
Three different cylinders of the same size directed along the x-, y-, and z-axis, respectively, and
centered at a randomly selected point of the point pattern.
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Abstract

Brodmann Area 46 (BA46) has long been regarded as a hotspot of disease pathol-
ogy in individuals with schizophrenia (SCH) and major depressive disorder (MDD).
Pyramidal neurons in layer III of the Brodmann Area 46 (BA46) project to other
cortical regions and play a fundamental role in corticocortical and thalamocortical
circuits.
The AutoCUTS-LM pipeline was used to study the 3D structural morphology and
spatial organization of pyramidal cells. Using quantitative light microscopy, we used
stereology to calculate the entire volume of layer III in BA46 and the total number
and density of pyramidal cells. Volume tensors estimated by the planar rotator quan-
tified the volume, shape, and nucleus displacement of pyramidal cells. All of these
assessments were carried out in four groups of subjects: controls (C, n=10), SCH
(n=10), MDD (n=8), and suicide subjects with a history of depression (SU, n=11).
SCH subjects had a significantly lower somal volume, total number, and density of
pyramidal neurons when compared to C and tended to show a volume reduction in
layer III of BA46. When comparing MDD participants with C, the measured param-
eters were inclined to follow SCH, although there was only a significant reduction
in pyramidal total cell number. While no morphometric differences were observed be-
tween SU and MDD, SU had a significantly higher total number of pyramidal cells
and nucleus displacement than SCH. Finally, no differences in the spatial organiza-
tion of neurons were found among groups.
These results suggest that despite significant morphological alterations in layer III
of BA46, which may impair prefrontal connections in people with SCH and MDD,
the spatial organization of pyramidal cells remains the same across the four groups
and implies no defects in neuronal migration. The increased understanding of pyra-
midal cell biology may provide the cellular basis for symptoms and neuroimaging
observations in SCH and MDD patients.

(The content of this paper has been excluded from this version due to
potential copyright issues)
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1. Introduction

Abstract

We discuss the practice of directly or indirectly assuming a model for the number
of points when modelling spatial point patterns even though it is rarely possible to
validate such a model in practice since most point pattern data consist of only one
pattern. We therefore explore the possibility to condition on the number of points
instead when fitting and validating spatial point process models. In a simulation
study with different popular spatial point process models, we consider model valida-
tion using global envelope tests based on functional summary statistics. We find that
conditioning on the number of points will for some functional summary statistics
lead to more narrow envelopes and thus stronger tests and that it can also be useful
for correcting for some conservativeness in the tests when testing composite hypothe-
sis. However, for other functional summary statistics, it makes little or no difference
to condition on the number of points. When estimating parameters in popular spatial
point process models, we conclude that for mathematical and computational reasons
it is convenient to assume a distribution for the number of points.

1 Introduction

Consider a spatial point process defined on the d-dimensional Euclidean
space Rd, and let W ⊂ Rd be a bounded region W ⊂ Rd within which
realizations of the process are observed. In the literature on statistical analy-
sis of spatial point processes, the data usually consist of a single realization
{x1, . . . , xn} ⊂ W, that is, a (finite) point pattern where both the number
of points n and the locations x1, . . . , xn are considered to be random. For
instance in the R-package spatstat (Baddeley et al., 2015), which is widely
used for analysing spatial point patterns, there are more than fifty data ex-
amples of point patterns, but only seven of these consist of more than one
point pattern. Although it is impossible from a single point pattern to val-
idate the plausibility of any claimed model for the number of points, the
practice is nonetheless to fit, validate and use spatial point process models
which directly or indirectly assume a model for the number of points.

For the example of a stationary Poisson process, n is a realization of a
Poisson distributed random variable, and conditioned on n, the points are
realizations of n independent uniformly distributed random variables on W.
Even for this simple example of a point process model, it is not possible to
validate the assumed Poisson distribution for the number of points based
on just one realization. A common procedure for testing whether a Poisson
process model fits a given point pattern is to divide W into disjoint sub-
sets of equal size and count the number of points falling within each sub-
set. Conditioning on n, these observed counts constitute a realization from
a multinomial model with equal probabilities, and the validity of this model

129



Paper D.

can be checked using a goodness-of-fit test, e.g. as implemented in the func-
tion quadrat.test from spatstat. However, even if we accept this multinomial
model, to claim that n is a realization from a Poisson distribution amounts to
assume independence for the counts (Moran, 1952), and indeed this assump-
tion is hard to justify by a statistical test. Therefore, it will be impossible
from a single point pattern to validate that n is a realization from a Poisson
distribution.

We still believe that it is usually reasonable to think of the number of
points as a single realization of a random variable. We merely point out that
it would be inappropriate to make claims about the distribution of the num-
ber of points since we have no chance to validate these as illustrated for a sta-
tionary Poisson process above. If we are indeed willing to make some model
assumptions and can make simulated point patterns under these assump-
tions, such simulations can of course be used to estimate the distribution of
the number of points under the model if wanted, but why should we believe
in such a distribution when we do not have the means to validate this? It
may thus be more fair to accept that we do not know anything about the dis-
tribution of the number of points and therefore use a conditional approach
instead. However, we have not found much places in the spatial point process
literature where the role of conditioning on n is studied. Ripley (1977) pro-
vided a short discussion of conditional inference saying ‘For Poisson models
we can justify this conditioning by an appeal to a conditionality principle. In
general all we can say is that conditional inference seems reasonable and that
our revised procedures yield valid conditional tests’. Further, Ripley (1988)
wrote ‘Where we are interested in interactions, n may be approximately an-
cilliary’. He illustrated this for a Strauss process which on the unit square
when ignoring boundary effects has density

f ({x1, . . . , xn}) ∝ βnγs({x1,...,xn})

where β > 0, 0 ≤ γ ≤ 1, R > 0 and s({x1, . . . , xn}) is the number of R-close
pairs of points in the point pattern; we return to this process in Sections 2.3
and 4.2 and Appendix C. Ripley (1988) derived an approximation of the prob-
ability density function for the number of points:

p(n) ∝
βn

n!
exp{(γ − 1)n(n − 1)πR2/2}. (1)

He noticed that this density depends on γ but wrote ‘the dependence is quite
weak in typical cases’ where he referred to a plot of the cumulative distri-
bution functions when β = 50, R = 0.05 and γ = 0.0, 0.2, 0.4, 0.8, 1.0. Mean
values of n in this case and when β = 200 are shown in Table 1 where we see
a good agreement between those means calculated from the approximation
in (1) and those obtained by simulations. In our opinion, the mean values
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in Table 1 depend much on γ, but we notice in Section 4.2 that maximum
pseudo-likelihood estimates do not depend much on whether or not we con-
dition on n.

γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8 γ = 1

β = 50
37.33 39.13 41.19 43.61 46.48 50.00

(36.91) (38.91) (41.24) (43.78) (46.56) (49.87)

β = 200
95.00 104.11 115.92 132.12 156.45 200.00

(88.37) (100.72) (114.53) (132.35) (157.36) (200.32)

Table 1: Mean values for the number of points in a Strauss process on a two-dimensional unit
square with R = 0.05 and different values of γ and β. The means are calculated from the
approximate distribution in (1), and the numbers in parenthesis are the means obtained from
5000 simulations of the process

Apart from Ripley’s study of the Strauss process considered above we are
not aware of any thorough study of the effect of conditioning on n. More-
over, the practice is still to work with spatial point process models without
conditioning on n. Therefore, the objective of this paper is to investigate the
consequences of this practice and to explore the possible benefits of condi-
tioning on n when considering various popular classes of spatial point pro-
cess models. We investigate this through a comprehensive simulation study
of model validation based on the widely used method of global envelopes
and corresponding tests (Myllymäki et al., 2017), and by discussing the effect
of conditioning on n when making frequentistic parameter estimation.

Our paper is organized such that Section 2 contains some preliminaries
needed for our main contributions in Sections 3–5, where Section 5 sum-
marises our findings. Technical details related to these sections are found
in the appendices. All statistical analyses were made with R (R Core Team,
2019). We used the packages spatstat (Baddeley et al., 2015) for handling
spatial point patterns, GET (Myllymäki and Mrkvička, 2019) to make global
envelope tests and ggplot2 (Wickham, 2016) for visualisation. Furthermore,
we used our own implementations of simulation and estimation procedures
when conditioning on the number of points, which can be found in the R-
scripts in the ancillary files at https://arxiv.org/abs/2108.10051.

2 Preliminaries

2.1 Setting and notation

Throughout this paper we use the following point process setting and nota-
tion.

For a subset x ⊂ Rd, let n(x) denote its cardinality (setting n(x) = ∞ if
x is not a finite set) and xB B x ∩ B its restriction to any set B ⊆ Rd. Let
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Ω denote the set of all locally finite subsets x ⊂ Rd, that is, n(xB) < ∞
whenever B ⊂ Rd is bounded. A simple locally finite point process on Rd is
a random variable taking values in Ω. Here and elsewhere, we omit measure
theoretical details and refer instead to Møller and Waagepetersen (2004) and
the references therein. The point process can also be specified in terms of the
counting measure N(B) B n(XB) for bounded sets B ⊆ Rd (more precisely,
B should also be a Borel set, but as mentioned we omit such details).

We assume that X is a stationary simple locally finite point process on
Rd with intensity ρ ∈ (0, ∞). This means that X ∈ Ω, the distribution of X
is invariant under translations in Rd and EN(B) = ρ|B| where |B| denotes
the d-dimensional volume (Lebesgue measure) of B ⊆ Rd. Stationarity is
a common assumption for spatial point processes, and it allows us to deal
with frequently used functional summary statistics, see Section 2.2. We also
assume that a single realization x = {x1, . . . , xn} of XW has been observed
where the observation window W ⊂ Rd is compact and |W| > 0.

Let u, v ∈ Rd, r ≥ 0 and B ⊂ Rd. Then 1(·) is the indicator function; ∥u −
v∥ is the usual distance between u and v; b(u, r) is the closed d-dimensional
ball with centre u and radius r; dist(B, u) B inf{r > 0 | b(u, r) ∩ B , ∅} is the
distance from u to B; B⊖r B {u ∈ Rd | b(u, r) ⊂ B} is B eroded by a ball of
radius r; B⊕ B ∪u∈Bb(u, r) is B dilated by a ball of radius r; and (B⊖r)⊕r ⊆ B
is the opening of B by a ball of radius r. Finally, we use the convention
0/0 B 0.

2.2 Functional summary statistics

Functional summary statistics K̂, F̂, Ĝ and Ĵ which are non-parametric (em-
pirical) estimates of the theoretical functions below are widely used for ex-
ploratory purposes, model fitting and model checking, see Baddeley et al.
(2015) and the references therein.

For every r > 0 and an arbitrary point u ∈ Rd, Ripley’s K-function is
defined by

ρK(r) B E(N(b(u, r) \ {u}) | u ∈ X), (2)

the empty space function F (or spherical contact function) and the nearest-
neighbour function G are

F(r) B P(dist(X, u) ≤ r), G(r) B P(dist(X \ {u}, u) ≤ r | u ∈ X) (3)

and for F(r) < 1 the J-function is

J(r) B (1 − G(r))/(1 − F(r)). (4)

These definitions do not depend on the choice of u since X is stationary, and
as indicated by the notation we have conditioned on u ∈ X in the definitions
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of K and G, meaning that X \ {u} then follows the reduced Palm distribution
of X at u.

When estimating the K, F, G and J-functions by non-parametric methods,
different types of edge correction methods have been suggested in order to
adjust for the fact that n(xW∩b(u,r)) tends to be smaller for points u ∈ W
which are close to the boundary of W compared to points u ∈ W which are
far from the boundary of W. Baddeley et al. (2015) noticed that the choice
of edge correction method is usually not very important. We choose to use a
particular border (or minus-sampling) correction method which is available
in spatstat and refer to Baddeley et al. (2015) for the concrete estimators.

When conditioning on n, we are not aware of how to modify the defini-
tions of K, F, G and J. If we just condition in (2)–(4), the expressions will
depend on u because stationarity no longer holds. Still, when only a single
point pattern is observed and hence it is impossible to validate any claimed
model of N(W), it seems appropriate to condition on n when calculating
global envelopes and tests as in Section 3.

2.3 Models

For the simulation studies in Sections 3 and 4.2, we consider four concrete
examples of point process models on R2 as specified in M1–M4 below. Ap-
pendix B provides further details including how to make simulations both
with and without conditioning on the number of points.

M1: X is a stationary Poisson process. This is the model of no spatial
interaction or complete spatial randomness. When making simulations in
Section 3, we let the intensity be ρ = 100.

M2: X is a stationary log-Gaussian Cox process. Then, X is driven by a
stochastic intensity Z = exp(Y) where Y is a stationary Gaussian random
field on R2, meaning that X conditioned on Y is a Poisson process with
intensity function Z (Møller et al., 1998). We use an exponential covariance
function c(u, v) B σ2 exp (−∥u − v∥/δ) for u, v ∈ R2 where σ2 > 0 is a
variance parameter and δ > 0 is a scale parameter, and so the mean of Y is
µ = log(ρ)− σ2/2. Because of the positive correlation in Y, realizations of
X exhibit clustered behaviour. When making simulations in Section 3, we let
ρ = 100, σ2 = 1 and δ = 0.1.

M3: X is a stationary Strauss process. This process has parameters β > 0,
0 ≤ γ ≤ 1 and R > 0. It is defined by a so-called local specification: Let
B ⊂ R2 be a bounded set of positive area and define the R-close neigh-
bourhood to B by ∂B B B⊕R \ B. Then, for every such B, XB and XR2\B⊕R

are
conditionally independent given X∂B. Furthermore, for every finite x∂B ⊆ ∂B,
XB conditioned on X∂B = x∂B has a density with respect to a Poisson process
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of intensity 1 and restricted to B. This conditional density is

fB(xB | x∂B) ∝ βn(xB)γs(x) (5)

for finite xB ⊆ B, x = xB ∪ x∂B and s(x) = ∑i<j 1(∥xi − xj∥ ≤ R) if x =
{x1, . . . , xn}. The normalizing constant which is omitted in (5) depends on
(β, γ, R) and x∂B, and it is intractable unless γ = 1. When γ = 1, X is just
a stationary Poisson process with intensity β. As γ decreases, X becomes
more and more inhibitory, and it is a Gibbs hard core model if γ = 0. When
making simulations in Section 3, we let β = 200, γ = 0.3 and R = 0.05. Then,
the intensity is approximately 100.

M4: X is a stationary determinantal point process. In brief, determinantal
point processes (Macchi, 1975, Lavancier et al., 2015) are specified by a func-
tion C : Rd × Rd 7→ C called the kernel, and they are repulsive at all scales,
cf. Appendix B.4. We use a Gaussian kernel C(u, v) = ρ exp(−∥(u − v)/κ∥2)
where κ > 0 is a scale parameter and ρ > 0 is the intensity. It should be satis-
fied that κ ≤ 1/

√
ρπ, and this upper limit corresponds to the most repulsive

case when ρ is fixed. When making simulations in Section 3, we let ρ = 100
and κ = 0.03 ≤ 1/

√
100π ≈ 0.056.

3 Global envelopes and the effect of conditioning

In this section, we investigate the effect of conditioning on the number of
points when using global envelopes for model validation. Section 3.1 first
describes the set-up of the simulation study, and Section 3.2 describes and
interprets the results.

3.1 Set-up

We investigate the effect of conditioning on the number of points when con-
sidering global envelopes for functional summary statistics and correspond-
ing tests based on the extreme rank length as described in Myllymäki et al.
(2017), Mrkvička et al. (2020) and Myllymäki and Mrkvička (2019). Briefly, a
(100 − α)% global envelope consists of a lower and an upper curve defining
a region such that the observed functional summary statistic for data falls
completely between these bounding curves if and only if the global envelope
test cannot be rejected at level α%. There of course exist other tests which can
be used in connection with spatial point processes, see e.g. Baddeley et al.
(2015, chapter 10); however, since the use of a global envelope and its cor-
responding test statistic is by far the most popular method for performing
model validation of a fitted spatial point process model, we restrict attention
to this test procedure. There are ways to make a combined global envelope
test based on several functional summary statistics, but for our purpose we
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prefer to investigate the effect of conditioning on the number of points for
each functional summary statistic.

We made the simulation study as follows. Under each of the four mod-
els M1–M4 we simulated 1000 independent point patterns within a two-
dimensional unit square (the observation window W). For each of these
point patterns, we fitted the parameters of the models as described in the
last paragraph of this section. Under each fitted model and each true model,
we made further 2500 simulations with and 2500 simulations without condi-
tioning on the number of points. From each of these four cases, or three in
the case of the Poisson process since the fitted and true model is the same
when conditioning on the number of points, we used the 2500 simulations
to calculate 95% global envelopes based on each of the functional summary
statistics F̂, Ĝ, Ĵ and K̂. Some further technical and practical details related to
the set-up of the simulation study are deferred to Appendix A.

Clearly more narrow envelopes are preferable when comparing envelopes
for the same type of functional summary statistic. For simplicity, in order to
spot a general tendency in the width of envelopes, we considered for each
envelope a numerical approximation of its area

∫ R
0 (cu(r)− cl(r))dr where cu

and cl are the upper and lower curves of the envelope, respectively, and R
is the highest r-value for which the considered functional summary statistic
was estimated.

3.2 Results

Figure 1 shows boxplots of the approximated area of the envelopes. We see
that it generally makes little difference in the area of the envelopes whether
the parameters are fitted from data or not, except for K̂ where there is less
variation in the width of the envelopes when using the true parameters espe-
cially in the unconditional case. We also see that for K̂ and Ĵ it makes no real
difference in the areas of the envelopes to condition on the number of points
either, but for Ĝ and especially F̂ the envelopes are in general more narrow
in the conditional case.

Figure 2 shows quantile-quantile plots comparing the distributions of the
p-values of the global envelope tests for each fitted model to a uniform dis-
tribution on [0, 1]. We see that some of the tests are too conservative, which
may be because the null hypothesis is composite except in the conditional
case of the Poisson process. Using F̂ overall gives very conservative tests
in the unconditional case, especially for the Poisson, Cox and determinantal
point process, and this behaviour is corrected very well by conditioning on
the number of points. For Ĝ, it makes little difference to condition on the
number of points except in the case of the Cox process where it corrects the
conservativeness in the unconditional case very well. For both Ĵ and K̂, it
makes little to no difference whether we condition on the number of points
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Fig. 1: Boxplots for the area between 95% global envelope curves for the functional summary
statistic stated at the top of each column. The results were obtained from the simulation study
described in the text. The grey level indicates whether the true parameters (dark grey) or fitted
parameters (white) were used in the simulations. Whether simulations were made conditional
on the number of points is stated at the bottom of each column. The type of model under
consideration is stated to the left of each row.
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or not, and in all cases the distributions of the p-values are in good agreement
with the uniform distribution even though we also see some slight conserva-
tiveness in some tests. Since K̂ was used to fit the parameters of the Cox and
determinantal point processes, we usually do not want to use K̂ for model
validation as well.
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Fig. 2: Quantile-quantile plots comparing the empirical distributions of the p-values of global
envelope tests to a uniform distribution on [0, 1]. The considered p-values are the results of the
simulation study described in the text. The type of point indicates whether the global envelope
tests were based on conditional (dots) or unconditional (triangles) simulations under the fitted
model. The functional summary statistic used is stated at the top of each column, the type of
model is stated to the left of each row and the straight line is the identity line.

Moreover, to see the effect of increasing the intensity, we made a simula-
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tion study for the stationary Poisson process with ρ = 200. Our conclusions
remained the same and the only real difference was that all envelopes were in
general more narrow, which was to be expected since the summary statistics
varies less when we observe more points. However, the simulation studies for
the remaining three models are time consuming, and it will be even worse if
we increase the intensity, but we do not believe the conclusions will be much
different as we have indeed established for the example of a Poisson process.

4 Conditional estimation

In this section, we investigate the possibility to estimate parameters in spa-
tial point process models conditional on the number of points. We con-
sider Cox, Gibbs, and determinantal point processes and in each case discuss
whether conditional estimation offers any advantages over the unconditional
approach. There is of course no reason to consider conditional estimation
in the case of a stationary Poisson process since the conditional case is a
binomial point process with no unknown parameters.

4.1 Cox processes

Parametric models for a stationary Cox process X driven by a random field
Z on Rd are usually of the form Z(u) = ρR(u) where R = {R(u)}u∈Rd is
a non-negative unit-mean stochastic process following a parametric model
with a parameter ψ so that (ρ, ψ) has range (0, ∞)× Ψ for some set Ψ ⊆ Rp.
The process XW then has a density

f (x) = ænE
[

R(x1) . . . R(xn) exp
{
|W| − ρ

∫
W

R(u)du
}]

(6)

with respect to a Poisson process of intensity 1 and restricted to W. In general,
this density is not expressible on closed form except for rather trivial cases,
and so likelihood based inference is difficult although a missing-data Markov
chain Monte Carlo approach can be used for approximate maximum likeli-
hood estimation, see Møller and Waagepetersen (2004). Since second-order
moments of the counts N(B) are often expressible on closed form, moment-
based and composite likelihood estimation procedures are usually preferred,
see Møller and Waagepetersen (2017) and the references therein.

When conditioning on N(W) = n, any ordering (X1, . . . , Xn) of the n
points in XW has a density with respect to Lebesgue measure on Wn which
is proportional to the right hand side in (6). Hence, it is also not expressible
on closed form and depends on both ρ and ψ. Furthermore, moment-based
estimation is no longer possible. Consequently, we do not see any advantage
in conditioning on the number of points.
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4.2 Gibbs processes

Suppose that X is a stationary Gibbs point process with known interaction ra-
dius R > 0 (details for this general setting are provided in Appendix B.3. Fur-
ther, suppose that XW = x has been observed, and let xW⊖R = {x1, . . . , xm}.
We define the R-close neighbourhood to W⊖R by ∂W⊖R B (W⊖R)⊕R \ W⊖R
and base inference on the conditional distribution of XW⊖R given X∂W⊖R =
x∂W⊖R . Thereby, we account for edge effects due to the unobserved points in
XRd\W because XW⊖R and XRd\W are independent conditioned on X∂W⊖R =
x∂W⊖R . Below, we discuss reasons and consequences of further conditioning
on N(W⊖R) = m.

For specificity and simplicity, let us think of X as the stationary Strauss
process given in Section 2.3. Then the likelihood function is of exponential
family form with canonical parameter (log β, log γ) and minimal sufficient
statistic (n(xW⊖R), s(xW⊖R ∪ x∂W⊖R)). However, estimation of (β, γ) is compli-
cated by the fact that the normalizing constant is not expressible on closed
form for γ < 1. Often, the interaction parameter γ is of main interest; if we
also condition on N(W⊖R) = m, we obtain a likelihood function which only
depends on γ. The normalizing constant of that likelihood function is also
not expressible on closed form for γ < 1, but it is simpler to approximate,
cf. Appendix C. In particular, as noticed at the end of Appendix C, simula-
tions and computations will be faster when conditioning on N(W⊖R) = m.
However, it is still slower and more difficult than using maximum pseudo-
likelihood estimation, which will be described next.

Maximum pseudo-likelihood estimation is known to be a fast and often
reliable alternative to maximum likelihood estimation, see e.g. Jensen and
Møller (1991), Baddeley et al. (2014), and the references therein. The defini-
tion of the pseudo-likelihood function depends on the context and is specified
in Appendix D both with and without conditioning on N(W⊖R) = m and in a
way which accounts for edge effects. In the conditional case, we consider Be-
sag’s original pseudo-likelihood function (Besag, 1975); in the unconditional
case, we consider Besag’s extension to spatial point processes (Besag, 1977,
Jensen and Møller, 1991). The computational advantage of using the pseudo-
likelihood functions is that they do not depend on the intractable normalizing
constant which appears in maximum likelihood estimation.

We wanted to investigate whether it makes a real difference in the maxi-
mum pseudo-likelihood estimate of γ to condition on the number of points.
In order to do this, we considered 1000 simulations on the unit square of
a stationary Strauss process when β = 200, R = 0.05, and γ was sam-
pled uniformly in the interval [0.01, 1]. For each simulation, we calculated
the maximum pseudo-likelihood estimate of (β, γ) with the function exact-
MPLEstrauss in spatstat, which computes the maximum pseudo-likelihood
estimate to a high accuracy. We also found the maximum pseudo-likelihood
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estimate in the conditional case by implementing a function where we used
the same numerical methods for optimization and evaluation of integrals as
in exactMPLEstrauss. In both cases, we let R = 0.05 be given. The average
absolute difference between the estimates of γ obtained with the two meth-
ods was 0.005, and the largest absolute difference was 0.01. So, it makes very
little difference to condition on the number of points. Furthermore, the com-
putations for the pseudo-likelihood function in the conditional case may be
more cumbersome since more integrals have to be evaluated, cf. Appendix D.
Therefore, there is no apparent reason to use the more complicated pseudo
likelihood method of the conditional case.

4.3 Determinantal point processes

Parametric models for stationary determinantal point processes with inten-
sity ρ > 0 are specified by a parametric class of kernel functions which are
usually of the form Cθ(u, v) = ρRψ(u − v) where θ = (ρ, ψ) and (u, v) 7→
Rψ(u − v) is a (complex) correlation function. Under weak assumptions, e.g.
that Cθ is a continuous complex covariance function, the kernel restricted to
W × W has a spectral representation

Cθ(u, v) =
∞

∑
i=1

λiϕi(u)ϕi(v), u, v ∈ W,

where {ϕi}i=1,2,... is an orthonormal basis for the L2-space of square-integra-
ble complex functions on W and λ1, λ2, . . . are corresponding eigenvalues. We
have λi = ρλ′

i where (ϕi, λ′
i) depends only on ψ and the condition 0 ≤ λi ≤ 1

is needed to ensure existence of the process. Therefore, the parameter space
Ψρ of ψ will depend on the value of ρ; briefly speaking, there is a trade-off
between intensity and repulsion, and the set Ψρ decreases as ρ increases, cf.
Lavancier et al. (2015). For parameter estimation based on maximum likeli-
hood and moment-based methods, see Lavancier et al. (2015).

Conditioned on N(W) = n, any ordering (X1, . . . , Xn) of the n points in
XW has probability density function

∑i1<···<in

(
∏n

j=1 λij

) (
∏j<{i1,...,in}(1 − λj)

)
1
n! det

{
∑n

k=1 ϕik (xi)ϕik (xj)

}
i,j=1,...,n

∑i1<···<in

(
∏n

j=1 λij

) (
∏j<{i1,...,in}(1 − λj)

)
for (x1, . . . , xn) ∈ Wn. For parametric models as considered above, it follows
that the conditional distribution of XW given N(W) = n depends on both ρ
and ψ in a complicated way; in fact it is more complicated than the likelihood
in the unconditional case, cf. Lavancier et al. (2015). Therefore, we do not
see any advantage in conditioning on N(W) = n when making parameter
estimation.
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5 Concluding remarks

It is worth repeating that any claimed model for the number of points cannot
be justified based on just one realization. However, in case of Cox, Gibbs and
determinantal point processes, it is convenient for computational reasons to
assume a distribution for the number of points when estimating parameters.

Regarding global envelope tests based on K̂ or Ĵ, it made little or no differ-
ence in our simulation study whether we condition on the number of points.
However, when we instead used F̂ or Ĝ, conditioning on the number of points
gave more narrow envelopes and hence stronger tests, and it corrected for
conservativeness in the tests.

Global envelopes and tests are usually calculated from simulations of a
single point process model. For a composite null hypothesis, it is possible
to make an adjusted global envelope test but at the expense of many simula-
tions(Myllymäki and Mrkvička, 2019). Conditioning on the number of points
may offer an alternative which requires fewer simulations, but whether this
will be faster in practice depends on the actual speed of the simulation pro-
cedures. We leave this for future research.

Regarding conditional estimation, we concluded that it is impractical and
offers no clear advantage to consider conditional estimation for Cox and de-
terminantal point process models. For Gibbs point process models, it sim-
plifies maximum likelihood estimation but complicates the more commonly
used and faster method of maximum pseudo-likelihood estimation where
there is also little difference in the estimates achieved with and without con-
ditioning. We therefore overall have found no apparent reason to use condi-
tional estimation.
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A Details regarding the simulation study in Sec-
tion 3

The following gives some practical and technical details regarding the simu-
lation study described in Section 3.1.

When calculating functional summary statistics, we always used the de-
fault range of r-values in spatstat. For details on simulation procedures,
especially conditional simulation, see Appendix B. When fitting parameters,
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we always did it without conditioning on the number of points since we
argue in Section 4 that there is no apparent reasons to use conditional es-
timates. We used the natural estimate n(x) of the intensity in the case of
the Poisson process, used the method of minimum contrast estimation based
on Ripley’s K-function (see Baddeley et al. (2015)) in the cases of the log-
Gaussian Cox process and the Gaussian determinantal point process and
used the method of profile maximum pseudo likelihood in the case of the
Strauss process (where we considered 41 equally spaced values of R in the
interval (0.03, 0.07)). When fitting the parameters of the log-Gaussian Cox
process, we found that sometimes the scale parameter δ was seriously overes-
timated, which caused the conditional simulation procedure to be extremely
slow. Therefore, we decided only to use realizations of the log-Gaussian Cox
process M2 where the fitted scale parameter was below 0.3, which left 953
realizations in the simulation study. When fitting parameters in the case of
the Gaussian determinantal point process, we found that κ was seriously un-
derestimated for a few realizations, which either slowed down the simulation
procedures considerably or caused them to fail. We therefore excluded real-
izations with a fitted value of κ less than 0.001 after which 996 realizations
remained.

B Stationary point process models and conditional
simulation

In the following, we describe some popular classes of spatial point process
models: Poisson, Cox, Gibbs and determinantal point processes. It is well
known how to simulate such point processes within the compact observa-
tion window W without conditioning on the number of points; for Poisson,
Cox and Gibbs point processes, see Møller and Waagepetersen (2004) and the
references therein, and for determinantal point processes, see Lavancier et al.
(2015). It is also well-known how to simulate Poisson processes when we con-
dition on the number of points falling in W. For finite Gibbs point processes
defined on W (and thus not the infinite stationary Gibbs processes which we
consider), Ripley (1979) described how to make simulations conditioned on
the number of points but without accounting for edge effects. Below, we sug-
gest methods for simulation of Cox, infinite Gibbs and determinantal point
processes conditioned on N(W) and where we account for edge effects when
needed (the case of infinite Gibbs point processes).

B.1 Poisson processes

Suppose that ρ : Rd → [0, ∞) satisfies that ν(B) B
∫

B ρ(u)du < ∞ for
bounded (Borel) sets B ⊂ Rd. A point process X is a Poisson process with
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intensity ρ if for any B ⊂ Rd with 0 < ν(B) < ∞, N(B) follows a Poisson
distribution with mean ν(B), and for any n ∈ N, conditioned on N(B) = n,
the n points in XB are independent and identically distributed with a density
proportional to ρ. If ρ is constant, X is a stationary Poisson process. It is usu-
ally easy to simulate a Poisson process on W conditioned on n, in particular
in the stationary case where the n points are just independent and uniformly
distributed on W.

B.2 Cox processes

Let Z = {Z(u)}u∈Rd be a non-negative stochastic process such that (almost
surely) for every bounded set B ⊂ Rd,

∫
B Z(u)du exists and is finite. Assum-

ing X conditioned on Z is a Poisson process with intensity function Z, we
call X a Cox process driven by Z. When Z is stationary with finite mean, X
is stationary with intensity ρ = EZ(u) for any u ∈ Rd.

For simulating XW conditioned on N(W) = n, we can use the following
simple acceptance-rejection sampling procedure. Defining ZW B {Z(u)}u∈W,
repeat simulating a realization ZW = z and an independent uniform variable
U on [0, 1] until

U ≤ 1
n!

(∫
W

z(u)du
)n

exp
(
−
∫

W
z(u)du

)
.

Then, simulate n points from W independently with a density proportional
to z. For a log-Gaussian Cox process, Z = exp(Y) with Y a Gaussian random
field defined on Rd. In this case, the conditional simulation procedure can be
refined by considering a subdivision of W as described in Møller et al. (1998).

B.3 Gibbs point processes

The definition of a stationary Gibbs point process is rather technical. In the
following definition using a local specification, we omit for simplicity not
only measure theoretical details but also technical conditions ensuring exis-
tence of the process; for such details, we refer instead to Georgii (1988) or the
review in Møller and Waagepetersen (2004).

We need the following notation. Let R be a given non-negative number
and B ⊂ Rd a bounded set. As a reference measure we consider the sta-
tionary Poisson process on Rd with intensity 1 and denote its distribution
µ. The restriction of µ to B is denoted µB. The R-close neighbourhood to B
is defined by ∂B B B⊕R \ B. Let Ωfin ⊂ Ω be the set of all finite subsets of
Rd. Consider functions s : Ωfin 7→ Rp and a : Ωfin 7→ [0, ∞) satisfying the
following conditions: a is hereditary, that is, a(x) > 0 implies a(y) > 0 for
y ⊂ x; a and s are invariant under translations in Rd (this will be needed to
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ensure that X is stationary); and for every x ∈ Ωfin and every u ∈ Rd \ x,
setting

a(x, u) B a(x ∪ {u})/a(x), s(x, u) B s(x ∪ {u})− s(x),

then
a(x, u) = a(x ∩ b(u, R), u), s(x, u) = s(x ∩ b(u, R), u). (7)

Finally, we consider a parameter θ = (β, ψ) with β > 0 and ψ ∈ Ψ so that
Ψ ⊆ Rp and Θ B (0, ∞)× Ψ is the parameter space.

Now, we consider a local specification which is given by the following
assumptions (i)–(ii). For every bounded set B ⊂ Rd and every θ ∈ Θ, we
have: (i) XB and XRd\B⊕R

are conditionally independent given X∂B; (ii) for
(µ∂B almost) every finite x∂B ⊆ ∂B, XB conditioned on X∂B = x∂B has a
density with respect to µB given by

fB,θ(xB | x∂B) = a(x)βn(xB) exp(ψTs(x))/cB,θ(x∂B) for finite xB ⊆ B, (8)

where x = xB ∪ x∂B, s(x) and ψ are viewed as column vectors, ψT is the
transpose of ψ and cB,θ(x∂B) is a normalizing constant. Then, we call X an
infinite Gibbs (or Markov) point process with parameter θ and interaction
radius R.

Above, we have imposed more structure than usual when defining a
Gibbs point process: the assumption in (7) is a local Markov property, which
is in line with the spatial Markov properties specified in (i), and in (8), we
have imposed an exponential family structure. In applications, we typically
interpret ψ as an interaction parameter, and β usually controls the intensity,
which also depends on ψ. For example, a stationary Strauss process has
a = 1, Ψ = (−∞, 0] and

s(x) = sR(x) B∑
i<j

1(∥xi − xj∥ ≤ R) for x = {x1, . . . , xn} ∈ Ωfin.

For conditional simulation of XW given N(W) = n, we consider an ex-
tended compact region Wext ⊇ W⊕R in order to account for edge effects.
Then, we let Y denote a process on Wext with a density with respect to µWext

given by
fθ(x) = a(x)βn(x) exp(ψTs(x))/cθ , x ⊂ Wext,

assuming the normalising constant cθ is finite. Simulations of YW will then
be approximate simulations of XW if Wext is large enough. Let (Y1, . . . , Yn)
be an arbitrary ordering of the n points in YW , and define A BWext \W. The
conditional density of (Y1, . . . , Yn) given both YA = yA and n(YW) = n is

fψ(y1, . . . , yn | y∂W , n) ∝ a({y1, . . . , yn} ∪ y∂W) exp(ψTs({y1, . . . , yn} ∪ y∂W))
(9)
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with respect to Lebesgue measure on Wn, and it only depends on yA through
y∂W and on θ through ψ. Moreover, the conditional density of YA given
both (Y1, . . . , Yn) = (y1, . . . , yn) and n(YW) = n depends only on (y1, . . . , yn)
through those yi ∈ ∂A. It is

fθ(yA | {yi : yi ∈ ∂A}, n) ∝

a(yA ∪ {yi : yi ∈ ∂A})βn(yA) exp(ψTs(yA ∪ {yi : yi ∈ ∂A}))
(10)

with respect to µA.
We use a Gibbs within Metropolis-Hastings algorithm where we alternate

between simulating from (9) and (10). In case of (9), a single point updat-
ing Metropolis algorithm is used (specifically, Algorithm 7.2 in Møller and
Waagepetersen (2004) where a proposal consists in replacing a uniformly se-
lected existing point yi with another point y′i which is uniformly distributed
on W). In case of (10), we use the birth-death Metropolis-Hastings algorithm
in Geyer and Møller (1994) (Algorithm 7.4 in Møller and Waagepetersen
(2004)).

In practice, it is necessary to choose an appropriate burnin when using
Markov chains for simulation. For our simulations, based on various trace
plots, we chose to use a burnin of 4000 and 1000 iterations for unconditional
and conditional simulation of Strauss processes, respectively. It is also neces-
sary to decide what Wext should be. We used the default in the function rmh
from spatstat, which was also the function we used to make unconditional
simulations.

B.4 Determinantal point processes

We say that X is a determinantal point process with kernel C : Rd × Rd 7→ C
if for n = 1, 2, . . . and any pairwise disjoint bounded (Borel) sets A1, . . . , An ⊂
Rd,

E[N(A1) · · · N(An)] =
∫

A1

· · ·
∫

An
det{C(ui, uj)}i,j=1,...,n du1 · · · dun (11)

where det{C(ui, uj)}i,j=1,...,n is the determinant of the n × n matrix where
entry (i, j) is C(ui, uj). For 1 < k < n we have

cov(N(A1) · · · N(Ak), N(Ak+1) · · · N(An)) ≤ 0,

and the process is therefore said to be repulsive at all scales. It is often as-
sumed that C is a continuous complex covariance function so that C(u, v) =
C0(u − v) is translation invariant; we also make that assumption, which im-
plies that X is stationary. For details on the many nice properties of determi-
nantal point processes including those given below, see Lavancier et al. (2015)
and the references therein.
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The kernel restricted to W × W has a spectral representation

C(u, v) =
∞

∑
i=1

λiϕi(u)ϕi(v), u, v ∈ W (12)

where {ϕi}i=1,2,... is an orthonormal basis for the L2-space of square-integra-
ble complex functions on W and each λi is an eigenvalue. Existence of the
determinantal point process restricted to W is equivalent to that each λi ∈
[0, 1] and ∑∞

i=1 λi < ∞. Now, let B1, B2, . . . be independent Bernoulli variables
with parameters λ1, λ2, . . .. Then, XW is distributed as a determinantal point
process on W with kernel

K(u, v) B
∞

∑
i=1

Biϕi(u)ϕi(v), u, v ∈ W,

and N(W) is distributed as ∑∞
i=1 Bi, which is finite with probability 1. It can

be shown that XW conditional on a realization b1, b2, . . . of B1, B2, . . . has n =

∑∞
i=1 bi points, and any ordering (X1, . . . , Xn) of these points has probability

density function

pi1,...,in(x1, . . . , xn) B
1
n!

det
{ n

∑
k=1

ϕik (xi)ϕik (xj)

}
i,j=1,...,n

on Wn where i1, . . . , in are the indices for which the Bernoulli variables are 1.
It is well-known how to make simulations from this distribution.

Apart from special cases, only the existence of the spectral representation
but not its exact form is known in practice. Lavancier et al. (2015) provided
efficient ways of obtaining a useful approximation.

For conditional simulation of XW given N(W) = n, we first simulate
B1, B2, . . . conditional on N(W) = n and hereafter simulate XW conditional
on B1, B2, . . ., which then does not depend on N(W). Since it is well known
how to simulate from the density pi1,...,in , it suffices to discuss how to sim-
ulate B1, B2, . . . conditioned on N(W) = n. Define I0 B 0 and Ik B inf{j >
Ik−1 | Bj = 1} (k = 1, 2, . . .), setting inf ∅ B ∞. So, Ik is the kth time that a
Bernoulli variable is 1, that is, Bi = 1 if i ∈ {I1, . . . , In} and Bi = 0 otherwise.
We simulate a realization of (I1, . . . , In) as follows. For any integers 0 ≤ ℓ < k
such that ∏ℓ<j<∞(1 − λj) < 1, define

p(k | ℓ) B
λk ∏ℓ<j<k(1 − λj)

1 − ∏ℓ<j<∞(1 − λj)
,

where ∏ℓ<j<k(1 − λj) B 1 if k = ℓ+ 1. Set i0 B 0. Then, for k = 1, . . . , n and
any integers in > . . . > i1 ≥ 1,

P(Ik = ik | I0 = i0, . . . , Ik−1 = ik−1, Ik < ∞) =

P(Ik = ik | Ik−1 = ik−1, Ik < ∞) = p(ik | ik−1)
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and
P(In+1 = ∞ | I0 = i0, . . . , In = in) = ∏

k>in

(1 − λk).

Hence, a simulation of (I1, . . . , In) can be generated by the following accep-
tance-rejection algorithm: (i) For k = 1, . . . , n, generate a proposal ik from the
probability mass function p(· | ik−1). (ii) Return (I1, . . . , In) = (i1, . . . , in) with
probability ∏k>in(1 − λk), else go to (i).

For the generation of the proposal in (i), we use inversion sampling: set
λ0 B 1 and F(m|ℓ) B ∑ℓ<k≤m p(k|ℓ) for integers 0 < ℓ < k ≤ m, which may
be computed using the recursion

p(ℓ+ 1 | ℓ) = λℓ+1
1 − ∏ℓ<j<∞(1 − λj)

, p(k | ℓ) = p(k − 1 | ℓ)λk(1 − λk−1)

λk−1

if k > ℓ+ 1. Then, generate U from a uniform distribution on [0, 1] and return
inf{m > ℓ | F(m|ℓ) ≥ U} as a simulation of the proposal.

As we need to truncate the infinite products ∏k>in(1 − λk) and
∏ℓ<j<∞(1 − λj) by only considering a finite number of eigenvalues, we only
get an approximate simulation. For the choice of truncation, we used the de-
fault in the function simulate.detpointprocfamily from spatstat, which
was also the function we used to make unconditional simulations.

C Details for maximum likelihood estimation for
Gibbs point processes

Estimation of θ is complicated by the fact that the normalizing constant is
in general not expressible on closed form: the conditional density of XW⊖R
given X∂W⊖R = x∂W⊖R has normalizing constant

cW⊖R ,θ(x∂W⊖R ) =
∞

∑
n=0

exp(−|W⊖R|)
n!

∫
W⊖R

· · ·
∫

W⊖R

a(y ∪ x∂W⊖R )βn exp(ψTs(y ∪ x∂W⊖R ))dy1 · · · dyn

where y = {y1, . . . , yn} and the term for n = 0 is interpreted as exp(−|B|).
Often, the interaction parameter ψ is of main interest in which case, following
Ripley (1977), it may be reasonable to further condition on N(W⊖R) = m.
Conditional on N(W⊖R) = m, let the random vector (X1, . . . , Xm) be any
ordering of the m points in XW⊖R , which conditioned on both X∂W⊖R = x∂W⊖R
and N(W⊖R) = m has probability density function

fψ(x1, . . . , xm | x∂W⊖R , m) B

a({x1, . . . , xm} ∪ x∂W⊖R) exp(ψTs({x1, . . . , xm} ∪ x∂W⊖R))

cψ(x∂W⊖R , m)

147



Paper D.

on Wm
⊖R where

cψ(x∂W⊖R , m) =
∫

W⊖R

· · ·
∫

W⊖R

a(y ∪ x∂W⊖R) exp(ψTs(y ∪ x∂W⊖R))dy1 · · · dym

with y = {y1, . . . , yn}. This conditional density does not depend on β and
has s(x) as a sufficient statistic for ψ. The m-fold integral above may be hard
to compute, but at least cψ(x∂W⊖R , m) is simpler than cW⊖R ,θ(x∂W⊖R). Thus,
it seems appealing to condition on both X∂W⊖R = x∂W⊖R and N(W⊖R) = m
when using maximum likelihood estimation. However, in general,
cW⊖R ,θ(x∂W⊖R) considered as a function of θ cannot be written as a product of
two functions with one depending on β only and the other depending on ψ
only, and so we cannot appeal to one of the known conditioning principles:
in general, using a terminology as in Barndorff-Nielsen (1978), n will not be
an S-ancillary statistic for ψ, and s(x) will not be an S-sufficient statistic for
ψ.

No matter if we condition on N(W⊖R) = m or not, the likelihood function
is log-concave. An approximate maximum likelihood estimate of ψ (and β if
we do not condition on N(W⊖R) = m) can be found by combining simula-
tions with importance sampling to obtain an approximate likelihood function
which is log-concave too, see Møller and Waagepetersen (2004) and the ref-
erences therein. Typically, unless X is ‘close’ to a Poisson process, long runs
of Markov chains are needed for the simulations. The simulations and the
computations will be faster when conditioning on N(W⊖R) = m because
the normalizing constant is simpler to approximate and since a single point
updating Metropolis algorithm can be used for simulations; in the uncon-
ditional case, the more advanced birth-death Metropolis-Hastings algorithm
(Geyer and Møller, 1994) is used.

D Details for maximum pseudo-likelihood estima-
tion for Gibbs point processes

When defining pseudo-likelihood functions below, we need the Papangelou
conditional intensity for the density in (8), which is

λB,θ(xB, u |x∂B) B
fB,θ(xB ∪ {u} | x∂B)

fB,θ(xB | x∂B)
= βa(xB ∪ x∂B, u) exp(ψTs(xB ∪ x∂B, u))

for u ∈ B \ xB. Furthermore, in order to account for edge effects, we let
B = W⊖R and consider

λW⊖R ,θ(xW⊖R , u |x∂W⊖R) = λθ(x, u) B βa(x, u) exp(ψTs(x, u)) (13)

for the observed point pattern x ⊂ W.
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First, consider the case where we do not condition on N(W⊖R) = m.
Then, the log pseudo-likelihood function is

pl(θ) B −
∫

W⊖R

λθ(x, u)du +
m

∑
i=1

log λθ(x \ {xi}, xi). (14)

If we fix ψ and insert (13) into (14), we see that

β̂(ψ) B m/
∫

W⊖R

a(x, u) exp(ψTs(x, u))du

is the maximum pseudo-likelihood estimate of β; hence, the profile log pseu-
do-likelihood function for ψ becomes pl(β̂(ψ), ψ). Assuming that we can
interchange differentiation and integration, the pseudo-score function is

s(ψ) B
∂

∂ψ
pl(β̂(ψ), ψ) =− m

∫
W⊖R

a(x, u)s(x, u) exp(ψTs(x, u))du∫
W⊖R

a(x, u) exp(ψTs(x, u))du

+
m

∑
i=1

s(x \ {xi}, xi),

(15)

which has a negative definite derivative. Thus, the profile log pseudo-likeli-
hood function is concave (and strictly concave under mild conditions), so the
maximum pseudo-likelihood estimate of ψ (provided it exists) can be found
by a numerical optimization method where evaluating (14) and (15) involves
approximating the integrals by numerical methods (Baddeley et al., 2014).

Second, we condition on both X∂W⊖R = x∂W⊖R and N(W⊖R) = m. For i =
1, . . . , m, define X−i B (X1, . . . , Xi−1, Xi+1, . . . , Xm) and
x−i B (x1, . . . , xi−1, xi+1, . . . , xm). The random vectors X−1, . . . , X−m are iden-
tically distributed. Further, Xi conditioned on both X∂W⊖R = x∂W⊖R ,
N(W⊖R) = m and X−i = x−i depends only on x \ {xi} and has probabil-
ity density function

fψ(u | x \ {xi}) B a(x \ {xi}, u) exp(ψTs(x \ {xi}, u))/cψ(x \ {xi})

for u ∈ W⊖R where

cψ(x \ {xi}) =
∫

W⊖R

a(x \ {xi}, u) exp(ψTs(x \ {xi}, u))du.

Now, the logarithm of Besag’s pseudo-likelihood function (Besag, 1975) as
defined by the product of the ‘full conditionals’ fψ(u | x \ {xi}) (i = 1, . . . , m)
becomes

plm(ψ) B ψT
m

∑
i=1

s(x \ {xi}, xi)−
m

∑
i=1

log cψ(x \ {xi}) (16)
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when we omit the term ∑m
i=1 log a(x \ {xi}, xi), which only depends on the

data. Assuming we can interchange differentiation and integration, the pseu-
do-score corresponding to (16) is

sm(ψ) B
∂

∂ψ
plm(ψ) =

m

∑
i=1

s(x \ {xi}, xi)

−
m

∑
i=1

∫
W⊖R

s(x \ {xi}, u) fψ(u | x \ {xi})du,

and its derivative is

∂

∂ψT sm(ψ) = −
m

∑
i=1

( ∫
W⊖R

s(x \ {xi}, u)s(x \ {xi}, u)T fψ(u | x \ {xi})du

−
∫

W⊖R

s(x \ {xi}, u) fψ(u | x \ {xi})du
∫

W⊖R

s(x \ {xi}, u)T fψ(u | x \ {xi})du

)

= −
m

∑
i=1

Varψ [s(x \ {xi}, Xi) | x \ {xi}] .

So, the log pseudo-likelihood is again concave (and strictly concave under
mild conditions) and can be optimized numerically using numerical evalua-
tion of integrals, but the computations may be more cumbersome compared
to (14) and (15) because we need to evaluate more integrals. However, it is
still easier than using maximum likelihood estimation.
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1. Introduction

Abstract

In this paper, I show how neural networks can be used to simultaneously estimate all
unknown parameters in a spatial point process model from an observed point pattern.
The method can be applied to any point process model which it is possible to simulate
from. Through a simulation study, I conclude that the method recovers parameters
well and in some situations provide better estimates than the most commonly used
methods. I also illustrate how the method can be used on a real data example.

1 Introduction

Briefly, a point process X may be defined as a countable random subset of
Rd. Usually, a realisation of the process is only observed within a bounded
set W ⊂ Rd. A common problem is to fit a parametric spatial point process
model to a realization x. This can be a difficult problem since the likelihood
function is intractable except in the very simple case of a Poisson process.
Many alternative approaches have thus been suggested including estimation
based on pseudo-likelihood, composite likelihood, and minimum contrasts
(see the review in Møller and Waagepetersen, 2017). However, it is possi-
ble to define meaningful spatial point process models for which both the
intensity and other moment characteristics of X, the density, and the Papan-
gelou conditional intensity (see e.g. Møller and Waagepetersen, 2004) are not
expressible in closed form. Then, the above methods are not feasible. An ex-
ample of such a point process model is the LGCP-Strauss process presented
in Vihrs et al. (2022) where the authors found it necessary to consider pa-
rameter estimation in a Bayesian setup because it was then possible to use
the method of approximate Bayesian computations (ABC) which is based en-
tirely on the ability to simulate under the model (see e.g. the overview of
some ABC methods in Beaumont (2010)).

The purpose of this paper is to explore the possibility to estimate param-
eters in spatial point process models by using neural networks. The idea is
to consider the estimation problem as a prediction problem where param-
eters of the model are to be predicted from a realization. This prediction
problem can be handled with machine learning methods, such as neural net-
works, trained on a suitable training data set. Thus the only requirement for
this approach is to be able to construct a number of training cases consisting
of values for the unknown parameters and realizations of the model corre-
sponding to these parameter values. If it is known how to simulate from the
model, the training data set for the chosen machine learning method can be
constructed from simulations of the model. Thus the approach, like ABC,
only requires the model to be equipped with a feasible simulation procedure.
The idea is somewhat similar to the concept behind the ABC technique in
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Marin et al. (2019) where random forests are used to predict mean, variance,
and quantiles in the posterior distribution. However, I instead use neural
networks for the prediction task, and is furthermore only interested in ob-
taining point estimates for the unknown parameters and do not attempt to
get knowledge about a posterior distribution. Gabrielli et al. (2017) have used
neural networks to predict parameters in acoustic physical modelling, but the
idea has to the best of my knowledge not been explored in relation to spa-
tial point process models. I explain the suggested approach for using neural
networks to obtain point estimates of unknown parameters of spatial point
process models in Section 2.

Neural networks have proven useful in many different prediction prob-
lems and are well suited to handle many different types of input including
images and curves. Their ability to handle different input formats is an ad-
vantage when attempting to pass information about a relatively complex data
structure like a point pattern. In Section 2.1, I discuss how to pass informa-
tion about a point pattern to a neural network aiming at predicting unknown
parameters; I decide on summarising important aspects of the point pattern
by means of a functional summary statistic and then passing this information
to the neural network, thereby using the possibility to handle input data in
the form of curves.

As I mention above, there are many different estimation procedures for
spatial point process models, and which one it is preferable to use depends
on the type of model and the theoretical knowledge available for that class of
models. A clear advantage of simulation based methods, like the neural net-
work approach in this paper, is that they are generally applicable to all point
process models for which it is possible to generate realizations. Since the abil-
ity to simulate from the model must be considered necessary for any model
of practical value, this requirement is not very restrictive. Good simulation
based methods thus allow us to use almost any type of spatial point process
model without being limited by lack of theoretical knowledge when it comes
to parameter estimation. Another clear advantage of the suggested neural
network approach in this paper is that all unknown parameters can always be
estimated simultaneously, which is not always the case in traditional estima-
tion procedures. For instance, I consider the example of a Strauss process in
Section 3.2 where parameters are usually fitted with the method of maximum
pseudo likelihood estimation, but the Strauss process contains an interaction
radius R, and this parameter cannot be estimated alongside the other param-
eters when using maximum pseudo likelihood estimation. Finally, I show
through the simulation study in Section 3 that the suggested neural network
approach recovers parameters well, and compared to the most commonly
used estimation procedures it gives either better or similar results.

All statistical computations in this paper were made with the open source
software R version 4.0.2 (R Core Team, 2020). The R-packages ggplot2 ver-
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sion 3.3.2 (Wickham, 2016), spatstat version 2.1-0 (Baddeley et al., 2015),
and keras version 2.3.0.0 (Allaire and Chollet, 2020, Chollet, 2018) were
used to make plots, handle spatial point patterns, and train neural net-
works, respectively. The R-scripts I wrote for the simulation studies and data
example in this paper are available in the Supplementary material which
can be found at https://www.sciencedirect.com/science/article/pii/
S2211675322000422.

2 The neural network approach

In this section, I explain the suggested neural network approach to parameter
estimation in spatial point process models. I restrict attention to models
without covariates and leave the case of inhomogeneous models to future
research. The objective is to train a neural network to predict the values
of parameters in a chosen point process model based on a realisation from
the process. When the neural network has been trained, it can be used to
estimate the parameters of the point process model based on an observed
point pattern xobs.

2.1 Considerations regarding training data

In order to train the neural network, training data is constructed by simulat-
ing a number of point patterns from the chosen model for different values
of the parameters. Neural networks are known to be able to take input data
in many forms including pixel images and sequences. One way to pass a
point pattern dataset to a neural network would be to represent it as a pixel
image where the pixel values corresponds to the number of points within
the pixel. I tried to send data in this form through a 2-dimensional convolu-
tional neural network, which is a good choice for handling image input, but
this method seemed to be less successful than summarising the point pattern
dataset with functional summary statistics as explained below. This may be
because the behaviour of a point pattern at a very small scale is important for
estimating some parameters accurately, and such information was lost in the
discretization of the pattern but not when summarising aspects of the pat-
tern with a functional summary statistic. The need to choose an appropriate
summary statistic brings some arbitrariness and subjectivity to the method
which would not have been the case if using the entire point pattern as in-
put, but it is not uncommon to estimate parameters in spatial point process
models based on some functional summary statistic as this is also done in
the popular method of minimum contrast estimation (see Section 3.1). In this
paper, I therefore choose to use some appropriate summaries calculated from
the point pattern as input to the neural network.
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A common way to summarise many important aspects of a point pattern
is by means of functional summary statistics where I briefly describe some
common choices here and refer the reader to Baddeley et al. (2015) for more
details. A common choice is Ripley’s K-function which depends on an inter
point distance r. Assuming stationarity of the point process, if ρ is the inten-
sity of the process, the interpretation of K is that ρK(r) is the expected number
of further points falling in a ball with radius r centered at a typical point of
the process. One often considers its transformation L(r) = d

√
K(r)/ωd where

ωd is the volume of a d-dimensional unit sphere. It is known that L(r) = r
in case of a stationary Poisson process, which is the case of complete spatial
randomness. If L(r) − r < 0 (L(r) − r > 0), it is usually interpreted as the
point process exhibiting regularity/repulsion (clustering/attraction) at inter-
point distances r. Non-parametric estimates of K and L from a point pattern
x = {x1, . . . , xn} on an observation window W are

K̂x(r) =
|W|

n(n − 1)

n

∑
i=1

n

∑
j,i,j=1

1[∥xi − xj∥ ≤ r]eij(r), L̂x(r) =
d
√

K̂x(r)/ωd

where |W| is the Lebesgue measure of W and eij(r) is an edge correction
weight to account for the unobserved points outside W. Baddeley et al. (2015)
noted that it is not so important which edge correction method to use as long
as some correction is used; I used Ripley’s isotropic correction (Ripley, 1988,
Ohser, 1983). I use L̂(r)− r as input to the neural network since parameters
of point processes are usually related to regularity and clustering, and it was
found to give better results than using Ripley’s K-function or the L-function
directly, which may suggest that this transformation of K allows the neural
network to learn more efficiently. Note however that the suggested neural
network approach can easily be used with a different functional summary
statistic as input.

Other popular summary functions for point processes include the so-
called F-, G-, and J-functions defined for a stationary point process X by

F(r) = P(X ∩ b(0, r) , ∅), (1)

G(r) = P((X \ {u}) ∩ b(u, r) , ∅ | u ∈ X), and (2)

J(r) =
1 − G(r)
1 − F(r)

, F(r) < 1, (3)

where b(u, r) is the ball centered at u with radius r, see e.g. Møller and
Waagepetersen (2004) and the references therein. Stationarity implies that
the definition of G(r) does not depend on the choice of u. The F-, G-, and
J-functions are however not considered further as input to the neural net-
work, since they can usually only be estimated reliably for a smaller range of
r-values than K, and this was found to be a disadvantage for the example in
Section 3.3 where large scale properties had to be summarised.
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The number of points in the point pattern was also included in the input
to the neural network, since this is important knowledge regarding some
parameters of most point process models which the L-function is generally
not able to provide.

2.2 The suggested neural network approach

The suggested method for estimation is as follows:

1. Choose a homogeneous spatial point process model M(θ) with un-
known parameters θ = (θ1, . . . , θk), a number of training cases ntrain,
and optionally a number of test cases ntest.

2. Construct training data:

(a) For i = 1, . . . , ntrain, sample the parameters θ̃i = (θ̃i
1, . . . , θ̃i

k) from
some pre-chosen distribution for θ. In this paper, I sample the θ̃i

j’s
independently and uniformly on bounded intervals.

(b) For i = 1, . . . , ntrain, sample x̃i from M(θ̃i).

(c) Choose some values r1, . . . , rm. For i = 1, . . . , ntrain calculate the
functional summary statistic Li = (L̂x̃i (r1)− r1, . . . , L̂x̃i (rm)− rm)
and n(x̃i) where n(·) is the number of points in a point pattern.

(d) Standardize each component of {Li, n(x̃i), θ̃i
1, . . . , θ̃i

k}
ntrain
i=1 , by sub-

tracting the mean and dividing by the standard deviation (for
{Li}ntrain

i=1 the mean and standard deviation were calculated both
over all ntrain simulations and over all m values for r meaning that
all values of {Li}ntrain

i=1 were scaled by the same amount.) After
standardization the training data is {Li, n(x̃i), θ̃1, . . . , θ̃k}ntrain

i=1 .

3. (Optional) Construct test data:

(a) Construct ntest test cases {Li, n(x̃i), θ̃i
1, . . . , θ̃i

k}
ntest
i=1 with the same

procedure as in items 2a–2c.

(b) Scale the test data according to item 2d, i.e. subtract the means
and divide by the standard deviations calculated in item 2d.

4. Use the training data to train a neural network to predict θ.

5. (Optional) Send the test data through the trained neural network, and
asses its predictive performance.

6. Calculate Lobs = (L̂xobs(r1) − r1, . . . , L̂xobs(rm) − rm) and n(xobs); scale
these according to item 2d; feed them to the trained neural network; and
return the (rescaled) prediction θ̂ as the estimated vector of parameters.
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Regarding the choice of the values r1, . . . , rm in item 2c there is a sensible
default in the spatstat implementation for estimating L(r), which I used.
Even though it is optional to construct test data, I strongly recommend to do
this in order to asses the performance of the method in a given situation.

As I write in item 2a, I sample each parameter in the training data uni-
formly on a bounded interval, in which case there should be strong reasons
to believe that the parameters corresponding to the observed point pattern
fall within these intervals. Otherwise, the trained neural network cannot be
expected to do well for the observed point pattern. Note however, that it is
possible to consider wide intervals of the parameters, so it is not necessary
to have very specific knowledge about the ranges of the parameters. It will
usually be possible to obtain some range for each parameter by combining
knowledge about the effect of the parameters in the model with a prelimi-
nary investigation of the point pattern, which may include interpreting some
functional summary statistics and looking at some simulations. I give an idea
of how this could be done for the example in Section 4.

The neural network architecture which I chose to use in item 4 is illus-
trated in Figure 1. The functional summary statistic L̂(r) − r, which con-
stitutes a sequence, is send through a number of 1-dimensional convolution
layers and max pooling operations, which is a good way to handle sequenced
data.

A 1-dimensional convolution layer takes as input a number of sequences
say si = (si

1, . . . , si
k), i = 1, . . . , m, and returns p sequences of the form

s̃i = (s̃i
1, . . . , s̃i

k−(q−1)), i = 1, . . . , p, where p is some chosen number and

s̃i
j = f (bi + ∑

q−1
l=0 ∑m

h=1 ai
lhsh

j+l) for some activation function f , chosen size q,

constant bi, and weights ai
lh, l = 0, . . . , q − 1, h = 1, . . . , q. I used p = 64 in

each convolution layer and q = 7, so in the first convolution layer m = 1 (the
functional summary statistic is just one curve) and in the subsequent layers
m = 64 (the output from the previous layer constitutes 64 curves).

The max pooling operation used between the convolution layers splits
every input sequence into sub-sequences of a specified length (I chose 5) and
replaces each sub-sequence with its highest value yielding a new sequence
usually of much smaller size.

After the convolution layers, the output is fed to two densely connected
layers (the output is now considered as individual values instead of se-
quences) together with the number of points in the observed point pat-
tern. In a densely connected layer which gets input values I1, . . . , In, the
output is O1, . . . , Oh where h is some chosen number of hidden units and
Oi = f (bi +∑n

j=1 ai
j Ij) for some activation function f , constant bi, and weights

ai
j, j = 1, . . . , n. The final output of the network is a prediction of the unknown

parameters of the spatial point process model based on the functional sum-
mary statistic and number of points which was given as input to the model.
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Input:Functional summary statistic

Convolution layer

Max pooling

Convolution layer

Max pooling

Convolution layer

Dense layer: 64 hidden units

Input: Number of points

Dense layer: 32 hidden units

Output: Estimated parameters

Fig. 1: Visual overview of the neural network architecture.
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This final layer is actually also a dense layer where the activation function is
just the identity and the number of output values corresponds to the number
of unknown parameters in the spatial point process model which is to be
estimated.

As the activation function I used f (·) = relu(·) = max(0, ·) both for
the convolution and dense layers, which is a very common choice for the
activation function in neural networks. All the above mentioned weights
of the linear combinations taken in the neural network and the constants
bi constitute the unknown parameters of the neural network, which should
be learned based on the training data. For some details about how these
unknown parameters of the neural network were learned see Appendix A.2.
For more information about neural networks and how to use them in R see
e.g. Chollet (2018).

I also tried to use a network only with densely connected layers, which is
much faster to train, but it generally gave poorer results than including the
convolution layers.

3 Simulation study for examples of point process
models

In this section, I consider three classes of parametric spatial point process
models as examples: log-Gaussian Cox processes (LGCP) (Møller et al., 1998),
Strauss processes (Strauss, 1975, Kelly and Ripley, 1976), and LGCP-Strauss
processes (Vihrs et al., 2022). I briefly define these in the following subsec-
tions and refer to the above references for more details about these mod-
els. The preferred method for estimating parameters in spatial point process
models depends on the type of model. Through simulations, I assess the ac-
curacy of estimates obtained with the neural network approach and compare
this to the most commonly used estimating procedure in each case, which I
briefly describe in each of the following subsections. I will not go into details
about simulation methods and instead refer to Møller and Waagepetersen
(2004) and Baddeley et al. (2015). In this section, W is always a 2-dimensional
unit square. Considerations about how many simulations to use for the train-
ing data in each example are provided in Appendix A.1, which also shows
histograms of the number of points in the simulations in the training data
sets.

3.1 LGCP processes

An LGCP is a popular process for modelling aggregation in spatial point
patterns. It is driven by a stochastic intensity Z = exp(Y) where Y is a
Gaussian random field with mean function m and covariance function c(u, v).
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I use m = µ for a constant µ and an exponential covariance function c(u, v) =
σ2 exp(−∥u − v∥/s) with unknown parameters σ2 and s. The model is then
stationary, and the vector of unknown parameters which are to be estimated
is (µ, σ2, s). Note that if σ2 = 0, s becomes irrelevant, so any estimation
procedure may be expected to struggle with estimating s if σ2 is small.

Seemingly, the most common way to estimate parameters in Cox pro-
cesses is to use the method of minimum contrast estimation (Diggle, 1983,
Diggle and Gratton, 1984), although composite likelihood estimation (Guan,
2006) is a popular alternative. I have chosen to compare my method to that of
minimum contrast estimation. In minimum contrast estimation, the theoret-
ical value of a summary function (e.g. Ripley’s K-function) is compared to a
non-parametric estimate of it. I used this method to estimate σ2 and s based
on an observation x and Ripley’s K-function, which depends on σ2 and s, by
finding the values of σ2 and s which minimize∫ a2

a1

|K(r)q − K̂x(r)q|p dr

for some user specified 0 ≤ a1 < a2 and exponents p and q. Subsequently,
µ can be estimated from the unbiased estimation equation of the intensity
ρ̂ = n(x)/|W| by using that ρ = exp(µ + σ2/2) for my considered model.
For finding the minimum contrast estimates I used the function kppm from
spatstat with the default settings, which include p = 2 and q = 1/4.

I made the training data for the neural network approach based on 10,000
simulations of an LGCP with parameters sampled uniformly in the intervals
µ ∈ (4, 6), σ2 ∈ (0, 4), and s ∈ (0.001, 0.1). For justification of the num-
ber of simulations in the training data see Appendix A.1. I made further
5,000 simulations for a test set, and Figures 2–4 show some plots for the
estimated parameters obtained with the neural network approach and the
method of minimum contrast estimation. In the case of minimum contrast
estimation, some extreme estimates were omitted in Figures 2 and 3, see the
captions for more details. Overall, there is less variation in the error of the es-
timates obtained with the neural network approach compared to the method
of minimum contrast estimation, especially when the true parameter is high.
Furthermore, the neural network approach does not give the same kind of
extremely wrong estimates as sometimes seen with minimum contrast esti-
mation, probably because it has only seen training data with parameters in
the same intervals as in the test set.

For µ, both methods recover the parameter well, but the neural network
approach has unlike the method of minimum contrast estimation a slight
tendency to overestimate the parameter when the true value is small.

For σ2, the neural network approach recovers the parameter well when
the true value is less than three, especially when the true value is very small
where it also performs considerably better than minimum contrast estimation
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Fig. 2: Estimated parameters obtained with the neural network approach (top row) and mini-
mum contrast estimation (bottom row) plotted against true parameters in an LGCP. The solid
gray line is the identity line. In the case of minimum contrast estimation, 15, 43, and 77 cases
where the estimate of µ was below 3, σ2 was above 5, and s was above 0.15, respectively, were
omitted from the respective plots; the smallest estimate of µ was −0.174, the highest estimate of
σ2 was 10.7, and the highest estimate of s was 78,738.35.
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Fig. 3: Estimate of s minus the true value plotted against σ2 for a log-Gaussian Cox process. In
the plot to the left, estimates were obtained with the neural network approach; in the plot to
the right, estimates were obtained with minimum contrast estimation. In the case of minimum
contrast estimation, 34 cases where the error fell outside the showed range were omitted.

since the latter quite often seems to estimate the parameter to be near one
when it is in fact near zero. When the true parameter is high, both methods
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Fig. 4: Boxplot of the errors (estimated minus true value) for the parameter of an LGCP stated at
the top of each plot. The estimates were obtained with the neural network approach (dark gray)
and minimum contrast estimation (light gray). For the parameter s, cases where σ2 > 1 were
omitted.

have a tendency for underestimation. However, in the case of minimum
contrast estimation, this tendency starts to be clear when the true value gets
above circa 2.5 whereas it for the neural network approach only starts to be
clear when the true value gets above circa 3.5.

For s, Figure 3 shows that both methods as expected struggle to recover s
when σ2 is near 0. In this case, the neural network approach has a tendency
to estimate s to be near the mean in the training data whereas the method
of minimum contrast has a tendency to estimate it to be near 0. There is
no reason to prefer any of these strategies above the other, so for a more
fair comparison, cases where σ2 < 1 has been excluded from the plot for
s in Figure 4 and we see that the excluded cases include the most extreme
estimates of s achieved with minimum contrast estimation. Both methods
recover s well when the true value is small (and σ2 is not near 0). When the
true value of s gets above circa 0.3, the method of minimum contrast develops
a tendency for underestimation, which gets more severe as s increases, and
the neural network approach starts to slightly overestimate s until the true
value gets above circa 0.8 after which it also underestimates s, but not as
severely as minimum contrast estimation.

In order to asses how the method performs on point patterns with few
points, I made a second simulation study where I considered µ ∈ (3, 4) for
the training and test data. I used 1,000 simulations in the test set and every-
thing else was as above. Figure 5 shows the errors of the estimates obtained
with the neural network approach and minimum contrast estimation for each
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parameter for the test cases where the number of points was below 200. This
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Fig. 5: Estimated minus true value plotted against the number of points in the point pattern.
The parameter of the LGCP is stated at the top of each column. In the top row, estimates were
obtained with the neural network approach; in the bottom row, estimates were obtained with
minimum contrast estimation. In the case of minimum contrast estimation, 2 cases of µ, 19 cases
of σ2, and 100 cases of s where the error fell outside the showed ranges were omitted.

shows that it is mainly the estimation of s which benefits from more points
in the point pattern. It is also seen that minimum contrast estimation has a
tendency to underestimate µ and s and overestimate σ2 if there are very few
points in the point pattern, but the neural network approach shows no such
tendencies.

3.2 Strauss processes

A Strauss process is a popular model for regularity. A Strauss process defined
on a bounded set S ⊂ Rd has density f (x) ∝ βn(x)γSR(x) with respect to a
unit rate Poisson process for x = {x1, . . . , xn} ⊂ S where n(x) is the number
of points in x, SR(x) = ∑i<j 1[∥xi − xj∥ ≤ R] is the number of R-close pairs,
and the unknown parameters are β > 0, γ ∈ [0, 1], and R ≥ 0. I assume that
W ⊂ S but that S is unknown, so when simulating from the Strauss process, I
simulate it on an extended window determined by the default settings in the
function rmh from spatstat, which in this case is to add a margin of width
2R around all sides of the square W. Note that if γ = 1, R becomes irrelevant;
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and if R = 0, γ becomes irrelevant. Both these special cases collapses into the
same model namely a homogeneous Poisson process.

The density of the Strauss process involves an intractable normalising con-
stant, so instead of using maximum likelihood estimation it is more common
to use maximum pseudo likelihood estimation (Besag, 1975, Ripley, 1988,
Jensen and Møller, 1991, Baddeley and Turner, 2000), which is known to be a
fast and reliable alternative. The pseudo likelihood function for an observed
point pattern x is

PLA(θ) = exp
(
−
∫

A

f (x ∪ {u})
f (x)

du
)

∏
u∈x∩A

f (x)
f (x \ {u})

for some set A ⊂ S chosen in order to account for edge effects. The pseudo
likelihood function is maximised in order to find the maximum pseudo like-
lihood estimate of an unknown parameter vector θ of the density f . This
method is particularly tractable if the model is on exponential family form,
that is the unnormalised density h is of the form h(x) = exp(t(x)θT) for a
canonical parameter vector θ and canonical statistic t(x). This is the case
for the Strauss process if R is given with θ = (log(β), log(γ)) and t(x) =
(n(x), SR(x)). Thus, maximum pseudo-likelihood estimation can easily be
used to obtain estimates of β and γ. In order to also obtain an estimate for
R, the method of profile maximum pseudo likelihood can be used in the fol-
lowing way: consider a finite set R1, . . . , Rk of possible values for R, find the
maximum pseudo likelihood estimates β̂i and γ̂i of β and γ given R = Ri,
and choose the combination of parameters (β̂i, γ̂i, Ri) which gives the highest
value of PLA. For finding the profile maximum pseudo likelihood estimates
I used the function profilepl from spatstat where I forced the method to
yield a valid model (γ ∈ [0, 1]) and considered 50 equally spaced values of R
in the interval [0.001, 0.05].

For the neural network approach, I used 5,000 simulations of a Strauss
process with parameters sampled in the intervals β ∈ (200, 900), γ ∈ (0, 1),
and R ∈ (0, 0.05) for the training data and made further 5,000 simulations for
a test data set. For justification of the number of simulations in the training
data see Appendix A.1. The simulation of Strauss processes which I used
involves Markov chains, and a shared burnin for all simulations was chosen
based on trace plots of the number of points and R-close pairs for certain
combinations of the parameters believed to require the most iterations. Based
on this, I used 100,000 iterations of the Markov chain. Figures 6–8 show some
plots for the estimated parameters for the point patterns in the test set. The
estimates were obtained with either the neural network approach or profile
maximum pseudo likelihood estimation. A clear advantage of the neural
network approach is that all parameters can be estimated simultaneously,
and the estimate of R is thus not restricted to a finite set of values.
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Fig. 6: Estimated parameters obtained with the neural network approach (top row) and profile
maximum pseudo likelihood (bottom row) plotted against true parameters in a Strauss process.
The parameter is stated at the top of each column. The solid gray line is the identity line.
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Fig. 8: Boxplot of the errors (estimated minus true value) for the parameter of a Strauss process
stated at the top of the plots. The estimates were obtained with maximum profile pseudo likeli-
hood estimation (light gray) and the neural network approach (dark gray). For the parameters
γ and R, cases where R < 0.01 and γ > 0.7, respectively, were omitted.

For β, there is overall less variation in the error obtained with the neu-
ral network approach compared to the method of profile maximum pseudo
likelihood estimation where the variation increases with the true value of β,
something which does not happen with the neural network approach. The
method of profile maximum pseudo likelihood estimation have a tendency
to underestimate β, which gets worse as the true value increases whereas the
neural network approach has an overall tendency to slightly overestimate it.

For γ, both methods struggle when R is small as seen by Figure 7, but
the neural network approach seems to overall handle it better than profile
maximum pseudo likelihood estimation since it can apparently handle the
estimation of γ well for smaller values of R than profile maximum pseudo
likelihood. For a better comparison of the methods, cases where R < 0.01
are excluded from the plot for γ in Figure 8. The neural network approach
recovers γ very well if the true value is not above circa 0.8, and in this case
it also performs better than profile maximum pseudo likelihood estimation
which has a tendency for overestimating γ. If the true value of γ is above
circa 0.8, the neural network approach in general underestimates γ whereas
profile maximum pseudo likelihood estimation either estimates it to be near
1, as it should, or near 0.

For R, both methods struggle when γ is high, so cases where γ > 0.7 are
excluded from the plot for R in Figure 8. The neural network approach has
difficulties recovering R when the true value is small in which case profile
maximum pseudo likelihood estimation shows better performance; however,
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if the true value is above circa 0.01, the neural network approach recovers
R very well and the results are comparable to those obtained with profile
maximum pseudo likelihood estimation. Remember though, that the perfor-
mance of profile maximum pseudo likelihood estimation depends much on
how fine a grid of R-values one considers.

In order to asses how the method performs on point patterns with few
points, I made a second simulation study where I considered β ∈ (20, 200)
for the training and test data. I used 1,000 simulations in the test set, and
in this case I only trained the network for 10 epochs because a plot like
in Figure 19 revealed problems with overfitting when training the network
for longer. Everything else was as above. Figure 9 shows the errors of the
estimates obtained with the neural network approach and profile maximum
pseudo likelihood estimation for each parameter for the test cases where the
number of points was below 200. The plots reveal no clear tendencies in
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Fig. 9: Estimated minus true value plotted against the number of points in the point pattern. The
parameter of the Strauss process is stated at the top of each column. In the top row, estimates
were obtained with the neural network approach; in the bottom row, estimates were obtained
with profile maximum pseudo likelihood estimation.

the estimates obtained with the neural network approach. In the case of
maximum profile pseudo likelihood estimation there are no clear tendencies
for β, but for γ there is a general tendency to underestimate and for R there
is a tendency to overestimate if there are very few points in the point pattern.
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3. Simulation study for examples of point process models

3.3 LGCP-Strauss processes

An LGCP-Strauss process is a model for repulsion at small scale and cluster-
ing at a larger scale. It is a combination of an LGCP and a Strauss process,
and, defined on W, it has density

f (x) = E

[
1

Cθ(Y)
exp

(
n

∑
i=1

Y(xi)

)
γSR(x)

]

for x = {x1, . . . , xn} ⊂ W with respect to the unit rate Poisson process where
θ is the parameter vector; Y = {Y(u)}u∈W is a Gaussian random field; the ex-
pectation is with respect to Y; and Cθ(Y) is the normalising constant obtained
when conditioning on Y. For Y, I used a parametrization as in Section 3.1
with parameters µ, σ2, and s, so θ = (µ, σ2, s, γ, R) where γ ∈ [0, 1]. If γ = 1
or R = 0, it collapses to an LGCP; if σ2 = 0, it collapses to a Strauss process.

I made the training data for the neural network based on 40,000 simula-
tions of an LGCP-Strauss process with parameters sampled in the intervals
µ ∈ (4.5, 6), σ2 ∈ (0, 4), s ∈ (0.001, 0.1), γ ∈ (0, 1), and R ∈ (0, 0.05). For jus-
tification of the number of simulations in the training data see Appendix A.1.
I made further 5,000 simulations for a test set for which I estimated the pa-
rameters with the neural network approach. The simulation of LGCP-Strauss
processes which I used involves Markov chains, and a shared burnin for all
simulations was chosen based on trace plots of the number of points and R-
close pairs for certain combinations of the parameters believed to require the
most iterations. Based on this, I used 200,000 iterations of the Markov chain.

Regarding estimating the parameters of an LGCP-Strauss process Vihrs
et al. (2022) noted that the usual methods for estimating parameters in point
process models are intractable for this model and thus used ABC. I therefore
compare the estimates obtained with the neural network approach to approx-
imate posterior means obtained with an ABC technique. Specifically, I used
the method of ABC via random forests as implemented in the R-package
abcrf version 1.8.1 (Marin et al., 2019). In short, this method trains a re-
gression random forest on a reference table consisting of chosen summary
statistics calculated for a number of prior predictions with the aim of pre-
dicting posterior expectations, variances and quantiles for a parameter. A
regression random forest consists of a number of regression trees trained on
bootstrap samples of the training data. In each regression tree the input is
subjected to a number of binary decision rules after which a leaf of the tree
will be reached. The prediction made by this regression tree is then the mean
of the response variables from its training data which are associated to this
leaf. The prediction of the random forest is then the mean of the predictions
from each individual tree. I refer to Raynal et al. (2019) for more details about
ABC via random forests.
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In this paper, I am only interested in the approximate posterior means
obtained with ABC via random forests, and these are the predictions of the
parameters made by trained random forests. The approach is thus quite
similar to the neural network approach except that the training data is used to
train random forests instead of a neural network. As recommended in Raynal
et al. (2019), I trained an independent random forest for each parameter, and
the parameters are thus estimated separately instead of simultaneously as
with the neural network approach. I used random forests with 500 trees (the
default in abcrf) and made the check recommended in Raynal et al. (2019) for
whether this was sufficient. As a reference table, I used the same training data
as for the neural network since both methods are based on machine learning
techniques and I wanted to compare their performance when given the exact
same information; for the same reason I did not investigate whether the ABC
technique would benefit from more simulations in the training data. So in
the ABC approach, the independent uniform distributions used to sample
the parameters for the training data serve as prior distributions.

The estimates obtained with the neural network approach and the pos-
terior means obtained with ABC via random forests are plotted against the
true parameter values in Figures 10–11. Figure 12 shows boxplots of the
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Fig. 10: Estimated parameters obtained with the neural network approach plotted against true
parameters in an LGCP-Strauss process. The parameter is stated at the top of each plot. The
solid gray line is the identity line.
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Fig. 11: Approximate posterior means obtained with ABC via random forests plotted against
true parameters in an LGCP-Strauss process. The parameter is stated at the top of each plot. The
solid gray line is the identity line.

errors where some cases are omitted in the plots for s, γ, and R due to ar-
guments similar to those in Sections 3.1 and 3.2. The results obtained with
the two methods are very similar, except that the neural network approach
performs slightly better for µ and σ2 near the endpoints of the considered
intervals. It is apparently easiest to estimate γ and R, which are recovered
very well except that there is again a tendency to underestimate γ when the
true value is high and to overestimate R when the true value is small. The
estimate for s is again best when the true value is small. There is a tendency
for overestimating σ2 unless the true value is above circa 3 in which case
it is usually underestimated. Vihrs et al. (2022) also found it to be difficult
to make inference about the parameters of the Gaussian random field in an
LGCP-Strauss process and related it to the fact that it can be difficult to see
the effect of changes in the Gaussian random field from a realization of the
process because it is obscured by the small scale regularity.

The LGCP-Strauss process models quite complex behaviour in point pat-
terns, so I do not think it is appropriate to fit it to point patterns with few
points. I therefore do not consider a second simulation study focusing on
point patterns with few points as I did in Sections 3.1–3.2.
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Fig. 12: Boxplot of the errors (estimated minus true value) for the parameter of an LGCP-Strauss
process stated at the top of each plot. The estimates were obtained with an ABC technique (light
gray) and the neural network approach (dark gray), respectively. For the parameters s, γ, and R,
cases where σ2 > 1, R < 0.01 and γ > 0.7, respectively, were omitted.

3.4 Some remarks about speed

The purpose of this section is to give an idea of how time consuming the
neural network approach is even though this will of course depend heavily
on implementation, software, the data a model should be fitted to etc. All the
below timings were made using just a single core, but some of the calculations
can also be run in parallel.

In the situations in Sections 3.1–3.3, it took about 5.4, 17, and 115 min-
utes, respectively, to make the training data and 2.6, 1.5, and 9.7 minutes,
respectively, to train the neural network. The most time consuming part of
the procedure is to make the training data, especially to make the simula-
tions. However, the process of making simulations and calculating summary
statistics can easily be parallelized if multiple cores are available. I also rec-
ommend to always take the extra time to make a test data set which can be
used to asses the performance of the method in a given situation. After the
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network was trained, it took about 1 second in all three cases to fit the point
process model to the 5,000 simulations in the test data.

With the method of minimum contrast estimation it took about 100.8 min-
utes to fit LGCP models to the 5,000 simulations in the test data in Section 3.1,
and it thus took 1.21 seconds on average to fit one model; with the method
of profile maximum pseudo likelihood estimation it took about 154 minutes
to fit Strauss process models to the 5,000 simulations in the test data in Sec-
tion 3.2, and it thus took 1.85 seconds on average to fit one model (these
timings of course depend heavily on how many values of the parameter R
one considers). When fitting a single model, it is thus much faster to use min-
imum contrast estimation or profile maximum pseudo likelihood estimation
than to use the neural network approach. However, after the neural network
has been trained, it can be used to fit the spatial point process model to mul-
tiple point patterns as long as they are well represented in the training data,
and this can be done very fast. If a model is to be fitted to multiple point pat-
terns and it is possible to train a neural network which is suitable for all these
cases, the neural network approach can be faster. With the ABC method in
Section 3.3 it took about 93.4 minutes to fit the random forest objects and 34
minutes to make the predictions which include predictions of the posterior
means. The ABC procedure also needs the time for making the training data.
Thus, the neural network approach was faster in this case, but it is possible
to use parallelization in the ABC method in order to speed it up.

4 Data example

The left panel in Figure 13 shows the part of the Allogony data set from the
R-package ads version 1.5-5 (Pélissier and Goreaud, 2015) which contains the
locations of 256 oak trees which suffer from frost shake in a 125 × 188 m
rectangular region of Allogny in France (this rectangular region is W). The
right panel shows L̂(r)− r together with a 95% global envelope for the null
hypothesis that data comes from a homogeneous Poisson process. Briefly, a
95% global envelope is a region for which the functional summary statistic
calculated from the observed data will fall completely within if and only if the
null hypothesis cannot be rejected at level approximately 5%. The envelope
was calculated from 2499 simulations (thereby following the recommended
number of simulations in Myllymäki et al. (2017)) of a homogeneous Poisson
process and based on the extreme rank length (see Myllymäki et al. (2017),
Mrkvička et al. (2020), Myllymäki and Mrkvička (2019) for more information
about global envelopes and the R-package GET (version 0.2-4), which I used
to calculate them). The plots indicate that the point pattern exhibit repulsive
behaviour at a small scale and some clustering at a larger scale. As an ex-
ample, I now show how the neural network approach can be used to fit an
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Fig. 13: Left: Point pattern of the locations of 256 oak trees which suffer from frost shake in a
125 × 188 m rectangular region of Allogny in France. Right: L̂(r)− r together with a 95% global
envelope calculated from 2499 simulations of a homogeneous Poisson process.

LGCP-Strauss process to this point pattern (an LGCP-Strauss process model
was previously fitted to this data in Vihrs et al. (2022)).

Regarding the ranges of parameters to use in the training data for the
neural network, I used γ ∈ (0, 0.7) and R ∈ (1, 5) since Figure 13 shows
clear evidence of repulsion in the observed point pattern and Vihrs et al.
(2022) noted that the interaction radius R is often near the r-value which
gives the smallest value of L̂(r)− r. For the parameters of the Gaussian ran-
dom field, I decided to use µ ∈ (−5.6,−3), σ2 ∈ (0, 2), and s ∈ (0.001, 15)
after having looked at some simulations of LGCP-Strauss processes. I then
used 40,000 simulations on W where the parameters were sampled uniformly
on the above intervals to construct the training data for the neural network
approach. Figure 14 shows a histogram of the number of points in the point
patterns in the training data and a 95% global envelope calculated from the
40,000 estimates of L(r) − r in the training data. The same summaries ob-
tained from the oak point pattern are also shown in the plots, where we see
that both the observed number of points and the behaviour of L̂(r) − r are
well represented in the training data, which is crucial in order to get reli-
able estimates with the neural network approach. A check like this may both
reveal if the intervals for the parameters have been chosen inappropriately
or if the considered class of model is ill-suited for fitting the observed point
pattern.

I also made 5,000 simulations for a test data set, and Figure 15 shows the
estimated parameters for these plotted against the true values. This shows
that in this situation µ, γ, and R are recovered well whereas there is more
uncertainty in the estimates of σ2 and s.
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Fig. 14: Left: Histogram of the number of points in the simulations in the training data where
the vertical dashed line indicates the number of points in the observed point pattern of oak trees.
Right: A 95% global envelope calculated from the 40,000 estimates of L(r)− r in the training data
(gray area), the mean (dashed curve) and L̂(r)− r obtained from the observed point pattern of
oak trees (solid curve).
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Fig. 15: Estimated parameters of the test data obtained with the neural network approach aimed
at fitting an LGCP-Strauss process to the oak point pattern plotted against true parameters. The
parameter is stated at the top of each plot.

When using the trained neural network to estimate the parameters for
the point pattern of oak trees, I got the estimates µ̂ = −4.54, σ̂2 = 0.32, ŝ =
10.93, γ̂ = 0.21, and R̂ = 1.91. The most popular way to validate a fitted
point process model is to consider global envelopes and corresponding tests
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calculated for some functional summary statistic. I did not want to use the
L-function for this global envelope and test since it plays a major part in the
estimating procedure. I therefore used the J-function given in (3) instead. I
used the non-parametric estimate Ĵ(r) = (1 − Ĝ)/(1 − F̂) where Ĝ and F̂ are
the so-called Kaplan-Meier estimators of G and F, which account for edge
effects, see Baddeley et al. (2015, Section 8.11.4) for how these estimators are
given. Regarding the considered range of r-values for Ĵ(r), the function Jest
from spatstat which is used to estimate J gives a recommendation, which I
have followed.

Figure 16 shows a 95% global envelope and the p-value of the correspond-
ing global envelope test based on the J-function and calculated from 2499
simulations under the fitted model. This indicates that the fitted model de-
scribes the point pattern of oak trees very well.
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Global envelope test: p = 0.77

Fig. 16: A 95% global envelope based on the J-function calculated from 2499 simulations under
the LGCP-Strauss process model fitted to the oak point pattern (gray area), the mean obtained
from the simulations (dashed curve), and the estimate calculated from the observed point pattern
(solid curve). The p-value of the corresponding global envelope test is stated at the top.

5 Discussion and future research

I have presented a method which is generally applicable to estimate parame-
ters in all spatial point process models which it is possible to simulate from.
The method recovers parameters well compared to common estimating tech-
niques since it gives either better or similar results. The advantages of the
method are that the only necessary information about the model is a tractable
simulation procedure and that all unknown parameters can be estimated si-
multaneously. The method is more time consuming than minimum contrast
estimation and profile maximum pseudo likelihood estimation when it comes
to fit a single model. However, the most time consuming part of the method
is to make training data and to train the neural network, so if it is possible
to train a neural network which can be reused to fit a model to many point
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patterns, the neural network approach can be faster than using minimum
contrast estimation or maximum pseudo likelihood estimation on each point
pattern. Compared to ABC, the neural network approach is also potentially
faster.

Future research may include how to use the neural network approach to
estimate parameters in inhomogeneous point process models which include
covariate information. It could also be interesting to explore the possibility
to pre-train large neural networks which could be applicable to a wide range
of point patterns which are often encountered in practice thereby obtaining a
very fast estimation procedure for such point patterns.
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A Details for the neural network approach

A.1 Training data

It is possible to get as much training data as desired since it is merely a
matter of making more simulations, but simulation procedures may be time
consuming. Figure 17 shows the mean squared errors obtained with the
neural network approach for test sets with 5,000 simulations in the situations
of the first simulation studies in Sections 3.1–3.3 plotted against the number
of simulations in the training data. The necessary number of simulations

0.200

0.225

0.250

0.275

0.300

0.325

4000 8000 12000

LGCP

0.22

0.23

0.24

0.25

0.26

2500 5000 7500 10000

Strauss

0.30

0.32

0.34

0.36

20000 40000 60000 80000

LGCP−Strauss

Number of simulations

M
ea

n 
sq

ua
re

d 
er

ro
r

Fig. 17: Mean squared errors calculated for test sets with 5,000 simulations for the situations of
the first simulation studies in Sections 3.1–3.3 as stated at the top plotted against the number of
simulations in the training data.
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depends on how complicated the model is. Based on Figure 17 I used 10,000
simulations in the case of an LGCP in Section 3.1; 5,000 simulations in the
case of a Strauss process in Section 3.2; and 40,000 simulations in the case of
an LGCP-Strauss process in Section 3.3.

Figure 18 shows histograms of the number of points in the training data
sets used for the first simulation studies in Sections 3.1–3.3.
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Fig. 18: Histogram of the number of points in the point patterns in the training data used in the
first simulation studies in Sections 3.1–3.3 as stated at the top of each plot. The light grey column
indicates the count of point patterns where the number of points is above 2000, the highest value
being 6116 and 6497 in the cases of the LGCP and LGCP-Strauss processes, respectively.

A.2 Network training

The unknown parameters of the neural network should be learned based on
the training data. This is done by minimizing a loss function with some op-
timization technique. I used the mean squared error as loss function and the
Adam optimizer (Kingma and Ba, 2014) for optimization. During training,
the training data was send through the network in smaller batches of size
100. An iteration over the entire training data is referred to as an epoch.
During training, I also monitored the mean squared error of a test set again
constructed from simulations of the point process model as described in Sec-
tion 2.2. The mean squared error of the test set was among other things used
to decide on the number of epochs where the choice in general fell on 20
epochs based on Figure 19, which also revealed that with the choices I made,
there is no apparent problem with overfitting.
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1. Introduction

Abstract

We present a new class of cluster point process models, which we call determinantal
shot noise Cox processes (DSNCP), with repulsion between cluster centres. They are
the special case of generalized shot noise Cox processes where the cluster centres are
determinantal point processes. We establish various moment results and describe how
these can be used to easily estimate unknown parameters in two particularly tractable
cases, namely when the offspring density is isotropic Gaussian and the kernel of the
determinantal point process of cluster centres is Gaussian or like in a scaled Ginibre
point process. Through a simulation study and the analysis of a real point pattern
data set we see that when modelling clustered point patterns, a much lower intensity
of cluster centres may be needed in DSNCP models as compared to shot noise Cox
processes.

1 Introduction

This paper studies a cluster point process model defined as follows. Let Y be
a simple locally finite point process defined on the d-dimensional Euclidean
space Rd; we can view Y as a random subset of Rd (for background material
on spatial point processes, see Møller and Waagepetersen (2004)). Assume
Y is stationary, that is, its distribution is invariant under translations in Rd.
Conditioned on Y, let X be a Poisson process on Rd with intensity function

ρ(x | Y) = γ ∑
y∈Y

kα(x − y), x ∈ Rd, (1)

where γ > 0 and α are parameters and kα is a probability density function
(pdf) on Rd; in our specific models α will play the role of a band width (a
positive scale parameter). We can identify X by a cluster process ∪y∈YXy
where conditioned on Y, the clusters Xy are independent finite Poisson pro-
cesses on Rd and Xy has intensity function ρy(x) = γkα(x − y) (depending
on the ‘offspring’ density kα relative to the cluster center y).

In the special case where Y is a stationary Poisson process, X is a shot
noise Cox process (SNCP), see Møller (2003). Then there may be a large
amount of overlap between the clusters unless the intensity of Y is small as
compared to the band width α. In this paper, we will instead be interested
in repulsive point process models for Y. This may be an advantage since
the repulsiveness of Y implies less overlap of clusters. Thereby it may be
easier to apply statistical methods for cluster detection, and when modelling
clustered point pattern data sets a much lower intensity of Y may be needed
as compared to the case of a SNCP. The idea of using a repulsive point process
Y is not new, where Van Lieshout and Baddeley (2002) suggested to use a
Markov point process. However, we are in particular interested in the case
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where Y is a stationary determinantal point process (DPP) in which case we
call X a determinantal shot noise Cox process (DSNCP). Briefly, a DPP is a model
with repulsion at all scales, cf. Lavancier et al. (2015), Møller and O’Reilly
(2021), and the references therein. There are several advantages of using a
DPP for Y: In contrast to a Markov point process, there is no need of MCMC
when simulating a DPP, and as we shall see Y and hence X possess nice
moment results, which can be used for estimation.

The cluster point process X given by (1) is a special case of a stationary
generalized shot noise Cox process (GSNCP), see Møller and Torrisi (2005),
and it may be extended as follows. Suppose X conditioned on both Y and
positive random variables {Γy}y∈Rd and {Ay}y∈Rd is a Poisson process with
intensity function

ρ(x | Y, {Γy}y∈Rd , {Ay}y∈Rd) = ∑
y∈Y

ΓykAy(x − y), x ∈ Rd,

where kAy is a pdf on Rd. In addition, assume that {Γy}y∈Rd , {Ay}y∈Rd , and
Y are mutually independent, the Γy are independent identically distributed
with mean γ and has finite variance, and the Ay are independent identically
distributed. Then X is still a stationary GSNCP and if also Y is a stationary
DPP we may call X a DGSNCP. In fact, all results and statistical methods
used in this paper will apply for the DGSNCP when kα is replaced by EkAy

in all expressions to follow. The DGSNCP may most naturally be treated in
a MCMC Bayesian setting using a similar approach as in Beraha et al. (2022)
and the references therein.

In the present paper, we study and exploit for statistical inference the
nice moment properties for various DSNCP models as follows. In Section 2
we describe further what it means that Y is a DPP and present two specific
cases of DSNCP models where we let kα be an isotropic Gaussian density as
in the Thomas process (Thomas, 1949), which is the most popular example
of a SNCP. Section 3 considers general results for so-called pair correlation
and K-functions for first the GSNCP model and second the DSNCP model.
Section 4 discusses how the results in Section 3 may be used when fitting a
parametric DSNCP model in a frequentist setting, and we illustrate this on
a real data example. In Section 5 we investigate the ability to distinguish
between DSNCPs and Thomas processes through a simulation study. Finally,
in Section 6 we summarize our results.

All statistical analyses were made with R (R Core Team, 2019), and all
plots were made using the package ggplot2 (Wickham, 2016).
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2 Determinantal shot noise Cox process models

In this section we consider the DSNCP model for X and suggest some specific
models. In brief, the DPP Y is specified by a so-called kernel which is usually
assumed to be a complex covariance function c(u, v) defined for all u, v ∈ Rd;
for details, see Appendix A. We assume Y is a stationary DPP with intensity
ρY > 0, meaning two things: First, if A ⊂ Rd is a bounded Borel set, Y(A)
denotes the cardinality of Y ∩ A, and |A| =

∫
A du is the Lebesgue measure

of A, then EY(A) = ρY|A| < ∞. Second, |c(u, v)| = |c(u − v, 0)| for all
u, v ∈ Rd where |s| denotes the modulus of a complex number s. We denote
the corresponding complex correlation function by r(u, v) = c(u, v)/ρY and
assume it depends on a correlation/scale parameter β > 0 so that r = rβ with

rβ(u, v) = r1(u/β, v/β). (2)

The correlation parameter β cannot vary independently of ρY since there
is a trade-off between intensity and repulsiveness in order to secure that a
DPP model is well defined (Lavancier et al., 2015). For instance, for many
DPP models rβ is real, continuous, and stationary, that is, rβ(u, v) = rβ,st(u −
v) where rβ,st : Rd → [−1, 1] is a continuous, symmetric, and positive semi-
definite function with rβ,st(0) = 1. Then, if rβ,st is square integrable and
has Fourier transform φβ(u) =

∫
rβ,st(v) cos(2πu · v)dv where · is the usual

inner product, the DPP is only well-defined for ρY sup φβ ≤ 1, cf. Lavancier
et al. (2015). In case of (2), this existence condition of the DPP means that
0 < β ≤ 1/(ρ1/d

Y sup φ1), where for a fixed value of ρY, most repulsiveness is
obtained when β = 1/(ρ1/d

Y sup φ1).
Consider the special case where Y is a jinc-like DPP, that is, d = 2 and

r(u, v) = J1(2
√

π∥u − v∥)/(
√

π∥u − v∥) where J1 is the first order Bessel
function of the first kind and ∥ · ∥ denotes usual distance. So, the distribution
of Y depends only on the intensity, and Y is a most repulsive DPP in the sense
of Lavancier et al. (2015), see also Biscio and Lavancier (2016) and Møller and
O’Reilly (2021). Christoffersen et al. (2021) used this special case of a DSNCP
model in a situation where a realization of X but not Y was observed within
a bounded region. They estimated ρY with a minimum contrast procedure
based on the pair correlation function (pcf) given by (5) in Section 3, where
the pcf had to be approximated by numerical methods. Instead we consider
more tractable cases, as we shall see in Section 3.

Note that X is stationary with intensity ρX = γρY. We will consider two
specific DSNCP models of X where we let kα be the pdf of Nd(0, α2 I), the
zero-mean isotropic d-dimensional normal distribution, and Y is given by
one of the following two DPPs.

1. If rβ(u, v) = exp
(
−∥(u − v)/β∥2) is the Gaussian correlation function,

then Y is a Gaussian DPP (Lavancier et al., 2015).
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2. If d = 2 and we identify R2 with the complex plane C, and if rβ(u, v) =
exp((uv − |u|2/2 − |v|2/2)/β2) where v and |v| denote the complex
conjugate and the modulus of the complex number v, then Y is a scaled
Ginibre point process (Deng et al. (2014), Miyoshi and Shirai (2016); Y
is the standard Ginibre point process (Ginibre, 1965) if ρY = 1/π and
β = 1).

Both these DPP models are well defined if and only if 0 < β ≤ 1/(ρ1/d
Y

√
π)

(Lavancier et al., 2015). For a fixed value of ρY, Y becomes in both cases less
and less repulsive as β decreases from 1/(ρ1/d

Y
√

π) to 0, where in the limit Y
is a stationary Poisson process and X is a Thomas process. Therefore, we call
X a Gaussian-DPP-Thomas process in the first case and a Ginibre-DPP-Thomas
process in the second case. In both cases, Y and hence also X are stationary
and isotropic, although rβ is only stationary when it is the Gaussian correla-
tion function (Appendix B.1 verifies that the distribution of a scaled Ginibre
point process Y is invariant under isometries).

The two first columns of plots in Figure 1 show simulated realizations
of a Ginibre-DPP-Thomas process and a Gaussian-DPP-Thomas process (see
Appendix C for some details about simulation procedures) within a 20 × 20
square region, where α = 1, ρX = 1 (so we expect to see about 400 points
in each simulated point pattern), and in the three rows of plots we have
β = 2, 3, 4 (from bottom to top). In each case, ρY = 1/(πβ2) is as large
as possible. For comparison, the third column of plots in Figure 1 shows
simulations of Thomas processes with the same values of (ρX , ρY) as for the
two first columns of plots. So, in each row the three processes have the same
expected number of clusters, the same expected cluster sizes, and the same
offspring density. For all processes, as β increases (that is, ρY decreases and
γ increases) we see that the point patterns look more clustered, since we get
less and less cluster centres but larger and larger clusters. We also see that the
eye detects less diffuse clusters in the DPP-Thomas processes compared to the
Thomas processes, which is in agreement with the fact that cluster centres are
repulsive in DPP-Thomas processes whereas they are completely random in
Thomas processes. From Figure 1 it can be difficult to make any conclusions
about the differences between Gaussian- and Ginibre-DPP-Thomas processes,
but we will make further comparisons between these in Sections 3–4.

3 Pair correlation and K-functions

3.1 The general setting of stationary GSNCPs

Consider again the general setting in Section 1 of a stationary GSNCP. Hence-
forth we assume the stationary point process Y has pair correlation function
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β
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Gaussian−DPP−Thomas Ginibre−DPP−Thomas Thomas

β
=

3
β

=
2

Fig. 1: Simulations of Gaussian-DPP-Thomas processes, Ginibre-DPP-Thomas processes, and
Thomas processes (as stated at the top of each column) within a square with side lengths 20
when α = 1, ρX = 1, β = 2, 3, 4 (stated to the left of each row), and ρY = 1/(πβ2) in all
processes. Note that β is not a parameter of the Thomas process and is thus only used to
calculate ρY in this case.

(pcf) gY. This means that if A, B ⊂ Rd are disjoint bounded Borel sets, then

E[Y(A)Y(B)] = ρ2
Y

∫
A

∫
B

gY(u, v)du dv < ∞.

By stationarity, gY(u, v) = gY,st(u − v) depends only on the lag u − v almost
surely (with respect to Lebesgue measure) and for ease of presentation we
can assume this is the case for all u, v ∈ Rd.

The stationary GSNCP X given by (1) has intensity ρX = γρY and a sta-
tionary pcf gX(u, v) = gX,st(x) where x = u − v and

gX,st(x) = kα ∗ k̃α ∗ gY,st(x) + kα ∗ k̃α(x)/ρY, x ∈ Rd, (3)
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where ∗ denotes convolution and k̃α(x) = kα(−x) is the reflection of kα, cf.
Møller and Torrisi (2005). Thus, gX decreases as ρY increases; this makes good
sense since ρY is the intensity of clusters and the first term in (3) corresponds
to pairs of points from different clusters whilst the second term is due to
pairs of points within a cluster. Furthermore, from (3) we obtain Ripley’s
K-function (Ripley, 1976, 1977)

K(r) =
∫
∥x∥≤r

gX,st(x)dx, r > 0,

which will be used in Section 4 for parameter estimation.
In the special case where Y is a stationary Poisson process (i.e., X is a

SNCP), we have gY = 1 and (3) reduces to gX,st = 1 + kα ∗ k̃α/ρY. Thus gX ≥
1 and gX , 1 which is usually interpreted as X being a model for clustering.
This is of course also the situation if gY ≥ 1. However, such models for
clustering may cause a large amount of overlap between the clusters unless
ρY is small as compared to the band width α.

3.2 The special setting of DSNCPs

When Y is a DPP and we let Rβ(y) = |rβ(y, 0)|2, we have

gY,st(y) = 1 − Rβ(y), y ∈ Rd, (4)

cf. Lavancier et al. (2015). Thus gY ≤ 1, which reflects that a DPP is repulsive.
From (3) and (4) we get

gX,st(x) = 1 − kα ∗ k̃α ∗ Rβ(x) + kα ∗ k̃α(x)/ρY, x ∈ Rd. (5)

This is in accordance to intuition: As Rβ increases, meaning that gY decreases
and hence that Y becomes more repulsive, it follows from (5) that gX de-
creases; and as the band width α tends to 0, we see that gX,st(x) tends to
gY,st(x) for every x ∈ Rd. Below, we let kα be the pdf of Nd(0, α2 I) and
consider the pcfs and K-functions in the special cases of Gaussian/Ginibre-
DPP-Thomas processes.

Let X be a Gaussian-DPP-Thomas process. Then Y is a Gaussian DPP and

Rβ(y) = exp
(
−2∥y/β∥2

)
, y ∈ Rd. (6)

Thus we obtain from (5) that gX,st(x) = gX,iso(∥x∥) is isotropic with

gX,iso(r) = 1 +
exp

(
− r2

4α2

)
(4πα2)

d/2
ρY

−

(
β2/2

)d/2 exp
(
− r2

4α2+β2/2

)
(4α2 + β2/2)d/2 , r > 0. (7)
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We have

gX,iso(r) ⪌ 1 ⇔ r2 ⪋

ln
(

ρY

(
2πα2β2

4α2+β2/2

)d/2
)

1
4α2+β2/2 − 1

4α2

, (8)

where

ln
(

ρY

(
2πα2β2

4α2+β2/2

)d/2
)

1
4α2+β2/2 − 1

4α2

> 0

since ρY ≤
(
πβ2)−d/2. Furthermore, if ωd denotes the volume of the d-

dimensional unit ball and Fd/2 is the CDF of a gamma distribution with shape
parameter d/2 and scale parameter 1, we obtain

K(r) = ωdrd +
1

ρY
Fd/2

(
r2

4α2

)
−
(

πβ2/2
)d/2

Fd/2

(
r2

4α2 + β2/2

)
, r > 0.

(9)
Let X be a Ginibre-DPP-Thomas process. Then Y is a scaled Ginibre point

process which has some similarity to the Gaussian-DPP, since β has the same
range in the two processes and

Rβ(y) = exp(−|y/β|2), y ∈ C, (10)

in the case of a scaled Ginibre point process. It thus follows from (4), (6), and
(10) that the pcfs of the scaled Ginibre point process and the Gaussian-DPP
are of the same form, but β2 in the scaled Ginibre point process corresponds
to β2/2 in the Gaussian-DPP. This shows that the scaled Ginibre point pro-
cess is more repulsive than the Gaussian-DPP when using the same param-
eters ρY and β, and therefore it will be possible to obtain a larger repulsion
between the clusters in a Ginibre-DPP-Thomas process than in a Gaussian-
DPP-Thomas process. In fact, if β = 1/

√
πρY when Y is a scaled Ginibre

point process, then Y is a most repulsive DPP in the sense of Lavancier et al.
(2015). Because β2 in the scaled Ginibre point process corresponds to β2/2 in
the Gaussian-DPP, (7)–(9) give that gX,st(x) = gX,iso(∥x∥) is isotropic with

gX,iso(r) = 1 +
exp

(
−r2/(4α2)

)
4πα2ρY

−
β2 exp

(
−r2/

(
4α2 + β2))

4α2 + β2 ,

gX,iso(r) ⪌ 1 ⇔ r2 ⪋
ln
(

ρY
4πα2β2

4α2+β2

)
1

4α2+β2 − 1
4α2

,

and

K(r) = πr2 +
1

ρY

(
1 − exp

(
− r2

4α2

))
− πβ2

(
1 − exp

(
− r2

4α + β2

))
.
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where r > 0.
Figure 2 shows plots of gX,iso(r) and K(r) − πr2 for Gaussian- and Gi-

nibre-DPP-Thomas processes for different values of β when ρY = 1/(πβ2)
corresponds to the most repulsive case and without loss of generality we let
α = 1. For comparison the plots also include the case of a Thomas process
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Fig. 2: Plots of gX,iso(r) (left) and K(r) − πr2 (right) for the Thomas process (black curves),
Gaussian-DPP-Thomas process (dark grey curves), and Ginibre-DPP-Thomas process (light grey
curves) when d = 2, α = 1, β = 2, 3, 4 (dotted, dashed, and solid curves, respectively), and
ρY = 1/(β2π). The plots also shows the constant lines corresponding to the cases of a stationary
Poisson process.

with the same values for γ and ρY. Note that K(r) − πr2 = 0 in case of a
planar stationary Poisson process, and the figure shows that as β increases,
the processes behave less and less like a planar stationary Poisson process.
The pair correlation functions in the cases of the DSNCP processes show an
increasing degree of clustering at small scales and regularity at larger scales
as β increases, whereas Ripley’s K-function only reveals an increasing degree
of clustering. We furthermore see that the Ginibre-DPP-Thomas processes
are overall more regular than the corresponding Gaussian-DPP-Thomas pro-
cesses, especially at larger scales, which again reflects that the cluster cen-
tres are more regular in the Ginibre-DPP-Thomas processes. The considered
Thomas processes are more clustered than the corresponding DSNCP pro-
cesses and show no signs of repulsive behaviour.

4 Statistical inference

Suppose d = 2, W ⊂ R2 is a bounded observation window, X ∩ W =
{x1, . . . , xn} is a point pattern data set, and we want to fit a parametric
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DSNCP model given by either the Gaussian-DPP-Thomas or Ginibre-DPP-
Thomas process. There is a trade-off between ρY and γ because of the re-
lation ρX = γρY. Therefore, when modelling the data, we choose to let
ρY = 1/(πβ2), which means that Y will be as repulsive as possible. That is,
γ > 0 and θ = (α, β) ∈ (0, ∞)2 are the unknown parameters.

4.1 Estimation

Likelihood based inference is complicated because of the unobserved process
of cluster centres.
Møller and Waagepetersen (2004) showed how a missing data MCMC ap-
proach can be used for maximum likelihood estimation in the special case of
the Thomas process, and it may be simpler but still rather complicated to use
a MCMC Bayesian setting along similar lines as in Beraha et al. (2022). We
propose instead to exploit the parametric expressions of the intensity and of
the pcf or K-function given in Section 3.2 when estimating γ and θ. In this pa-
per, we use a minimum contrast procedure and leave it for future research to
investigate the alternative approaches of composite likelihood (Guan, 2006)
and Palm likelihood (Tanaka et al., 2008) using the expressions of ρX and
gX,st, see the review in Møller and Waagepetersen (2017) and the references
therein.

Specifically, we use a minimum contrast procedure for estimating θ, where
it is preferable to consider Ripley’s K-function, since it is easier to estimate
K than gX,st by non-parametric methods, see e.g. Møller and Waagepetersen
(2004). Since K does not depend on γ, we need to estimate γ separately.
Writing K = Kθ to stress the dependence of θ and K̂ for a non-parametric
estimate based on {x1, . . . , xn}, the minimum contrast estimate of θ is given
by

θ̂ = arg min
θ

{∫ rmax

rmin

|K̂(r)q − Kθ(r)q|p dr
}

where we use the R-package spatstat (Baddeley et al., 2015) for calculating
K̂ and the minimum contrast estimate by using default settings for the choice
of rmin, rmax, q, and p. Finally, having estimated θ, we estimate γ from the
unbiased estimation equation ρX = γ/(πβ2) = γρY = n/|W|.

4.2 Model checking

When checking a fitted model, we prefer to use other functional summary
statistics than K̂ since this was used as part of the estimation procedure. The
standard is to consider empirical estimates of theoretical functions known
as the empty space function (or spherical contact function) F, the nearest-
neighbour function G, and the J-function, which are defined for a stationary
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point process X as follows. Consider any number r > 0 and an arbitrary
point u ∈ Rd. Then,

F(r) = P(dist(X, u) ≤ r),

G(r) = P(dist(X \ {u}, u) ≤ r | u ∈ X),

J(r) = (1 − G(r))/(1 − F(r)).

Here J is only defined for F(r) < 1, dist(X, u) = inf{r > 0 | b(u, r) ∩ X , ∅}
is the distance from u to X, and in the definition of G when conditioning
on u ∈ X it means that X \ {u} follows the reduced Palm distribution of
X at u, see e.g. Møller and Waagepetersen (2004). Since X is stationary, the
definitions of F, G, and J do not depend on the choice of u.

We have not been able to derive the expressions of F, G, and J for Gaus-
sian- and Ginibre-DPP-Thomas processes; to the best of our knowledge, these
expressions are not even known for a Thomas process. We refer to empirical
estimates of these theoretical functions as functional summary statistics and
use the relevant functions in spatstat to calculate such non-parametric es-
timates (always using the default settings including settings which account
for boundary effects). Figure 3 concerns means of non-parametric estimates
F̂, Ĝ, and Ĵ calculated from simulations of Thomas processes, Ginibre-DPP-
Thomas processes and Gaussian-DPP-Thomas processes for the parameters
stated in the caption. In agreement with Figure 2 the plots show an increas-
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Fig. 3: Means of F̂, Ĝ, and Ĵ calculated from 500 simulations of Thomas processes (black curves),
Gaussian-DPP-Thomas processes (dark grey curves), and Ginibre-DPP-Thomas processes (light
grey curves) on a square with side lengths 20. In all types of processes, α = 1, β = 2, 3, 4 (dotted,
dashed, and solid curves, respectively), ρY = 1/(πβ2), and γ = 1/ρY . Note that β is not a
parameter of the Thomas process and is thus only used to calculate ρY in this case.
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ing degree of clustering as β increases and that the Thomas processes are
more clustered than the corresponding DSNCP processes. The plots also
indicate that the Gaussian-DPP-Thomas processes are more clustered and
exhibit more empty space than the corresponding Ginibre-DPP-Thomas pro-
cesses, and the difference becomes more apparent as β decreases.

In order to validate a fitted model, we use 95% global envelopes and
global envelope tests based on the extreme rank length as described in Myl-
lymäki et al. (2017), Mrkvička et al. (2020), and Myllymäki and Mrkvička
(2019), which is implemented in the R-package GET (Myllymäki and Mrkvička,
2019). These envelopes are based on functional summary statistics calculated
from a number of simulations under the fitted model. We use 2499 simula-
tions as recommended in the above references.

4.3 An application example

The first point pattern in Figure 4 shows the positions of 448 white oak
trees in a square region (scaled to a unit square) of Lansing Woods, Clin-
ton County, Michigan USA, which is part of the lansing data set which is
available in spatstat. We will refer to this point pattern as xobs. By using

Xobs Gaussian−DPP−Thomas Ginibre−DPP−Thomas Thomas

Fig. 4: Plots of the whiteoak point pattern (xobs) and a simulation from fitted models of the type
stated at the top of each plot.

the method of minimum contrast estimation as described in Section 4.1, we
fitted a Gaussian-DPP-Thomas process, Ginibre-DPP-Thomas process, and
Thomas process to xobs. The obtained estimates are given in Table 1. We see

Model β ρY γ α

Gaussian-DPP-Thomas 0.05 105.36 4.25 0.03
Ginibre-DPP-Thomas 0.09 35.32 12.68 0.05
Thomas - 204.11 2.19 0.03

Table 1: Estimated parameters when fitting models to xobs. Note that the Thomas process does
not have the parameter β.
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that the fitted DPP-Thomas processes expect much fewer clusters than the
Thomas process and thus also more points in each cluster. As we expected,
the fitted Ginibre-DPP-Thomas process is the one which expects the fewest
clusters. Because of its expected 35 clusters with about 12 points on average
in each it also seems to be a more sensible cluster process model than the
other processes, which have many clusters with only a few points in each
cluster. Figure 4 also shows a realization of each fitted model. The behaviour
of these realizations are apparently in good agreement with xobs. In order
to check whether the models fit to data, we made 95% global envelope tests
as described in Section 4.2. Figure 5 shows the results, which indicate that
all three models fit well, but the Ginibre-DPP-Thomas process has a much
higher p-value than the other two processes.
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Fig. 5: Plots of 95% global envelopes (grey area) and tests (p-value stated above each plot)
based on Ĵ(r) from 2499 simulations from the fitted model stated to the left of each plot. The
solid curves show Ĵ for Xobs, and the dashed curves show the mean of Ĵ calculated from the
simulations.

In connection with this paper we considered over 100 examples of point
pattern data sets and found 20 point patterns which the considered DSNCP
models describe well, including the application example in this section. For
all of these we also found that the Thomas process fits well, but that the fitted
Thomas process models expected more clusters than the corresponding fitted
DSNCP models. Thus the situation exemplified in this section where all three
of the considered models can be used to model data but the DSNCP models
expect fewer clusters appears to be a typical situation.

5 Simulation study

Section 4.3 suggests that it may be difficult to distinguish between real-
izations of Thomas, Gaussian-DPP-Thomas, and Ginibre-DPP-Thomas pro-
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cesses. To investigate this further, we in this section describe a simulation
study where we considered the parameters ρY = 10, 30, 50, γ = 10, 30, 50,
and α = 0.03, 0.04, 0.05 for the three considered cluster point process models
(in the DPP-Thomas processes we as always used the relation ρY = 1/(πβ2)
or equivalently β =

√
1/(πρY)). The values of α are like those in Table 1,

and the values of ρY and γ are like those from the fitted Ginibre-DPP-Thomas
process in Table 1. For each combination of parameters and each model we
made 100 simulations on a unit square. For each of these simulations, we fit-
ted the two models which were not the true one and made a global envelope
test as described in Section 4.3 for validating the fitted models. Since this
simulation study is time consuming, we only used 1999 simulations to calcu-
late each global envelope test in order to save some time, but this is still in
agreement with the recommendations regarding the number of simulations
in global envelope tests.

Table 2 shows the proportion of tests which yielded a p-value below 0.05
for each combination of parameters, true model, and fitted model. We over-
all see that in order to distinguish between the models, the ideal situation is
when γ is large and α is small, meaning that the realization consists of small
clusters with many points in each. Overall, it also seems to be an advantage if
there is a moderate number of clusters since the rejection rates are generally
higher when ρY = 30, especially for small α. It appears to be most diffi-
cult to distinguish between the Gaussian-DPP-Thomas process and the two
remaining processes, especially the Thomas process, whereas it is easier to
distinguish between Thomas and Ginibre-DPP-Thomas processes. Figure 6
shows a realization under each model with parameters α = 0.03, γ = 50, and
ρY = 30, which the simulation study suggests is a good situation when it
comes to distinguishing between the models.

Gaussian−DPP−Thomas Ginibre−DPP−Thomas Thomas

Fig. 6: Simulation of a realization under the model stated at the top with parameters α = 0.03,
γ = 50, and ρY = 1/(πβ2) = 30.
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ρY = 10 ρY = 30 ρY = 50

Fitted
model: α

γ
10 30 50 10 30 50 10 30 50

True model is a Ginibre-DPP-Thomas process
0.03 0.02 0.35 0.37 0.05 0.56 0.79 0.06 0.26 0.52

Thomas 0.04 0.03 0.11 0.30 0.02 0.06 0.22 0.05 0.06 0.00
0.05 0.01 0.09 0.20 0.02 0.01 0.01 0.03 0.01 0.03
0.03 0.02 0.09 0.14 0.02 0.33 0.55 0.05 0.33 0.51

Gaussian 0.04 0.06 0.09 0.10 0.02 0.11 0.24 0.04 0.10 0.06
0.05 0.02 0.05 0.18 0.05 0.03 0.05 0.03 0.02 0.02

True model is a Gaussian-DPP-Thomas process
0.03 0.02 0.17 0.22 0.03 0.20 0.19 0.07 0.09 0.13

Thomas 0.04 0.02 0.06 0.09 0.04 0.02 0.05 0.02 0.04 0.02
0.05 0.02 0.06 0.10 0.03 0.01 0.00 0.01 0.03 0.04
0.03 0.02 0.10 0.08 0.18 0.31 0.44 0.21 0.35 0.44

Ginibre 0.04 0.03 0.07 0.10 0.09 0.15 0.15 0.04 0.14 0.15
0.05 0.04 0.06 0.06 0.05 0.03 0.02 0.04 0.02 0.07

True model is a Thomas process
0.03 0.08 0.19 0.25 0.25 0.45 0.60 0.19 0.48 0.56

Ginibre 0.04 0.06 0.11 0.12 0.07 0.15 0.18 0.06 0.09 0.08
0.05 0.03 0.05 0.05 0.03 0.06 0.10 0.02 0.05 0.02
0.03 0.02 0.08 0.06 0.06 0.07 0.15 0.08 0.08 0.19

Gaussian 0.04 0.03 0.07 0.04 0.06 0.06 0.06 0.04 0.06 0.04
0.05 0.02 0.04 0.01 0.05 0.02 0.03 0.02 0.04 0.05

Table 2: Table of the proportion of global envelope tests in the simulation study for for which
the p-value was below 0.05. Concerning the column with the fitted model, for short the models
Thomas process, Gaussian-DPP-Thomas process, and Ginibre-DPP-Thomas process are written
as Thomas, Gaussian, and Ginibre, respectively.

We also used this simulation study to investigate the apparent tendency
for fitted Thomas processes to expect more clusters than fitted DPP-Thomas
processes. Table 3 shows the mean of the fitted value of ρY divided by the
value of ρY in the true model for each combination of parameters, model,
and fitted model. We see that when the true model is a DPP-Thomas process,
the fitted Thomas processes expect more clusters than the true model, espe-
cially when the true model is a Ginibre-DPP-Thomas process; this behaviour
gets more extreme as α and ρY increases. This is also the behaviour of the
fitted Gaussian-DPP-Thomas processes when the true model is a Ginibre-
DPP-Thomas process, although it is not as extreme as for the fitted Thomas
processes. If the true model is a Thomas process, we similarly see that the
fitted DPP-Thomas processes expect fewer clusters than the true model, espe-
cially the Ginibre-DPP-Thomas process; this behaviour gets more extreme as
ρY increases, whereas in this case it seems that α has only little influence on
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ρY = 10 ρY = 30 ρY = 50

Fitted
model: α

γ
10 30 50 10 30 50 10 30 50

True model is a Ginibre-DPP-Thomas process
0.03 1.92 1.85 1.84 2.83 2.77 2.78 3.71 3.55 3.54

Thomas 0.04 2.10 2.10 2.08 3.78 3.52 3.65 5.11 4.71 4.85
0.05 2.50 2.23 2.54 4.93 4.66 4.32 6.73 6.50 6.68
0.03 1.26 1.22 1.22 1.60 1.57 1.57 1.98 1.91 1.90

Gaussian 0.04 1.32 1.32 1.31 2.03 1.89 1.96 2.63 2.41 2.50
0.05 1.49 1.35 1.51 2.55 2.42 2.25 3.41 3.29 3.38

True model is a Gaussian-DPP-Thomas process
0.03 1.52 1.59 1.71 1.89 1.93 1.81 2.03 2.02 2.04

Thomas 0.04 1.72 1.73 1.61 2.00 2.01 2.12 2.41 2.19 2.17
0.05 1.87 1.95 1.98 2.41 2.36 2.18 2.31 2.49 2.45
0.03 0.85 0.89 0.93 0.70 0.71 0.67 0.59 0.59 0.59

Ginibre 0.04 0.85 0.86 0.81 0.61 0.61 0.63 0.55 0.51 0.52
0.05 0.83 0.86 0.87 0.62 0.60 0.57 0.45 0.49 0.49

True model is a Thomas process
0.03 0.70 0.65 0.64 0.44 0.45 0.43 0.37 0.38 0.38

Ginibre 0.04 0.66 0.59 0.64 0.44 0.42 0.43 0.34 0.34 0.35
0.05 0.59 0.59 0.61 0.38 0.40 0.40 0.33 0.31 0.33
0.03 0.83 0.77 0.75 0.65 0.67 0.62 0.62 0.64 0.64

Gaussian 0.04 0.81 0.72 0.78 0.71 0.66 0.69 0.64 0.65 0.66
0.05 0.76 0.76 0.78 0.67 0.71 0.70 0.69 0.64 0.68

Table 3: Table of the mean of the fitted value of ρY divided by the value of ρY in the true model.
Concerning the column with the fitted model, for short the models Thomas process, Gaussian-
DPP-Thomas process, and Ginibre-DPP-Thomas process are written as Thomas, Gaussian, and
Ginibre, respectively.

this behaviour. This is also the behaviour of the fitted Ginibre-DPP-Thomas
processes when the true model is a Gaussian-DPP-Thomas process. The pa-
rameter γ in the true model has no apparent effect on the expected number
of clusters in the fitted models.

6 Conclusion

We have presented the new class of cluster point process models called deter-
minantal shot noise Cox processes which have repulsion between cluster cen-
tres. For the two special cases which we have called Gaussian-DPP-Thomas
processes and Ginibre-DPP-Thomas processes we have derived closed form
expressions for the pair correlation function and Ripley’s K-function. The
ability to actually derive such closed form parametric expressions for these
theoretical summary functions is a huge advantage compared to using Mar-
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kov point processes for the cluster centres, which has previously been done
for cluster point processes with repulsion between clusters, since easy and
fast parameter estimation can then be achieved with the method of mini-
mum contrast estimation or other methods based on the pair correlation or
K-function, cf. Section 4.1.

We have seen that the fitted DPP-Thomas process models in Sections 4.3
and 5 expect much fewer clusters than a Thomas process and thus they also
expect much more points in each cluster, especially the Ginibre-DPP-Thomas
model. In many situations it will be intuitively more pleasing to fit a cluster
point process with few clusters consisting of many points compared to many
clusters consisting of very few points. We have also seen through a simulation
study that the ideal situation for distinguishing between the considered three
types of cluster point process models is if the realization has small clusters
with many points in each.
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A Definition of a DPP and some properties

Let Y be a simple point process defined on Rd and c be a complex function
defined on Rd × Rd so that for every integer n > 0 and pairwise disjoint
bounded Borel sets A1, . . . , An ⊂ Rd, we have

E [Y(A1) · · ·Y(An)] =
∫

A1

· · ·
∫

An
det{c(ui, uj)}i,j=1,...,n du1 · · · dun < ∞

where det{c(ui, uj)}i,j=1,...,n is the determinant of the n × n matrix with ij’th
entry c(ui, uj). Then Macchi (1975) defined Y to be a DPP with kernel c. Note
that Y must be locally finite and the function

ρ(n)(u1, . . . , un) = det{c(ui, uj)}i,j=1,...,n (11)

is the so-called n’th order intensity function ρ(n) of Y.
In fact for the DPP Y, its distribution is unique and completely character-

ized by the intensity functions of all order, cf. Lemma 4.2.6 in Hough et al.
(2009). Thus stationarity of Y is equivalent to that ρ(n)(u1, . . . , un) = ρ(n)(u1 +
v, . . . , un + v) for all v ∈ Rd and (Lebesgue almost) all u1, . . . , un ∈ Rd, and
isotropy of Y means that ρ(n)(u1, . . . , un) = ρ(n)(Ou1, . . . ,Oun) for all n × n
rotations matrices O and (Lebesgue almost) all u1, . . . , un ∈ Rd.

202



B. Some results for the scaled Ginibre point processes

For later use, consider any numbers β > 0 and 0 ≤ p ≤ 1, and the scaled
point process βY = {βy | y ∈ Y}. Let Yβ,p be an independent p-thinning of
βY (that is, the points in βY are independently retained with probability p
and Yβ,p consists of those retained points). It is easily seen that Yβ,p is a DPP
with kernel

cβ,p(u, v) = (p/β)dc(u/β, v/β). (12)

B Some results for the scaled Ginibre point pro-
cesses

In the following assume d = 2 and Y is a standard Ginibre point process as
defined in Section 2, so we identify R2 with the complex plane C. Let Yβ,p be
as above and let λ = ρYβ,p be its intensity. By (12), Yβ,p is the DPP with kernel

cβ,p(u, v) = λ exp((uv − |u|2/2 − |v|2/2)/β2), u, v ∈ C,

and λ = (p/β)2/π. In Section 2 we used the variation dependent parame-
trization (ρYβ,p , β), which is in one-to-one correspondence to (β, p). For the
following it is convenient to let ν = p2 and use the variation independent
parametrization (ν, λ) ∈ (0, 1]× (0, ∞), which is also in one-to-one correspon-
dence to (β, p). Using this parametrization, with a slight abuse of notation
we write Yν,λ for the DPP Yβ,p and

cν,λ(u, v) = λ exp
(
(λπ/ν)(uv − |u|2/2 − |v|2/2)

)
(13)

for its kernel.

B.1 Invariance under isometries

Below we show that the n’th order intensity function is invariant under trans-
lations and rotations, and therefore Y is stationary and isotropic. In the same
way, it can be shown that ρ(n) is invariant under reflections and glide reflec-
tions. So the distribution of Y is invariant under isometries (mappings of the
form z → az + b and z → az̄ + b where a, b ∈ C with |a| = 1; these mappings
correspond to translations, rotations, reflections, and glide reflections).

Denote Sn the set of all permutations of {1, 2, . . . , n} and sgn(σ) the sign
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of a permutation σ ∈ Sn. From (11) and (13) we get

ρ(n)(u1, . . . , un) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

cν,λ(ui, uσ(i))

= λn ∑
σ∈Sn

sgn(σ) exp

(
(λπ/ν)

n

∑
i=1

(
uiuσ(i) − |ui|2/2 − |uσ(i)|2/2

))

= λn ∑
σ∈Sn

sgn(σ) exp

(
(λπ/ν)

n

∑
i=1

(
uiuσ(i) − |ui|2

))
.

Hence, for any a, b, u1, . . . , un, a straightforward calculation gives

ρ(n)(au1 + b, . . . , aun + b) = ρ(n)(u1, . . . , un),

so ρ(n) is invariant under translations and rotations.

B.2 Spectral decompositions

Spectral representations of the kernel restricted to compact regions are need-
ed for simulation as well as other purposes, cf. Lavancier et al. (2015). The
simplest case occurs when we consider Yν,λ restricted to a closed disc around
zero. So for r > 0, let b(0, r) ⊂ C be the closed disk around zero with radius
r ∈ (0, ∞) and Yν,λ,r = Yν,λ ∩ b(0, r) the restriction of Yν,λ to b(0, r). Because
Yν,λ is a DPP, Yν,λ,r is a DPP with kernel

cν,λ,r(u, v) =

{
cν,λ(u, v) if (u, v) ∈ b(0, r),
0 otherwise.

The integral operator corresponding to the kernel cν,λ has only one eigen-
value, namely ν, and the eigenfunctions are

ϕi
ν,λ(u) =

√
λ(λπ)(i−1)/2√
(i − 1)!νi

exp(−λπ|u|2/(2ν))ui−1, u ∈ C, i = 1, 2, . . . .

This follows easily by exploiting the moment properties of two independent
zero-mean complex normally distributed random variables and the defini-
tion of the complex exponential function (exp(z) = ∑∞

k=0 zk/k! for z ∈ C)
for the term exp((λπ/ν)uv) in (13). In other words, we have the spectral
representation

cν,λ(u, v) =
∞

∑
i=1

νϕi
ν,λ(u)ϕ

i
ν,λ(v).

Similarly, we see that the integral operator corresponding to cν,λ,r has eigen-
functions

ϕi
ν,λ,r(u) = ϕi

ν,λ(z)/
√

Fi(λπr2/ν), u ∈ b(0, r), i = 1, 2, . . . ,
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with corresponding eigenvalues

ξ i
ν,λ,r = νFi(λπr2/ν), i = 1, 2, . . . , (14)

and the spectral representation is

cν,λ,r(u, v) =
∞

∑
i=1

ξ i
ν,λ,rϕi

ν,λ,r(u)ϕ
i
ν,λ,r(v).

C Simulation procedures

For simulating determinantal point processes, we use the algorithm described
in Lavancier et al. (2015) which is a specific case of the simulation algorithm
of Hough et al. (2006). We refer to these references for specific details. The
algorithm is implemented in spatstat for the models suggested in Lavancier
et al. (2015), which include Gaussian DPPs. For these models, it is necessary
to approximate the kernel because the spectral representation is unknown.
In the case of a scaled Ginibre point process, this approximation is however
unnecessary for simulating it on a disc because the spectral representation is
known, see Appendix B.2. The simulation is still only approximate because
the procedure also involves other approximations including approximating
the upper bound for rejection sampling chosen in Lavancier et al. (2015) (an
approximation which is in fact not necessary for the models they consider
since the expression simplifies in those cases). For simulating a scaled Ginibre
point process on a window W, we thus use the spectral representation on a
disc to simulate the process on b(0, r) ⊇ W and thereafter extract the part
which is in W.

For simulating DPP-Thomas processes on a window W, we first simulate
the DPP Yext obtained by restricting Y to an extended window in order to
account for boundary effects. Regarding the extension, we decided to use
the default setting from the function rThomas in spatstat which simulates
a Thomas process. Given the cluster centers Yext on the extended window,
we simulate the clusters of the DPP-Thomas process X independently as fi-
nite Poisson processes with intensity functions ρy(x) = γKα(x − y) for each
y ∈ Yext. That is, first simulate the number of points ny in a cluster Xy
centered at y ∈ Y from a Poisson distribution with rate γ. Then sample
the ny independent points in Xy from the d-dimensional normal distribution
Nd(y, α2 I). Finally, the simulation of X on W is the part of ∪y∈YXy which
falls in W.
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