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Abstract

This thesis is concerned with the problem of designing a safe model-free
control solution that provides optimal pressure management to Water Distri-
bution Networks (WDNs) with elevated reservoirs.
Optimal pressure management can mitigate pipe bursts. Thus, reducing the
amount of lost water and the implicit repair cost. The deployment of optimal
controllers in industry shows promising results. However, their implementa-
tion requires a system model that includes network dynamics and consump-
tion demands. Building and maintaining such a model requires qualified
personnel. This factor significantly increases the costs, and impedes the pro-
liferation of advanced control solutions in small utilities.
This project’s objective is to improve the accessibility of optimal control solu-
tions to water utilities, especially to small-medium-size utilities with a limited
budget. A Reinforcement Learning (RL) controller is proposed to gradually
adapt to the deployed system for optimising the pressure without knowing
the system dynamics, only by observing the measured data. Additionally,
other management objectives are considered in the controller design, such
as smoothness of the pump actuation or quality of the supplied water. The
learned policy consists of a linear controller that is derived from the Q-value
function. The structure of the Q-value function is built with a polynomial
approximation that is suitable for a nominal linear system and a quadratic
cost function. This formulation aims to simplify the learning of such function
and to increase the interpretability of the control solution. The performance
of data-driven methods relies on the quality of the collected data and ap-
proximation structure. This project proposes two solutions to improve the
learning robustness when identification is performed under poor experimen-
tal conditions.
WDNs are critical infrastructures, and their operation is essential for soci-
ety. Therefore, the management must provide a robust and continuous sup-
ply. This project develops a solution for safe exploration. The RL controller
searches for the optimal solution within a predefined safe area, and if a pre-
dicted system trajectory violates the safety limits, a policy supervisor over-
rules the control input.
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A modular laboratory setup is built that emulates, on a small scale, the be-
haviour of different water infrastructures. The developed solutions are val-
idated in a testbed that reproduces a WDN with an elevated reservoir. The
laboratory results emphasise the strengths and limitations of the designed
methods, thus showing the importance of a safe exploration when imple-
menting learning controllers.



Resumé

Denne afhandling beskæftiger sig med design af sikker modelfri kontrolløs-
ninger, til optimal trykstyring af Vanddistribution Netværk (WDN’er) med
højdebeholdere.
Optimal trykstyring kan afbøde rørbrud og således reducere mængden af
tabt vand og de medfølgende reparationsomkostninger. Udbredelsen af opti-
male controllere i industrien viser lovende resultater, men implementeringen
kræver systemmodeler, hvilket i vandforsyningen inkluderer netværksdy-
namik og forbrugskrav. Opbygning og vedligeholdelse af sådanne modeller
kræver kvalificeret personale, med øgede omkostningerne til følge, hvilket
vanskeliggør spredningen af avancerede kontrolløsninger i små forsynings-
selskaber.
Dette projekts mål er at lette adgangen til kontrolløsninger for forsyningerne,
især for de små- og mellemstore forsyninger med et reduceret budget. En
Reinforcement Learning (RL) controller foreslås. Denne RL-controller tilpasser
sig gradvist det system den er installeret i ved at observere de målte data.
Herved optimeres trykket uden at kende systemdynamikken. Derudover
tages andre driftsmål i betragtning i controllerdesignet, f.eks. jævnheden af
pumpeaktiveringen og kvaliteten af det tilførte vand. Den lærte styringsstrategi
består af en lineær controller, der er afledt af de såkaldte Q-value funktionen.
Strukturen af Q-value funktionen er polynomisk. Denne struktur egner sig
godt til et nominelt lineært system og en kvadratisk kostfunktion. Denne
formulering har til formål at forenkle indlæringen og at tolkbarheden af kon-
trolløsningen. Præstationen af datadrevne metoder afhænger af kvaliteten af
de indsamlede data og den underliggende modelstruktur, her polynomisk.
Dette projekt præsenterer to løsninger til at forbedre robusthed under læring,
når identifikation udføres under dårlig eksperimentelle betingelser.
WDN’er er kritiske infrastrukturer, og deres drift er afgørende for samfun-
det. Derfor skal ledelsen i vandforsyningerne sørge for en robust og kon-
tinuerlig drift. Dette projekt udvikler en løsning til sikker modelfri kontrol
også under træning. RL-controlleren søger efter den optimale løsning in-
den for et foruddefineret sikkert område, og hvis en prædikteret systembane
overtræder sikkerhedsgrænserne, overtager en beskyttelseskontroller og kor-
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rigere kontrolinputtet så sikkerhedsgrænserne overholdes.
Som en del af projektet er en modulær laboratorieopsætning blevet designet,
som i lille skala kan emulere adfærden af forskellige vandinfrastrukturer.
De udviklede løsninger er valideret i det designede laboratorie. Laboratori-
eresultater understreger styrkerne og begrænsningerne ved læringsbaserede
designmetoder, hvilket viser vigtigheden af sikre læringsstrategier ved im-
plementering af læringscontrollere som RL.
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Introduction

This chapter presents the background and motivation for investigating adaptive-
optimal management of water distribution networks. In Section 1, a brief description
of the water distribution network is given, and its operational objectives are presented
in Section 2, a general outlook of the current management solutions is provided in
Section 3, the project objectives are listed in Section 4 and a brief presentation of how
this project contributes to the extension of the state-of-the-art is given in Section 5.

1 Motivation

This research project was initiated by Aalborg University as part of the Smart
Water Infrastructures Laboratory (SWIL) project. The SWIL project is funded
by Poul Due Jensens Foundation, and its objective is to create a research
facility that supports the discovery of new solutions for the management of
water infrastructures. The motivation for this project is built upon two main
aspects, environmental and economic.

1.1 Environmental aspects

Water is a limited resource that is essential for life. In 2018, the report from
the United Nations’s (UN), World Water Development Report (WWDR) [1],
presents an update on the current challenges regarding clean water availabil-
ity and future trends.
The increasing water demand due to a growing human population and higher
living standards is causing water stress. Hence, putting at risk a safe supply
of drinking water. The water stress is defined as "the ratio of total annual water
withdrawals to total available annual renewable supply"[2]. This ratio depends
on two variables, supply availability and the demand for that water. In Fig-
ure 1 the measures of water stress are visualized across the world. The report
presented in [1] relates the increasing water demand patterns with the popu-
lation and economic growth. With the current consumption trend, significant
water demand is forecasted for the next decades in three sectors: industry,
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No data
Low stress

Low-to-medium stress
Medium-to-high stress
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Source: UN Food and Agriculture Organization (FAO)
OurWorldInData.org/water-access-resources-sanitation/ • CC BY

Figure 1: World map of the water stress measures in 2017. [3, 4]

domestic and agriculture. Under this baseline scenario, the water demand
will exceed the resources available in many world regions.
The OECD presented a set of policies with the purpose of changing the 2050
outlook and therefore mitigating future water crises [5]. In order to make
these policies effective, the proposed solution must be, apart from necessary,
affordable. Therefore, an essential task is to integrate green growth into the
global economic policies. In addition to this, another important task is to im-
prove societal understanding and self-awareness of the upcoming challenge.

Source: OECD Environmental Outlook Baseline; output from IMAGE suite of models

Figure 2: Global water demand projection for 2050 [5]. Note: BRIICS: Brazil, Russia, India,
Indonesia, China, South Africa. RoW: Rest of the world.
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1. Motivation

1.2 Economic aspects

As previously introduced, the environmental challenges cannot be addressed
without considering the economic impact of the actions. Figure 2 shows that
domestic water represents a small share of total water usage globally. Nev-
ertheless, drinking water usage can still be improved by optimising its dis-
tribution. This subsection presents three operational challenges of the water
distribution systems that significantly impact the utility economy. These is-
sues are listed in [6], and they are the following:

Issue 1: Non-Revenue Water
Non-Revenue Water (NRW) is defined as "the difference between the vol-
ume of water that is put into a water distribution system and the volume that is
billed to the customers" [7]. There are three main causes for having NRW:
Physical loss due to leakages at some parts of the network or reservoir
overflow, commercial loss due to customer meter errors or unauthorised
consumption (water theft) and not-billed authorised consumption due to
operational purposes or firefighting.
The study presented in [8] shows that the costs caused by NRW are es-
timated at USD 14 billion per year. The percentage of NRW caused by
leakages varies from 95% to 50% depending on the case study [9].

Issue 2: Energy consumption
The urban water cycle consumes a considerable amount of energy; this
comprises the different stages of the water supply and wastewater col-
lection. The Environmental Protection Agency shows that water infras-
tructures consume around 2% of the whole nation’s energy consump-
tion [10], this is translated into an annual cost of USD 4.7 billion [11].
The pumping systems are the major energy consumers in this water
cycle.

Issue 3: Operation and maintenance
Some major operational issues are pipe bursts and the associated costs.
Besides the lost water, the repairs are particularly expensive due to their
difficult accessibility, placed at a certain depth within an urban district.
The repair frequency of the pipes is, to a great extent, related to the pipe
burst [12].

European water operators are already committed to achieving the Sustainable
Development Goal (SDG) 6 "Ensure availability and sustainable management of
water and sanitation for all"[13]. This statement implies that the management
of these utilities must steer their policies to solve the aforementioned distri-
bution challenges.

5



2 Brief introduction to water distribution networks

The basis of the operation of a water distribution systems is to transport
potable water from a source to multiple consumers. The water infrastructure
varies in complexity, from rural areas to big cities. However, generally, most
the water distribution system comprises four main components [14]: Water
sources, treatment works, transmission mains and distribution network.
The sources are divided into surfaces like rivers or lakes and ground like
boreholes or wells. Then, the intake facility extracts the water and delivers
it to the plant for its treatment and storage. Finally, the pumping station
regulates water inflow to the distribution network. The network is typically
divided into main transmission pipelines that transport the water to an urban
district, a distribution network that supplies within an urban area and service
pipes that connect the network with consumers. Figure 3 illustrates part of
the water cycle from the water source to the consumers.

Pumping
station (3)

Distribution
network

Transmission
mains (4)

Treatment (2)

IntakeSource (1)

Elevated
reservoir

Consumer

SCADA

Local
PLC

(s)

(m)

Figure 3: Scheme of a simplified water supply system where (1) represents the water source,
(2) a treatment plant, (3) a pumping station and (4) the transmission system with mains (m),
distribution network and service pipe connections (s). The communication network that links
the local PLCs with the SCADA is depicted in garnet-red

Smart Water Infrastructures Laboratory (SWIL)

The modernisation of water distribution networks entails the installation of
new technology that allows the implementation of advanced control solu-
tions. Water infrastructures are critical infrastructures that demand a robust
and continuous operation. Therefore, the future development of manage-
ment solutions and the implementation of new technology in large scale in-
frastructures require extensive validation before deploying. However, the
validation against certain management scenarios implies a high cost and risk
for the system operation or the environment. Examples of these scenarios are
water leakages, water contamination, wastewater overflow, or interruption of

6



2. Brief introduction to water distribution networks

the infrastructure service. A test centre that recreates these scenarios, along
with the proposed management solution, facilitates safe validation of new
technology.
The SWIL can accommodate experiments in district heating, water distribu-
tion networks and wastewater collection. The physical behaviour of these
water systems is qualitatively emulated, and the real-time monitoring and
control systems are replicated [Paper E]. The laboratory is designed with a
modular architecture for increasing the test-beds versatility, allowing to con-
struct a wide variety of network topologies with a reduced number of mod-
ules. Moreover, the modular architecture is accordingly applied to the Data
Acquisition (DAQ) system. A picture of the laboratory is depicted in Figure 4
and the communication network structure is illustrated on the modules and
the SCADA PC. A brief description of the laboratory modules compared with
the real components is provided in Section 2.1, and a detailed description of
the facility is given in Paper E.

2.1 Distribution network components

This project studies only a section of the water supply management, particu-
larly the transportation of water from the pumping station to the consumers
with pressurized pumping systems. In this section, a network is mainly char-
acterized by four components and its interconnection. A brief description of
each component is given below followed by a description of the laboratory
emulation:

Pumping station: This component is in charge of the water inflow to the
pipe network, there may be one or multiple inflow nodes, the pumping sta-
tion must regulate the network pressure/flow such that the demands at the
end-users are meet. See examples of a real pumping station and its SWIL
analogous in Figure 5 and Figure 6 respectively. Variable speed pumps and
sensors (pressure and flow) are used to emulate a pumping station in the
SWIL.

7



SC
A

D
A

-
C

C
U

LU

W
ater

D
istribution

N
etw

ork
Testbed

W
aterw

ater
C

ollection
Testbed

M
O

D
BU

S
TC

P/IP

LU

LU

Figure
4:

Picture
of

the
SW

IL
w

ith
tw

o
test-beds

and
the

SC
A

D
A

-PC
at

A
alborg

U
niversity

[Paper
E]:

(Left)
W

astew
ater

collection.
(C

enter)
W

ater
distribution

netw
ork.

(R
ight)

SC
A

D
A

-PC
.A

sim
plified

com
m

unication
architecture

that
connects

the
local

PLC
s

-
Local

U
nits

(LU
s)

and
the

SC
A

D
A

PC
-

C
entralC

ontrolU
nit

(C
C

U
)

is
represented

in
garnet-red.

8



2. Brief introduction to water distribution networks

Figure 5: Example of a pumping station with
several pumps in parallel.

Figure 6: Example of a pumping station module
with three pumps in parallel at the SWIL.

Pipe network: The hydraulic network distributes the water from the pump-
ing inflow to the end-users. The structure of the networks varies depending
on the location of the district since there is a qualitative difference between
the topology in urban and rural areas or hill and flatland areas. A brief de-
scription of the network types is given in Section 2.2.
Pressure Reducing Valves (PRVs) are installed in the pipe network with the
purpose of strategically reducing the pressure in some areas. In this project,
PRVs are considered passive elements. Consequently, they are not part of
the network management. See examples of a real pipe network and its SWIL
analogous in Figure 7 and Figure 8 respectively. Pipelines of different lengths
and diameters are folded inside a module and used to interconnect the com-
ponents in the SWIL, thus emulating the physical effects of real distribution
networks.

Figure 7: Example of a pipe network in an urban
district. Picture source:[15]

Figure 8: Example of a pipe module at the SWIL
with inlet valves, folded pipelines and sensors.

Consumers: In a city district, the end-users consume water from the pipe
network. The water at the consumption nodes has to fulfil the quality stan-
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dards, and the pressure must be sufficient for its consumption. See examples
of a real consumer and its SWIL analogous in Figure 9 and Figure 10 respec-
tively. In the SWIL, the end-users consumption is emulated by variating the
opening degree of a controllable valve, reproducing the consumption pattern
of a city district.

Figure 9: Example of a consumer where the user
consumes drinking water from a tap. Picture
source:[16]

Figure 10: Example of a consumer at the SWIL
with a controllable valve and a flow sensor.

Elevated reservoir: This element has three main purposes in the network:
Supporting the water supply during the peak of the demand, maintaining
constant pressure in the network, and guaranteeing the supply during emer-
gencies. It is not required for all distribution networks to have an elevated
reservoir. Nevertheless, the reservoir can provide alternative management
strategies for reducing the pumping cost by exploiting its storage capacity.
See examples of a real elevated reservoir and its laboratory equivalent in Fig-
ure 11 and Figure 12 respectively. In the SWIL, the tank stores water similarly
to a real elevated reservoir, and the physical elevation is emulated by regu-
lating the air pressure inside the tank.

Figure 11: Example of an elevated reservoir in
Huesca (Spain).

Figure 12: Example of an elevated reservoir at
the SWIL.
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2. Brief introduction to water distribution networks

This project’s scope focuses on small-medium sized pressurized networks
with the following network structure: a ring or branch pipe network topol-
ogy with a single pumping station and an elevated reservoir.

2.2 Monitoring and operation

The implementation of the advances in Information and Communication
Technology (ICT), sensors, actuators and smart meters opens the possibility
of potential improvements in the system operation. For instance, by improv-
ing the monitoring in the network, the management can be adapted for each
particular scenario in real-time, such as meeting consumer demands, deliv-
ering sufficient water quality, or detecting network failures [17].
The operation of the network can be controlled in real-time via a Supervisory
Control And Data Acquisition (SCADA) system, where the data is collected
from different points in the network (via local PLCs or smart meters). In the
SCADA system, the collected data is used to provide a control strategy that
meets the utility management objectives. Figure 3 illustrates in garnet-red
the communication architecture, where a simplified version of a SCADA sys-
tem collects information from different points in the network and controls
the operation.

One of the utility practices for operating an urban water distribution sys-
tem is via pressure management, Pressure Reducing Valves (PRV) and Variable
Speed Pumps (VSPs) are the two actuators used for this kind of operation
[18]. Several studies relate the network pressure with the frequency of pipe
burst [19, 20]. These show that distribution systems benefit in both environ-
mental and economic aspects, by operating continuously at moderate pres-
sure.

Definition 1 (Pressure Management)
The Water Loss Specialist Group from the International Water Association
(IWA) defines pressure management as [21]:
"The practice of managing system pressure to optimum levels of service ensuring
sufficient and efficient supply to legitimate uses and consumers, while

• reducing unnecessary or excess pressure

• eliminating transients and faulty level controls

• reducing the impact of theft

all of which cause the distribution system to leak unnecessarily."

In this project, the management regulates the flow of a single pumping
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station with VSPs, maintaining an adequate level at the elevated reservoir. In
this way, the network pressure is balanced with the reservoir nodal pressure.
The chart in Figure 13 gives an overview of the advantages of adequate pres-
sure management for different sectors:

Reduced flow rates

Reduced frequency
of burst and leaks

Pressure Management

Conservation benefits:
• Reduced excess or unwanted consumption
• Reduced flow rates of leaks and burst
• Efficient use of energy

Water Utility benefits:
• Reduced repair and reinstallement cost
• Reduced liability cost and bad publicity
• Deferred renewals and extended asset life

Consumer benefits:
• Reduce cost of active leakage control
• Fewer consumer complaints
• Fewer problems on customer and

plumbing appliances

Figure 13: Chart of the optimal pressure management benefits [22]. Remark that the energy
usage can be considered as a utility benefit since it also reduces the operational costs.

This overall objective must be achieved considering an operating criterion
that is defined by multiple operational objectives. A list of the most com-
mon is given below [23], remark that the importance of each objective might
change according to the utility needs:

1. Safety of the supply: To satisfy the water demands at any time. For
networks with an elevated reservoir, or storage capacity, this objective
implies that a volume of water must be stored in the tank as a protection
mechanism against peaks in water demand, fire emergencies, service,
etc.

2. Water quality: To reduce the deterioration of the water inside the net-
work. This means that the management must avoid water stagnation in
the pipes and tanks, and the stored water must be regularly renovated.

3. Smoothness in actuations: To reduce the switching in the pump actua-
tions. This means that the management must operate the pumps contin-
uously and smoothly, thus avoiding the pressure peaks that accelerate
the deterioration of the distribution infrastructure.

4. Minimize costs: To reduce the economic operational costs of the distri-
bution that are mainly associated with the energy consumption of the
pumps.

12



3. State-of-the-Art

3 State-of-the-Art

3.1 Management of WDNs

The vast majority of Water Distribution Networks (WDNs) with elevated
reservoirs are managed by rule-based controllers. This kind of control sched-
ules the operation of the pumps with a condition on specific network pa-
rameters, typically tank levels. Rule-based management provides an On/Off
policy that is easy to maintain; however, it requires further optimisation to
achieve adequate pressure management since the actuation introduces pres-
sure peaks in the network and lowers the efficiency of the pumping system.
This project considers rule-based controllers as the baseline for improving
the operation of a water network. This section gives an overview of the ex-
isting control solutions that both industry and academia have contributed to
supporting and improving water infrastructure management.

Industrial Solutions

Decision support tools: As introduced in Section 2.2 the implementation of
recent advances in monitoring can considerably improve the control strate-
gies of a water utility. Some software tools like Aquis, TaKaDu and Visenti
[24–26] help to understand the network operation to support management
decisions. However, these tools must be configured and calibrated for each
network. In Demark, DHI, Krüger (Veolia), Envidan [27–29] are examples of
consultant companies that offer software services that analyse the collected
data for providing an improved operation of the studied network. Neverthe-
less, the economic investment for implementing these support tools is limit-
ing, especially for small-medium-size utilities.

Optimal management: Schneider Electric in collaboration with VandCen-
ter Syd developed an optimal pressure management solution [24], Rockwell
Automation offers a management solution with Model Predictive Control
(MPC)[30]. However, both of them require complex system models. Similarly
to the decision support case, the implementation of this technology implies
high commissioning costs in addition to qualified personnel to calibrate and
maintain the controller.
Other companies, like Xylem, Grundfos or I2O [31–33] offer easy to main-
tain (adaptive) pressure management products which do not require a re-
calibration.
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Academic Solutions

Several research studies address the improvement of the management of wa-
ter distribution via automated control and digitalisation. Most of these stud-
ies deal with the management issues that Section 2.2 states. However, their
methodologies differ.
Advanced rule-based solutions are developed to provide optimal manage-
ment [34, 35]. This control technique requires calibrating the commissioned
controller for the specific network. Optimal control strategies are presented
in [36–40] most of them use an MPC optimization framework. MPC is a
model-based optimal control method that provides a policy over a control
horizon. This control method is widely understood in academia; for in-
stance, Economic MPC (EMPC) is applied to find a control policy based on
an economic-oriented cost function that includes the process objectives [41].
When MPC is benchmarked against an On/Off strategy, most of the cited re-
sults conclude that the MPC reduces the operational cost and handles other
operational objectives. However, the accessibility issue of this method from
some utilities is rarely addressed.
Robust MPC [42] or stochastic MPC approaches are proposed in [43] to deal
with the uncertainty that the network models do not capture.
Alternatively, there are several studies that use data-based approaches to im-
prove the operation of water network: iterative learning control [44], dynamic
programming [45] or automatic system identification [46]. A plug-and-play so-
lution that adapts to the system automatically can reduce the commissioning
and maintenance costs. The Section 3.2 presents a more detailed overview of
learning controllers that could solve this issue.

3.2 Learning controllers

Introduction

Water utilities strive to build a high fidelity model for multiple reasons, such
as outdated or absent system information or the requirement of qualified ex-
ternal personnel for commissioning and maintenance. These reasons pose a
significant increase in the cost. Small-medium size utilities struggle to for-
mulate a business case that justify such economic effort. Consequently, the
implementation of optimal model-based controllers in these industrial appli-
cations is limited because its performance depends on a model.
This issue motivates the study of data-driven controllers that in the absence
of a system model, the system information can be extracted from the col-
lected data: Extremum seeking control is a model-free control method that
is useful for adapting parameters when the system dynamics are unknown
and the mapping of control parameters to an objective function is unknown

14



3. State-of-the-Art

[47]. Iterative Learning Controller gradually adapts a control policy by min-
imising the error of the system’s output [48]. This method is beneficial for
reference tracking in periodic systems that execute a particular operation re-
peatedly. Moreover, Reinforcement Learning is a machine learning method
that adapts the control policy based on the interaction with an environment
and by collecting rewards.

Reinforcement Learning

When a system model is available, Dynamic Programming (DP) methods
are applied to solve optimal control problems [49]. However, the model is
not always available or easy to formulate. Similarly, Reinforcement Learning
(RL) [50] algorithms are proposed as an optimisation method to find a near-
optimal policy without system knowledge, well-known are the results from
DeepMind in playing AlphaGo and Atari games [51, 52]. Promising results
are also obtained when the RL is applied in control for robotics applications
[53, 54]. In [55] and [56], RL and classical optimal controllers like Linear
Quadratic Regulators (LQR) are combined to solve Riccati equation in real
time without knowledge of the system dynamics.
The usefulness of RL in control is also studied in industrial applications.
The domain of application and the problem formulation considerably differs,
to mention a few examples in water applications: Reservoir optimisation
[57], multiagent RL in combination with MPC [58], other application for tank
filling control [59, 60] or detection of cyberattacks [61].

Function approximator: RL methods such as Q-learning are originally pro-
posed to find an optimal control policy in a Markovian domain [62]. In this
problem formulation, the Q-values are stored for each state-action pair. This
representation becomes quickly an issue due to the course of dimensionality.
Function approximators are proposed to find a compact representation of the
Q-value space that is referred to as Q-function. There are several methods to
describe this compact representation, parametric or non-parametric.
The linear parametric is a typical structure of the Q-function. The mapping
of this function is characterised by a coordinate vector, or weights, and a se-
lection of Basis Functions (BFs).
The BFs are selected to fit the system dynamics; therefore, different function
structures are proposed. Some of the most commonly used are listed in [50]:
polynomial, Fourier or Gaussian radial basis. In [63], fuzzy approximators
are combined with Q-learning to partitioned representation of a continuous
state-action space.

Disturbance rejection: Traditional control theory methods are applied to-
gether with an RL optimisation framework to address classic control chal-
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lenges; for instance, a policy iteration method is presented in [64, 65] to solve
the LQR problem with unknown system dynamics.
One of the biggest challenges of control in water distribution is the uncer-
tainty of the water demand; from a control theory perspective, it can be seen
as system disturbances. Therefore, it is important to verify the robustness of
the RL method against disturbances. Other known control methods such as,
small signal theorem [66], sliding mode [67] or H∞ [68] are integrated with
RL to provide robustness in control of non-linear systems or systems with
disturbances.

Robust Learning: The parametric approximation of the Q-function is sub-
ject to issues associated with system identification. For instance, the model
structure proposed for the approximation must be a suitable representa-
tion of the identified system, and adequate experimental conditions must
be provided during the identification [69]. When dealing with model-free
approaches, it is difficult to provide a model structure that perfectly fits the
system in advance. High dimensional approximation spaces might provide
an accurate description of the system. However, large approximation spaces
complicate the implementation and identification. Some feature selection
methods are proposed to reduce dimensionality by selecting the most rele-
vant subsets. In [70–73] different feature selection strategies are proposed to
increase the learning robustness of the RL algorithm.
Moreover, the identification requires an adequate persistence of excitation
in the input signal that excites all the modes and subsequently facilitates
the convergence of the identification algorithm. Some of the aforementioned
work [66, 67, 74] include Persistet Excitation (PE) in the input signals of their
algorithms. However, the impact of this signal also decreases the perfor-
mance of the controlled system. The experience replay method is utilised in
[75] to have more efficient use of the collected data and relax the PE require-
ments in real-time.
Alternatively, the parameter identification with Least Squares can be im-
proved by using regularisation terms in the loss function. The identification
of overdetermined systems can lead to failures due to the redundancy of
some parameters; standard least squares assumes that all the parameters in
the identification are equally important. However, it might be convenient to
reduce the vector space with a norm-1 regularisation term to allow sparsity
of the identified solution [76]. On the other hand, an underdetermined sys-
tem, where there are fewer measurements than unknown parameters, might
require a penalisation of the sparsity with a Tickhonov regularisation [77].
This regularisation introduces a norm-2 term in the loss function to mitigate
the effect of an ill-posed identification problem.
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3.3 Safety

Water supply systems are critical infrastructures [78], and their operation is
essential for the functioning of society and the economy. Therefore, their
physical infrastructure and operation must be resilient. The supply must be
maintained, thus protected from malicious attacks and the effects of chang-
ing environments. Therefore, the system’s safety should be considered a top
priority in the development of new solutions for water systems and, subse-
quently, the technology supporting management of such infrastructures.
Some of the aforementioned RL control methods show promising results for
finding optimal policies in simulated environments or where a learning agent
can explore a large domain of the state-action space with no risks. When
learning simple tasks, a reward function might be sufficient to determine the
correct behaviour of the system. However, this is not the case for complex
tasks or safe-critical systems like water infrastructures where the agent faces
a changing environment while pursuing multiple operational objectives.
Completing a rich RL training implies that the system must experience di-
verse operation scenarios, including safe and unsafe. Therefore, learning
from experiences might conflict with the operation that critical infrastruc-
tures require, where a failure might significantly impact the economy and
society. Providing safety in an RL framework is an essential control chal-
lenge; this project considers safety a stepping-stone for further developing
learning controllers in industrial applications.
The safety problem in RL is addressed from different perspectives, [79] presents
a broad overview of safe reinforcement learning approaches where the safety
methods are divided into two categories. Their control scheme is represented
in Figure 14, and a brief description of the two categories and related work is
given as follows:

• Optimisation criterion: The safety criteria are encoded together with the
reward function, thus modifying the optimality criterion. For instance,
by modifying the predefined weight in the objectives, [80] presents an
RL control with an input constraint method using low-gain feedback.
By adding barrier function terms the reward (objective) function can
be modified to include safety [81–85]. In [86] model-based RL with
statistical models are utilised to provide a safe optimisation framework.

• Exploration process: The safety criteria are not included in the learn-
ing controller. An external module (filter) is introduced between any
legacy controller and the system. This filter incorporates knowledge to
supervise that the applied action is safe and, if required, modify the ac-
tion and ensure safety. When the legacy controller is an RL controller,
this method first solves an unconstrained problem and then applies
a safe filter to limit the exploration according to some safety criteria.
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Some studies share this control structure, but the safety method differs.
For instance, reachability analysis, invariance-based and control barrier
safety filters are proposed in [87–89] respectively. However, the explicit
computation of a safe set and controller can lead to an expensive com-
putation or conservatism. Using knowledge of a linear system, [90, 91]
proposes a safe exploration. A Learning-Based MPC (LBMPC) is pre-
sented in [92] to build a safety filter with support of Gaussian Process
regressions, thus reducing the reliance on the system knowledge.

Learning
controller

a) Optimization criterion b) Exploration process

System

Safety
filter

control
input

state

Safe objective
Learning
controller

System

control input

Supervised control input

state

Objective

Figure 14: Control structure of the two main categories of safe learning: Optimization criterion
and exploration process. The input of the safety criteria is highlighted in green.

There are other safety methods that combine learning with other classic con-
trol methods. For instance, the usage of MPC in combination with RL is
studied to exploit the learning capabilities of RL and the constrained opti-
misation framework of MPC [93, 94]. LBMPC are also presented in [95] for
iterative control task and in [96] a constrained optimisation framework from
MPC is combined with a Gaussian Process regression to describe the uncer-
tainty of imperfect system models. Alternatively to LBMPC, [97] presents
differentiable predictive control, a method for learning constrained neural
control policies for linear systems.

4 Research Objectives

As previously shown in the state-of-the-art in Section 3, optimal control tech-
niques are suitable for regulating large-scale infrastructures. Nonetheless,
the success of these optimization-based techniques depends, to a great ex-
tent, on the system model that must be regularly calibrated to represent the
behaviour of the system. This project’s scope is to give access to small and
medium-sized utilities for optimal control solutions. The commissioning and
maintenance of optimal controllers are not always economically feasible for
small network operators. Data-driven control algorithms provide a system
policy in absence of a system model, thus reducing the associated costs.
The overall objective of this project is to integrate the advances in optimal
control in an easy-commissioning controller to provide both an economically
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feasible controller and improved efficiency of the network. Specifically, to
develop a self-learning control solution that safely finds an optimal manage-
ment policy.
This project’s scope is to investigate the potential benefits and implications of
introducing a model-free control solution to manage the operation of water
distribution networks. To this end, four research objectives are defined:

Research Objective 1: To develop a model-free controller
In this work, the purpose is to find a common ground between efficient
and complex solutions proposed by academia and the real utility needs.
For this purpose, a Reinforcement Learning control method is proposed
to find optimal management that gradually adapts to the changing en-
vironment of a water distribution network with an elevated reservoir.

• With disturbance rejection: Water distribution networks are critical
infrastructures where the drinking water supply needs to be guar-
anteed. Utility management is required to maintain a robust oper-
ation. Therefore, the designed controller must satisfy some oper-
ational objectives while rejecting the stochastic disturbances of the
system.

• With a robust learning: Reinforcement Learning is a data-driven op-
timal control solution that does not rely on a system model. How-
ever, it depends confidently on the quality of the data. RL provides
a policy based on its Q-value function. This function is initially un-
known, and its parameters must be identified with collected data.
This identification process is subject to issues such as poor experi-
mental conditions.
Formulating suitable conditions for the identification while operat-
ing the system is challenging. Therefore, the proposed solution is
required to cope with situations where the quality of the collected
data is low.

Research Objective 2: To provide safety during learning and operation
When the learning and control strategies are developed in objective 1,
this project targets the safe operation of the water network. The learned
policy given by the Reinforcement Learning algorithm is not necessarily
safe, and it can drive the system to areas where there is a risk of failure.
Therefore, a policy supervisor module is proposed to detect unsafe sys-
tem trajectories and rectify the operation accordingly.

Research Objective 3: Experimental validation of the solution
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The deployment of newly developed control solutions requires careful
verification, and performing these tests in real water infrastructures puts
the network operation at risk. For this reason, the construction of a lab-
oratory is proposed to validate the performance of the developed meth-
ods. This modular setup must emulate small-scale water infrastructures
and reproduce control scenarios according to a particular study case.
Thus, allowing to study of the feasibility of the management solutions
safely.
Furthermore, the modularity of this facility enables the laboratory tests
for other control solutions or application domains that are not in the
scope of this project, like leakage detection, wastewater collection or
district hearing systems.

5 Contributions

The main contributions of this project are structured into three areas, simi-
larly to the presented research objectives in Section 4. A chart, relating the
research outcome and the papers, is given in Figure 15. Subsequently, a brief
description of each paper contribution is given below, and the papers in full
are found in Part II.

Paper A Paper B Paper C Paper D

Paper E

Paper F

Control design

Experimental
validation

Safety

Figure 15: Simplified dependency chart where the papers are classified by research area.

Control Design

Paper A
J.V. Ledesma, R. Wisniewski and C.S. Kallesøe. "Optimal Con-

trol for Water Distribution Networks with Unknown Dynamics." 21th

IFAC World Congress, 2020 Vol. 53(2), pp.6577-6582, 2020.

Proposal of a model-free controller for reference tracking and rejection of con-
stant disturbance in linear systems. This method uses an RL method based
on a state-space augmentation that includes the reference and integral error
in addition to the system state vector. Then, considering that the system is
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linear, and the objective function is quadratic, a set of second-degree polyno-
mials is built with a combination of the states and control action. These poly-
nomials are used as basis functions to iteratively approximate the Q-value
function with the Least Squares Temporal Difference algorithm (LSTD).

Paper B
J.V. Ledesma, R. Wisniewski and C.S. Kallesøe. "Reinforcement

Learning Control for Water Distribution Networks with Periodic Dis-
turbances." 2021 American Control Conference (ACC), pp. 1010-
1015, 2021.

Proposal of an RL control for rejection of unknown periodic disturbances.
In this paper, the periodic signal described by the total water demand is
represented with a Fourier Series approximation. The corresponding Fourier
harmonics are merged with the system by augmenting the state space. By
having a linear model structure, the RL problem is formulated similarly to
Paper A. Moreover, assuming that the system operates around an operating
point, the minimization of the energy usage is included in the management
objectives.

Paper C
J.V. Ledesma, R. Wisniewski and C.S. Kallesøe. "Real-Time Re-

inforcement Learning Control in Poor Experimental Conditions." 2021
European Control Conference (ECC).

Proposal of two control algorithms that provide numerical robustness dur-
ing the learning, especially in situations with poor experimental conditions.
When the measured data do not contain system information, the method
might lead to failures in the approximation. The first algorithm identifies
data batches with low system information using the Fisher information ma-
trix and pauses the approximation of the Q-value function. The second al-
gorithm sorts the data based on the amount of system information. This
analysis is performed with Singular Value Decomposition; subsequently, this
method discards the features or basis functions that do not provide value to
the estimation.

Safety

Paper D
J.V. Ledesma, R. Wisniewski and C.S. Kallesøe. "Safe Reinforce-

ment Learning Control for Water Distribution Networks." 2021 IEEE
Conference on Control Technology and Applications (CCTA) pp.
1148-1153, 2021.

Proposal of safe exploration for an unconstrained RL algorithm. This method
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provides local robustness nearby the boundaries using a safety filter. This
filter assesses the operational risk of the RL control input and corrects the
system trajectory in case the prediction is unsafe. Both prediction and safe
control input are computed with a linear deterministic model. This method
assumes that the core system dynamics are known at the boundaries. There-
fore, a guess of the tank size and average water demand is required. The
filter provides conservative or relaxed supervision depending on the model’s
accuracy.

Paper F
J.V. Ledesma, R. Wisniewski, C.S. Kallesøe and A. Tsouvalas.

"Water Age Control for Water Distribution Networks via Safe Rein-
forcement Learning." Submitted for journal publication 2022.

Proposal of safety exploration of an unconstrained RL algorithm. This method
extends the safety filter presented in Paper D by including a Gaussian Pro-
cess regression to model the uncertainty between an imperfect linear model
and the real system. Thus, providing a better prediction of the exploration
and accurate response that ensures safety. The GP model is trained in real-
time. The model’s confidence interval is used as an exploration guideline,
providing conservative supervision when the GP model is not trained and
then more relaxed supervision to the RL when the GP model training is com-
pleted.
Furthermore, the water quality (water age in the tank) is incorporated into
the control strategy by formulating it as a safety problem. Hence, the safety
filter actuates as a fallback control when the water age indicator rises above
a safety threshold.

Validation

Paper E
J.V. Ledesma, R. Wisniewski and C.S. Kallesøe. "Smart Water

Infrastructures Laboratory: Reconfigurable Test-Beds for Research in
Water Infrastructures Management." Journal of Water, Special Is-
sue Advances in the Real-Time Monitoring and Control of Urban
Water Networks Vol. 13(13), 2021.

Proposal of a modular laboratory facility that enables the experimental val-
idation of the designed control strategies. On a small scale, this laboratory
setup emulates the main features of water distribution networks, wastewater
collection and district heating. The modular structure allows customizing
each testbed to the desired study case. This flexibility enables its use for a
wide range of control problems like leakage detection, fault-tolerant or opti-
mal management. This paper presents a description of the facility with the
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development considerations and some examples where control strategies are
validated against management scenarios that cannot be safely replicated in
real-scale water infrastructures.
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Summary

This chapter summarises the study carried out in this project. It comprises a brief
description of the experiments and laboratory configuration in Section 6, an overview
of the different models used in this work in Section 7, the development of a model-free
controller via Reinforcement Learning in Section 8, and a safety filter that provides
safe exploration in Section 9. This summary presents the methods conceptually and
only the most representative results are discussed; each section includes references to
the corresponding papers where the details of the method and results are found. In
this summary, the paper notation is revised to maintain a consistent description of
the methods along the summary sections. This chapter closes in Section 10 with a
discussion and conclusion where the stated objectives are compared with the project
contributions and suggestions for future work.

6 Experimental validation
This section presents an overview of the experimental valida-
tion, first with a brief description of the Smart Water Infras-
tructures Laboratory from Paper E, and then by describing the
testbed configuration used in Paper A, Paper B, Paper D and
Paper F.

This project selects Bjerringbro (Denmark), a small-size urban district, as a
study case. Figure 16 shows the map and the WDN layout that consists of a
single pumping station in the south, an elevated reservoir, and two Pressure
Zones (PZ1 and PZ2). Additionally, a second pumping station boosts the
pressure in the PZ2.
Two modular testbeds are built with the SWIL. These testbeds emulate, on

a small scale, the hydraulic configuration and communication architecture of
the study case, see Figure 4 where the communication architecture is illus-
trated on top of the laboratory modules picture.
Testbed 1 covers PZ 1 which is emulated with two consumer units, and a ring
topology network interconnects with pipes the network components. The
elevation of different consumers is emulated with pressurised air at the col-
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Bjerringbro PZ 1
hpz1 ≈16m

Pumping station 1

Pumping station 2

Elevated reservoir

Hjermind PZ 2
hpz2 ≈54m

q

q

dp

Figure 16: Map of a water distribution network with an elevated reservoir in Denmark. Pressure
Zone 1 (PZ 1) covers the Bjerringbro district, and Pressure Zone 2 (PZ 2) covers Hjermind that
are located at a different elevation (hpz) [Paper F].

lection tanks, similarly to the elevated reservoir. The valves have local PI
controllers that regulate the water outflow, reproducing Bjerringbro’s con-
sumption patterns. The pumping station is equipped with a flow sensor to
regulate, with a local PI, the inflow of water to the network. A DAQ system
collects the sensor data and provides a flow reference to the pumping sta-
tion. To reduce the impact of these local controllers in the tests, the sampling
time for local controllers is 1 second, and for supervisory control (SCADA)
is 60 seconds. The data from the testbed is locally collected at the LUs with
Codesys Runtime [98], and it is interfaced with the CCU via TCP/IP Mod-
bus. The supervisory controller is implemented on the CCU with Matlab -
Simulink where the testbed is globally monitored. A simplified pipe and in-
strumentation diagram of the Testbed 1 with local controllers is illustrated in
Figure 17.
Testbed 2 extends the hydraulic network of the testbed by including the PZ2
with the booster pumping station and its consumption district. A simplified
pipe and instrumentation diagram of the Testbed 2 is depicted in Figure 18.
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7. System model

7 System model
This section presents an overview of the modelling work used
in this project, an extended description is provided in Pa-
per A, Paper B and Paper F.

The main obstacle to implementing optimal control solutions is the cost of
developing and maintaining a system model that accurately represents real-
ity. The motivation of this project is built upon the need for a model-free
controller that facilitates the implementation of optimal management solu-
tions.
This project proposes a grey-box approach where partial knowledge of the
system is utilized to support learning an optimal management policy. For
this purpose, this section summarizes the development of a control-oriented
model that incorporates this partial system knowledge.
The (partial) system knowledge is restricted to available sensor measure-
ments and infrastructure information. This project proposes using mainly
linear models that represent the essential system dynamics.

7.1 Water distribution network

Water distribution networks are systems where a complex pipeline network
interconnects the main components. Some similarities are found between
water distribution networks and electric circuits, network topology and com-
ponent behaviour wise. For instance, voltage/current sources in electric cir-
cuits have an analogous purpose to pumping stations which regulate the
supply pressure/flow in water networks. Similarly, resistors are equivalent to
pipes and capacitors to tanks. Some methods for circuit analysis like Norton-
Thevenin equivalences allow a representation of complex circuits in a sim-
plified scheme. Likewise, in this work, the essential behaviour of a WDN is
represented by an equivalent model which considers the following assump-
tions:

1. Aggregated consumers: The water demands from the multiple end-
users in a city district are aggregated and expressed as a total water
demand dtotal [Paper A]. Recall that the total water demand is not mea-
sured in real-time.

2. Fast dynamics are neglected: WDNs with elevated reservoirs are stiff
systems that contain fast varying components (pumping station and
pipe dynamics) and slow varying (elevated reservoir). The elevated
reservoir dynamics is considered dominant in the system, and there-
fore the pressure-flow transients at pumping stations and pipes are ne-
glected.
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Figure 19: (Left) A simple scheme of a water distribution network where the measurements
available are pressure (p) and flow (q) at the pumping station and water level at the elevated
reservoir is measured with a differential pressure sensor (dp). (Right) Tank geometry and vari-
ables where Aer is the cross-sectional area, ∆h is a level variation, h tank level, h0 is the physical
elevation of the tank and qj is the inflow of the tank inlet j.

The scheme in Figure 19 shows a simplified WDN where the pumping station
is an ideal flow source, the aggregated consumer represents the demand of an
entire city district, the elevated reservoir is a linear tank. These three main
components are interconnected with two pipelines representing the pipe net-
work’s friction. With these simplifications, the behaviour of a WDN system
is described by a continuous-time linear model as follows,

Aer ḣ(t) = qpu(t) + dtotal(t). (1)

where h(t) is the tank level, qpu(t) is the controlled inflow at the pumping sta-
tion and dtotal(t) is the total water consumption (disturbance). The pressure
drop in an equivalent pipeline that connects nodes a and b is given by

∆pab(t) = rab|qab(t)|qab(t)︸ ︷︷ ︸
pipe friction

+ ∆hab︸︷︷︸
elevation

, (2)

where the rab is a constant representing the surface resistance, this form of
the friction losses in (2) assumes that the flow is turbulent [14], the second
term represents the pressure due to the differential geodesic level between
the two nodes, see Paper E for further pipe model details. Finally, a simple
model of the power of the pump P(t) is defined as

P(t) = qpu(t)∆ppu(t)/η, (3)

where ∆ppu is the pressure across the pump and η is a constant representing
the pump efficiency [Paper B].

7.2 Disturbance

The uncertainty in the water demand is a major challenge in managing water
distribution networks. The individual consumption is not measured, but the
utilities can reconstruct the past consumption using billing data. Although
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7. System model

this data cannot be directly used for real-time control, it contains information
about daily consumption patterns. Typically, consumption patterns present
two peaks, one in the morning and the other in the afternoon. This pattern is
more evident when the individual consumptions are aggregated into a signal
that represents the total demand.
This summary describes the approximation of the periodic signal with a
Fourier Series of order N as follows, the complete model formulation is pre-
sented in Paper B. First, the continuous signal is given by

d̄(t) = a0 +
N

∑
n=1

(an cos(ωnt) + bn sin(ωnt)) + w, (4)

where a0, an and bn ∈ R are the Fourier coefficients, ωn = 2πn f0 and f0 repre-
sents the fundamental frequency and w is Brownian noise. The f0 represents
the lowest frequency, and it is set by a period of one day. Paper B formulates
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Figure 20: (Top) Output disturbance signal and consumption data for two days. (Bottom) Fourier
Harmonic states for n=0,1,2,3 [Paper B].

the mean of the Fourier output (4) in its discrete version as follows,

sk+1 = Adsk ,

dk = Cdsk ,
(5)

resulting in a linear state-space form, where the system matrix Ad = diag(1, F1,

. . . , FN), with Fn =
[

cos (ωn∆t) − sin (ωn∆t)
sin (ωn∆t) cos (ωn∆t)

]
where ∆t is the sampling time

and the output matrix Cd includes the Fourier coefficients that scale the har-
monics. The state vector sk ∈ Rnd , with nd = 2N + 1, is subject to the following
initial condition

si,t0 =


c0 if i = 0
cos (ωnt0) if i > 0, i odd
sin (ωnt0) if i > 0, i even

(6)
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where c0 is a constant, t0 is the initial time value and the index vector i ∈
Z, [0, nd].
The top graph in Figure 20 compares real consumption and the Fourier ap-
proximation signal. The Fourier output follows the measured data, describ-
ing the morning and evening water consumption peaks.
The state vector includes Fourier harmonics for a given frequency, and the
scaling of the signal is performed with the output matrix Cd. This form is
strategically selected for formulating a controller that learns the scaling of
the signal only with measurements of normalised harmonics.

7.3 Augmented state space - Control model

This project aims to build a model-free controller that rejects system distur-
bances. In Section 8, the system model structure is utilised to build a learning
controller. For this purpose, two control-oriented models are formulated in
Paper A and Paper B. Both models are developed with a linear system and
partial knowledge of its disturbances. The models differ from each other in
the way that the disturbance is introduced. The structure of each model is
described below:

In Paper A, the model is built for tracking a reference and for compensating
constant disturbances. First, consider (1) in a continuous-time state space
form,

ḣ(t) = Ach(t) + Bcqpu(t) + Wcdtotal(t)

yc(t) = Cch(t),
(7)

where h(t) ∈ R represents the tank level, qpu(t) ∈ R the controlled inflow
and dtotal(t) ∈ R is a disturbance representing the total water consumption,
with Ac,Bc and Cc constant matrices with compatible dimensions. Then, the
trajectory of the reference, ṙ(t) = Lr(t), and the integral error, ξ̇(t) = yc(t)− r(t),
are combined with (7) in an augmented state-space model,ḣ

ṙ
ξ̇

 =

Ac 0 0
0 L 0

Cc −I 0

h
r
ξ

 +

Bc
0
0

 [qpu
]

+

Wc
0
0

 [dtotal
]

. (8)

This model is not further developed in Section 7, the details are given in
Paper A.

In Paper B, the model is built to compensate periodic disturbances. First,
the tank model presented in (1) is expressed as a linear discrete-time system
in the state-space form,

hk+1 = Ahk + Buk + Edk (9)
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7. System model

where hk ∈ R is the system state, uk ∈ R is the controlled input flow and
dk ∈ R are the system disturbances, and A,B and E are constant matrices
with compatible dimensions. Then, discrete-time tank model (9) and periodic
signal (5) are combined as follows,

xk+1 =
[

A ECd
0 Ad

]
︸ ︷︷ ︸

Ae

xk +
[

B
0

]
︸︷︷︸

Be

uk ,

yk =
[

I
Cp

]
︸ ︷︷ ︸

Ce

xk +
[

0
Dp

]
︸ ︷︷ ︸

De

uk ,
(10)

where xk=
[
hk sk

]T , uk is the controlled input and yk =
[
hk sk pk

]T is the
measured output vector. Moreover, note that the vector y outputs an ad-
ditional state, corresponding to the pressure at the pumping station, that
is used for energy optimisation. The pressure model is introduced in the
state-space model by linearising (2), see the complete model formulation in
Paper B. Finally, (10) is represented in a compact form in discrete-time,

xk+1 = Aexk + Beuk ,

yk = Cexk + Deuk ,
(11)

where x ∈ Rma , u ∈ Rna . For simplicity, the notation in model (11) is used as
reference for describing the control method in Section 8.

7.4 Tank turnover

Maintaining adequate levels of water quality is highlighted in Section 2.2 as a
crucial management objective. In this project, the water sources are assumed
to have sufficient quality to be distributed to the end-users without chlorine
treatment. Therefore, in a WDN with elevated reservoirs, the water quality
issue arises mainly when the water is stored in the tank for long periods.
In Paper F, a daily turnover signal is proposed to monitor the tank’s water
age and regulate the daily inflow of freshwater with respect to the stored
water. First, the Average Residence Time (ART) in an elevated reservoir is
defined as a discrete-time variable [100],

ARTk =
vav,k

qav,k
, for qav,k > 0, (12)

where vav,k is the average volume, and qav is the average flow entering the
tank. Having WDN with flow measurements at the elevated reservoirs is
unusual. Therefore, the turnover is reformulated to be computed with level
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measurements. Firstly, the average volume is defined with past level mea-
surements,

vav,k =
Aer ∑k

i=k−nav
hi

nav
, (13)

where nav represents the number of samples in a period. Secondly, the aver-
age inflow is denoted as,

qav,k =
Aer ∑k

i=k−nav
δi

nav
, (14)

where δ represents only the positive level variations,

δi+1 = max{(hi+1 − hi), 0} (15a)

= max{(A−1
er

ner

∑
j=1

qj,i∆t), 0} (15b)

where qj,i is the flow at tank inlet j at time i. Note that (15) has two expres-
sions depending on the available system knowledge and tank configuration.
For notational simplicity, δ(qk) is represented as a function of the tank flows.
Figure 19 (right) illustrates a simple elevated reservoir configuration with
one inlet in the bottom of the tank, ∆h shows both the level variations, pos-
itive and negative, for a sampling time ∆t. Subsequently, the daily volume
turnover [%] is denoted as a function of the tank level and network flows,

τk = g(hk , qk) = 100nav
qav,k

vav,k
, (16)

where nav represents the number of samples in a period.

Incremental average approximation

The turnover model (16) is a non-linear function that requires data storage
of past measurements to be computed. Then, to facilitate the real-time com-
putation of the signal, an approximation is proposed in Paper F. First, this
approximation calculates the mean of the positive level variations,

mk(qk) =
1

nav

k

∑
i=k−nav

δi(qk) (17)

Then, the new mean is computed by extending (17) and including the new
input (15) as follows,

m̂k+1 =
1

nm
(δk+1(qk) + (nm − 1)m̂k), (18)
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7. System model

where nm is a constant representing the number of data-points in the moving
average filter. Subsequently, the daily turnover output is approximated as
follows,

τ̂k = ĝ(qk) = 100
m̂k
h∗

, (19)

where h∗ is a constant representing the average level during steady-state op-
eration, and qk is the sum of tank inflows. The graph in Figure 21 compares
the turnover signal (16) with different approximations of signals (19), the
daily turnover signal τ and its approximation τ̂(h) converge when steady
state is reached. A deviation of the τ̂(h̃) and τ̂(q) is observed with respect
to the others since (15) is evaluated with h̃ that is computed with a poorly
calibrated model or with the sum of flows q that does not include a variable
total demand dtotal but a constant average demand dav.
Further details of the water age model are presented in Paper F.
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Figure 21: Simulation of the daily turnover signal and several approximations

7.5 Safety model

Nominal model

The safe exploration in Paper D is evaluated with the system trajectory of a
nominal model which consists of a linear model of the form,

ĥk+1 = f̂ (hk , uk , dav) = Âhk + B̂uk + Êdav, (20)

where dav is a constant representing the average of the total demand and Â,
B̂ and Ê are system matrices of the nominal model. This model is built with
accessible system information. For instance, dav is a guess of the total aver-
age water consumption, the matrices Â, B̂, Ê are naively calibrated with the
cross-sectional area Aer.
This model is a first principle model, or knowledge-based, where the accu-
racy of the prediction is subject to the calibration. Furthermore, the linear
model cannot capture some non-linearities of the system, these model differ-
ences are more patent when the model is compared with the real system.
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Combined model

Inspired by the model formulation in [96], Paper F proposes an extension
of the nominal model (20) that combines a nominal model and a Gaussian
Process model that represents the system uncertainty,

h̃k+1 = f̂ (hk , uk , dav)︸ ︷︷ ︸
nominal model

+ Br r̂(xk , uk)︸ ︷︷ ︸
GP model

, (21)

where Br is an index matrix, and r̂ is the approximated residual error be-
tween the nominal prediction and the actual measurement. The GP term
aims to relax the model calibration reliance by supplementing the nominal
linear prediction with a model of the system uncertainty, which comprises
the calibration error of the model (20) as well as the non-linear behaviour of
real systems that the nominal model cannot describe.
A GP regression is formulated to approximate the residual error r(xk , uk). The
GP regression is built as follows. First, the actual residual error is expressed
as,

yk = r(xk , uk) + wk = B†
r ( hk+1︸︷︷︸

measure

− f̂ (xk , uk)︸ ︷︷ ︸
nominal

), (22)

where B†
r is the Moore-Penrose pseudo-inverse of Br. Then, consider a train-

ing data set D that consists of M observations,

D = {y = [y1, . . . , yM]T ∈ RM

z = [z1, . . . , zM]T ∈ RM×nz}
(23)

where z = [xT , uT]T denotes an input vector and y a scalar output (target).
This definition is performed by assuming that each of the elements y of the
output vector is independent of a given input data zk. Then, by giving a GP
prior on r with kernel k(·, ·) and prior zero-mean,

y ∼ N (0, Kzz + Iσ2). (24)

The result is a normally distributed measurement where Kzz is the covariance
(or Gram) matrix of the data points such that Kij = k(zi , zj), with ij denoting
the elements of the matrix, the selection of the kernel k structure and its
parameterisation determines the distribution of the predicted output [96].
A squared exponential function is selected as the kernel-based on domain
knowledge since the residual uncertainty is expected to show a continuous
and smooth behaviour,

k(zi , zj) = σ2
f exp(−1

2
(zi − zj)T L−1(zi − zj)), (25)
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7. System model

where L is a positive diagonal length scale matrix and σ2
f the signal variance.

The joint distribution of the training data z and the test data z∗ is[
y
y∗

]
∼ N

(
0,
[

Kzz + Iσ2 Kzz∗
Kz∗z Kz∗z∗

])
, (26)

where [Kzz∗ ]j = k(zj, z∗), Kz∗z = KT
zz∗ , and similarly Kz∗z∗ = k(z∗, z∗). The re-

sulting conditional distribution of the uncertainty residual is Gaussian [101].
Finally, its conditional distribution describes the GP model of the uncertainty
[102],

r̂(y∗|y) = N (µr(z∗), Σr(z∗)), (27a)

µr(z∗) = Kz∗z(Kzz + Iσ2)−1y, (27b)

Σr(z∗) = Kz∗z∗ − Kz∗z(Kzz + Iσ2)−1Kzz∗ (27c)

where µp(z∗) and Σp(z∗) are mean and variances of the GP. A detailed de-
scription of the GP model is given in the appendix of Paper F.

GP model training

The training of the GP model is performed in real-time by executing the
Algorithm 1. The input zk and output yk data are stored each iteration in the
Last In First Out stacks (LIFO), z and y. The stacks have a fixed size of M
samples, and they are used for updating the parameters of the GP model in
line 9. The Algorithm 1 is initialised with ngp that represents the number of
new samples each model update, a threshold e∗ that indicates an acceptable
residual error, and random data for z0 and y0.

Algorithm 1 Training of the GP model. [Paper F]

1: Input: ngp, e∗

2: Initialisation: [σf 0, L0, σ0]← fitrgp (z0, y0)
3: repeat at every iteration k = 1,2, . . .
4: collect data ĥk, zk and yk
5: ek = RMSE(hk - h̃k)
6: if ek ≥ e∗ then . Collect data
7: save zk and yk in stack zj and yj
8: if k = (j + 1)ngp then . GP update
9: [σf , L, σ]← fitrgp (z, y)

10: j = j+1
11: end if
12: end if
13: until
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8 Reinforcement Learning
This chapter presents a brief introduction to Reinforcement
Learning (RL) applied to the control of linear systems, the
function approximators proposed in Paper A and Paper B, as
well as the robust learning presented in Paper C.

8.1 Reinforcement Learning in control

Reinforcement Learning (RL) is a framework for teaching a controller (agent)
to interact with a process (environment) from experience, similarly to hu-
mans that empirically learn from experience in a trial-error sequence. This
interaction is defined by three signals, a control input uk which modifies the
process, a state xk which describes the state of the process and a scalar reward
rk+1 which provides feedback of the recent performance.

Learning
controller

System

control
input uk

state xk

Reward
function

reward
rk+1

Reinforcement
Learning control

Figure 22: Scheme of the interaction between a learning controller and a system process. A
control input is applied and state measurements and rewards are collected for improving the
future policies.

Figure 22 presents a diagram of the interaction controller-process (agent-
environment) which works as follows: the controller applies a control in-
put to an unknown process based on a policy uk = π(xk), the system re-
acts by changing the state xk+1 = f (xk , uk), subsequently, the performance
of this action is evaluated with a reward function, and a reward is obtained
rk+1 = ρ(xk , uk). Finally, the controller’s policy is improved based on the ac-
cumulated rewards.

Bellman equation

RL problems are often formulated as maximisation problem where the aim
is to maximise the accumulated rewards. However, this work formulates a
minimisation problem where the objective of this method is to find a policy
that minimises the cost. A V-value function that represents the collected cost

38



8. Reinforcement Learning

for a given policy is defined as

Vπ(xk) = E

[
∞

∑
i=k

γi−kρ(xi , ui)

]
, with k ≥ 0, (28)

where γ ∈ [0, 1) is a discount factor. From an algorithmic perspective, in an
infinite horizon setting, γ ensures that the accumulated rewards are bounded,
and from the application perspective, it reduces the importance of past re-
wards. Therefore, the selection of the discount factor poses a trade-off be-
tween high values that favour the quality of the solution and small values
that favour the convergence rate [63].
RL is based on Bellman’s optimality principle which is formulated as follows:
first, by expanding the accumulated cost (28) for a deterministic environment,

Vπ(xk) = ρ(xk , uk) +
∞

∑
i=k+1

γi−(k+1)ρ(xi , ui). (29)

Subsequently, the infinite sum is replaced by its value using a current policy
uk = π(xk), the equivalent difference equation is given by,

Vπ(xk) = ρ(xk , π(xk)) + γVπ(xk+1). (30)

Finally, the optimal value is calculated using the Bellman equation

V∗(xk) = min
π

[ρ(xk , π(xk)) + γVπ(xk+1)] , (31)

where (·∗) represents the optimal value. Alternatively, an equivalent expres-
sion to (30) is given where the value is expressed as a function of the state
and control input explicitly (Q-value). Consider that Qπ(xk , π(xk)) = Vπ(xk),
then Q-value function is given by

Qπ(x, u) = ρ(xk , uk) + γQπ(xk+1, π(xk+1)). (32)

Subsequently, the optimal policy for a given Q-value function (32) is defined
as,

π∗(x, u) = argmin
u

Q(x, u). (33)

For convenience in the formulation, this project presents RL in a deterministic
environment, and the accumulated rewards are given in an infinite horizon
with a discounted return. Nevertheless, when the methods are applied to
real systems, the approach becomes stochastic since the application domain
and the corresponding collected data are stochastic.
In this project, the formulation of the Q-value function with Bellman equation
is first introduced in Paper A where the optimal control problem is presented
as a minimisation problem that aims to reduce the costs.
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Q-value function for LQR case

A model-based formulation of the Q-value function is formulated to motivate
the selection of suitable approximation structure for the Q-value function
(32). Inspired by the formulation of the LQR case decribed in [56], this work
adapts a Q-value function to the system application and objectives in Paper A
and Paper B. The formulation is developed as follows. First, a quadratic cost
function, or instant reward is defined

(34)ρ(xk , uk) = (yi − y∗)TQ1(yi − y∗) + uT
k Ruk ,

where the first term penalises the deviation of the tank level with respect
to a given reference, and the second term penalises high control actions. y∗

is a vector with constant reference values, Q1 >0 and R > 0 are weight
matrices that penalise the different terms. For simplicity in the notation, this
formulation includes only two objectives. The complete formulation with
energy cost is provided in Paper B. For the discrete-time LQR, the Q-value
function is [56],

Q(xk , uk) = (yi − y∗)TQ1(yi − y∗) + uT
k Ruk + γV(xk+1), (35)

Assuming that there exists a candidate solution to the value function (28), of
the form

V(xk) = xT
k Pxk + Gxk + c, (36)

the solution (36) is combined with (32),

Q(xk , uk) = (yi − y∗)TQ1(yi − y∗) + uT
k Ruk + γ(xT

k+1Pxk+1 + Gxk+1 + c). (37)

Additionally, the augmented system model (11) is introduced

(38)Q(xk , uk) = (Cexk + Deuk − y∗)TQ1(Cexk + Deuk − y∗) + uT
k Ruk

+ γ[(Aexk + Beuk)T P(Aexk + Beuk) + G(Aexk + Beuk) + c].

Then, the expression (38) can be reformulated in a matrix form

Q(xk , uk) =
[

xk
uk

]T [Mxx Mxu
Mux Muu

] [
xk
uk

]
+
[

xk
uk

]T [Nx
Nu

]
+
[

Nx
Nu

]T [xk
uk

]
+ c̃. (39)

By expressing (39) in a compact form, with zk = [xk , uk]
T ,

(40)Q(zk) = zT
k Mzk + 2NTzk + c̃,

a quadratic, linear and constant components are identified, equivalent to the
proposed solution (36). Then, the optimal control policy for (40) can be cal-
culated as

u∗k = argmin
u

Q(xk , uk) = M−1
uu (Muxxk + Nu). (41)

Note that, the resulting control law (41) in is affine, the offset in the control
input represents the system regulation around a non-zero equilibrium point
[Paper B].
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Function approximators

The RL method is originally developed for Markov Decision Process, where
the Q-value functions are described by a lookup table. This method is not
applicable to continuous systems since infinite-dimensional values cannot be
stored in a memory. Consequently, function approximators are proposed to
map the Q-value space without storing the individual values. Then, the Q-
value function is approximated with a linear parametric approximation that
consists of a set of Basis Functions (BFs) φ(x, u) and a coordinate vector θ [50],

Q̂(xk , uk) = φT(xk , uk)θ, (42)

where φ ∈ Rnb is a column vector and θ ∈ Rnb with the number of bases
nb = (ma + na + 1)(ma + na)/2, ma and na represent the number of states and
actions respectively [Paper A].
The BFs are chosen according to the system dynamics and reward function,
considering the model-based case developed in Section 8.1 as reference. Re-
mark that, although the exact system model is unknown, the underlying
behaviour is heuristically described by (1). Therefore, considering the linear
structure of the system and the quadratic form of the cost function, poly-
nomial bases are suitable for describing this type of system [56]. The BFs
consist of a finite set of second-degree monomial bases that are built as a
combination of states and control actions,

φ(xk , uk) = [x2
1,k , x1,kx2,k , . . . , x2

ma ,k , xma ,kuk , u2
k]T . (43)

Considering that the Q-value function approximation is built upon a linear
system dynamics and a quadratic reward function structure (40), a state aug-
mentation technique is proposed to incorporate system knowledge into the
learning framework strategically. In Paper A, the state-space model includes
a reference for tracking and the integral error for rejection of constant distur-
bance. In Paper B, N harmonics from the Fourier Series (4) are reformulated
in a discrete-time form and incorporated into the state vector. In this way, the
learning includes partial knowledge of the periodic disturbance.

Least-Square Temporal Difference

Multiple model-free methods for finding an optimal policy are proposed in
[49, 50], some of the most important methods differ in the way of collecting
the rewards, such as Monte Carlo, Temporal Difference - TD(0) or TD(λ).
The RL method used in this project is based on TD(0) and Q-learning, which
evaluates the reward one step ahead and iteratively updates the new Q-values
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with the following update law,

Qnew(xk , uk)←− Qold(xk , uk) + α(

Q target estimate︷ ︸︸ ︷
rk+1 + γ min

u′
Qold(xk+1, u′)−Qold(xk , uk)︸ ︷︷ ︸

TD error

) (44)

where α ∈ (0, 1] is the learning rate and the difference between the target es-
timate of the optimal Q-value (updated with the observed data rk+1 and xk+1)
and the current Q-value is the TD error. This function describes a contraction
map that converges to the optimal Q-value when the number of iterations
tends to infinity. The convergence of the Q-learning method is proved in [62]
for finite Markov Decision Processes under certain conditions such as the all
state-action pairs are visited infinitely often and the selection of an adequate
learning rate. The learning rate α modifies the number of iterations required
to obtain a satisfactory solution. Note that accommodating these conditions
in a continuous space-action domain becomes challenging since the number
of state-action pairs is infinite.
The update algorithms used in Paper A and Paper B are based on Least-
Squares Policy Iteration (LSPI) [103, 104]. This method combines the pol-
icy iteration with the data efficiency of Least Squares (LS). The algorithm is
implemented as follows. First, the Q-value is formulated for a continuous
state-action space by replacing the approximated Q-value (42) into (44),

(45)φT(xk , uk)θk+1 = (1− α)φT(xk , uk)θk + α
[
ρ(xk , uk) + γφT(xk+1, u′k)θk

]
.

Then, by collecting ns samples of the BF vector (43), the expression becomes

(46)ΦT
l θl+1 = (1− α)ΦT

l θl + α
[

Jl + γΦ′Tl θl

]
,

Φl = [φl , . . . , φl+ns ] and Jl = [ρl , . . . , ρl+ns ]
T are a matrix and a vector respec-

tively and l is the iteration number. The optimal solution for θl+1 is calculated
by applying Least Squares

θl+1 = (1− α)θl + α(ΦlΦ
T
l )−1Φl

[
Jl + γΦ′Tl θl

]
. (47)

This process is repeated until the coordinate vector θ convergence is consid-
ered satisfactory.
The polynomial BFs allow solving the expression that defines the optimal
policy in closed-form. By computing the root of the polynomials derivative
with respect to the control u, a linear control policy is obtained.

π∗(xk) = K∗(θ)xk = argmin
u

φ(x, u)Tθ∗. (48)
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8.2 Results

This section selects the results obtained in Paper B to illustrate the usability
and applicability of the control method described in Section 8. The results
are collected in a simulation environment and a testbed that emulates a WDN
with a single pumping station and an elevated reservoir. The simulation is
scaled to the laboratory dimensions, more details of the test and laboratory
configuration are given in Paper B and Paper E.
A simulation is performed to adjust the learning hyper-parameters α and γ
and the weights in the cost function. The calibration criteria aim firstly to
learn an optimal policy for the reference tracking and then the smoothness
of the control action and energy usage.
The graph in Figure 23 shows the system variables from simulation results.
The simulation is initialised with an arbitrary policy, and during the first 15
days, the tank level falls until the minimum level (top). After day 15, a better
policy is learned, and the system gradually approaches the given reference.
In Figure 24, the learning variables are shown where a smooth convergence
of the linear policy is observed (top) while the difference between Q̂target es-
timate and Q̂, TD error (44), is minimised (bottom). Remark that the tested
control solution only regulates safety by penalising the tracking error. There-
fore, this objective is favoured. Subsequently, the gain (blue) corresponding
to the tracking error stands out with respect to the other gains in the vector.
The parameters learned in a simulation environment are used to initialise the
laboratory tests since finding a balance between learning hyper-parameters
and cost function weights is laborious and impractical due to the laboratory’s
physical limitations. The graphs in Figure 25 show the system states in the
laboratory tests. In this case, the learning transient is not as noticeable as the
simulation. However, the tank level oscillates between the boundary and the
reference first. Then the level is regulated around the reference. In Figure 26
the policy slightly adapts to the new environment.

Discussion: Based on the collected results, a brief discussion of the strengths
and weaknesses of the presented method is given. The simulation and exper-
imental results show that this control strategy can learn a good policy that
regulates the tank filling and rejects the periodic disturbances. However, this
method is designed for linear systems. Thus, the convergence of this method
relies on the operation around an operating point. This operation is a lim-
itation when deploying this controller in real systems where non-linearities
are patent in actuators, hydraulic systems and communication delays. Fur-
thermore, the lack of state constraints in the optimisation compromises the
learning of a policy with multiple objectives. In this approach, the refer-
ence tracking objective is significantly prioritised with respect to the other
objectives since the safety of the operation only relies on following the given
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reference. Moreover, this objective must be learned sufficiently fast to avoid
operations outside the system limits.
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Figure 23: Simulation results. Top: Tank level and level reference Middle: Network flows control
input and disturbance Bottom: Pump power consumption [Paper B]
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Figure 25: Experimental Results Top: Tank level and level reference Middle: Network flows:
control input q1 and disturbances d2, d3. Bottom: Pump power consumption [Paper B]
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Figure 26: Experimental Results. Top: Control policy gain. Bottom: Q-values target and current
[Paper B]

8.3 Robust learning

Ordinary Least Squares (LS) is a simple and efficient estimation method, and
its use in combination with Reinforcement Learning algorithms shows satis-
factory results. However, the performance is subject to the quality of the data.
In Paper A and Paper B, the data collected for the LS estimation is generated
by the BFs evaluated with the measured data of states and control action. As
previously mentioned, this set is built considering the inclusion of a system
structure. However, the design of this set does not consider over-fitting or
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under-fitting issues since giving a suitable selection of BF in advance is diffi-
cult when their system information is limited. These issues might occur when
the BFs approximation structure is not suitable for the identified system, or
the data is collected under poor experimental conditions. Paper C presents
two algorithms that give numerical robustness when parameter identification
issues arise in real-time.

Learning Efficiency analysis

The Fisher information matrix I indicates the amount of information that a
batch of data contains about a parametric approximation [69]. Paper C uses
the E-optimality criteria, which consist of maximising the eigenvalues of the
Fisher matrix to obtain the maximum information from the data.
The minimum eigenvalue of the matrix I is considered an index of the worst-
case scenario. This value is low when the collected data has low variations.
Consequently, the batch cannot be used for proper parameter estimation. In
this work, the rank of the matrix ΦlΦT

l sets the threshold for low information
Ilow when it is singular or close to singular.

λlow = min λ(Ilow) (49)

where λlow is a threshold for indicating low estimation efficiency.
The results in Figure 27 show a simulation where the learning controller pro-
posed in Paper A, for compensating constant disturbances, is combined with
the Fisher Information solution proposed in Paper C. After day 5, the system
reaches a steady-state, and several state signals become nearly constant. In
this same period, Figure 28 (bottom) shows the amount of information drops
drastically, leading to ill-conditioning of the data matrices. The proposed so-
lution skips the parameter (policy) update in the algorithm until the amount
of collected information is sufficient to perform an update. When a change in
the system disturbance is introduced the learning is resumed until it adapts
to the new system conditions. The formulation, simulation and Algorithm 5
are further described in Paper C.
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Figure 27: Simulation of a WDN with constant disturbances. Top: shows the tank level and the
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[Paper C].
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Figure 28: Simulation of a WDN with constant disturbances. Top: Coordinate vector of the
Q-value function approximator. Middle: Control policy. Bottom: Batch information measured
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Singular Value Decomposition and BFs selection

This approach is designed with a similar motivation to the previous, protect-
ing the learning against poor experimental conditions. In this case, the esti-
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mation is only performed on the parameters whose associated data contains
relevant information. This selective update is executed as follows [Paper C]:
first, the collected data is approximated using Singular Value Decomposition
(SVD) in its compact form. Therefore, the collected data is divided into three
matrices that are sorted by the amount of the system’s information

Φl = UΣVT , (50)

where Φl ∈ Rnb×ns where nb ≤ ns is a matrix with the collected data, with
nb the number of features (BFs) and ns the number of collected samples,
U ∈ Rnb×nb and V ∈ Rns×nb are unitary left and right singular matrices and
Σ ∈ Rnb×nb is a diagonal matrix with weights ordered by importance. Having
such hierarchic sorting allows the partitioning of each approximation matrix
into two parts,

U = [Ū, U], Σ =
[

Σ̄ 0
0 Σ

]
, VT =

[
V̄T

VT

]
, (51)

where Ū ∈ Rns×p, Σ̄ ∈ Rp×p and V̄ ∈ Rp×ns . The sub-index notations (·̄) and
(·) represent high and low amount of system information respectively. The

Left singular
vectors. U

Singular values.
Σ

Right singular
vectors. V

Original
matrix. Φl

=

Figure 29: The SVD of the collected data is illustrated where the segregation between high and
low amount of information is represented with green and red respectively

partition size p is based on the collected data’s rank p = Rank(ΦlΦT
l ) since

a deficient rank might be related to an ill-conditioning of the analysed data.
Figure 29 represents the approximation of the collected data with the SVD
matrices and the partition according to the quality of the data. Finally, by re-
placing the SVD approximation into (46), the following linear transformation
is deducted.

VΣUTθl+1 = (1− α)VΣUTθl + αΥl , (52)

where Υl = Jl + γΦ′Tl θl . By rearranging (52) with the partitioned matrices
(51), the update law is expressed in two SVD sub-spaces,[

Σ̄ 0
0 Σ

] [
θ̄l+1
θl+1

]
= (1− α)

[
Σ̄ 0
0 Σ

] [
θ̄l
θl

]
+ α

[
V̄T

VT

]
Υl (53)
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where UTθ =
[
θ̄ θ

]T . In this way the parameter identification is computed
separately, the upper partition, with θ̄, is updated with standard Temporal
Difference (47) while the lower partition, with θ, is discarded and its param-
eters are not updated. Simulation results with Algorithm 6 are presented in
Paper C.

9 Safety
This chapter summarizes the methods used in Paper D and
Paper F to provide safety to a learning controller.

One of the main challenges of deploying learning controllers in critical infras-
tructures, like WDNs, is the uncertainty of their behaviour, especially during
the initial learning transients where exploring a broad region of the state-
action space is necessary.
This need motivates an important part of this project that addresses the learn-
ing controller’s safe operation. As briefly introduced in the State-of-the-Art,
Section 3, the safety approaches are divided into two, see Figure 14: in one
approach, the safety is part of the learning method and changes the opti-
mality criteria, and in the other approach, the safety is part of an external
module.
This project uses the second safety structure and designs a reactive method
that corrects the system’s exploration trajectory when the system is predicted
to violate the safety boundaries. The control loop with an external safety
filter is represented in Figure 30.

uk
url,k

usa f e

xk

SystemRL
control

Is safe?

xk

switching signal

Safety filter

Figure 30: Block diagram of the control architecture where the RL control is connected in series
with a policy supervisor (green). The policy supervisor switches the control action based on a
1-step ahead prediction [Paper F].

Safety as constraint satisfaction. A safe set represents an operational zone
with low risk of system failure, while an unsafe set represents operation
zones where the operation involves a high risk of failure. The constraint set
encloses the safe set, but note that the safe set S and the constraint set X are
not necessarily the same.
In this work, safety is built around constraint satisfaction. This means that
the condition for not being safe is to violate the constraint boundaries. When
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applied to a deterministic dynamical system, a state is considered safe with
respect to the constraints X if for all x0 ∈ S there is xk ∈ X .
Figure 31 illustrates the trajectory of a system around a safe set; starting at
time 0 until time k. At time k multiple trajectories are projected depending
on the applied control action. The figure shows three different predicted
scenarios based on policies A, B and C: in the first scenario, the action uA
keeps the system inside the safe zone. In the second, the action uB drives the
system to a state that does not violate the constraint box, but the predicted
state is inside the unsafe set. This scenario means that, at this point, any
controller action in the future will drive the system out of the constraint
box. For instance, this scenario might be observed in dynamical systems
with coupled states like velocity or stochastic disturbances. In the third, the
action uC directly drives the system outside the constraint box.

Safe set SUnsafe set
/∈ S

State constraints X

x0
xk

x̂A
k+1 x̂B

k+1

x̂B
k+2

x̂C
k+1

uA uB uC

Figure 31: Example of a dynamical system operating inside a safe set from time 0 to k. At time
k, three scenarios are contemplated according to the control actions: uA - safe prediction (green).
uB - unsafe prediction inside constraint box (yellow), subsequently, any the prediction for time
k + 2 drives the system out of the constraint set. uC - unsafe prediction, outside constraint box
(red).

For simplicity in the computation, this work delimits the safe sets around
the system constraints since the capacity of the actuator is assumed to be
sufficient to rectify an unsafe trajectory 1-step ahead. Then, the tank level
state h is considered safe if it belongs to the compact set H and the pump
actuation u is a feasible control if it belongs to the compact set U ,

hk ∈ H , {hk ∈ Rma |hlb ≤ ĥk ≤ hub}, ∀k (54a)

uk ∈ U , {uk ∈ Rna |ulb ≤ uk ≤ uub}, ∀k, (54b)

where the notation (·lb) and (·ub) define lower and upper bounds respectively.
The system prediction and the safe control action are computed with a system
model. Two safety methods are developed in this project, each of the methods
use a different model: an imperfect deterministic system model in Paper D
and a stochastic system model in Paper F.
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9. Safety

The overall objective of these safety approaches is to give complete freedom to
explore and find optimality inside the safe region and rectify only the unsafe
exploration trajectories, hence providing local robustness at the boundaries.

9.1 Nominal model

This safety approach modifies the exploration process as follows. The learn-
ing controller independently solves its unconstrained optimisation problem
to update the policy url = K̂(θl)xk, then, the potential violatation of the bound-
aries using control action url is predicted with the nominal linear model (20).
Although the predictions of this model are expected to be imprecise, the tra-
jectory modification provides partial safety to a learning controller policy that
otherwise is unable to differentiate between safe and unsafe, see the compar-
ison in Figure 32.

usa f e

ĥk+1 = f̂ (hk , url , dav)

ĥk+1 = f̂ (hk , usa f e , dav)

St
at

e hk

url

Time∆t

St
at

e hk

url

Time∆t

a) Prediction without SF Prediction with SFb)

hub

Figure 32: 1-step ahead prediction. a) Illustrates the uncertainty of a learning controller without
a Safety Filter (SF). b) Illustrates the detection of potential violations of the boundaries applying
url and the correction with usa f e.

The safety filter works as follows, it first predicts the state with a control in-
put url , the potential trajectory of this system is evaluated with respect to the
safety boundaries, and, if necessary, modifies the exploration trajectory with
usa f e. The safe action is the result of the following constrained optimisation
problem

usa f e ∈ argmin
u

Q̂(xk , uk) (55a)

s.t. ĥk+1 = f̂ (hk , uk , dav) (55b)

hlb ≤ ĥk+1 ≤ hub (55c)

ulb ≤ uk ≤ uub (55d)

The control sequence with safety supervision is described in Algorithm 2.
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Algorithm 2 RL with deterministic safety supervision [Paper F].

1: Input: f̂ (x, u, d),γ, α, ns,
2: Initialisation: l ← 0, x0, θ0 where π̂(θ0) must be an admissible policy.
3: repeat at every iteration k = 0,1,2, . . .
4: apply uk and measure xk+1
5: Υls ← ρ(xk , uk) + γQ̂(xk+1, K̂l xk+1)
6: if k = (l + 1)ns then . Policy update
7: θl+1 ← (1− α)θl + α(ΦlΦT

l )−1ΦlΥl
8: π̂(θl+1, x)← argminu φ(x, u)Tθl+1
9: l ← l + 1

10: end if
11: if ĥk+1 ∈ H then . Policy supervisor
12: uk = K̂(θl)xk + εk . RL action
13: else
14: uk = usa f e + εk . Safe action
15: end if
16: until

9.2 Combined model

The nominal model approach shows promising results in correcting unsafe
trajectories, see results in Paper D. However, the performance of this supervi-
sion depends on the calibration of a nominal model. This approach uses the
same control structure with an external safety filter, and the system model is
a combination of a nominal model and a Gaussian Process regression (GPR)
(21).
Paper F considers the worst-case scenario to evaluate the risk of failure - oper-
ating in an unsafe zone; this means that the predicted state h̃k+1 and its corre-
sponding Confidence Interval (CI) must be inside the safe zone. In Figure 33
two scenarios are shown: Scenario a) shows the prediction 1-step ahead with
the RL controller input url , the filter evaluates if the predicted variables (red)
and its CI (light red) are inside the safety boundary hub. Scenario b) shows
the modification of the predicted trajectory, a safe control input usa f e aims
to rectify the exploration trajectory (green) and CI (light green) keeping the
variable inside the safe area.
When introducing a stochastic element in the system dynamics, a reformu-

lation of the safe-optimal control problem is performed, such that the state
constraints are represented as chance constraints. In this work, the chance
constraints are expressed with respect to two states, tank level h and turnover
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Figure 33: Safety filter process, where the sequence detection-correction is illustrated for state h
at time k. a) shows the detection, an unsafe prediction where the control input url drives the CI
(light red) of h̃k+1 out of the boundary hub. b) shows the correction, a safe prediction where the
control input usa f e drives the CI (light green) of h̃k+1 inside the boundary.

τ,

Pr{h ∈ H} ≥ ph, ∀k (56a)

Pr{τ ∈ T } ≥ pτ , ∀k (56b)

where ph and pτ are the satisfaction probabilities. Finding an algebraic solu-
tion to the problem is difficult when working with chance constraints. There-
fore, a transformation of the chance constraint (56) into deterministic equiv-
alents (57d), (57e), and (57f) is performed.

A safe control input usa f e is computed by solving an optimisation problem
with constraints of the form,

usa f e ∈ argmin
uk

||url,k − uk||2Q1
+||τ∗ − τ̂k||2Q2

(57a)

s.t. h̃k+1 = f̂ (hk , uk) + Brµr
k(xk , uk) (57b)

τ̂k = ĝ(qk) (57c)

h̃k+1 ≥ hlb + Kcσr(xk , uk) (57d)

h̃k+1 ≤ hub − Kcσr(xk , uk) (57e)

τ̂k ≥ τlb (57f)

ulb ≤ uk ≤ uub (57g)

where the standard deviation σr(zk) =
√

Σr(zk) is computed with the variance
model (27c), Kc represents the confidence gain. As previously introduced,
the safety filter is a safe-exploration guideline which rectifies the trajectory
based on the safe criterion.
The first term in the cost function (57a) penalises differences between the
learning control input (free-exploration) and safe control (safe-exploration)
to reduce the impact of safe interruptions in the learning. The second term
penalises the tracking error between the approximated turnover and a refer-
ence. Note that the turnover is also constrained by (57f) that sets the lower
level limit. The problem described in (57) is a simplified version of the prob-
lem presented in Paper F. The complete problem includes slack variables that
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ensure the feasibility of the control problem.
The filter’s behaviour can be modified with the confidence gain Kc; a high
gain provides conservative supervision while a low gain relaxes the safety
criterium. The selection of suitable value for Kc comprises a balance between
the application requirements and the constrained optimisation problem.
Figure 34 shows two examples of normal distributions, where the area of the
CI is adjusted around its mean value µr with the confidence gain Kc.
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µr − Kcσr µr + Kcσr

µrlb ub

CI

Figure 34: Scheme of two examples of normal distributions where the coloured area represents
the CI of the residual function, red represents that the interval violates the safety boundary (red
dash-lines lb or ub), green represents a safe CI inside the boundaries, the grey tails are neglected
in the safety evaluation, the size of these areas is adjusted with Kc.

Algorithm 2 is executed in real-time with the combined safety filter, and
in line 11, the prediction safety is assessed with the following criteria,

hlb + Kcσr(z′k) ≤ h̃k+1(z′k) ≤ hub − Kcσr(z′k) (58a)

τlb ≤ τ̂(h̃k+1), (58b)

where the observed input vector z′k is built with the augmented system states
and the RL control action, z′k = [xT

k , uT
rl,k]T . Remark that the mean µr

k(zk) and
variance function Σr

k(zk) include the decision variable uk in its input vector zk.
Additionally, the standard deviation σr is time-variant since the regression
model is trained online. This makes the optimisation problem (57) harder to
solve and the selection of a suitable Kc difficult. The following condition is
stated for facilitating the computation

|Kcσr(zk)|≤ |hub − hlb|/2, (59)

The condition (59) limits the width of the CI based on the distance between
bounds. If the condition is not met, the method uses a naive prediction which
neglects the CI [105] by setting Kc= 0.
Similarly as Figure 33 illustrates, the graphs in Figure 35 show several sce-
narios where the safety filter is intermittently active for correcting the system
trajectory. The top graph shows different states: the blue dots represent real
level measurements. The free-exploration prediction is represented in red
h̃rl

k+1 with its corresponding CIrl , they are computed at time k with the learn-
ing control input url , this signal is used for detecting unsafe trajectories. The
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Figure 35: Simulation of the WDN with a RL controller and a combined filter. (Top) Blue dots
represent the real level measurement and the dotted line represents the lower boundary. The
nominal model signal ĥrl

k+1 = f̂ (hk , url) and the combined model h̃rl
k+1 = f̂ (hk , url) + Br r̂(z′k) are

1-step ahead predictions, and h̃s f
k+1 = f̂ (hk , uk) + Br r̂(zk) is the safe prediction. (Bottom) The RL

control input url and the control input for safe exploration usa f e [Paper F].

safe-exploration prediction is represented in green h̃s f
k+1 with its correspond-

ing CIs f , they are computed with the safe control input usa f e. Consequently,
both signals are aligned when safe trajectories are predicted. The bottom
graph shows the control signals and how the safety filter corrects the con-
trol action url when the prediction crosses the boundaries. Furthermore, the
nominal-exploration prediction, in yellow, ĥrl

k+1 shows a clear deviation with
respect to h̃rl

k+1, this is due to the poor calibration of the nominal model.
The confidence in the combined model is increased since the GP regression
model is trained online. Consequently, the graph shows that CI is gradually
narrowing.

9.3 Results

This section selects the results obtained in Paper F to describe the usability
and applicability of the stochastic safety filter technique in combination with
the learning controller, described in Section 9 and Section 8 respectively. The
results are collected in a testbed that emulates a WDN with two pressure
zones, an elevated reservoir and a single pumping station. A brief descrip-
tion of this testbed configuration is given in Section 6 - Figure 18, the details
are given in Paper F.
The experimental results are initialised with an arbitrary policy in the RL con-
troller, and the safety filter uses a combined model. The nominal model is
naively calibrated with a guess of the tank dimensions and average demand,
and the kernel of the GP regression is initially built with random data.
In this test, two algorithms are running in real-time, Algorithm 2 that updates
the controller policy with safety guidelines and Algorithm 1 that updates the

55



GP model.
In the graph Figure 36, the learning transients of both algorithms are com-
pared; the top graph shows the convergence of the RL policy after hour 8,
while the learning of the GP model, in the bottom, is nearly settled after hour
3. The learning of the GP model is also observed in Figure 37, during the first
3 hours, the CI indicates a lack of confidence in the GP prediction. This model
causes a conservative behaviour of the safety filter that is frequently active
since the safe set defined by the constraints is reduced accordingly. After 3
hours, the predictions are improved, and the system trajectory modifications
occur accurately near the boundaries; the filter actions do not interrupt the
learning of the controller policy. Note that, at this point, the CI is unnotice-
able in the graph.
The objective of the safety filter is to assist the exploration of the learning con-
troller. After hour 6, the top graph in Figure 37 shows a gradual regulation of
the tank level towards the given reference. Thereafter, the tank level always
operates within the safe boundaries, and the safety filter is only activated
to correct the turnover when the prediction falls below the lower boundary.
Furthermore, a scaling error is observed between the approximated and ac-
tual turnover signal τ̂ and τ. However, this error is considered a minor safety
issue since the approximated signal represents a worst-case scenario from a
model calibration.

Discussion: Based on the collected results, a brief discussion of the strengths
and weaknesses of the presented method is given.
This safety approach solves one of the main challenges of learning controllers,
which is safe exploration. Solving this challenge is particularly important
when the learning controller is deployed in industrial applications like water
infrastructures, in which robust and continuous operation is essential. Recall
that in the previous RL approaches shown in Section 8 the safety relies on
learning a policy that follows a reference before crossing the safety bound-
aries.
The experimental results show the importance of the safety filter in the learn-
ing transient. In this case, the safe exploration is externally assisted by the
safety filter. This fact relaxes the tedious calibration of the learning hyper-
parameters and the cost function, thus facilitating the implementation of the
control solution in different study cases.
The confidence interval is directly computed from the variance of the GP
regression; it has a key role in early detecting potential unsafe trajectories.
However, the importance of the variance in the filtering must be adapted to
the application requirements. For instance, in this work, the confidence gain
Kc is mainly used to limit the magnitude of the CI. Large confidence intervals
increase the conservativeness of the control actions, thus limiting the explo-
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10. Concluding remarks

ration and compromising the learning of an optimal policy. Furthermore, the
variance σ(x, u) depends on the decision variable, this increases the complex-
ity of the safe-optimal control problem (57). The condition (59) is introduced
in the algorithm to facilitate the computation of safe control input.
A control structure with a safety filter allows the inclusion of application
objectives like water quality that otherwise cannot be represented by the pro-
posed learning architecture. However, the learning controller and the filter
are independent blocks that could have conflicting objectives. Therefore, the
formulation of these objectives must be balanced to avoid the safety filter con-
stantly overruling the main policy. The results show that learning an optimal
policy while using a safety filter is possible. However, the safety actuations
must include persistent variations to avoid that, for instance, a saturated safe
action compromises the identification of a Q-value function. A more detailed
discussion of the results is given in Paper F.
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10 Concluding remarks

The work presented in this thesis addresses the development of a model-free
controller for a water distribution network with an elevated reservoir. This
work is motivated by the need to implement optimal pressure management
in small-medium-sized water utilities that cannot afford the commissioning
cost of implementing advanced control solutions requiring initial model cal-
ibration and continuous maintenance.
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10. Concluding remarks

The details of the project motivation and summary of the existing control
solutions are given in Part I, and the results of this work are presented as a
collection of papers enclosed in Part II. First, a conclusion of the project is pre-
sented in Section 10.1, this section also summarises the author’s reflections
on learning controllers in industrial applications. Then, recommendations for
future work are presented in Section 10.2.

10.1 Conclusions

The conclusions of this project analyse the stated research objectives and con-
tributions. Accordingly, the analysis is divided into three categories:

Model-free controller. The first objective states the development of an adaptive-
optimal controller that gradually learns an optimal management policy de-
spite the system disturbances. The controller design is addressed in Section 8
and by the contributions Paper A and Paper B. In this work, a Reinforcement
Learning controller for linear systems is formulated. The function approxi-
mator of the Q-value function is constructed with 2nd degree polynomials to
reproduce the structure of the linear system and a quadratic cost function.
These works present how a state-space augmentation technique is utilised
to introduce additional system knowledge into a linear system, for example,
disturbance information. The results show that the algorithm satisfactorily
converges in a simulation environment where the dynamics are linear and
in a test-bed where some non-linearities are introduced in the control loop.
However, in the latter case, the operation is restricted to a fixed operating
point to reach an optimal solution.
Moreover, in Paper C, the learning performance, which is highly sensitive to
the quality of the data, is analysed. This work proposes two approaches to
analyse and robustify the learning of the Q-value function in real-time: The
first solution uses the Fisher information matrix to measure the data quality
and pause the parameter update strategically. The second solution uses an
SVD approximation to perform a parameter update only on relevant features.
The results show that both approaches help cope with scenarios with poor
experimental conditions in real-time.

Safe operation. As described in the introduction, Water Distribution Net-
works are critical infrastructures, and their operation is essential for society
and the economy. This requirement poses safety as one of the backbones
when developing control solutions for these infrastructures. The results in
contributions Paper A and Paper B show the need for a safety guideline when
deploying learning controllers. The operation during the learning transient
repeatedly crosses the safety boundaries until an optimal policy is learned.
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The penalisation of the tracking error in the cost function can partially mit-
igate this issue. However, the controller reaction time is subject to a policy
update which is typically slower than the system dynamics. Providing safety
by soft constraints might also conflict with other objectives, and the cali-
bration of the cost function might become tedious when balancing multiple
objectives.
This work proposes two safety methods for maintaining a robust and contin-
uous operation at all times, even during exploration transients. A summary
of the safety method is presented in Section 9 and in the contributions Pa-
per D and Paper F.
This method does not modify the optimality criterium, and it consists of a
safety filter that is inserted between the RL controller and the system plant.
The filter overrides the control input provided by the RL controller in case
of potential unsafe predictions. In Paper D, the prediction and safety recti-
fication are based on a nominal linear model, and the results show that the
performance of this method is subject to the structure of the nominal model
and its calibration. To reduce the dependency of this model, in Paper F the
proposed model is a combination of a nominal model with a GP regression,
allowing for nominal model imperfections. The results show that the GP
model can successfully capture the system uncertainty. The confidence inter-
vals are utilised to safely guide the learning by first providing conservative
supervision when the uncertainty is high and then relaxing the supervision
when the GP performs accurate predictions. There must be a trade-off be-
tween conservative and reckless operation, such that the controller actions
allow the collection of rich data while the system trajectories are safe-critical.
The confidence gain, Kc, and the learning rate of the GP are factors that reg-
ulate the balance between conservative and relaxed supervision.
This approach consists of a modular control architecture; in this project, the
modularity is a clear advantage for the easy implementation of a supervisor
module that leverages the safety of an existing learning controller. The legacy
controller and the safety filter are independent modules in this control loop.
The operation of the main controller is only interrupted in case of safety.
Therefore, this kind of control architecture provides the opportunity to sim-
plify the computation of optimal controllers that require solving constrained
optimisation problems in real-time. This simplification consists of delegating
some constraints to the safety filter, the conservativism of the main policy is
reduced as well as its computational effort since the expensive computation
is only triggered when potential unsafe trajectories are predicted.
This practice is utilised to formulate the water quality as a safety problem in
Paper F. The results show that the safety filter can also limit the water age
in a tank based on the average turnover. In this way, the pump actuation for
increasing the turnover is only triggered when necessary for safety.
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10. Concluding remarks

Experimental validation. This project also includes the construction of a
laboratory facility that emulates, on a small scale, the behaviour of water
infrastructures. The laboratory is a modular system that allows for the re-
production of different topologies and scenarios, a brief comparison of the
laboratory and real water distribution systems is given in Section 2, and a
detailed description of the laboratory is presented in Paper E. This labora-
tory has supported this work by validating the usability and robustness of
the solutions proposed in the contributions Paper A, Paper D and Paper F.
By testing the proposed solutions in this laboratory facility, different factors
that impact the control loop are introduced, such as communication delays,
process noise, actuator dynamics or non-linearities of the hydraulic system.
All these factors are typically difficult to include in a simulation environment.
Therefore, the experimental results are especially necessary for identifying
weaknesses in each method and, in most cases, pointing to the next step for
future development.
Finally, another issue to discuss is the benchmarking problem. This work con-
siders that comparing the performance of a learning control with a model-
based control approach is challenging since the lack of prior system infor-
mation or maintenance cost of the solution are subjective factors that differ
between each case. Moreover, performing a fair comparison between differ-
ent model-free approaches is complicated in industrial applications since the
learning performance depends on multiple factors such as manual calibration
hyper-parameters for a specific application domain.

Personal outlook. As previously introduced, the overall objective of this
work is to facilitate the implementation of optimal pressure management
solutions on a broad number of utilities in a cost-efficient manner. There-
fore, the design criteria prioritise tractable solutions that are easy to interpret
versus complex solutions that might provide better performance but require
qualified personnel for operation.
To design control solutions closer to real utility needs, the author conducted
interviews with two experts in the field. These interviews have supported
the author in prioritising the list of management objectives and in develop-
ing system models that describe realistic scenarios.
The first interview [106] focused on the current management strategies for
regulating water quality and the use of elevated reservoirs in small size util-
ities. From the discussion, the author concludes that:

• In Denmark, a majority of water utilities use groundwater sources where
the water quality is sufficient. Hence, its distribution is chlorine-free.
The water quality degradation depends on factors that cannot be con-
trolled during the distribution like the quality of the source or wa-
ter temperature. Nevertheless, the ambient temperature is moderate

61



most time of the year. Hence, this factor is neglected when developing
dynamic models that describe the system’s behaviour. Additionally,
the supply is continuous, with a low risk of pipe stagnation. Thus,
transportation has a minor impact on the deterioration of water qual-
ity. Therefore, the most critical elements in a distribution network are
reservoirs where the water is stored over a while.

• There is no active regulation of the water quality in the tank and the
water age is regulated by periodic flushing of the tank. The frequency
of this flushing cycle is manually scheduled.

The second interview [107] focused on the business perspective of learning
controllers in the industry, as well as the automatisation of certain operator
tasks at water utilities. From the discussion, the author concludes that:

• Some water utilities can bear the initial expense of new technology.
Moreover, they might not demand a short-time investment payback
compared to other industries. However, the personnel cost related
to the maintenance of some advanced control solutions might obsta-
cle their implementation since small-medium-size water utilities might
lack qualified personnel to operate them. In this scenario, learning con-
trollers could play an important role in the industry, considering that
a long training period is not an issue as long as a safe water supply is
guaranteed.

• Technology that involves learning or adaptation to a specific water net-
work could reduce or simplify some manual operator tasks. Having
many manual operations creates a dependency on knowledgeable and
experienced personnel for managing critical infrastructures. This issue
highlights the need for digitalised infrastructures that permit a transi-
tion to automated management. Hence, generational knowledge can be
gradually replaced by intelligent controllers.

The use of elevated reservoirs in water distribution networks differs depend-
ing on the location and size of the network or governmental rules [108]. As
briefly described in Section 2, the main function of elevated reservoirs is to
balance the pressure in the network and support the pumping stations during
peaks in demand. Recently, some reservoirs have been decommissioned due
to the infrastructure’s age, and smart pumping systems are replacing their
functionality. However, elevated reservoirs are still necessary since they are
passive control elements that provide management alternatives for balancing
the pressure in the network. For instance, in some cases, like in New York,
buildings of 6-stories or more are required to install a rooftop water tank to
balance the pressure or fire fighting locally.
Based on the interviews, discussions and project results, the author concludes
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10. Concluding remarks

that safety considerations are essential when designing any control solution
for critical infrastructures.
In conclusion, the design of new control solutions (smart pumping systems)
must exploit all the network elements, including elevated reservoirs, first to
guarantee a safe water supply and then to improve the overall system effi-
ciency. Despite their uncertain behaviour, learning controllers have a great
potential to solve issues that challenge water infrastructures. However, im-
plementing some model-free solutions can become as costly as other model-
based approaches since some model-free controllers have to be configured in
advance to learn a specific application.

10.2 Future work

Pure model-free approaches like Deep Reinforcement Learning are black-
box methods capable of learning complex problems, but they are known for
their lack of interpretability. Nevertheless, having a simple learning structure
comes at a price. The design of this project’s controller aims at increasing the
interpretability of the resulting policy by providing a model structure. In this
way, the tuning of the RL hyper-parameters is facilitated. The project results
show that the performance of this RL controller is limited by the polynomial
basis when applied to a real WDN. These bases cannot describe the non-
linear behaviour of the system. Some non-linear effects could be captured
by increasing the approximation vector space and selecting higher degree
polynomials. However, this solution could easily lead to numerical issues.
Orthogonal polynomials like Chebyshev polynomials can provide a better-
conditioned parameter identification with respect to plain polynomials [63].
A potential extension of this controller toward non-linear applications could
be studied by using radial bases. This kind of basis also allows the formula-
tion of a reward (cost) function that is not restricted to a quadratic form.
Including safety in this work has been essential for easily deploying the learn-
ing controller, especially when tested in the laboratory test-bed. The learning
algorithm freely explores the safe area, and the system trajectory is modified
otherwise. Paper F extends the safety filter and includes confidence inter-
vals for assisting the exploration based on the accuracy of the predicted GP
model. In this approach, the GP model is naively trained with the same data
as the RL algorithm. In the future, a better selection of the input data could
be required. Alternatively, the author highlights two methods that have the
potential to solve this control problem in water distribution networks:

• Learning-based predictive controllers: MPC is a well-known optimal
control method where safety is implicit in its constrained optimisation
framework. [96] combines a GP regression model in an MPC to deliver
a data-driven MPC, [93] proposes a control scheme that combines Eco-
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nomic Non-Linear MPC with RL to generate an optimal policy despite
the underlying system model, by adjusting the stage and terminal cost
alone. However, the control structures of these two approaches differ
from the control approach proposed in this study.

• Barrier functions: The safety of the proposed control solution can be
increased by modifying the RL optimality criteria such that the unsafe
operations are learned and penalised accordingly. This extension does
not necessarily imply the modification of the proposed control struc-
ture. An equilibrium between optimality and safety can be achieved
by introducing barrier functions in the cost function. However, the
resulting policy is expected to be more conservative. Extending this
project approach with barrier functions would also imply a selection of
more suitable bases for the Q-value function approximation. The use
of non-linear optimisation frameworks or new bases might reduce the
tractability of the solution. On the other hand, they facilitate the inclu-
sion of management objectives in the optimality criteria, such as water
quality or energy consumption.
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1. Introduction

Abstract

Optimal control for Water Distribution Networks (WDN) is subject to complex sys-
tem models. Typically, detailed models are not available or the implementation is too
expensive for small utilities. Reinforcement Learning (RL) methods are well known
techniques for model-free control. This paper proposes a model-free controller for
WDNs based on RL methods and presents experimental evidence of the practicality
of the design.

1 Introduction

Water Supply Systems (WSS) are critical infrastructures which deliver water
from a source to a number of end-users. These systems consist of the fol-
lowing main parts: water sources, treatment plant and storage, transmission
stations and distribution network. The WSS studied in this paper consists
of the infrastructure after the water treatment plant, where drinking water is
transported long distances through a distribution network to the consumer
districts. The system overview is illustrated in Figure A.1. The elevated

End-users

Elevated
Reservoir

Pumping
Station

TO
PRESSURE
ZONE	2

PRESSURE
ZONE	1

d0

p0

dn+1

dn+2dj

pn+1

Figure A.1: Illustration of a simplified water distribution network with a pumping station and a
storage tank where a city district is supplied through a ring topology network.

reservoirs (ER) play an important role in a water distribution network. The
ER contribute to the pressure regulation of the network, additionally these
storage units provide extra water capacity to meet demands in different sce-
narios such as peak demand periods, service works or emergency situations.
Having certain storage capacity combined with proper control strategies, pro-
vides the system a suitable framework for energy efficient management as
shown in many studies [8], [15], most of them in the Model Predictive Con-
trol (MPC) framework.
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Efficient management of these infrastructures requires complex control algo-
rithms and detailed network models. This requirement increases the com-
missioning cost of these controllers and makes these strategies unaffordable
for most of small utilities. Therefore, plug & play techniques are proposed to
give a control solution which adapts to the network complexity, [5], [4].
Reinforcement learning (RL) is a type of machine learning used in multi-
ple disciplines including control of systems. RL methods are employed to
find optimal control policies despite of model uncertainties [14], [1]. Hence,
control RL (model-free) approaches can provide a great advantage when im-
plementing a control solution in large-scale systems. Promising results are
presented in [3], [2] and [13] using RL methods as hierarchical control strat-
egy for other water systems applications.
When dealing with large-scale continuous systems, the amount of state-action
pairs required to map values of the system must be considered. RL tech-
niques where the values are stored can become computationally expensive.
Instead, function approximation methods evaluate at every step the state-
action pair, leading to a compact representation and efficient use of the data
samples [7].
[9] and [10] present Q-learning algorithms that converge to an optimal con-
troller by using function approximations. These methods find an approxi-
mate value function which replaces the complete mapping of the enormous
state-action space.

This paper presents an online control solution that uses a Q-Learning
algorithm for a system with unknown dynamics. Additionally, this paper
presents a novel reformulation of the state space for including an integral
control action on the controller response. Part of the RL algorithm is based
on the Linear Quadratic Tracking (LQT) controller presented in [6]. This ap-
proach assumes that a full state feedback is available and the reference signal
is given by a linear function. In order to validate that this optimal control
solution is able to adapt to different network structures and scenarios, the
algorithm is tested in a laboratory testbed which emulates a reference WDN.
This reference model is based on a realistic network structure which can be
typically found in small utilities like Bjerringbro in Denmark. It consists of
a single pumping station, a storage tank and the different consumers are in-
terconnected in a ring topology network. Numerical results are obtained in a
simulation of Bjerringbro’s WDN. Subsequently, experimental results are ob-
tained at the Smart Water Infrastructure (SWI) laboratory at Aalborg Univer-
sity. This modular testbed allows to replicate real infrastructures in a smaller
scale. The laboratory is adapted to qualitatively emulate the particular study
case.

The rest of this paper is organised as follows. Section 2 recapitulates LQR
formulation using Bellman equation. Section 3 describes the model of the
WDN. Section 4 reviews the control algorithm design. Section 5 presents the
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simulation and experimental results as well as an overview of the testbed
used. Section 6 sums up the contributions of the work and relevant ideas for
future work.

2 Preliminaries

The work presented in the following section is based on the contribution of
[9] and [10] on optimal control and RL. First, a LQR problem is reformu-
lated with the Bellman function. Then, a Q-learning approach is considered
to address a LQR problem without knowledge of the system dynamics. Al-
though the following control approach is considered model-free, the problem
structure developed in Section 2.1 is used as reference.

2.1 Bellman function based LQR problem

Consider the following linear discrete-time system in the state-space form

xk+1 = Axk + Buk ,

yk = Cxk ,
(A.1)

where xk ∈ Rna are the system states, uk ∈ Rma are the control inputs, and
yk ∈ Rpa are the system outputs and A,B and C are constant matrices with
compatible dimensions. The reward function is formulated as a quadratic
function of the states as follows

V(xk) =
1
2

∞

∑
i=k

γi−kρ(xi , ui) =
1
2

∞

∑
i=k

γi−k
[

xT
i Qxi + uT

i Rui

]
, (A.2)

where Q>0, R>0 are weights of the cost function ρ(x, u) and 0 < γ < 1 repre-
sents a discount factor that reduces the weight of the cost obtained further in
the future. Then, the feedback control policy is given by the linear controller

uk = π(xk) = −Kxk (A.3)

The optimal control policy is found by solving the Linear Quadratic Regula-
tor (LQR) problem by minimising (A.2) over infinite horizon

V∗(xk) =
1
2

min
u

∞

∑
i=k

γi−k
[

xT
i Qxi + uT

i Rui

]
, (A.4)

using the given state feedback policy uk, the solution to the Algebraic Riccati
Equation (ARE) gives the matrix P such that

V∗(xk) =
1
2

xT
k Pxk , P = PT > 0 (A.5)

79



Paper A.

Alternatively, a formulation of this problem can be described by the Bellman
equation

V(xk) =
1
2

ρk(xk , Kxk) + γV(xk+1), (A.6)

where V(xk+1) is the cost of the policy K evaluated at the next time step. This
paper uses a similar version of (A.6), a q-function where the state xk and
control action uk are explicitly expressed:

q(xk , uk) =
1
2

ρk(xk , uk) + γV(xk+1) (A.7)

By introducing the associated cost function from the LQR problem and (A.5),
the q-function can be expressed as

q(xk , uk) =
1
2

(xT
k Qxk + uT

k Ruk) + γxT
k+1Pxk+1

= xT
k Qxk + uT

k Ruk + γ(Axk + Buk)T P(Axk + Buk)
(A.8)

Then, (A.8) can be expressed in a matrix form as follows

q(xk , uk) =
1
2

[
xk
uk

]T [
γAT PA + Q γAT PB

γBT PA γBT PB + R

] [
xk
uk

]
(A.9)

Rearranging (A.9) in a compact form yields

q(xk , uk) =
1
2

[
xk
uk

]T [Hxx Hxu
Hux Huu

] [
xk
uk

]
,

1
2

zT
k Hzk (A.10)

where z(xk , uk) =
[
xk , uk

]T . Subsequently, the optimal control policy is given
by

u∗k = argmin
u

q(xk , uk) = −H−1
uu Huxxk (A.11)

This is the optimal control action when the system dynamics is completely
known and full state feedback xk is available.

2.2 Q-learning for LQR

In this section, the system dynamics is unknown. Then, the Bellman optimal-
ity principle is applied to formulate the q-function (A.7) in a recursive form.
First, by introducing the Bellman optimality equation V∗k (xk) = minu qk(xk , uk)
into the q-function (A.7) leads

qk+1(xk , uk) = ρk(xk , uk) + γqk(xk+1, K∗xk+1), (A.12)

where K∗ is the optimal policy. In the future the next state is denoted as
x′ = xk+1.
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Then, the q-function expression (A.12) is rearranged based on the RL Tempo-
ral Difference (TD) method for prediction proposed in [14]

qk+1(xk , uk) =qk(xk , uk)

+α
[
ρ(xk , uk) + γ min

u
qk(x′, u)− qk(xk , uk)

]
,

(A.13)

where α represents the learning rate. Finally, the expression (A.13) is refor-
mulated to obtain the update law which gives the q value.

qk+1(xk , uk) =

(1− α)qk(xk , uk) + α
[
ρ(xk , uk) + γqk(x′, u′)

] (A.14)

where u′ represents the optimal control action with u′ = π∗(x).

3 System model

A WDN consists of a pipe network with different elements such as valves,
pumps and elevated reservoirs. The distribution network is divided into
several districts - Pressure Zones (PZ), see Figure A.1. The end-users water
consumption (demands) are generally an unknown input or disturbance to
the system.

3.1 Network Model

The studied network model is restricted to a ring topology which is a struc-
ture typically found in small water utilities. This model can be simplified
by unifying the end-users (nodes) that are geographically close because the
pressure loss due to pipe resistance is relatively low between them [11]. Fig-
ure A.1 shows a standard ring network where the multiple end-user demands
are represented by aggregated demands from the main pipes dj, the con-
trolled inflow from the pumping station is denoted by d0 and the tank inflow
by dn+1. Due to mass conservation in the network, the relation between sup-
ply flow d0, the reservoir flow dn+1 and the end-user water consumption dj
can be denoted as

d0 + dn+1 = −
n

∑
j=1

dj, (A.15)

where dj ≤ 0 and n is the number of end-user demands. Then, by assuming
that the distribution of daily water consumption between the end-users is
alike, the demand profile for all the consumers can be described by

dj = β jd ∀j = 1, . . . , n (A.16)
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where β j is a constant describing the distribution, ∑n
j=1 β j = 1 and d is the

total district demand in a PZ. The pressure at the reservoir node pn+1 is given
by the level h in the reservoir and the geodesic level h0.

pn+1 = µ(h + h0) (A.17)

where µ is a constant scaling the water level and pressure unit and h is the
tank level that belongs to an interval restricted by the height of the reservoir.
The reservoir level rate depends on the flows leaving the reservoir (dn+1 and
dn+2)

At ḣ = −dn+1 − dn+2, (A.18)

where At is the constant cross sectional area of the elevated reservoir and the
outflow to other PZs dn+2. For simplicity, in the laboratory test this outflow
is not further considered.

4 Control

The management of WDNs must ensure the supply of water to the end-users
with sufficient pressure head and quality, this task must be performed while
considering multiple objectives during the daily operation. Some studies
performed in [12] state some control objectives: economic, safety, smoothness
and water quality.
In this paper only safety is considered in the control strategy, this means that
the operational goal is to guarantee the water supply to the end-users. This
control task is challenging due to the uncertainty of the water consumption.
Therefore, storage tanks must contain enough water to meet future stochastic
demands.

4.1 Internal Model Principle

One of the contributions of [6] is the solution to the LQT problem and quadratic
form of the LQT value function where the problem is formulated as a quadratic
form in terms of the system states x and trajectory reference r. In this paper,
an additional extension of the state space is proposed for introducing an
integral action ξ which rejects the constant disturbances - demands. The aug-
mented system model is built as follows.
First, the physical model above (A.18) is expressed in a state space form for
the control design

ḣ = Ach + Bcu + Wcd

yc = Cch,
(A.19)

where h ∈ R represents the tank level, u ∈ R the controlled inflow d0
and d ∈ R the end-user demand, with Ac,Bc and Cc constant matrices with
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compatible dimensions. Then, a reference trajectory r is defined by a linear
function

ṙ = Lr, (A.20)

where r ∈ R, then defining the integral error

ξ̇ = yc − r (A.21)

Equations (A.19), (A.20) and (A.21) are combined to build the following
augmented state space modelḣ

ṙ
ξ̇

 =

Ac 0 0
0 L 0

Cc −I 0

h
r
ξ

 +

Bc
0
0

 [u] +

Wc
0
0

 [d] (A.22)

Finally, expressing the state space representation (A.22) in a more compact
form for discrete time

xk+1 = Aexk + Beuk + Wedk

yk = Cexk ,
(A.23)

where x =
[
h, r, ξ

]T is the augmented state vector. A cost (reward) func-
tion similar to the previously stated in (A.2) is built by using the augmented
system output from (A.23)

V(xk) =
1
2

∞

∑
i=k

γi−k
[
yT

i Qyi + uT
i Rui

]
. (A.24)

By reformulating (A.24) with Ce =
[

Cc −1 0
0 0 1

]
, the cost function includes

the tracking error in terms of x and u.

V(xk) =
1
2

∞

∑
i=k

γi−k[(Cchi − ri)TQ1(Cchi − ri) + ξT
i Q2ξi + uT

i Rui]

=
1
2

∞

∑
i=k

γi−k(xT
i Qexi + uT

i Rui) =
1
2

∞

∑
i=k

γi−kρ(xi , ui)
(A.25)

with Q1 > 0, Q2 > 0 and R>0 and

Qe =

CT
c Q1Cc −CT

c Q1 0
−Q1Cc Q1 0

0 0 Q2

 . (A.26)
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4.2 q-function Approximation using linear architectures

A linear architecture is selected for the approximation over other black-box
methods such as Neural Networks. Although the latter methods can provide
a more generalised solution, a linear architecture is easier to implement since
its behaviour is more transparent, facilitating the troubleshooting task when
the algorithm fails.
The q-function proposed in (A.10) is linearly approximated by a set of Basis
Functions (BF) φ and the corresponding coordinate vector θ or weights. The
BFs are a combination of monomial basis. Thus, learning upon the state
vector structure from (A.10) which is quadratic, a finite set of monomial basis
of 2nd degree polynomials, formed with x and u, is chosen as follows. For a
multi-index a ∈ Zna ≥ 0, with | a |= a1 + · · · + ana ,

q̂(x, u) = ∑
|b|=2

θ(b,0)xb + ∑
|a|=1

θ(a,1)xau + θ(0,2)u2. (A.27)

Then, by representing (A.27) in a vector form

q̂(x, u) = φT(x, u)θ, (A.28)

where φ is an nb-dimensional column vector of BFs and θ is an nb-dimensional
coordinate vector and nb = mana + pana + ma

φ = [x2
1, x1x2, . . . , x2

na , xna u, u2]T (A.29)

Subsequently, the approximated control law can be described as u = π̂(θ, x),
where π̂(θ, x) can be computed by

u′k = argmin
u

q̂(xk , uk) = argmin
u

φT(xk , uk)θ (A.30)

This yields to the feedback control policy given by the linear controller

u′k = K̂(θ)xk (A.31)

Alternatively, since (A.27) is quadratic with respect to x and u, a moment
matrix Ĥ can be formed with the coordinates of the BFs such that

q̂(xk , uk) = zT
k Ĥ(θ)zk , (A.32)

where zk =
[
xk , uk

]T and Ĥ matrix is a symmetric matrix parametrised with

the coordinate vector θ as follows Ĥ =

θ1
θ2
2 . . .

θ2
2 θ3 . . .
...

... θl

 where Ĥ ∈ Rnb(nb+1)/2

Note that q-function (A.10) and approximated q-function (A.32) have the
same quadratic structure.
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4.3 Parameter Update

For the following method, a sample is organised as a tuple of (xk , uk , ρk , x′)
and a data batch as a set of collected samples (xls , uls , ρls , x′ls | s = 1, . . . , nl)
where nl is the batch size and the index l is the batch iteration number.
The coordinate vector θ is initially unknown, therefore the parameters must
be recursively learned. For this, the q-value approximation (A.28) is intro-
duced into the update law (A.13)

φT(xk , uk)θk+1 = (1− α)φT(xk , uk)θk + α
[
ρ(xk , uk) + γφT(x′, u′)θk

]
(A.33)

Then, by evaluating (A.33) recursively, a batch of samples is obtained. The
update law for a batch is denoted as

ΦT
l θl+1 = (1− α)ΦT

l θl + α
[

Jl + γΦT
l (x′, u′)θl

]
(A.34)

where Φ ∈ Rnb×nl is a matrix of BFs φ, J ∈ Rnl is the vector of rewards
ρ collected on a batch iteration l. In order to solve the expression (A.34), a
linear Least-Squares Temporal Difference (LSTD) method, similar to [7], is
followed to solve the q-function

θl+1 = (1− α)θl + αG−1
l Φl

[
Jl + γΦT

l θl

]
(A.35)

Note that a persistent excitation must be added to the control signal such
that the term Gl = ΦlΦT

l is invertible. The equation (A.35) is solved by recur-
sively executing the steps described in Algorithm 3.

Algorithm 3 LSTD for Q-function.

1: Input: γ, α, ns,
2: Approximation mapping of the BFs,
3: Initialisation: l ← 0, x0, θ0 where π̂(θ0) must be an admissible policy.
4: repeat at every iteration k = 0,1,2, . . .
5: apply uk = Kl xk and measure xk+1
6: Υls ← ρ(xk , uk) + γq̂(xk+1, Kl xk+1)
7: if k = (l + 1)ns then
8: θl+1 ← (1− α)θl + αG−1

l ΦlΥl
9: π̂(θl+1, x)← argminu ΦT

l θl+1
10: l ← l + 1
11: end if
12: until ‖θl+1 − θl‖ < ε
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5 Results

To validate the practicality of the proposed control strategy, Algorithm 3 is
tested in a computer simulation, then deployed in the Smart Water Labora-
tory. In this application example the pressure in the network is regulated by
controlling the level in the tank. The pressure at the node pn+1 is set conserva-
tively enough to meet the flow demands. The weights of the reward function
(A.24) are set to prioritise the minimisation of the tracking error over control
action.
The discount factor γ is set close to 1 nearly to the optimal solution, while
the learning rate α is sufficiently small such that the old information prevails
over new information collected.

5.1 Numerical Results

A simulation environment is developed with the purpose of verifying the
proposed control algorithm and training for further implementation. This
computer simulation reproduces the water network model from Bjerring-
bro, a simplified version of the aforementioned network is illustrated in Fig-
ure A.1.
As shown in Figure A.2, the tank level has an oscillatory transient where the
system dynamics are controlled with a non-optimal policy. Once the learn-
ing is considered satisfactory, the persistent excitation on the control action is
no longer applied and the tank level stabilises at the reference target despite
of the demands d and dn+2. This excitation consists of a sum of sines and
cosines of different frequencies. In Figure A.3, the coordinate vector parame-
ters θ converge to a satisfactory policy.
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Figure A.2: Simulation Results. Top: Tank Level (blue), reference level(red) Bottom: Controlled
input flow (blue), Water Demands (red) (yellow)
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Figure A.3: Simulation Results. Top: Coordinate vector. Bottom: Control Policy

5.2 Experimental Results

The testbed scheme consists of a set of Laboratory Units (LU) that can be
interconnected to reproduce the desired network. As mentioned earlier, data
from Bjerringbro WDN is used to emulate a real water utility. This WDN
consists of a single pumping station and storage units, see Figure A.4 and
Figure A.5.

Figure A.4: Photo of the SWI laboratory.

The WDN is built in the laboratory by two aggregated consumers in the
City Districts (CD1 and CD2), a pumping station (Pu1), an Elevated Reservoir
(ER) and multiple pipe units to reproduce the network structure. A local
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5. Results

controller ensuring fast flow control is implemented at Pu1. CD1 and CD2 are
equipped with a valve regulating the water consumption. Different geodesic
levels h0 at each critical node (Pu1, ER, CD1, CD2) are simulated by air-
pressurising the collecting containers with the equivalent head pressure. The
LUs are equipped with multiple sensors and actuators. Each of them has a
soft-PLC in charge of the data acquisition, local control and communication.
The soft-PLCs at the LUs are interfaced with CODESYS Control. Furthermore,
the LUs are interconnected to a Central Control Unit (CCU) that can be used
for central management of the modules.
The control Algorithm 3 for optimal level control is tested in the described
laboratory setup. An admissible initial policy is given based on simulation
training. As shown in Figure A.6, the tank level is regulated around the
reference after some adaptation period. A small error is observed in steady
state due to the different accuracy of the flow sensors. Figure A.7 shows the
update of the q-function parameters based on the new data, adapting the
optimal policy to the new system.
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Figure A.6: Experimental Results. Top: Tank Level (blue), reference level(red) Bottom: Con-
trolled input flow (blue) Water Demand (red)
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Figure A.7: Experimental Results. Top: Coordinate vector. Bottom: Control Policy

6 Discussion and Future Work

The q-learning algorithm succeeded in finding an approximated optimal pol-
icy. However, the learning process in a real system is uncertain. This explo-
ration typically leads to saturation of the control actuators and violation of
the safety boundaries on the testbed. This factor is a limitation when imple-
menting the controller on systems that have physical boundaries compared
with other solutions such as MPC.
The integral action successfully rejects disturbances when the demand pro-
files are constant. In real scenarios, stochastic disturbances occur, which must
be considered in the control design. Due to the real system non-linearity and
stochastic disturbances, which are not considered in this control approach,
the algorithm does not reach a smooth convergence of the parameters. How-
ever, it can be observed that the variation of the controller gains remains to a
stable value during the learning, see Figure A.7.

In the future, in order to improve the applicability to a high-dimensional
system, this control approach can be improved by considering periodic dis-
turbances in the control design. Moreover, a controller for WDNs must in-
clude input and output constraints that set the safe operation boundaries.

7 Conclusion

A model-free solution is proposed to regulate the level in the ER in a WDN.
This adaptive-optimal control is successfully implemented on a small-scale
WDN since the tank level is regulated despite not having the network model.
Furthermore, a novel approach is presented, an integral action in the control
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policy that compensates steady-state constant disturbances. This solution of-
fers an easy-commissioning tool which can reduce the implementation costs.
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1. Introduction

Abstract

Cost efficient management of Water Distribution Networks with storage units re-
quires of extensive knowledge of the water network. However, the network models
are not always available or the calibration costs are too high for most of small wa-
ter utilities. This paper proposes a model-free control solution based on Q-learning
methods that provides a policy for the operation of the network. This supervisory
controller must guarantee the water supply despite of the uncertainty of the daily
water consumption and reduce the operation cost. The function approximation pro-
posed for the Q-learning controller uses Fourier Basis Functions which provide an
accurate approximation of the periodic disturbances. This paper presents results of
the control validation in a simulation framework as well as experimental evidence of
the advantages and limitations of the proposed design.

1 Introduction

Water Distribution Networks (WDNs) are large-scale systems requiring a
considerable amount of energy, this consumed energy is in most cases pro-
duced using fossil fuels. WDNs with elevated reservoirs have some storage
capabilities that can be utilised to save energy. Therefore, an efficient oper-
ation of the WDN can reduce the carbon footprint. Additionally, the man-
agement at the water utilities must guarantee a robust water supply, this
operation becomes difficult since the water consumption in a urban district
is uncertain. In order to achieve an optimal management of these infrastruc-
tures where all the objectives are satisfied, Model Predictive Control (MPC)
management strategies are implemented where models of the network are
required [4], [16]. However, these models are not always available or the
maintenance costs are too high. In order to facilitate that modern control
techniques are implemented by a greater number of utilities, easy commis-
sioning control tools are developed [15],[1]. Reinforcement Learning (RL) is
a machine learning technique which has been successfully implemented in
various control applications [9], [2]. RL is a model-free optimisation method
that can be combined with function approximators to extend the application
of these methods to continuous state-spaces.
The periodic disturbance signal described by the consumed water can be
approximated using Fourier Series. Some studies argue that Fourier Basis
functions can provide a better approximation of the system when using RL
methods [7] compared to popular fixed bases. This paper proposes an exten-
sion of the Q-learning control strategy proposed in [14] that includes Fourier
Basis for the approximation of the periodic disturbances. Additionally, the
control objectives are defined to minimise the energy usage during the oper-
ation. Linearising a smooth non-linear system via a small-signal analysis is
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Figure B.1: Illustration of a simplified WDN with a pumping station, an elevated reservoir and
multiple end-users located in a city district.

a widely used technique in control design. This method allows to use linear
controllers in non-linear systems around an operating point [5]. However,
this operating point is often unknown in real systems. In this paper, a struc-
ture of a linear system is assumed, this model is adaptatively updated in the
Q-function identification scheme.
The rest of this paper is organised as follows. Section 2 develops a system
model of a water network with an elevated reservoir. The structure of this
model is reduced for convenience in the control design, the periodic distur-
bances are considered in the control strategy and approximated via Fourier
series. Section 3 defines the control strategy for a WDN with unknown dy-
namics. Then, the learning algorithm is described. Section 4 presents numeri-
cal and experimental results where the control strategy is validated. Section 5
summarises the contribution of the work and gathers some ideas for future
development of the presented method.

2 System model

A WDN is generally divided into several districts or pressure zones. The
main network elements of the studied district are illustrated in Figure B.1.
The scope of this system is to supply drinking water from the pumping sta-
tion to the end-users where the water is consumed. The water consumption
in an urban district is typically unknown, and it is considered as disturbance
to the system. The uncertainty in the demand hampers the good operation
of the system. However, these demands typically follow a daily pattern and
therefore they can be approximated. This section also contains the assump-
tions made to represent a WDN system in a linear form.
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2.1 Water network model

This study proposes a heuristic model of a WDN where the only dynamic el-
ement is the elevated reservoir. The reduced network structure is represented
in Figure B.2 and it consists of four main elements: a pump station, a con-
sumer district, an equivalent pipe and an elevated reservoir. The purpose of
such simplification is to represent the bottom line dynamics of a WDN. This
simple structure is later used for the approximation scheme in the model-
free controller in Section 3. This model assumes that the pump is locally

qeq

q1

Pump station

p1 Elevated Reservoir

pn

h

h0
d

City district

Figure B.2: Diagram of an equivalent WDN.

controlled to deliver the input flow q(t). A simple model of the power of a
pump P(t) is defined as

P(t) = q(t)∆p(t)/η, (B.1)

where η is a constant representing the performance of the pump. In this
network model a set of end-users, which are geographically close, are rep-
resented by a single nodal demand [11]. The relation between the demand
profile for each end-user dj(t) and total water demand is described by

dj(t) = vjd̄(t) (B.2)

where d̄ is the total water demand, vj is a constant describing the distribution
between the demands, j is the consumer node index. A district pipe network
is reduced to a single pipe which has an equivalent pipe resistance. The
pressure drop in the equivalent pipe is given by

∆peq(t) = λ(qeq(t)) + ∆zeq, (B.3)

where λ is the pressure loss due to pipe friction and ∆zeq is the differential
geodesic level between two nodes. The equivalent flow qeq can be calculated
assuming mass conservation in the pipe node q(t) = d̄(t) + qeq(t).

Assumption 1. The hydraulic resistance λ takes the form req|qeq|qeq and req >0 is
a constant parameter. This form describes the friction losses in a pipe with turbulent
flow [13].

The elevated reservoir dynamics is given by the following equation

Aer ḣ = q(t) + d̄(t) (B.4)
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where Aer is the cross sectional area of the elevated reservoir. Then, the
pressure at the elevated reservoir node pn is given by

pn(t) = µ(h(t) + h0) (B.5)

where µ is a constant scaling the water level and pressure unit and h0 is the
elevation of the tank. Then, for the reduced network topology, the pressure
at the pumping station is given by

p(t) = pn(t) + ∆peq(t) (B.6)

The model presented in (B.4) can be expressed as a linear discrete-time sys-
tem in the state-space form,

hk+1 = Ahk + Bqk + Ed̄k (B.7)

where hk ∈ R is the system state, qk ∈ R is the controlled input flow and
dk ∈ R are the system disturbances, and A,B and E are constant matrices
with compatible dimensions.

2.2 Inclusion of periodic disturbances

A real water demand can be described as a stochastic Wienner process with
a period of one day. Thus, it follows a similar pattern from day to day. It is
assumed that this signal, with known periodicity, can be approximated using
Fourier Series (FS) of certain order N. The signal approximation is developed
as follows, consider a FS continuous signal of the form

d̄(t) = a0 +
N

∑
n=1

(an cos(ωnt) + bn sin(ωnt)) + w, (B.8)

where a0, an and bn ∈ R are the Fourier coefficients, ωn = 2πn f0 and f0
represents the fundamental frequency and w is Brownian noise. Note that
for the studied case the f0 is determined by a period of one day. The mean
of the periodic function (B.8) can be reformulated using a discrete-time state
space representation as follows

sk+1 = Adsk ,

dk = Cdsk ,
(B.9)

where the system matrix Ad = diag(1, F1, . . . , FN), with Fn =
[

cos (ωn∆t) − sin (ωn∆t)
sin (ωn∆t) cos (ωn∆t)

]
where ∆t is the sampling time and the output matrix Cd includes the Fourier
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coefficients. The state vector sk ∈ Rnd , with nd = 2N + 1, is subject to the
following initial condition

si,t0 =


c0 if i = 0
cos (ωnt0) if i > 0, i odd
sin (ωnt0) if i > 0, i even

(B.10)

where c0 is a constant, t0 is the initial time value and the index vector i ∈
Z, [0, nd]. Figure B.3 (top) depicts the resulting output signal compared with
real water consumption data. The time series data of the district’s water
consumption is provided by Bjerringbro vandforsyning, a small water utility in
Denmark. Note that for N=3, the output signal describes the water consump-
tion pattern with high and low demand period.
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Figure B.3: Top: Output disturbance signal and consumption data for two days. Bottom: Fourier
Harmonic states for n=0,1,2,3.

2.3 Augmented state space model

This subsection presents a reformulation of the WDN model such that the
disturbance term is included in the state vector of the system. For this, the
elevated reservoir model (B.7) and the periodic disturbance function (B.9) are
combined in an augmented state space of the form

xk+1 =
[

A ECd
0 Ad

]
xk +

[
B
0

]
uk ,

yk =
[

I
Cp

]
xk +

[
0

Dp

]
uk ,

(B.11)

where xk=
[
hk sk

]T , uk is the controlled input and yk =
[
hk sk pk

]T is the
measured output vector. Note that the pressure at the pumping station p is
introduced in the output signals as linear variable by considering assumption
2.
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Assumption 2. The pressure losses in the equivalent network are given by (B.3).
Considering that the system operates around an arbitrary operating point q̄eq, the
term λ(qeq) can be linearised by using a first order Taylor series, and therefore the
pressure at the pumping station (B.6) can be approximated with the linear structure
pk ≈ Cpxk + Dpuk.

Note that, the approximation of pk uses the states from the Fourier Series
vector to represent the pressure offset introduced by ∆zeq and h0 as well
as the periodic disturbance d̄. Finally, representing the system (B.11) in a
compact form,

xk+1 = Aexk + Beuk ,

yk = Cexk + Deuk ,
(B.12)

where x ∈ Rma , u ∈ Rna . The feedback control policy is given by the follow-
ing controller

uk = −Kxk . (B.13)

3 Control

As previously mentioned the main goal of a WDN is to deliver water to the
end-users. However, the management of a WDN comprises multiple com-
peting objectives that must be considered, such as economic, water quality
and safety. This work proposes a reward function to regulate the trade-off
between different management objectives. The first objective is to ensure the
supply at the district by regulating the level in the tank, the second is to
reduce the network operation cost by minimising the pump effort. Recall
that pumping stations are locally controlled, the controller proposed in this
section acts as a supervisory control that regulates the WDN management.

Augmented System

Measured
output

Q-learning 
algorithm

Control 
law

Water network

Periodic signal

yk

xk

uk

Kl
~

y

Figure B.4: Block diagram representation of the control algorithm.

3.1 Cost function - Bellman Equation

Inspired by the formulation of LQR problem with Bellman equation pre-
sented in [10], this paper proposes a formulation of the Q-value function
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which includes energy optimisation for systems with an equilibrium point
different from zero. In order to obtain an optimal control policy which leads
the system to fulfil the desired control objectives, a cost (reward) function is
defined as

(B.14)Vπ(xk) =
∞

∑
i=k

γi−k
[
(yi − ȳ)TQ1(yi − ȳ) + uT

i QT
2 yi + yT

i Q2ui + uT
i Rui

]
,

where ȳ is a vector with constant reference values, Q1 >0,Q2 >0 and R > 0
are weight matrices and 0 < γ < 1 represents a discount factor that reduces
the weight of the cost obtained further in the future. Subsequently, the instant
reward is denoted as

(B.15)ρ(xk , uk) = (yi − ȳ)TQ1(yi − ȳ) + uT
k Q2yk + yT

k Q2uk + uT
k Ruk ,

The first term represents the deviation of the tank level with respect to a given
reference, it is used as a soft constraint to maintain the level within the range
of operation. The middle terms represent the pump effort in terms of energy
consumed (B.1) and the last term penalises high control actions. Note that,
the terms corresponding to energy consumption and control action are not
minimised to zero during the WDN operation, the discount factor γ bounds
the cost function (B.14) from accumulating these non-zero rewards when time
goes to infinity.
This control formulation assumes that the full-state feedback is available,
since tank level hk, pump pressure pk are measured and the harmonics of
the FS sk can be computed by solving (B.10) for a given f0. Note that the sys-
tem must be at least detectable for solving ARE [6]. According to Bellman’s
optimality principle, the value can be determined using the HJB equation as
follows

V∗(xk) = min
u

(ρ(xk , uk) + γV∗(xk+1)) (B.16)

with the notation (·∗) representing the optimal value. Then, assuming that
there exists a candidate solution to the value function (B.16), of the form

V(xk) = xT
k Pxk + Gxk + c, (B.17)

the solution (B.17) can be introduced in (B.16) as follows,

V∗(xk) = min
u

(ρ(xk , uk) + γ(xT
k+1Pxk+1 + Gxk+1 + c) (B.18)

The value function (B.16) is transformed to Q-value function where the con-
trol action is expressed explicitly.

Q∗(xk , uk) = ρ(xk , uk) + γQ(xk+1, u∗) (B.19)
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Additionally, the augmented system model (B.12) is introduced

(B.20)
Q(xk , uk) = (Cxk + Duk − ȳ)TQ1(Cxk + Duk − ȳ)

+ (Cxk + Duk)TQ2uk + uT
k Q2(Cxk + Duk) + uT

k Ruk

+ γ[(Axk + Buk)T P(Axk + Buk) + G(Axk + Buk) + c].

Then, the expression (B.20) can be reformulated in a matrix form

Q(xk , uk) =
[

xk
uk

]T [Mxx Mxu
Mux Muu

] [
xk
uk

]
+
[

xk
uk

]T [Nx
Nu

]
+
[

Nx
Nu

]T [xk
uk

]
+ c̃ (B.21)

By expressing (B.21) in a compact form, quadratic, linear and constant com-
ponents are identified. Let zk = [xk , uk]

T , subsequently

(B.22)Q(zk) = zT
k Mzk + 2NTzk + c̃

Then, the optimal control policy for (B.22) can be calculated as

u∗k = argmin
u

Q(xk , uk) = M−1
uu (Muxxk + Nu) (B.23)

Note that, the resulting control law (B.23) in is affine, the offset in the control
action represents the system regulation around an equilibrium point different
from zero. Finally, by introducing the optimal control action (B.23) into the
Q-value (B.20), the Q-value function results in an equation with the same
structure as (B.17). Therefore, the proposed solution is proved to be a valid
choice for this problem.

3.2 Q-value function approximation using linear architectures

The control approach presented thus far assumes the knowledge of the sys-
tem dynamics. This paper proposes a model-free control strategy where the
system dynamics are unknown. Thus, neither of the model matrices A,B,C
and D are known.
For this model-free approach, this work uses a linear parametric approxima-
tion for the approximation of the Q-value function (B.22). The approximation
function consists of a set Basis Functions (BFs) φ(x, u) and a coordinate vector
θ,

Q̃(xk , uk) = φT(xk , uk)θ, (B.24)

where φ ∈ Rnb is a column vector and θ ∈ Rnb with the number of bases
nb = (ma + na + 1)(ma + na)/2.
A polynomial architecture is selected over black-box methods such as neu-
ral networks for numerical convenience. Although the latter method could
provide a better approximation of the non-linearities in a water network, the
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level uncertainty increases considerably with these basis making the learning
of the optimal parameters more difficult.
The Q-value function structure is available from (B.22) and can be used as a
reference for building the polynomial approximation scheme [3].

φ(xk , uk) = [x2
1,k , x1,kx2,k , . . . , x2

ma ,k , xma ,kuk , u2
k]T (B.25)

The vector of BFs (B.25) consist of a finite set of 2nd degree polynomials which
are formed with system states and control action.

Remark 1. The augmented state vector x includes a constant term, in this particular
case x2=c0. Then, the product in (B.24) results in combination of quadratic, linear
and constant terms

Q̃(xk , uk) = θ1x2
1,k + θ2x1,kx2,k , . . . , θnb u2

k . (B.26)

This provides an equivalent approximation scheme to the one developed in (B.22).
This constant term allows to compact a function with quadratic, linear and constant
terms into a quadratic function. This simplification is used in the remainder of the
paper for conciseness.

Subsequently, the control law based on the approximated Q-value function
(B.24) can be computed by

uk = argmin
u

Q̃(xk , uk) = argmin
u

φT(xk , uk)θ (B.27)

This yields to an optimal feedback control policy,

uk = K̃(θ)xk , (B.28)

which has an affine vector field implicit due to Remark 1, this provides an
equivalent control law to (B.23). Alternatively, the approximated Q-function
can be rearranged in a matrix form since (B.24) is quadratic with respect to x
and u

Q̃(zk) = zT
k H̃(θ)zk , (B.29)

Likewise, Q-value function (B.22) and the approximated (B.29) share the
same structure. Since one of the BF is a constant, the approximated Q-value
expression can be compacted in a quadratic form.

3.3 Parameter Update

The coordinate vector θ is a variable initially unknown, and therefore it must
be learned using past experiences. For this purpose, the optimal value of
the coordinate vector θ is determined in real time using Temporal Difference
(TD) methods [12]. These methods aim at reducing the approximation error
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which is defined with the Bellman equation and the Q-value approximator
(B.24)

ek = ρ(xk , uk) + γφT(xk+1, u′k)θ − φT(xk , uk)θ (B.30)

then, (B.16) can be formulated similarly for the temporal difference error.

0 = min
uk

(ρ(xk , uk) + γφT(xk+1, u′k)θ − φT(xk , uk)θ) (B.31)

This problem is described as a contraction map of the projected Bellman
equation in [3], as such it can be solved by successive approximations meth-
ods such as policy iteration algorithms. Then, a learning rate parameter α,
which weights the new experiences versus past experiences, is introduced as
follows

(B.32)φT(xk , uk)θk+1 = (1− α)φT(xk , uk)θk + α
[
ρ(xk , uk) + γφT(xk+1, u′k)θk

]
,

where 0 < α < 1 is a constant learning rate. Finally, (B.32) is solved by
executing a Least Squares Temporal Difference (LSTD) algorithm [8]. This al-
gorithm is an online learning method which recursively applies a policy and
collects data, until a batch of ns samples is completed. Then, by introducing
the collected data into (B.32), the update law becomes,

(B.33)ΦT
l θl+1 = (1− α)ΦT

l θl + α
[

Jl + γΦ′Tl θl

]
,

where l is the iteration number, Φl = [φl , . . . , φl+ns ] and Jl = [ρl , . . . , ρl+ns ]
T

are a matrix and a vector generated by evaluating the collected data into the
polynomial BFs (B.25) and reward functions (B.15) respectively. The opti-
mal solution for θl+1 is calculated by applying Least Squares. This process
is repeated until the convergence of the coordinate vector θ is considered
satisfactory.

Algorithm 4 LSTD for Q-function.

1: Input: γ, α, ns,
2: Initialisation: l ← 0, x0, θ0 where π̃(θ0) must be an admissible policy.
3: repeat at every iteration k = 0,1,2, . . .
4: apply uk = K̃(θ)xk + εk and measure xk+1
5: Υls ← ρ(xk , uk) + γq̃(xk+1, K̃l xk+1)
6: if k = (l + 1)ns then
7: θl+1 ← (1− α)θl + α(ΦlΦT

l )−1ΦlΥl
8: π̃(θl+1, x)← argminu φ(x, u)Tθl+1
9: l ← l + 1

10: end if
11: until ‖K̃l+1 − K̃l‖ < δ
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4. Numerical & experimental results

Note that a persistent excitation εk is introduced in the control signal. This
perturbation is not a system property but it is part of the experiment design.
Therefore, a reasonable generation of persistent excitation signals must be
considered to have a proper balance between exploration and exploitation.
The experiment aims to generate data batches with sufficient identifiability
without compromising the control objectives. In this study case, the system
dynamics include both fast and slow dynamics. This stiff system requires
both high and low frequency noise for the adequate perturbation. The states
corresponding to the FS, which are not affected by the control action, are
artificially excited with noise.

4 Numerical & experimental results

The proposed RL controller is validated first using a numerical simulation.
The network used for the simulation and test-bed is representing a WDN
with elevated reservoir, see Figure B.1.

4.1 Numerical results

The network model used in the simulation is a non-linear model of the WDN
emulated in the laboratory test bed described in [14]. In this simulation the
only flow measured is the input flow at the pumping station q1, pressure
sensors are placed at the supply p1 and at the elevated reservoir node pn.
The water consumption profile is simulated by the output signal of a Fourier
Series of 2nd order (B.9).
The top graph in Figure B.5 shows that the tank level is regulated to the refer-
ence after a learning transient. During this transient the system is controlled
with a bad initial policy and the level reaches a low value near the operational
boundaries. The middle graph shows the input flow and the total consumed
water. Once the algorithm learns an optimal policy, the control inflow fol-
lows the periodic trajectory described by the demand flow. Note that at time
= 47 days, when the learning phase is completed, the persistent excitation
is no longer applied, showing a smoother regulation. The top and middle
graphs in Figure B.6 show the convergence of the control policy. The bottom
graph shows the Q-values reaching its minimum during the operation once
the approximation parameters converge to its optimal value.
Recall that the objective of the controller is to reduce the energy usage of the
pumping station and to maintain the tank level within safe levels without a
model. The validation of the controller shows promising results on a sim-
ulation framework, the proposed linear architecture provides a satisfactory
trade-off between numerical accuracy and performance.
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Figure B.5: Simulation results. Top: Tank level and level reference Middle: Network flows
control input and disturbance Bottom: Pump power consumption
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Figure B.6: Simulation results. Top: Control policy gain. Bottom: Q-values target and current

4.2 Experimental results

The controller is validated in the test bed described in [14], and it is imple-
mented with the same control objectives as the simulation. However, in this
case an admissible policy is obtained in a simulation framework. By hav-
ing a preliminary policy with certain knowledge of the system dynamics,
the controller reduces the exploration of state space areas where the system
has physical limitations. In Figure B.7 (top), the level is kept around a con-
stant value while the controlled input flow compensates the periodic water
consumption from the two end users (bottom). Figure B.8 shows the conver-
gence of the approximation parameters and control gains which stabilise to
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near constant values.
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Figure B.7: Experimental Results Top: Tank level and level reference Middle: Network flows:
control input q1 and disturbances d2, d3. Bottom: Pump power consumption
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Figure B.8: Experimental Results. Top: Control policy gain. Bottom: Q-values target and current

5 Conclusion

This paper proposes a novel formulation of the RL control for linear systems
with periodic disturbances. An augmented state space model is developed
which includes both the dynamics of a WDN with storage unit and the pe-
riodic disturbances which are approximated with a FS. This paper uses a
model-free control approach based on Q-learning. The augmented linear
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model is used as a reference to build the basis functions that approximates
the Q-value function.
The controller is tested in a simulation and laboratory setup, the perfor-
mance of the WDN controller is satisfactory for a learning-based manage-
ment. However, when tested against a real system, this method has more
difficulties to find an optimal policy. The laboratory test bed used for the
validation incorporates multiple features of a real WDN, such as sensor and
actuator dynamics and saturation, communication delays or stochastic de-
mands. Some of these factors are not modelled, and not considered in the
approximation scheme proposed in (B.24). This mismatch between the func-
tion approximator and reality hinders the learning of an optimal policy. In
order to capture these elements in the approximation, a non-linear approxi-
mation architecture defined by neural networks could be considered. How-
ever, a more complex approximation architecture may lead to longer learning
periods. The proposed control method only uses the reference tracking as
soft-constraint. In the future, the applicability, learning time and robustness
of this methods can be improved by including input and state constraints
which reduce the risk of operating in unsafe areas.
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1. Introduction

Abstract

Reinforcement Learning (RL) is a widely used method for solving optimal problems
without system knowledge. However, the use of RL for control of industrial applica-
tions is still reduced. One of the reasons for limited applicability of RL in this field is
the difficulty of learning the system behaviour under poor experimental conditions.
This paper proposes two methods to cope with scenarios where the data collected is not
contributing to the learning in linear systems. The first method identifies the periods
where the learning is not efficient and pauses the policy update, the second method
applies a reduction of the approximation space to continue with the learning. The
proposed methods are validated in a simulation environment of a water distribution
network. Both methods show similar performance and provide a reliable operation
during steady state or poor experimental conditions.

1 Introduction

Reinforcement Learning (RL) is a widely used method to solve optimisa-
tion problems when an environment is unknown. The use of RL methods
is also extended to control in robotics and other industrial applications. RL
can learn the control policy of complex systems where the development of a
model is tedious or it is simply not possible [13], [18]. A great advantage of
the use of RL in industrial applications is the capacity to adapt to changes
without the need of calibrations. For instance, large scale systems such as wa-
ter networks are time-variant systems which require of continuous learning
to adapt to different operating conditions such as changes in consumption
profile, inclusion of new distribution areas or ageing of the pipe network.
Nevertheless, the deployment of RL methods in industrial applications is a
challenging task. The reasons are manifold: the training of these algorithms
in real applications is significantly more complex than the training in a vir-
tual domain with a great number of episodes, high dimensional state-action
spaces [8], [4], safety constraints [15]. The learning of an optimal policy us-
ing RL methods comprises of two phases: exploitation and exploration [21].
The exploitation phase utilises the knowledge of the system to achieve an
optimal operation and exploration phase expands the knowledge of the sys-
tem and the Q-value function. This function is an indicator of the system’s
performance based on operation costs or rewards. The data collected during
the operation is used to identify the Q-value function and compute the best
policy for a particular system. The identification of the Q-value function in
a real-time operation is not a simple task since the controller must achieve
certain control objectives while exploring out of the optimal regions. A good
exploration strategy that balances the trade-off between exploration and ex-
ploitation must be designed in order to achieve the control objectives while
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learning. The exploration strategy can be defined in different ways, some
methods use a random switch between a greedy policy and a random action
[21], other methods require persistent excitation similarly to adaptive con-
trollers [17], [12]. The identification of the function approximation requires
adequate experimental conditions. Adequate experimental conditions are a
good sampling time and a persistent excitation signal that deviates the sys-
tem from the nominal operation in order to explore new areas. Solutions to
deal with the lack of system excitation are presented in [16], [1] with expe-
rience replay technique. Another issue with the identification process is that
the approximation scheme used for the estimation is not adequate for the
collected data. The Bierman-Thornton UD factorization provides a greater
numerical stability to Kalman filters [5], other studies propose a reduction
of the Q-value approximation scheme by selecting the most relevant features
(basis) for the application [20], [2].
Driven by these identification challenges during closed-loop operation and
learning, this paper presents a method for identifying the learning efficiency
and cope with poor experimental conditions. The lack of information in the
data is due to the system operating in steady state, hence there are only slight
variations in its operating points or the system is not sufficiently perturbed,
therefore the learning algorithm can not correctly identify the Q-value func-
tion. Although an adequate the sampling time has a great contribution for
having good experimental conditions, this work considers a fixed sampling
rate restricted by the application domain. The proposed method consist of
detecting the learning periods where the information obtained for the esti-
mation is poor. Additionally, this paper presents two solutions to deal with
these scenarios: a conservative strategy where the learning is paused until
the collected data batch contains sufficient information and a greedy strategy
where the learning continues. For the second strategy, a reduction of the ap-
proximation vector space is formulated such that the identification process
uses only the dominant data, avoiding oversampling.
The remainder of this paper is organised as follows. In Section 2 some con-
cepts of estimation are recapitulated. In Section 3 the water network model
is described. In Section 4 the control design and algorithms are presented. In
Section 5 the simulation results are shown. In Section 6, the contributions of
the work and ideas for the future work are discussed.

2 Preliminaries

In this section, some concepts of system identification and statistics are in-
troduced in order to clarify the criteria that this works uses to evaluate the
learning performance.
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3. System model

2.1 Fisher information matrix

Least Squares (LS) and Maximum Likelihood Estimation (MLE) are equiva-
lent methods for estimating parameters for an i.i.d data with Gaussian distri-
bution. The MLE is a method for estimating the parameters of a probability
distribution by maximising a likelihood function [9]. This paper uses MLE
over LS because of its efficiency analysis that allows assessing the consistency
of the parameter estimation for an observed data batch. The Cramér-Rao
bound indicates the lower bound on the covariance matrix of unbiased esti-
mates, this can be used to measure the statistical efficiency of an unbiased
estimation [19].

Lemma 1. Let θ be an unknown coordinate vector which is estimated from m in-
dependent samples or measurements of Φ [19]. Let Φ be a stochastic vector-valued
variable, the distribution of which depends on an unknown vector θ . Let L(Φ, θ)
denote the likelihood function, and let θ̂ = θ̂(Φ) be an arbitrary unbiased estimate of
θ determined from Φ. Then, the bound for the covariance is expressed as follows

cov(θ̂) ≥ I(θ)−1 (C.1)

where I(θ) is the Fisher information matrix, which is defined by

I(θ) = −
[

E
δ2logL

δθ2

]
. (C.2)

This matrix I(θ) is an indicator of the amount of information that the matrix
Φ, built with the measurements of a random variable, contains about the
unknown vector θ.

3 System model

This paper validates the proposed algorithm in the management of a Water
Distribution Network (WDN) that has an elevated reservoir and the pipe
network is defined by a ring topology.

3.1 Water network model

The water network model used in this work is similar to the model presented
in [11]. This is a low dimension model of a network that simplifies the end-
users by aggregating geographically close end-users into single nodes. The
water inflow at the pumping station is assumed to be locally controlled and
its dynamics are considerably faster than the elevated reservoir dynamics,
thus the dominant dynamics of the system is given by the elevated reservoir.
Figure C.1 shows a standard ring topology network where the demand from
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the city district is represented by multiple end-user demands dj connected to
the main pipes, the inflow from the pumping station is denoted with q1, the
flow to the tank is denoted with dn+1 and outflow to the pressure zone 2 is
denoted with dn+2.
Due to the mass conservation in the water network, the relation of the flows

Pumping
station

d2

q1 End-user (j) 

dj Elevated
reservoirh

dn+2dn+1

h0dn

Figure C.1: Scheme of the main elements in a WDN with a pumping station, a pipe network,
multiple end-users and an elevated reservoir.

in the network is represented as

q1(t) + dn+1(t) = −
nd

∑
j=1

dj(t), (C.3)

where nd is the total number of end-users connected to the network and the
total water consumption is denoted by d̄ = −∑nd

j=1 dj. The elevated reservoir
dynamics is given by the following expression

Aer ḣ = dn+1(t)− dn+2(t), (C.4)

where Aer is the cross-sectional area of the elevated reservoir.

4 Control

The management of WDNs must guarantee the supply of water to the end-
users with sufficient pressure. This paper presents a cost function whose
main objective is to maintain the network pressure at a certain level. This
objective is achieved by regulating the water level of the elevated reservoir.
Additionally, by having a volume of water stored in the elevated reservoir,
the supply system becomes more robust against future stochastic demands.
This work considers a constant demand profile as disturbance. This profile
corresponds to the mean water consumption of a pressure zone. This work
uses the state space model structure and problem formulation presented in
[22] and [14] to validate the learning efficiency of Q-learning algorithms.
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4.1 State space augmentation

This model consists of an extension of the WDN model (C.4) and includes a
trajectory reference state r and an integral error ξ. The reference trajectory
indicates the nominal level of the tank and it is defined by a linear function

ṙ = Lcr, (C.5)

where r ∈ R, in this work the trajectory is a constant, Lc = 0. Then, defining
the integral error

ξ̇ = h(t)− r(t). (C.6)

The main purpose of this integral error is to have an integral action which
compensates the constant disturbances corresponding to the mean water de-
mand of a city district. By combining equations (C.4), (C.5) and (C.6) the
augmented model is built.ḣ

ṙ
ξ̇

 =

Ac 0 0
0 Lc 0

Cc −I 0

h
r
ξ

 +

Bc
0
0

 [u] +

Wc
0
0

 [d] (C.7)

where h ∈ R represents the tank level, u ∈ R the controlled inflow q1 and d ∈
R represents all the system disturbances, the district demands (d = d̄ + dn+2).
Finally, expressing the state space representation (C.7) in a more compact
form for discrete time

xk+1 = Aexk + Beuk + Wedk

yk = Cexk ,
(C.8)

where xk ∈ Rma , uk ∈ Rna , in this case x =
[
h, r, ξ

]T is the augmented
state vector, with Ae,Be,We and Ce constant matrices with compatible dimen-
sions. The control law for this system is given by the following linear con-
troller

uk = π(xk) = −Kxk (C.9)

This model formulation assumes that the full-state feedback is available, since
tank level hk is measured and the reference trajectory r is known.

4.2 Problem formulation

The application objective is to provide an adequate pressure management
in the network by regulating the tank level. Therefore, the following cost
function is defined

V(xk) =
1
2

∞

∑
i=k

γi−k(xT
i Qexi + uT

i Rui) (C.10)
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where Qe and R are weight matrices penalising tracking error and control
action, and 0 < γ < 1 represents a discount factor that reduces the weight
of the cost obtained further in the future, this means that γ bounds the cost
function (C.10) from accumulating non-zero rewards when time goes to in-
finity. Subsequently, the instant reward is denoted as

ρ(xk , uk) =
1
2

xT
k Qexk + uT

k Ruk . (C.11)

By using the previous problem formulation and Bellman’s optimality princi-
ple, the value can be determined using the HJB equation as follows

V∗(xk) = min
u

(ρ(xk , uk) + γV∗(xk+1)) (C.12)

with the notation (·∗) representing the optimal value. By using the Q-value
formulation proposed in [14] and then by defining the vector zk = [xk , uk]

T ,
the expression (C.12) is compacted in a quadratic form

(C.13)Q(zk) = zT
k Mzk .

Then, the optimal control policy for (C.13) is determined as follows

u∗k = argmin
u

Q(xk , uk) = Kxk (C.14)

4.3 Function Approximation structure

The optimal control solution presented in the previous subsection is devel-
oped with the knowledge of the system dynamics, system matrices Ae, Be
and Ce. This paper studies a model-free control approach where the system
dynamics are unknown, thus the Q-value function cannot be developed with
the previous methodology. Nevertheless, this paper uses the same function
structure to define the approximation scheme. This approximation scheme
consists of a set of Basis Functions (BFs) φ and a coordinate vector θ,

Q̂(xk , uk) = φT(xk , uk)θ, (C.15)

where φ ∈ Rnb is a column vector and θ ∈ Rnb with the number of bases
nb = (ma + na + 1)(ma + na)/2.
A polynomial architecture is selected to describe the system performance
based on the linear model developed in Section 3. Although this approxima-
tion scheme introduces certain error, since WDNs are non-linear, a complex
approximation considerably increases the learning uncertainty. For this rea-
son, a simple approximation is chosen for achieving a fast identification by
learning only the elementary system dynamics.

118



4. Control

The Q-value function structure is available from (C.13) and can be used as a
reference for building the polynomial approximation scheme [3].

φ(xk , uk) = [x2
1,k , x1,kx2,k , . . . , x2

ma ,k , xma ,kuk , u2
k]T (C.16)

The vector of BFs (C.16) consists of a finite set of 2nd degree polynomials built
with combinations of x and u. Subsequently, the optimal control law for the
approximation of the Q-value function is given by

uk = argmin
u

Q̂(xk , uk) = argmin
u

φT(xk , uk)θ (C.17)

This yields to an optimal feedback control policy,

uk = K̂(θ)xk , (C.18)

By rearranging (C.15) in a quadratic form with respect to z, the approximated
Q-value function shares the same structure as the Q-value in (C.13)

Q̂(zk) = zT
k Ĥ(θ)zk , (C.19)

4.4 Parameter Update

The coordinate vector θ is initially unknown and has to be learned iteratively
using previously measured data. A Temporal Difference (TD) algorithm is
used for solving in real-time the approximation of the Q-value function. The
algorithm consists of minimising the approximation error between different
iterations (C.20), then introducing the Q-value approximation (C.15) the TD
update law is defined as follows

(C.20)φT(xk , uk)θk+1 = (1− α)φT(xk , uk)θk + α
[
ρ(xk , uk) + γφT(xk+1, u′k)θk

]
where 0 < α < 1 is a constant learning rate. The Q-value function equation
(C.20) is solved by executing the Least Squares Temporal Difference. Both al-
gorithms 5 and 6 use the same principle for identifying the coordinate vector
parameters. This method applies a control action, collects data measurements
and the rewards until a batch with m samples is completed. By evaluating
(C.20) with the batch of data, the batch update law becomes,

(C.21)ΦT
l θl+1 = (1− α)ΦT

l θl + α
[

Jl + γΦ′Tl θl

]
where l is the iteration number, Φl = [φl , . . . , φl+m] and Jl = [ρl , . . . , ρl+m]T

are a matrix an a vector generated by evaluating the collected data into the
polynomial BFs (C.16) and reward functions (C.11) respectively.
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4.5 Learning Efficiency Analysis

As presented in Section 2 the Fisher information matrix is used to analyse
the identification efficiency [19]. This section presents the development of
this analysis applied to the Q-value estimation, where e is the TD approxi-
mation error. This error is assumed to have Gaussian distribution with the
variance var(e) = var(Q̂l+1 − Q̂l). Then, the Fisher information matrix (C.2) is
computed. Remark that, this matrix is an indicator of the amount of infor-
mation that a batch of data Φ carries about a set of parameters θ.
According to [6] there are several criteria to analyse the data and design an
optimal experimental condition. One of these criteria is the E-optimalilty,
which aims to maximise the eigenvalues of the Fisher matrix in order to ex-
tract the maximum information from the collected data. This paper uses the
minimum eigenvalue of the matrix I as indicator of the worst case scenario.
This means that this value is expected to be low when the collected data has
low variations and cannot be used for a proper parameter estimation. In Al-
gorithm 5, the threshold for low information Ilow is set when the rank of the
covariance matrix ΦlΦT

l is singular or close to singular.

λlow = min λ(Ilow) (C.22)

where λlow is a threshold for indicating low estimation efficiency.

Algorithm 5 LSTD for Q-function using Fisher information.

1: Input: γ, α, m,
2: Initialisation: l ← 0, x0, θ0 where π̂(θ0) must be an admissible policy.
3: repeat at every iteration k = 0,1,2, . . .
4: apply uk = K̂(θ)xk + εk and measure xk+1
5: Υls ← ρ(xk , uk) + γQ̂(xk+1, K̂l xk+1)
6: if k = (l + 1)m then
7: if min λ(Il) > λlow then
8: θl+1 ← (1− α)θl + α(ΦlΦT

l )−1ΦlΥl
9: else

10: θl+1 ← θl
11: end if
12: π̂(θl+1, x)← argminu φ(x, u)Tθl+1
13: l ← l + 1
14: end if
15: until
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4.6 Singular Value Decomposition and BFs selection

The previous subsection shows how data batches with little or redundant
information can affect the identification process. In linear algebra, Singular
Value Decomposition (SVD) is a widely used technique for data processing.
This work uses this method to segregate the collected data into two parts: one
containing high and the other containing low amount of system information.
The matrix partition is developed firstly by approximating the data batch Φ
matrix using SVD in its compact form.

Φl = UΣVT , (C.23)

where Φl ∈ Rnb×m and nb ≤ m is a matrix with the collected data, with nb the
number of features (BFs) and m the number of collected samples, U ∈ Rnb×nb

and V ∈ Rm×nb are unitary left and right singular matrices and Σ ∈ Rnb×nb

is a diagonal matrix with weights ordered by importance. Then, the partition
of the data batch matrix Φ in two parts is expressed as follows.

U = [Ū, U], Σ =
[

Σ̄ 0
0 Σ

]
, VT =

[
V̄T

VT

]
(C.24)

where Ū ∈ Rm×p, Σ̄ ∈ Rp×p and V̄ ∈ Rp×n. The sub-index notations (·̄)
and (·) represent high and low amount of system information respectively.
The singular matrix Σ is hierarchically organised, thus the first p elements
contain most of the information. The value of p can be determined in several
ways [10], [7]. In Algorithm 6, the rank of the collected data p = Rank(ΦlΦT

l )
is used as a reference to create the matrix partition. Then, by substituting
the SVD approximation into (C.21), the following linear transformation is
deducted.

VΣUTθl+1 = (1− α)VΣUTθl + αΥl (C.25)

where Υl = Jl + γΦ′Tl θl . By rearranging (C.25) with the (C.24), the partitioned
matrix is expressed in the SVD sub-spaces,[

Σ̄ 0
0 Σ

] [
θ̄l+1
θl+1

]
= (1− α)

[
Σ̄ 0
0 Σ

] [
θ̄l
θl

]
+ α

[
V̄T

VT

]
Υl (C.26)

where UTθ =
[
θ̄ θ

]T . In this way the parameter identification is computed
separately, the upper partition, with θ̄, is updated with standard Temporal
Difference (C.20) while the lower partition, with θ, is discarded and its pa-
rameters are not updated. The partitioned update law is shown in lines 10-11
on Algorithm 6. Note that this method introduces an additional approxima-
tion error, hence there is a lower limit where the approximation can no longer
be reduced.
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Algorithm 6 LS-TD for Q-function using SVD.

1: Input: γ, α, ns,
2: Initialisation: l ← 0, x0, θ0 where π̂(θ0) must be an admissible policy.
3: repeat at every iteration k = 0,1,2, . . .
4: apply uk = K̂(θ)xk + εk and measure xk+1
5: Υls ← ρ(xk , uk) + γQ̂(xk+1, K̂l xk+1)
6: if k = (l + 1)ns then
7: if inv(ΦlΦT

l ) == TRUE then
8: θl+1 ← (1− α)θl + α(ΦlΦT

l )−1ΦlΥl
9: else

10: θ̄l+1 ← (1− α)θ̄l + αΣ̄−1V̄TΥl
11: θl+1 ← U

[
θ̄l+1; θl

]
12: end if
13: π̂(θl+1, x)← argminu φ(x, u)Tθl+1
14: l ← l + 1
15: end if
16: until

5 Results

A simulation environment is developed in order to validate the proposed
control algorithm against different scenarios. The study case of this simula-
tion reproduces a WDN of a small water utility. In particular, this simulation
is constructed with the network information provided by Bjerringbro’s water
utility, a small urban district in Denmark, the structure of this network is
illustrated in Figure C.2. This distribution area is divided into pressure zone
1 and pressure zone 2, the total consumption for each district is represented
with d̄ and dn+2 respectively.

n18: z=50.6
Elevated reservoir

n5: z=8.5
Pumping station

To pressure zone 2
Pressure zone 1

Figure C.2: Illustration of a simplified city district from Bjerringbro (Denmark). The pipe net-
work is represented with blue lines, the end-users with red dots, a pumping station, an elevated
reservoir with green dots.
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Figure C.3: Algorithm 5 simulation. Top: shows the tank level and the reference level. Middle:
Controlled input flow and demand flows. Bottom: Integral error state.

5.1 Numerical results

In graph Figure C.3 the regulation of the system states is shown, a long os-
cillatory transient is observed during the first 5 days where the system is
regulated with a non-optimal control policy. The middle graph in Figure C.3
shows a noisy control action, water inflow q1, compared with the distur-
bances, water demands d̄ and dn+2. A bad policy on the integral error also
increases the effect of the transient oscillations, similarly to a poorly cali-
brated PI controller. During the same simulation period, Figure C.4 shows
the convergence of the approximation parameters θ, thus the learning of a
better control policy K̂, when the parameters converge to a nearly constant
value, the tank level and control action remain in steady state. During
nominal operation, some of the measurements that are used for the approx-
imation, such as tank level or integral error, are nearly constant leading to
collected data batches with poor condition. Red marks in Figure C.4 (top)
show these periods where the policy is not updated (middle). Once the op-
erating point, where the learning efficiency is poor, is reached, the parameter
update is paused. The algorithm evaluates the efficiency of the identification
from the collected data based on the Fisher Information matrix. The graph in
Figure C.4 (bottom) shows the minimum eigenvalue of the Fisher informa-
tion matrix (C.2) that is computed each batch update of the Q-value function
(C.15). During the first part of the simulation, where the algorithm is learning
a good policy, the eigenvalues are high, once the parameters converge and
the system operates in steady state a decay of the values in time is observed.
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Figure C.4: Algorithm 5 simulation. Top: Coordinate vector of the Q-value function approxima-
tor. Middle: Control policy. Bottom: Batch information measured with the minimum eigenvalue
of the Fisher matrix.

The eigenvalue remains below the threshold until a change in the operation
is introduced (t = 7days), the data batches carry more new information and
the learning is reactivated.

The simulation results with Algorithm 6 show similar results as the pre-
vious simulation. Although the control gain is slightly different, the learned
policy does not have an impact on the system performance.

6 Conclusion

Large scale or complex systems require of a priori knowledge of the system
to build an adequate approximation scheme for the application. By increas-
ing the complexity of the approximation structures such as neural network
or polynomial approximation, the algorithm can achieve a more accurate ap-
proximation of the environment. However, sometimes complex approxima-
tion structures penalise the learning efficiency leading to numerical issues or
long training periods.
This paper proposes two solutions to extend the applicability of RL methods
in real-time control systems. The two methods are validated in a simulation
framework that reproduces a WDN and scenarios with poor data. This work
copes with scenarios where the learning is limited by the lack of excitation of
the collected signals. Additionally, a reduction of the approximation scheme
is proposed that reduces the approximation scheme and selects only the rel-
evant BFs or features. This method, with a low dimensional approximation
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Figure C.5: Algorithm 6 simulation. Top: shows the tank level and the reference level. Middle:
Controlled input flow and demand flows. Bottom: Integral error state.

model, increases the learning efficiency and numerical robustness by using
only relevant data in steady state periods. However, the reduction of the ap-
proximation subspace narrows the flexibility of the controller to incorporate
new changes in the system dynamics such as disturbance variation.
This method requires of further validation with experimental data. In the
future, the Algorithm 6 can extended by using other methods like Princi-
pal Component Analysis, Independent Component Analysis or LASSO reg-
ularisation for variable selection and regression accuracy. Another factor to
address in the future is the design of an adequate exploration signal. This
signal can significantly improve the identification process. However, know-
ing the characteristics of this signal, gain and frequencies affecting the system
is challenging when the system dynamics are unknown.
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[15] Z. Li, U. Kalabić, and T. Chu, “Safe reinforcement learning: Learning with su-
pervision using a constraint-admissible set,” in 2018 Annual American Control
Conference (ACC), 2018, pp. 6390–6395.

[16] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral reinforcement
learning and experience replay for adaptive optimal control of partially-
unknown constrained-input continuous-time systems,” Automatica, vol. 50, no. 1,
pp. 193–202, 2014.

[17] K. S. Narendra and A. M. Annaswamy, “Persistent excitation in adaptive sys-
tems,” International Journal of Control, vol. 45, no. 1, pp. 127–160, 1987.

[18] J. Shin, T. A. Badgwell, K.-H. Liu, and J. H. Lee, “Reinforcement learning –
overview of recent progress and implications for process control,” Computers &
Chemical Engineering, 2019.

[19] T. Söderström and P. Stoica, System identification. Prentice-Hall International,
1989.

[20] Z. Song, R. E. Parr, X. Liao, and L. Carin, “Linear feature encoding for rein-
forcement learning,” Advances in neural information processing systems, vol. 29, pp.
4224–4232, 2016.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA, USA: A Bradford Book, 2018.

[22] J. Val, R. Wisniewski, and C. Kallesøe, “Optimal control for water distribution
networks with unknown dynamics,” ser. IFAC World Congress 2020, 2020.

127



References

128



Paper D

Safe Reinforcement Learning Control for Water
Distribution Networks

Jorge Val, Rafał Wisniewski and Carsten S. Kallesøe.

The paper has been published in the
2021 IEEE Conference on Control Technology and Applications (CCTA) pp.

1148-1153, 2021.



© 2021 IEEE
The layout has been revised.



1. Introduction

Abstract

Reinforcement Learning (RL) is an optimal control method for regulating the be-
haviour of a dynamical system when the system model is unknown. This feature is
a strong advantage for controlling systems, such as Water Distribution Networks,
where it is difficult to have a reliable model. When learning an optimal policy with
RL, the exploration phase implies high degree of uncertainty in the system operation.
Large scale infrastructures such as WDN require a robust operation since they can-
not afford fails during the operation. This paper presents a model-free control method
which provides safety in the operation while learning an optimal policy. This method
introduces a policy supervisor block in the control loop which assesses the safety of the
learned policy in real-time. The safety verification consists of evaluating the trajec-
tory on a standard linear model. In this model only the fundamental linear dynamics
are represented and the system’s dimensions do not require to be expressed with high
accuracy. If the predicted trajectory violates the boundaries, the supervisor provides
a safe control action. Simulation and experimental results prove the applicability of
the proposed method.

1 Introduction

Water Distribution Networks (WDNs) are large scale infrastructures that trans-
port drinking water from the waterworks to the urban districts. The opera-
tion of these infrastructures is challenged by several factors such as uncer-
tainty in the water demand, operation cost, quality of the water or smooth-
ness in the management [12].
Some studies argue that water consumption uncertainty is one of the govern-
ing factors in the WDN management [15]. Modelling the uncertainty in the
water demand is a major task, some have used the periodic pattern that the
demand describes during the daily operation to model the demand dynam-
ics [10], [5]. The management of WDNs is addressed in [17], [18], [4], these
studies provide efficient solutions that regulate the operation of the network,
many of them in a Model Predictive Control (MPC) framework. However,
these approaches rely on a model to compute the control law. The network
models are not always available or their continuous calibration is a laborious
task. Robust MPC techniques deal with this issue by considering a system
model with uncertainty, but the resulting control policy can be very conser-
vative [16].
This work proposes a model-free control method for the optimal manage-
ment of WDNs, therefore this controller must satisfy the operation objectives
without knowledge of the particular network model and nominal conditions.
The use of Reinforcement Learning (RL) in control brings a great advantage
in comparison to other methods because of its capacity of providing an op-
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End-user (j)

dj

dj+1

Elevated reservoir

h
h0 dn

d2 d3

Pumping station

q1

dn+1

Figure D.1: Illustration of a simplified WDN with a pumping station, an elevated reservoir and
multiple end-users.

timal policy without a system model. RL for continuous state-action space
relies on the approximation of a value function, neural networks (NNs) are
frequently used as approximation architecture to estimate complex systems.
Alternative architectures or Basis Functions (BFs) can also be used to approx-
imate the value function. Polynomial basis [3] or Fourier basis [7] are less
accurate than NNs but they can be suitable approximations for certain ap-
plications. This paper uses an approximation scheme based on Fast Fourier
Transform (FFT) to consider the effect of a periodic demand (disturbance) in
the learning controller. RL controllers provide an optimal policy according to
previous experiences, this means that the initial policy is typically bad. Op-
erating with such policy can be challenging, since a non-optimal policy can
easily drive the system to unsafe regions. Such uncertainty in the behaviour
during the early operation limits the deployment of this technology in in-
dustrial applications like WDN which require consistent robustness in the
operation. Ensuring safety during the RL operation without any knowledge
of the system is a challenge that has been addressed in in different ways, by
using safe optimisation based on an underlying Gaussian models [2], using
barrier functions on the reward [11], [22], or including safety in the explo-
ration by combining learning and model-based control [14], [13].
Inspired by the control loop from [9], this paper proposes a supervisor mod-
ule that prevents the applied control action to drive the system into unsafe
regions. This module assesses the safety based on a standard linear sys-
tem. The control solution is first validated in a simulation framework and
subsequently in the Smart Water Infrastructures Laboratory test-bed which
emulates a real WDN.
The remainder of this paper is organised as follows. In Section 2 the WDN
model is introduced. In Section 3 the control design and algorithms are de-
veloped. In Section 4 the simulation, and experimental results are shown. In
Section 5, the contributions of the study and ideas for the future work are
discussed.
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2 System model

In this section a model of a WDN is presented. The WDN used as study case
includes the following elements: a pumping station, an elevated reservoir
and multiple end-users.

2.1 Water network model

The main network components are represented in Figure D.1, the illustration
shows a conventional ring topology network to which the multiple end-users
are connected to, the demands are denoted with dj, the water inflow is de-
noted with q1 and is located at the pumping station, the outflow to the ele-
vated reservoir is denoted with dn+1.
This work uses the WDN model presented in [6]. This is a simplified model
where the end-users that geographically close are aggregated in a single con-
sumption node. The input flow is ideally regulated at the pumping station.
Assuming that mass conservation holds in the pipe network, the relation be-
tween the flows in the network is given by

q1(t) + dn+1(t) = −
nd

∑
j=1

dj(t), (D.1)

where nd is the total number of end-users connected to the network. There-
fore, the total amount of water consumption is d̄ = −∑nd

j=1 dj. The elevated
reservoir consists of a raised tank storing drinking water and its dynamics
are given by

Aer ḣ = dn+1(t), (D.2)

where Aer is the cross-sectional area of the tank and h is the tank level. The
pumping station dynamics are considered much faster than the dynamics of
the elevated reservoir. Therefore, the reduced order model includes only the
elevated reservoir dynamics. The following expression shows the simplified
network model in its discrete-time state space form.

hk+1 = Ahk + Bqk + Ed̄k , (D.3)

where hk ∈ R is the system state, qk ∈ R is the controlled input flow and dk ∈
R represents the system disturbances, and A,B and E are constant matrices
with compatible dimensions.

2.2 Disturbance model

The disturbance of a WDN is the water consumption or demand of the mul-
tiple end-users. The demand of the individual end-users is unknown in ad-
vance. However, the signal described by total demand typically follows a
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pattern from day to day. This study assumes that the signal described by
this stochastic process can be approximated by a Fourier Series (FS) of or-
der N. The signal approximation is performed as follows, let (D.4) be a FS
continuous signal

d̄(t) = a0 +
N

∑
n=1

(an cos(ωnt) + bn sin(ωnt)) + w, (D.4)

where a0, an and bn ∈ R are the Fourier coefficients, ωn = 2πn f0 and f0
represents the fundamental frequency and w is normally distributed and in-
dependent noise. In this case study, the frequency f0 is calculated for a period
of a day. By computing the mean of (D.4), and then representing the signal
on a discrete-time state form

sk+1 = Adsk ,

dk = Cdsk ,
(D.5)

where the system matrix Ad = diag(1, F1, . . . , FN), with Fn =
[

cos (ωn∆t) − sin (ωn∆t)
sin (ωn∆t) cos (ωn∆t)

]
where ∆t is the sampling time, and the output matrix Cd includes the Fourier
coefficients. The state vector sk ∈ Rnd , with nd = 2N + 1, is subject to the
following initial condition

si,t0 =


c0 if i = 0
cos (ωnt0) if i > 0, i odd
sin (ωnt0) if i > 0, i even

(D.6)

where c0 is a constant, t0 is the initial time value and the index vector i ∈
Z, [0, nd].

3 Control

The management of a WDN includes several operational objectives. In this
work, the control objectives are formulated such that the main priority of the
management is to ensure a robust water supply to the end-users. By regulat-
ing the tank level to a certain reference level, the pressure in the network is
maintained to an appropriate pressure that guarantees the supply at the end-
users. Moreover, by having certain volume of water stored at the elevated
reservoir the management overcomes unexpected peaks in the demand. The
second objective is to reduce high peaks of pressure in the network that in-
creases the probability of pipe burst and therefore water leakages.
In addition to the aforementioned operational objectives, there are some
physical boundaries that the network operation cannot surpass such as tank
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xk
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ukK̂l
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ρ(x, u) xkukxk

Q-learning
control

Policy
supervisor

Figure D.2: Block diagram of the control scheme.

capacity or saturation of the actuators.
The control strategy that this paper proposes aims to learn an optimal con-
troller which satisfies the given objectives while respecting certain safety
boundaries. The control scheme consists of a Q-learning algorithm and a
supervisor block that assesses the safety of the policy based on a standard
linear model of the network system.

3.1 Augmented State Space

In this subsection, the two models presented in Section 2, WDN model (D.3)
and disturbance model (D.5) are combined such that the disturbance signal is
included in the model as part of the state vector. This rearrangement aims to
provide an approximation scheme to the Q-learning algorithm that describes
the behaviour of the linear system with periodic disturbances.[

hk+1
sk+1

]
=
[

A ECd
0 Ad

] [
hk
sk

]
+
[

B
0

]
uk , (D.7)

where uk is the controlled input. This work assumes that all the states
included in h and s are measurable. Finally, by defining the state vector
xk=
[
hk sT

k
]T , the system (D.7) is represented in a compact form,

xk+1 = Aexk + Beuk , (D.8)

where x ∈ Rma , u ∈ Rna . The feedback control policy is given by the
following controller

uk = π(xk) = −Kxk . (D.9)

3.2 Problem formulation

A cost function that contains the control objectives is formulated as follows.

V(xk) =
∞

∑
i=k

γi−k((xi − r)TQe(xi − r) + uT
i Rui)

=
∞

∑
i=k

γi−kρ(xi , ui),
(D.10)
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where the weight Qe in the first term in (D.10) penalises the deviation of
the level h from a reference rtank. The reference vector r =

[
rtank 0

]T con-
tains constant references. The weight in the second term R penalises high
values in the pump actuation, and γ is a constant discount factor 0< γ <
1 which reduces the cost obtained further in the future. Therefore, this pa-
rameter bounds the accumulated cost obtained when time goes to infinity.
Subsequently, the instant reward ρ is defined as

(D.11)ρ(xk , uk) = (xk − r)TQe(xk − r) + uT
k Ruk .

By combining the previous problem formulation and Bellman’s optimality
principle, the optimal value V∗(xk) can be calculated using the HJB as pre-
sented in [8]

V∗(xk) = min
u

(ρ(xk , uk) + γV∗(xk+1)), (D.12)

with the notation (·∗) representing the optimal value. A candidate solution
to the value function (D.12) is proposed. By assuming that there exists a
candidate solution to the value function (D.12) of the form [20]

V(xk) = xT
k Pxk + Gxk + c, (D.13)

the candidate solution (D.13) is combined with the Bellman equation (D.12)
as follows,

V∗(xk) = min
u

(ρ(xk , uk) + γ(xT
k+1Pxk+1 + Gxk+1 + c). (D.14)

Additionally, as presented in [8], the system dynamics of the model (D.8) is
introduced in (D.14) which leads to

(D.15)Q(xk , uk) = (xk − r)TQe(xk − r) + uT
k Ruk

+ γ[(Axk + Buk)T P(Axk + Buk) + G(Axk + Buk) + c].

Note that the value function is now expressed in terms of x and u, and is
referred as Q-value function. The later expression (D.15) is rearranged in a
matrix form,

Q(xk , uk) =
[

xk
uk

]T [Mxx Mxu
Mux Muu

] [
xk
uk

]
+
[

xk
uk

]T [Nx
Nu

]
+
[

Nx
Nu

]T [xk
uk

]
+ d, (D.16)

then, by defining the vector zk = [xk , uk]
T , the expression (D.16) is compacted

in a quadratic form,
(D.17)Q(zk) = zT

k Mzk + 2NTzk + d.

Then, the optimal control policy for (D.17) is calculated as

u∗k ∈ argmin
u

Q(xk , uk) = M−1
uu (Muxxk + Nu) (D.18)
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3.3 Function approximator

In contrast with the previous development of (D.17) where the system dy-
namics, matrices Ae, Be, are known, the following method proposes a control
approach based on the approximation of a Q-value function when the sys-
tem dynamics are unknown. A detailed description of the safe operational
domain is given in Section 3.4.
This model-free method builds a parametric approximation which estimates
the Q-value function. The approximated Q-value function is developed with
the same structure as (D.17) [3]. The function approximator consists of a
linear parametric approximation,

Q̂(xk , uk) = φT(xk , uk)θ, (D.19)

where φ ∈ Rnb is a column vector with the BFs and θ ∈ Rnb is the coordinate
vector with the number of bases nb = (ma + na + 1)(ma + na)/2,

φ(xk , uk) = [x2
1,k , x1,kx2,k , . . . , x2

ma ,k , xma ,kuk , u2
k]T . (D.20)

The BFs vector consists of a finite set of 2nd degree polynomials which are
built considering the linear system (D.8). Remark that the dynamics of a real
WDN are non-linear xk+1 = f (xk , uk , dk), therefore an error in the approxi-
mation is introduced. On the other hand, a larger approximation scheme
based on a non-linear model considerably increases the learning uncertainty
and time. The control strategy proposed in this paper prioritises a fast adap-
tation over optimality in the long term. This is done by learning only the
system dynamics at the operation domain/nominal operation. Subsequently,
the optimal control law for the approximated Q-value function is determined
by

uk ∈ argmin
u

Q̂(xk , uk) = argmin
u

φT(xk , uk)θ (D.21)

Then, the optimal policy is given by

uk = π̂(θ, xk) = K̂(θ)xk . (D.22)

Note that, by reformulating (D.19) in a quadratic form with respect to z. The
approximated Q-value function has the same form as Q-value in (D.17),

Q̂(zk) = zT
k Ĥ(θ)zk . (D.23)

3.4 Safety operation

The controller developed in (D.22) is an optimal control for a continuous
state-action space where no boundaries of the domain are defined. However,
real systems have physical limitations that the operation cannot cross. In this
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work, a state x is considered safe if it belongs to the compact set X and an
action u is a feasible control if it belongs to the compact set U .

xk = X , {xk ∈ Rma |x ≤ x̂k ≤ x̄}, ∀k (D.24a)

uk = U , {uk ∈ Rna |u ≤ uk ≤ ū}, ∀k, (D.24b)

where the notation (·) and (·̄) define lower and upper bounds respectively.
Until the Q-value function is properly mapped with the collected cost, the
control algorithm might generate policies which drive the system out of the
safe region. Therefore, this paper proposes a policy supervisor that verifies
the risk of the control action applied and corrects the state trajectory if nec-
essary, thus allowing only exploration of the safe set.
Assuming that the core system dynamics are known at the boundaries, the
supervisor can assess the safety based on the prediction of a linear model.
The standard linear model is defined as

x̂k+1 = Âxk + B̂(uk − davg) (D.25)

where davg is the average demand. Since the specific system dynamics are
unknown, the dimensions of the system matrices Â and B̂ are selected such
that the predicted trajectory represents a worst case scenario. In this study
only the direction of the control action and a broad estimation of the davg are
sufficient to repel the system from unsafe areas. If the error between the real
system and (D.25) is large, the supervisor policy nearby the boundaries can
be either very conservative or very slow.
The Figure D.2 represents the control structure where a Q-learning block
computes a policy based on the approximated Q-value function, a supervi-
sor that predicts the next state and decides the control action to be applied.
The lines 16-20 in Algorithm 7 show the decision criteria.
This method aims to correct the bad behaviour of the initial policies until
the collected punishments around the area improve the Q-value function ap-
proximation and subsequently the controller actions. The value of usa f e is
the solution of the constrained optimisation problem (D.26), which is is com-
puted with [1],

usa f e ∈ argmin
u

zT
k Ĥ(θ)zk (D.26a)

s.t. x̂k+1 = Âxk + B̂(uk − davg) (D.26b)

x̂k+1 ∈ X (D.26c)

uk ∈ U (D.26d)

An example where the system is near the safety boundary is illustrated in
Figure D.3. In this example the supervisor predicts that the system, at state
xk and following a policy π̂(θ, xk), will cross to the unsafe area in the next
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xk

Time

Safe ∈ X
usa f e

∆t

xk+1= f (xk ,usa f e,dk)

Unsafe /∈ X
π̂(θl ,xk) x̂k+1=Âxk+ (B̂K̂l xk -davg)

Figure D.3: Example of a policy supervision where safety of the system trajectory is assessed:
Blue-dot represents the state at time k, red-dot represents the prediction based on a linear model
and green-dot represents the state at time k + 1 using a safe control action

time step. Thus, a safety event is triggered and a safe control action is applied
which drives the system away of the unsafe area.

3.5 Parameter Update

The coordinate vector θ is initially unknown and it is iteratively approximated
by using previously collected data. A Temporal Difference (TD) algorithm is
used for approximating the the Q-value function in real-time. This algorithm
minimises the approximation error between different iterations (D.27). Then,
introducing the Q-value approximation (D.19) the TD update law is defined
as follows

(D.27)φT(xk , uk)θk+1 = (1− α)φT(xk , uk)θk + α
[
ρ(xk , uk) + γφT(xk+1, u′k)θk

]
where 0 < α < 1 is a constant learning rate. The Q-value function equation
(D.27) is solved by applying Least Squares Temporal Difference (LS-TD). This
method applies a control action, collects data measurements and the costs
until a batch with m samples is completed. By evaluating (D.27) with the
batch of data, the batch update law becomes,

(D.28)ΦT
l θl+1 = (1− α)ΦT

l θl + α
[

Jl + γΦ′Tl θl

]
where l is the iteration number, Φl = [φl , . . . , φl+m] and Jl = [ρl , . . . , ρl+m]T

are a matrix and a vector generated by evaluating the collected data into the
polynomial BFs (D.20) and reward functions (D.11) respectively.
Note that the applied control action uk includes a persistent excitation term
εk. This term ensures that the data collected contain sufficient information
about the system. In some cases, when the experimental conditions are not
adequate for the system identification, the parameter update might lead to
inconsistent approximations. This paper uses a feature selection method pre-
sented in [19] to provide additional numerical robustness during the identi-
fication.
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Algorithm 7 LS-TD for Q-function with safety supervision.

1: Input: γ, α, ns,
2: Initialisation: l ← 0, x0, θ0 where π̂(θ0) must be an admissible policy.
3: repeat at every iteration k = 0,1,2, . . .
4: apply uk and measure xk+1
5: Υls ← ρ(xk , uk) + γQ̂(xk+1, K̂l xk+1)
6: if k = (l + 1)ns then . Policy update
7: if inv(ΦlΦT

l ) == TRUE then
8: θl+1 ← (1− α)θl + α(ΦlΦT

l )−1ΦlΥl
9: else

10: θ̄l+1 ← (1− α)θ̄l + αΣ̄−1V̄TΥl
11: θl+1 ← U

[
θ̄l+1; θl

]
12: end if
13: π̂(θl+1, x)← argminu φ(x, u)Tθl+1
14: l ← l + 1
15: end if
16: if x̂k+1 ∈ X then . Policy supervisor
17: uk = K̂(θl)xk + εk
18: else
19: uk = usa f e + εk
20: end if
21: until
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4 Results

The proposed control algorithm is validated on both a computer simulation
and a test-bed at the Smart Water Infrastructures Laboratory (SWIL). Both
frameworks emulate a water distribution network with similar characteristics
to the one shown in Figure D.1. A detailed description of the laboratory setup
is provided in [21].

4.1 Numerical results

The network model used in the simulation is a non-linear model of the labora-
tory setup. The water consumption profile is generated with (D.5), a Fourier
Series of 2nd order. The simulation is initialised with an arbitrary policy in
the safe domain X . The left graph of Figure D.4 shows how the controller
does not compensate the demand and the tank level tends to empty. After
day 7, multiple safety events are triggered and the supervisor corrects the
system’s trajectory with a safe control action. In the period between day 7
and 16, the system is chattering near the safety boundary. After that, when
the policy is improved, the tank level is regulated to the reference with a
smooth control action, thus achieving the given objectives. The right graph
of Figure D.4 shows that the TD error of the approximation is minimised
while learning the optimal policy. Note that, in this case, the policy supervi-
sor is fairly conservative around the boundaries, thus reducing the operation
domain.
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Figure D.4: Simulation results. water distribution network information.
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Figure D.5: Simulation results. Policy Learning.

4.2 Experimental results

A laboratory experiment is performed with a similar control criteria as the
computer simulation, maintaining the initial policy and application objec-
tives.
In Figure D.6 (left), at the start of the test, the water level is around the safety
limit. This triggers frequent safety events that maintain the operation in the
safe operation domain. After this, the learned policy is compensating the
disturbances and tracking the reference. At this point, the TD-error shown in
the right graph Figure D.6 is minimised. Figure D.7 zooms in on the learn-
ing stage, where the estimated x̂ violates the safety boundary and several
safety events are observed. The learning of an optimal policy is uninter-
rupted despite the safety events and the algorithm converges to an optimal
policy despite the chattering nearby the boundary. During this time, the pol-
icy is gradually improved and the frequency of the safety events is reduced.
Note that, in this case the safe actuation is less conservative, however the
state eventually violates the safety limits. This shows that the standard lin-
ear model used in the safety constraints does not represent accurately the
laboratory system.

5 Conclusion

This paper proposes an optimal control strategy to apply when the system
dynamics of a WDN are unknown. The function approximators created with
the reduced order linear model provide a fair estimation architecture when
tested in a real system. Although it introduces an error, since the real system
is non-linear, this error is negligible when the system operates around the
operating point. Safety issues during the learning are addressed with a pol-
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Figure D.6: Experimental results: (Top) water distribution network information. (Bottom) Policy
Learning.
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icy supervisor block in the control loop. It successfully filters most policies
that violate the limits of the operation, and applies a safe action that drives
the systems to a safe area. The safe policy is subject to a standard model.
This paper assumes that a linear model is sufficient to describe the basic be-
haviour of the system around the safety boundaries. The model dimensions
determine the performance of the policy supervisor. When large differences
between real system and standard model are encountered, the supervisor
might fail in the detection of the safety event, or on the contrary provide a
conservative management. The validation of this method in a simulation and
real framework shows the need of safety constraints that facilitate the learn-
ing, exploring only in the safe area.
In the future, the safety event detection can be improved by reducing the
model uncertainly at the boundaries. The approximation method can also be
extended to include a more complex geometry of the tank or include other
management objectives such as water quality or operational costs.
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1. Introduction

Abstract

The smart water infrastructures laboratory is a research facility at Aalborg Univer-
sity, Denmark. The laboratory enables experimental research in control and manage-
ment of water infrastructures in a realistic environment. The laboratory is designed
as a modular system that can be configured to adapt the test-bed to the desired net-
work. The water infrastructures recreated in this laboratory are district heating,
drinking water supply, and waste water collection systems. This paper focuses on
the first two types of infrastructure. In the scaled-down network the researchers can
reproduce different scenarios that affect its management and validate new control
strategies. This paper presents four study-cases where the laboratory is configured to
represent specific water distribution and waste collection networks allowing the re-
searcher to validate new management solutions in a safe environment. Thus, without
the risk of affecting the consumers in a real network. The outcome of this research
facilitates the sustainable deployment of new technology in real infrastructures.

1 Introduction

1.1 Motivation

A steadily growing population that is continuously demanding increasing
living standards puts great pressure on availability of resources including
energy and water [1]. The increasing demand and the need to provide it in
a sustainable way challenge the urban infrastructures for transporting wa-
ter, waste-water, and energy, leading to a need for their continuous devel-
opment [2]. Energy savings together with renewable energy production are
environmentally friendly strategies to meet these growing demands [3].

Many water resources are wasted due to leakages in the distribution net-
work. It is estimated that around 35% in average, and in worst case up to 70%,
of produced drinking water is wasted in the water infrastructures, summing
up to 26.7 cubic kilometres per year in developing countries [4].

Uncontrolled sewage overflows have a severe impact on the ecosystem.
The minimisation of waste water overflows is an important goal in the utility
management [5]. In combined sewer systems, the rain-events are not always
predicted and their uncertainty complicates the real-time control task [6].

In addition to the previous challenges, water utilities must ensure an ade-
quate water quality during its distribution. The continuous use of chemicals
in extensive agriculture and industry increases the environmental pollution
and threatens the sources of potable water [7]. There are other elements that
can cause loss of water quality, such as bio-film growth, corrosion, water
age, or stagnation. Water age is one of the major causes of deterioration of
water quality [8], and the utilities must maintain an adequate residual con-
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centration of disinfectant, typically chlorine, to avoid microbial and bio-film
growth [9]. However, the concentration of chlorine decays in time and so does
the quality of water. Other water distribution networks, such as WDN with
clean groundwater sources, that do not rely on chlorine for disinfection, are
also affected by the degradation of the water quality in time. In order to avoid
the water ageing, the utility management prevents the storage of volumes of
water for a long period of time.

Understanding these challenges can help preventing faults in the opera-
tion of the infrastructures [10], for instance by helping the development of
new solutions for monitoring and management of urban water networks.
The use of decision-support tools can save time and resources to the utility
management [7, 11]. These control solutions can also improve the infrastruc-
tures’ resilience to changes that threaten the operation. In this way, interrup-
tion of service, water leakages, waste water overflow, inefficient operation,
contamination, or cyber-attacks can be reduced or avoided.

Some researchers provide innovative control strategies for leakage detec-
tion [12–15], energy saving [16, 17], and water quality [18] for water distribu-
tion networks. In waste water collection, several researchers propose the use
of advanced control strategies in the management of these infrastructures to
improve their performance [19, 20] and [21]. Furthermore, the transformation
of urban areas to smart cities [22], concept often linked with digitalisation and
data collection, gives access to additional network information and enables
the possibility of adopting smart management solutions [23], for example by
using artificial intelligence (AI) techniques. These new solutions must be flex-
ible such that the infrastructure management adapts to the dynamical needs
of the city. For instance, by using the enhanced monitoring capabilities the
management can provide a response to specific weather forecast or end-user
demand [24].

Although the digitalisation of these critical infrastructures with AI, wire-
less networks and IoT sensors considerably improve the monitoring and man-
agement of the infrastructure, it can make them more vulnerable to malicious
attacks including, among others, cyber-attacks [25]. Some studies have ad-
dressed the security in water systems for improving the next generation of
cyber-physical systems [26].

1.2 Project Objectives

The aforementioned research studies are great contributions to the moderni-
sation of water infrastructures. The future development of these techniques
and the deployment of new technology in real infrastructures require of ex-
tensive validation. However, water utilities are cautious when testing new so-
lutions that might put the robustness of the daily operation at risk. There are
certain scenarios that practically cannot be studied due to their non affordable
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consequences such as leakages, waste-water overflow, contamination of wa-
ter, or interruption of the infrastructure service. The proposed methods can
benefit from customised experimental tests that support the understanding
of the problem and the proposed solution. The need of realistic test environ-
ments that allow the validation of the control methods on different networks
motivates the smart water infrastructures laboratory (SWIL) project.

The SWIL at Aalborg University (AAU) is a facility that can replicate
three types of water infrastructures: district heating, water supply and waste-
water collection. Due to the domain of this journal, only water distribution
networks and waste water collection are described in this paper, Figure E.1
shows the control room of the SWIL with two test-beds. This laboratory is
built around three points:

1. Build a test facility which emulates the operation of three water infras-
tructures;

2. Flexibility to configure test-beds according to specific water networks;

3. Recreate real management problems.

Firstly, the laboratory emulates the operation of several water infrastruc-
tures. This means that the physical behaviour of the systems is qualitatively
emulated and the real-time monitoring and control systems are replicated.
Secondly, the SWIL is required to be versatile and replicate a wide variety of
water networks. For this, this project proposes a modular laboratory which
opens the possibility to replicate different topologies and network features.
Modular architectures are also used in other disciplines in product develop-
ment to increase the versatility and flexibility of the systems [27, 28]. Finally,
the SWIL is required to have increased realism in the experiments. By using
data from utilities, the test-bed can be tailored to the study case or water
utility needs. This means that the laboratory test-beds must be able to emu-
late a particular network structure and then recreate a specific management
problem in it. For instance, the real demand profiles for heat and water
consumption, or rain-events can be included in the tests in a smaller-scale.
Currently, the laboratory has access to datasets from several water utilities
in Denmark, such as Randers, Aalborg, Fredericia, Bjerrinbro. Other institu-
tions like EURAC in Italy [29] or iTrust located at the Singapore University
of Technology [30] have advanced laboratories which are equipped with test-
beds for the study of problems in water infrastructures. iTrust conducts mul-
tidisciplinary research and innovation in cyber-physical systems, monitoring,
control, management, and security of critical infrastructures. However, up to
our knowledge, none of the two aforementioned facilities can reconfigure the
system in the same way as the SWIL.
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1.3 Research Objectives

The main objective of the laboratory is to facilitate the discovery and demon-
stration of optimal and resilient solutions for the development of the water in-
frastructures with special focus on management via automated control, com-
puter science, and digitalisation. In this way, the laboratory allows for fast
prototyping of new control solutions, such that newly developed technology
can have a realistic proof of concept and verification without compromising
the operation of a real network. Thus, facilitating the later scalability of the
control solution to a real scale network.

This project sets a success criteria also on the scientific side, the laboratory
aims to accommodate experiments from multidisciplinary research areas. Al-
though the main focus of the laboratory is the discovery of monitoring and
control solutions, other research fields like planning, civil and environmental
engineering can benefit from the flexibility and data collected from the lab-
oratory experiments. This paper highlights three theoretical research fields
where the laboratory can substantially contribute:

• Optimal management;

• Fault detection and fault tolerant control;

• Security.

Some control problems related with water infrastructures that can be
studied in the SWIL are: optimal pressure management, water quality, dis-
tributed control, leakage detection, contamination propagation, energy opti-
mal operation (smart grid connection), optimal use of retention basis, over-
flow minimisation, or control with delays and backwater effect.

The remainder of the paper is structured as follows: Section 2 presents
the design criteria and methods followed to develop the modular laboratory.
Both hydraulic network and the instrumentation and the data acquisition sys-
tem in this laboratory are designed to replicate the listed management prob-
lems. In Section 3 several case studies are presented and the corresponding
validation of the methods with laboratory experiments is described for each
case. These study cases are part of the aforementioned research problem
list, this paper only gives evidence of the usefulness of the SWIL for optimal
management and fault-tolerant control domains. In Section 4, the results are
interpreted, the laboratory contributions are highlighted and ideas for future
projects in the laboratory are also discussed. In Section 5 the conclusions of
this work are summarised.

Remark that, this document does not present a collection of control so-
lutions for water infrastructures. The scope of this paper is to inform about
the development of a test facility and validation methods of control solutions
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via laboratory tests, it demonstrates the functionality and applicability of the
modular SWIL test-beds.

2 Materials and Methods

This section presents the methods used to develop a laboratory that meets the
requirements presented in Section 1.2 and accommodates test of the research
problems presented in Section 1.3. Firstly, the module design is presented
and the main components of the water infrastructures are identified and de-
scribed by means of a mathematical model. Then, the abstraction process
that encapsulates the physical effects of the network components into four
modules test-beds is described.

Secondly, the network design presents the factors that are considered im-
portant when scaling-down a real network. The mathematical models are
used to build a simulation framework that supports the design of the test-
beds. This includes the adequate sizing of the pipes and the maximum ca-
pacity of the test-beds. Finally, in hardware design the data acquisition system
(DAQ), the instrumentation installed and communication architecture of the
laboratory are described.

2.1 Module Design

The laboratory focuses on emulating the qualitative physical effects of the
water infrastructures. For this reason, network components such as pipes,
valves, and pumps are scaled to mimic the properties of any water network.
In the design of the laboratory the main features of the real large scale sys-
tems are considered, the two water infrastructures studied in this paper and
some of its main components are illustrated in Figure E.2.

Waterworks

Trunk mains

Distribution

Water Distribution Network

Treatment plant 

Waste Water Collection
Industry

Transport

House holds

Elevated
reservoir

Pumping st.

Figure E.2: Sketches of two water infrastructures: (Left) A water distribution network. (Right)
A wastewater transport system.

Although these two networks differ in size, structure, and purpose, all
of them are constructed of only a limited set of components. The networks
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can be divided into a few basic components and this division is used in the
SWIL to create test-beds. Despite of their differences, these critical infrastruc-
tures have structural similarities. They are composed of a transmission part
(trunk main, transport, sewer), several supply units (water towers, pumping
stations), a distribution or collection zone and storage units.

Moreover, the emulated network can be easily extended by integrating ad-
ditional elements, such as tanks, consumers, suppliers, therefore, covering a
wider range of test scenarios with multiple producers or interconnected net-
works.

The features of each infrastructure are encapsulated into five types of
modules (units): A brief system description is given for each unit with math-
ematical models representing each network’s main component.

Supply—Pumping Station/Storage

This unit has different functionalities: supply and storage. It consists of a set
of pumps which boost the pressure in the pipe network. A model describing
the pressure drop in a centrifugal pump is derived in [31]. Hence, the pump
model is denoted by the polynomial

∆ppu,k = −a2q2
k + a1qkω− a0ω2, (E.1)

where qk is the flow through the pump k, a2 > 0, a1 and a0 > 0 are constants
describing the pump and ω is the rotational speed of the pump. Furthermore,
the unit is equipped with a tank that can be used for water storage. The tank
dynamics is given by the following differential equation

Aer
d
dt

h(t) = q(t), with h(t0) = h0, (E.2)

where Aer is the cross sectional area of the elevated reservoir, h is the tank
level and q is the inflow to the tank. When working as an elevated reser-
voir, the pressure at the elevated reservoir node per is given by the algebraic
relation,

per(t) = µ (h(t) + z) + pair , (E.3)

where µ is a constant scaling the water level and pressure unit and z is the
elevation of the tank inlet. The air pressure pair inside the tank is locally
regulated such that it emulates a real geodesic level or tower elevation z.

Moreover, this tank is equipped with an inner tank. The design of the tank
is presented in Figure E.3. This feature allows using the tank as a retention
tank/pond with a limited capacity and capture the overflow volume. The
piping and instrumentation diagram of this unit is shown in the Appendix
A— Figure E.24.
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Overflow
volume

Figure E.3: Mechanical drawing of the pumping station tank.

Transmission—Pressurised Pipe

In this laboratory, there are two types of units dedicated to the water trans-
port, pressurised pipe unit and gravity sewer unit. This division is due to
the different system dynamics that characterise the transport of water. In
Figure E.4 an illustration of the two types of pipes is shown.

P(x,t)
Y

(x
,t)

Sb

d 0

Pressurised Pipe Open channel gravity pipe

Y(x,t)

L
A(x,t)

A

A(x,t)

θ
q(t)

D

Δ
z

Q(x,t)

x

Figure E.4: (Left) Illustration of a pressurised pipe, ∆z represents differential the elevation of the
pipeline. (Right) Illustration of an open channel flow along a longitudinal axis x, Sb represents
the bed slope.

The pipe unit emulates pressurised pipe lines in a network and it consists
of a set of pipes of different diameter where several segments of pipes can
be interconnected or bypassed in order to emulate different pipe length and
configure the network topology.

In a water distribution network, surface roughness is not the only factor
that produces resistance in the pipe during the operation; pipe bending, el-
bow, and fitting are also affecting the resistance. Form loss have the same
structure as surface resistance, and when analysing long pipe lines as the
ones modelled in this distribution network, form losses are considered neg-
ligible [32]. However, in the laboratory hydraulic circuit, the test-beds have
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a number of bends and elbows that is worth considering. In this model,
the flow regime is assumed turbulent and the head pressure drop through
the pipe element k caused is given by Darcy-Weisbach equation [32],

hp,k(q) =
8 fsL|qk|qk

π2 gD5︸ ︷︷ ︸
surface resistance

+
8k f |qk|qk

π2 gD4︸ ︷︷ ︸
form loss

(E.4)

where hp is the head loss due to friction across the pipe element k, fs is the
coefficient of surface resistance, k f is the coefficient of various form loss, L is
the pipe length, D is the pipe diameter, q is the volumetric flow, g is the local
acceleration due to the gravity. Then, the variation of the pipe resistance with
respect to the quadratic flow through the pipe is given by [32].

hp,k(q) = Rp,head|qk|qk (E.5)

The piping and instrumentation diagram of this unit is shown in the Ap-
pendix A—Figure E.27.

Transmission—Gravity Sewer

This unit emulates the gravity sewers of a waste water collection. It consists
of a set of pipelines that are dimensioned for open-channel flow and the slope
of the pipes can be configured to cover several scenarios. The Saint-Venant
equations are one of the most popular models to represent volumetric flow
dynamics in open channel flow [33] where (E.6a) and represent the mass
balance and (E.6b) is the momentum conservation, respectively:

∂A(x, t)
∂t

+
∂Q(x, t)

∂x
= 0, (E.6a)

1
gA(x, t)

(
∂Q(x, t)

∂t
+

∂

∂x

[
Q2(x, t)
A(x, t)

])
+

∂Y(x, t)
∂x

+

Kinematic wave︷ ︸︸ ︷
S f (x, t)− Sb(x)︸ ︷︷ ︸

Diffusion wave

= 0, (E.6b)

where Q(x, t) is the volumetric flow, Y(x, t) is the water depth, A(x, t) is the
cross section of the wetted area, P(x, t) is the wetted perimeter, S f (x, t) the
friction slope, Sb(x, t) is the bed slope and g is the gravitational acceleration—
these variables are represented in Figure E.4. This form of (E.6) is presented
under the following hypotheses [34]:

1. The flow is one-dimensional. The velocity is uniform over the cross-
section and the water across the section is horizontal;

2. The streamline curvature is small and vertical accelerations are negligi-
ble, hence the pressure is hydro-static;
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3. The average channel bed slope is small, therefore the cosine of the angle
can be approximated to 1;

4. The variation of channel width along x is small.

The algorithms that use these simplifications can be verified in the labora-
tory test-beds. For the design of the laboratory sewer, a steady flow solution
of Saint-Venant equations is considered where ∂

∂t is replaced by 0 and con-
stant water depth along the channel [34]. Then, the volumetric flow Q and
wetted area Aw, the equations (E.6) are simplified to

S f (x, t)− Sb = 0. (E.7)

For these operating conditions, the uniform flow in open channels can be
described by the Manning’s equation [35].

q = Aw(Kn/n)R2/3
h S1/2

b , (E.8)

where, for this work, the cross sectional area Aw = 1
8 (2θ− sin(2θ))d2

0, the wet-
ted perimeter Pw = θd0, the hydraulic radius Rh = A/Pw, Kn is constant co-
efficient corresponding to SI units, n is the Manning’s roughness coefficient
and the bed slope is defined as Sb = arctan α.

The piping and instrumentation diagram of this unit is shown in the Ap-
pendix A—Figure E.26.

City District—Consumer

This unit represents the end-users in a city district. The drinking water con-
sumer consists of a valve that regulates the consumed water and a tank that
collects it, the collected water is used as in-feed in the waste water system.
Additionally, the geodesic level of the consumers can be emulated by intro-
ducing the equivalent air pressure in the tank.

In this project, controllable valves are used to represent the pressure drop
generated at the end-users. Each valve varies its opening degree (OD) and it
allows to control the pressure drop across it. The pressure drop due to the
resistance factor is proportional to the quadratic term of the flow.

pcv,k =
1

Kcv,k
2 |qk| qk , (E.9)

where Kcv,k is the conductivity of the valve k, q is the flow through the valve
and ∆p is the pressure drop over the component. Valve manufacturers pro-
vide an accurate parameter for the controllable valve conductivity Kkv which
depends on the opening degree of the valve and relates the flow and pressure
drop as shown in [36].

The piping and instrumentation diagram of this unit is shown in the Ap-
pendix A—Figure E.25.
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2.2 Network Design

The operation of the main components, or laboratory modules, in the water
infrastructures must be also analysed as part of a network. When working
with a small scale network, this analysis must consider the scaling effect,
a list of the main factors considered for the scaling process is given in network
scaling.

Then, simulations of the scaled down networks are developed based on
the mathematical models presented in the previous subsections [37]. The ob-
jective of these simulations is to design the correct size of the module compo-
nents and evaluate the capacity of the modules when they are interconnected
through a pipe network. Furthermore, having a simulation environment of
the test-bed can support the preparation of the laboratory modules for a
given study case. For example, by choosing certain topology, pipe length or
magnitude of the signals input and disturbance signals.

Network Scaling

In order to transform a large-scale water infrastructure into a laboratory test-
bed, this project has performed some simplifications to reduce the network
size. This size reduction is based on four factors:

• Number of nodes: The end-users that are geographically close are ag-
gregated and they are considered as a single consumer [38]. This node
reduction does not affect the overall network structure;

• Number of pipe types: A real pipe network contains a large amount
of pipe types which differ in size and material. In order to adapt the
pipelines to a laboratory module, the piping is designed with a limited
number of pipe diameters and lengths. The pipe networks at the lab-
oratory are built with two pipe diameters for pressurised pipes (mains
and branches), and one pipe diameter for gravity pipes (sewer pipes);

• Dimensionality: The magnitude of the network pressures and flows
are reduced to meet the test-bed component requirements (sensors and
actuators range). For instance, to get an idea of reduction in the mag-
nitude, in the case of Bjerrinbro (a small water utility) the maximum
supply pressure is approximately reduced from 5 bar to 4 m and the
maximum supply flow from 80 m3/h to 0.4 m3/h;

• Time scale: The scaled-down test-beds allow accelerated tests. A test
that would last several days in real-life can be replicated at the lab-
oratory in hours. The tank modules have fixed dimensions, but its
dynamics can be adjusted by varying the time scale of the tests.
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All real networks differ in size and characteristics, and, therefore, the
abstraction that transforms any full-scale water infrastructure into a test-bed
introduces an error. In order to meet the laboratory physical limitations,
an approximation of the network characteristics is required.

When choosing a smaller size for the modules, the focus of the design is
to emulate most of the qualitative properties of a real network, such as pipe
network topology, geodesic levels, flow regimes (turbulent and open-channel
flow), system delays, actuation, and disturbance dynamics. For this reason,
this study assumes that some errors introduced by the scaling, such as exact
scale friction loss in the pipe network or pressure and flow ratio, have a minor
impact on the tests of control solutions, since the verification method that this
paper proposes relies on a proof of concept validation. The scalability of the
solution is not addressed here.

Water Distribution Network Design

There are multiple elements that characterise a pipe network structure, such
as ground levels, pipe size, or topology [32]. Two of the most representative
topologies branched and looped geometry (ring) are illustrated in Figure E.5.
Next to each topology, examples of equivalent networks constructed with
laboratory modules are shown.

Branch topology network Ring topology network

Figure E.5: (Left): Scheme of a standard branched topology and its laboratory equivalent.
(Right): Scheme of a standard ring topology and its laboratory equivalent.

It can be observed that by changing the position of few modules, the struc-
ture and management of the network are significantly changed. The test-bed
in Figure E.5 is transformed from being a branched structure with a single
pumping station and elevated reservoir to a ring topology with two pumping
stations and an increased number of end-users.

The ground levels of each urban district can be emulated by using the
pressurised tank systems at the consumer and pumping modules.

Simulation A simulation of a WDN is built with the purpose of determin-
ing a reduced pipe size and the maximum capacity of the test-beds. The
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network structure used for this simulation is a standard WDN with an arbi-
trary ring topology network that connects a pumping station (green block)
and six end-users (red blocks), see Figure E.6. This network structure is in-
spired by the network examples studied in [32]. The capacity of this network
is restricted by the pumping station, the number of consumers and pipe size.
The pumping station and consumer operation is fixed and the length and
diameter of the pipe units, mains and branches, are adjusted accordingly to
fulfil the following conditions:

• The flow regime is turbulent in all the network pipes. Then, the friction
losses are calculated with the model developed in (E.5);

• The total head is supplied by a set of Grundfos-UPM3 pumps, its nom-
inal operation is around q = 2 m3/h and ∆ppu = 0.4 bar with speed
ω = 80% for each pump, see curve in Figure E.7;

• A fraction of the total head loss (1/3) corresponds to friction loss (pipe),
and the other fraction (2/3) corresponds to the pressure drop at the
end-users (valves).

As mentioned on Section 2.2, a generalisation of the structure and sizing
of a pipe network implies the introduction of some error since the ratio be-
tween these fractions varies from network to network. The simulations of
the reference network models are developed in modelica—Dymola. Remark
that the simulation package is built with a modular structure such that the
network topology can be easily modified.
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Figure E.6: Diagram of the hydraulic network used as reference for the design of the modules
with a single pumping station and three consumer units representing aggregated end-users in a
city district.
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Figure E.7: Graph of a pump curve extracted from the data-sheet of Grundfos-UPM3. The per-
formance of PWM controlled pumps is measured with A profile (heating) at eight PWM values:
5% (max.), 20%, 31%, 41%, 52%, 62%, 73%, 88% (min.), PWM regulates the speed of the pumps
ω.

Waste Water Collection Design

The sanitary sewers are large networks of underground pipes that collect
domestic sewage, industrial waste water, and rain-fall. This study focuses
on a combined scheme to represent the characteristics of a typical sewer net-
work in the laboratory, Figure E.8 illustrates the main elements in a combined
sewer. In this model, the waste water conveys from different sources to the
same pipe in order to be transported to retention tanks and a centralised treat-
ment plant. The transport typically requires of a combination of both gravity
sewers and pressurised pipes to overcome the elevations of the terrain. Ad-
ditionally, several control elements such as retention tanks are introduced in
critical locations along the network to regulate the discharge. Finally, a treat-
ment plant receives all the water and rejects water when exceeds its capacity
(overflow).

A WWC constructed with laboratory modules must comprise of the equiv-
alent elements: water sources (green blocks) and storage elements represent-
ing retention tanks and treatment plant (red blocks). The laboratory blocks
are interconnected with pressurised pipes (rising mains) or gravity sewers
according to the application requirements.
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Overflow
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Figure E.8: Sketch of a reference waste water collection with three discharge sources, district,
rain, and industry, several retention tanks and a treatment plant.

Simulation In the design of the sewer pipe module, some of the standards
for sanitary sewers presented in [39] are considered. The dimensions of the
sewer unit are represented in the mechanical drawing shown in the Figure E.9
(right), and the values of these parameters are calculated by solving the Man-
ning’s formula (E.8) with the following conditions:

• The maximum flow through the pipe given from the the nominal flow
of a pumping station (3 pumps with 2 m3/h each);

• The water covers half of the pipe (θ = π
2 ) for a nominal volumetric flow;

• In this unit the bed slope Sb is constrained to the physical limitations
of the laboratory unit. Due to the coiled shape of the conduct, the min-
imum height difference hs for each loop is the diameter of the pipe.
Sb,min = d

Dπ

The simulation results are shown in Figure E.9 (left). The pipe diameter
d is of 8 cm (DN80) and a coil diameter D of 1 m are selected according to
the given requirements. For a total pipe length L of 19.6 m, the estimated
nominal delay toc = 29 s.
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Figure E.9: (Left): Simulation results of the Manning’s formula with different pipe sizing.
(Center): Front view of the mechanical drawing of the gravity sewer. (Right): Top view of
the mechanical drawing of the gravity sewer.

2.3 Hardware Design

This section describes the structure of the laboratory for control and real-
time monitoring. First, a description of the data acquisition (DAQ) system
and control structure is presented. Second, the communication architecture
implemented is presented. Both systems are designed to emulate the control
and monitoring hardware of a real water infrastructure.

Data Acquisition

The scheme in Figure E.10 shows the laboratory DAQ and control architec-
ture that is divided into three levels:

At the management level, the central control unit (CCU)—SCADA gath-
ers, processes, and monitors real-time data from the local units (LU).

At the local control level, the soft-PLCs perform three functions: data ac-
quisition from the Beckhoff I/O Modules via Ethercat, communication with
the CCU or other LUs and the control and safety of the LU. The soft-PLC
consists of a Codesys runtime control installed on a Raspberry Pi (RPI) [40].
Moreover, the RPI is equipped with an HMI which provides a graphical in-
terface for local monitoring, configuration, or manual control.

At the field level the I/O modules are connected to the sensors and actua-
tors with different signals. The laboratory modules are provided with sensors
to measure pressure, flow, temperature, conductivity, level. The complete list
of the instrumentation equipment for each unit is shown in the Appendix A.
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Figure E.10: Scheme of the laboratory control and DAQ architecture.

Communication Network

The communication architecture of the laboratory elements CCU and LUs
is designed such that it can adapt to two control architectures: centralised
or distributed control. Therefore, the communication interface is a modular
system developed with MODBUS TCP-IP. Nevertheless, the hardware and
software of the laboratory can also implement other communication protocols
such OPC-UA.

CCU - SCADA

LU_41 LU_31 LU_42 LU_21 LU_22

TCP/IP Modbus

Figure E.11: Communication network architecture of the SWIL that connects the CCU and LUs
via TCP/IP Modbus.

The Figure E.11 illustrates the modular communication architecture where
the LUs are interconnected to a LAN together with a CCU that can be used
for centralised management of the modules. The CCU is interfaced with
Simulink for monitoring and fast implementation of the supervisory control
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algorithms. An alternative interface method is developed in Python when the
studied management requires distributed communication between LUs.

Safety and Local Control

During the design of the LUs, a risk assessment is performed with the pur-
pose of avoiding failures and providing a secure operation of the labora-
tory. In order to guarantee a fail-safe operation, two protection layers are
implemented on the laboratory equipment, hardware, and software safety
controllers:

The first layer consists of safety valves that are installed at critical points of
the laboratory such as boilers or pressurised tanks. These elements limit the
maximum operating temperature and pressure, respectively. Additionally,
hardware safety switches turn-off the power supply when the operation is
not safe laboratory.

The second layer consists of software safety controllers that are imple-
mented at the soft-PLC. They regulate the minimum and maximum tank
level, avoiding air in the hydraulic circuit or water overflow.

3 Results

In this section, four case studies with laboratory experiments are presented.
These experiments aim to reproduce different scenarios affecting the man-
agement of a real utility and illustrate the versatility of the SWIL.

First, the steps to transform real utility problems into laboratory experi-
ments are explained. Then, a description of the laboratory experiments for
each study case is given. This includes an introduction to the research con-
tribution and a description of the laboratory customisation for each study
case.

3.1 Test-Bed Configuration

First, information from the network structure is used to identify the main
features of the studied infrastructure. The main components of the network,
such as pumping stations, demand nodes, and rain collection or storage units,
are replaced by their equivalent laboratory module and interconnected with
pipe modules, emulating the real network topology. The pipe length, ground
elevation and sewer’s slope can be adjusted to meet the study requirements
while considering the laboratory restrictions, recall scaling considerations in
Section 2.2.

The laboratory test-beds are equipped with multiple sensors and actua-
tors, this means that in most studies there is redundancy of the measure-
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Pumping station

Elevated reservoir

sensor p1

sensor p2

sensor q

sensor dp

Figure E.12: Map of Bjerringbro and its water distribution network scheme. Green and red
blocks represent the main elements of the network which can be emulated with laboratory mod-
ules.

ments. With a vast number of sensors it is possible to choose a subset that
matches the configuration of a real system. These experiments restrict the use
of the sensors according to the characteristics (number and relative position)
of the studied network.

Then, real datasets of the network operation, such as water consumption,
rain-events, or industrial discharge are used to adapt the test to the given
problem. Note that, the laboratory experiments are performed in a smaller
scale, this means that the magnitude of the real signals and time scale are
adapted to meet the operation range of the test-bed.

3.2 Study Cases for Water Distribution Networks

This study case is inspired by the WDN at Bjerringbro, a small city district
in Denmark, see Figure E.12. This water utility has one pumping station,
one elevated reservoir and multiple end-users distributed along a pipe net-
work. The main elements of Bjerringbro’s network are identified (ring topol-
ogy, number of pumping stations, elevated reservoirs, consumers, and sen-
sors), and an equivalent scaled-down network is emulated with the labora-
tory modules as Figure E.13 shows.

A graph with real data from this district is presented in Figure E.14 as a
reference of the water distribution network operation. This utility operates
with an ON/OFF controller that regulates the elevated reservoir level.

Note that, the laboratory test-bed is equipped with an additional pump-
ing station which is not existing in the real network, this component is added
with the objective of evaluating the network management with two sup-
ply nodes.
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Figure E.14: Graphs of real data collected by Bjerringbro´s water utility. The measurement nodes
are represented in Figure E.12 and the tank filling is regulated with a standard ON/OFF control.

Optimal Management with Multiple Supplies in Bjerringbro

This study case summarises the work presented in [41]. This study uses
a network structure with two pumping stations and an elevated reservoir.
This project proposes a distributed network management where a non-linear
model predictive control (MPC) acts as supervisory control and PI controllers
locally regulate the flow at the pumping stations. The supervisory control
controls the tank level (htank) by regulating the inflows (Pump1 and Pump2),
this controller is designed to minimise the operation cost and pressure vari-
ations at the end-users. The operational cost is evaluated using the power
consumption of the pumping stations and the energy price. The district de-
mands (d1.1 and d1.2) are emulated with real profile, and in the control, they
are estimated using a Kalman filter. The control strategy is validated at the
SWIL with the test-bed represented in Figure E.13. The experimental results
in Figure E.15 show that the supervisory control schedules the pump actu-
ation for the time-periods where the energy price is low, the study shows a
reduction in the operational cost and pressure variations with respect to a
standard ON/OFF tank filling that utilities typically operate with.

Optimal Management with Unknown Network Model in Bjerringbro

This study case summarises the work presented in [42], the objective of
this experiment is to design an optimal controller without the knowledge
of the system dynamics, in this case the network structure consists of a sin-
gle pumping station. The network management is based on a reinforcement
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Figure E.15: Graphs of the experimental results with non-linear MPC control applied to Bjer-
ringbro’s study case [41].
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Figure E.16: Graphs of the experimental results with RL control applied to Bjerringbro’s study
case [42].

learning (RL) algorithm which finds the supervisory system policy based
on a cost function criteria that minimises high control actions and energy
consumption. The results of this work are shown in Figure E.16. The to-
tal end-user’s demand (d1.1 and d1.2) is learned using a Fourier series basis.
Additionally, the safety of the operation is guaranteed during the learning
period with a policy supervisor.

This methodology is an AI control approach without stability proof, but it
learns a satisfactory network management despite not having an extensive
knowledge of the network, since the only information is the measured data.
The safety boundaries are not violated and the end-user’s water supply is
guaranteed during the operation of the network. The laboratory experiment
gives evidence of the robustness of the method, enabling the further investi-
gation of AI techniques for control of real systems.

3.3 Study Cases for Waste Water Collection
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Optimal Management of a Treatment Plant with Inlet Flow Variations in Fred-
ericia

This study case summarises the work presented in [43], in this work the
management of the waste water collection in Fredericia (Denmark) is stud-
ied. In this city, several industrial zones (red area), residential zones (blue
area) and precipitations discharge waste water to a collection network that
conveys to a treatment plant, see Figure E.17. The treatment plant opera-

Treatment plant

Industrial
zone

Residential
zone

Residential
zone

Retention tank

Level sensor

Figure E.17: Map of Fredericia and its waste water collection scheme. Green and red blocks
represent the main elements of the network which are emulated with laboratory modules.

tion is based on a chemical process that increases the performance when the
working conditions are stable. The waste water discharges from industry are
stochastic disturbances that have a big impact on the treatment plant’s per-
formance. Therefore, the network management must regulate the inlet flow
and pollutant concentration such that their variations are minimised at the
treatment plant.

This work aims to minimise the inlet flow variation by controlling the
industrial discharge, For this reason, the potential installation of a retention
tank that regulates the varying discharge using MPC is studied. The con-
troller considers an estimation of the household discharge via Kalman filter
and takes into account the transport delay of the sewer network.

This scenario is reproduced in test-bed where the main components of
the network are represented (main waste water sources, retention tank, and
sewer scheme), see Figure E.18. The industry and residential discharge is lo-
cally controlled to reproduce the pattern extracted from real-data. Addition-
ally, the only real-time measurement available is the sewer level at the inlet
of the treatment plant, the controller in the experiments uses only one level
sensor (72_L) to estimate the inlet flow.

The graph in Figure E.19 shows a clear minimisation of the flow variations
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Figure E.18: Diagram of the emulated waste water collection at the SWIL.

with respect to the non-controlled operation. The experimental results show
that the installation of a new control element in the network is feasible since
it can considerably improve the operation of a real network.
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Figure E.19: Graph from the experimental results of Fredericia’s study case [43]. The graph
shows a comparison of the inlet flow at the treatment plant (sensor 72_L) between non-controlled
industry discharge and a controlled one with MPC.

Fault Tolerant Control of a Sewer Network with the Backwater Effect in
IshøJ

This study case is summarises the work presented in [44]. In this work a
section of the waste water collection system in Ishøj (Denmark) is analysed,
see Figure E.20.
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Figure E.20: Map of Ishøj and its waste water collection scheme. (Right) The complete network
model. (Left) A section of the sewer with two tanks or open basins and a smaller sewer conveys
to the main sewer. Green and red blocks represent the main elements of the network which are
emulated with laboratory modules.

The structure of this section consists of a gravity sewer and two open
basins used as retention tanks for rain drainage, one on the upstream and
the other on the downstream. The knowledge of the tanks storing the vol-
umes and the flow are needed to develop both a controller that optimises the
system operation and a model which predicts overflows. This study proposes
a data-driven model which accurately fits the network features, in particular,
the back-water effect.

A test-bed with equivalent network features to the Ishøj’s network sec-
tion is emulated at the SWIL, the diagram of the test-bed is represented in
Figure E.21. Although Ishøj´s scheme is a separate rain drainage collection,
this laboratory experiments use disturbance profiles of combined household
waste water and rainfall. The open basins are emulated with tanks placed
at the upstream and downstream, the network disturbances are emulated by
auxiliary modules equipped with a reservoir tank and a pump.

The results in Figure E.22 show a comparison between two model struc-
tures, kinematic wave (KW) and diffusion wave (DW). The level measure-
ments are taken at different points of the sewer pipe, for simplicity, this pa-
per only shows the measurements at the sensor (62_L) where the backwater
effect is observed.

The effectiveness of the proposed models is presented, showing the ca-
pacity of each method for capturing back-flow inside the pipes. The exper-
imental results show that the understanding of the back-water phenomena
with a data-driven model can help the future development of fault tolerant
controllers which consider this effect.

174



4. Discussion

61_L

72_L

DN80
Length:10m
Slope: 3-8%

62_L

71_L

DN80

Length:10m

Slope: 3-8%

1_dp

2_dp

1_q3

1_dp

dp2

dp2

Upstream tank

Downstream tank

1_q3

1_q3
1_q3

Aux Pump #1

Pump #1

Pump #2

Aux Pump #2

Consumer
#2

Consumer
#1

Sewer #2

Disturbance

Inflow

Figure E.21: Diagram of the Ishøj emulated waste water collection at the SWIL.

4 Discussion

This paper presents the development of a test facility for monitoring and real-
time control of urban water networks, as well as several case studies where
the laboratory contributed to the understanding and verification of the new
control solutions.

The authors of this study consider that the test-beds configured at the
SWIL meet the design criteria and the results support the design hypothe-
ses: The facility at Aalborg University is able to emulate three kinds of wa-
ter infrastructures. The modular properties of the test-beds allow to adapt
the main features from different real networks, including datasets from the
water utilities, thus increasing the realism of the laboratory test. Further-
more, the authors consider that replicating and testing certain management
situations, that cannot be repeated in real infrastructures, can contribute to
advance in the monitoring and real-time control of urban water networks.
The verification of control methods in a customised test-bed allows quick
prototyping or realisation of "proof of concepts".

On the scientific side, the four study cases analysed at the SWIL show that
this facility enables the research of water infrastructures management in a
novel and unique manner. The multiple configurations of the test-beds create
a suitable environment to validate new control solutions on a specific real
problem. The results show that the data collected on the emulated networks
at the laboratory is qualitatively comparable to the real infrastructure, see
Figure E.14 and Figure E.15.

This laboratory allows to test the reliability of a newly developed tech-
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Figure E.22: Graph from the experimental results of Ishøj’s study case [44], where the first part
represents the system identification (training) and the second, in yellow, represents the valida-
tion.

nology and study its limitations with no consequences in case of failure.
This type of validation is not feasible to perform in real infrastructures in
which the impact of having a management failure can cause severe conse-
quences such as environmental damages or damages of the infrastructure
equipment, such as pumps or pipes, and discomfort of the end-users. For
instance, in this safe environment, model-based controllers like MPC can be
tested against model uncertainty, the propagation of pollutants in the net-
work can be studied and develop methods to contain them, learning-based
controllers can freely search for the equilibrium between optimal operation
and resilient operation or network operators can evaluate the feasibility of
a real network upgrade by connecting to the network additional retention
tanks or pumping stations. Thus, the laboratory validation constitutes a safe
and inexpensive method since the resources required to perform a test at the
SWIL are relatively low: The preparation of the test-beds only requires of the
assistance of a laboratory technician, and the energy and water usage can be
considered negligible during the test.

Data-driven control solutions can particularly benefit from the laboratory
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environment. The data collected during the laboratory experiments can sup-
port the study of certain physical phenomena like water leakages and back-
water or train self-learning control algorithms.

Moreover, although fault-detection methods are not addressed in this pa-
per, these methods can also be validated in the laboratory by recreating water
leakage scenarios or water contamination propagation without water being
wasted. This safe testing provides a sustainable manner of discovering new
technology. The laboratory is equipped to study contamination, it uses con-
ductivity sensors measuring salt concentration as a proxy to contamination
sensors and a reverse osmosis unit to purify water.

Although the presented experiments satisfactorily reproduce the quali-
tative physical effects and the monitoring and management of a real water
infrastructure, having scaled-down networks reduce the degree of realism.
This means that the dimensionality of the tests is bounded by the number of
modules available and the laboratory space, actuators are not ideally scaled-
down and might introduce unwanted effects in the experiments and small
networks can cause coupling between network elements.

In this work, the management scenarios are studied for each infrastruc-
ture individually. However, the infrastructure interconnection can and should
also be studied. Various networks—water, heat, electricity—are no longer in-
dependent. Tons of water are used during electricity production. Vice-versa,
electricity is needed for water distribution and heat production. This labo-
ratory facility allows the study of different water networks and their inter-
connections, as well as links to the power supply and the internet. Research
fields related with cyber-security and critical infrastructures can also be stud-
ied in this facility. The laboratory modules are already equipped with power
meters at pumping and heating stations to study these problems.

5 Conclusion

The development of the smart water infrastructures laboratory has been pre-
sented. Here, the design process followed to reproduce a scaled-down wa-
ter network with different modules is summarised. The main elements and
features of the water infrastructures are represented in the laboratory mod-
ules. The configuration of these basic components such as pumps, tanks, or
network topology are elements which characterise a network. Calculations
based on component models are performed to adjust the sizing of the compo-
nents to the water network properties, laboratory requirements and restric-
tions. The implemented DAQ system and communication interface recreate
a real communication network with local smart-meters and controllers inter-
connected with a SCADA. This system has a modular architecture that facil-
itates the expansion of the test-bed and the integration of new technology or
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Table E.1: List of sensors and actuators installed on the laboratory units.

Tag Type Model

#_L Sensor: Level Microsonic ZWS-15/CU/QS
#_c Sensor: Conductivity GF - Type 159001730
#_pt1 Sensor: Pressure&temp. Grundfos DirectSensor RPI+T 0-1.6
#_dp Sensor: Diff. pressure JUMO 404382
#_p2 Sensor: Pressure JUMO 404327
#_q1 Sensor: Volumetric flow Festo SFAW-32
#_q2 Sensor: Volumetric flow Festo SFAW-100
#_q3 Sensor: Volumetric flow Endress+Hauser Proline Promag10
#_V1_15 Actuator: Valve DN 15 Belimo LQR24A-SR+R2015-1-S1
#_V3_25 Actuator: Valve DN 25 Bürkert 8804
SV1 Actuator: Valve Danfoss EV210B+BE024DS
P# Actuator: Pump Grundfos UPM3 25-75-130
Aircontrol Actuator: Air Control Festo: VPPE

management solutions.
The aforementioned case studies are examples of the many possible con-

figurations of the laboratory, where the SWIL demonstrates the capacity to
replicate real problems in laboratory test-beds and reproduce real manage-
ment scenarios in a scaled-down network.

A An appendix

This appendix shows the piping and instrumentation diagrams for each of
the laboratory units with a complete list of installed components.

Check valveManual ball valve

Automatic shut-off valve

Controllable valve Tank

Pressurised pipe

Gravity pipe Controllable pump

Sensor

Flow sensor

Safety level
sensor

Figure E.23: Legend of the piping and instrumentation diagrams.
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Figure E.25: Piping and instrumentation diagram of the water consumer unit. The legend is
shown in Figure E.23 and the details for each component are listed in Table E.1.
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Figure E.26: Piping and instrumentation diagram of the sewer pipe unit. The legend is shown
in Figure E.23 and the details for each component are listed in Table E.1.
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1. Introduction

Abstract

Reinforcement Learning (RL) is a widely used control technique that finds an optimal policy
without a system model using measured data. The search for the optimal policy requires that
the system explores a broad region of the state space. This search puts at risk the safe operation
since some of the explored areas might be near the physical system limits. Implementing
learning methods in industrial applications is limited because of its uncertain behaviour when
finding an optimal policy. This work proposes an RL control algorithm with a safety filter
that supervises the exploration safety based on a nominal model, the performance of this safety
filter is increased by modelling the uncertainty with a Gaussian Process (GP) regression.
This method is applied to optimise the management of a Water Distribution Network (WDN)
with an elevated reservoir; the management objectives are to regulate the tank filling while
maintaining an adequate water turnover. The proposed methods are validated in a laboratory
setup that emulates the hydraulic features of a WDN.

1 Introduction

Water Distribution Networks are urban infrastructures that transport drinking water
from a water source to numerous end-users. The configuration of these infrastruc-
tures changes between regions, and the management adapts accordingly to network
characteristics such as the topology of the terrain, the capacity of the water supply,
the end-users demand or the water quality. Some of these networks can benefit from
elevated reservoirs in their operation. The storage capacity of these elements can be
utilised to relax the operation of the pumping stations during peak demands and
guarantee a safe supply for emergencies or services [5]. Elevated reservoirs can also
help to maintain adequate pressure management in the network. This pressure bal-
ancing can reduce the stress in the pipes and therefore reduce the risk of pipe burst
and ensure supply in case of power failure [4]. Distribution infrastructures are de-
signed such that the transportation time from the source to the consumers is low,
avoiding stagnation in the pipes and subsequent deterioration of water quality. Chlo-
rine avoids bacteria growth in the water, and consequently, the water quality issues
are typically solved by maintaining an adequate chlorine concentration. However, its
concentration decays in time [6]. Other types of distribution systems with different
water sources can have chlorine-free water [20]. Nevertheless, high water age harms
water quality in both types since a long residence time facilitates the growth of bac-
teria and microfilms. Other factors affect the water quality, such as temperature or
mixing in the tank [9]. However, they are out of the scope of this work. This work
studies the operation of small water utilities in Denmark, where the average tem-
perature is below 20◦C, and the mixing inside the tank is sufficient, so its impact
on the deterioration of the water quality is considered negligible [2]. Therefore, the
main factor affecting the water quality in the studied network is the residence time
in the reservoirs. The study presented in [13] suggests a 3 to 5 days complete water
turnover as a basis; nevertheless, each utility must adapt the management to meet its
own quality requirements.
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1.1 Control of Water Distribution Networks

Adequate management of WDNs comprises four main objectives that [17] defines as:
smoothness of the control actions, the safety of the supply, economy and water qual-
ity.
The management policies for WDN with elevated reservoirs are typically rule-based,
where the main parameters considered for tank filling are the minimum and maxi-
mum tank levels. Thus, the pump is actuated based on these levels. The water age
in the tank is not monitored in real-time; issues related to water age are typically
solved by manually scheduling an emptying of the storage elements. This rule-based
approach provides robust management that is easy to maintain. However, some im-
portant management objectives like smoothness or economics are disregarded. Fur-
thermore, relying on a manual process for renovating the stored water increases the
risk of having low water quality and lack of efficiency. The problem of efficiently
controlling WDNs is a well-established research area that includes many different ap-
proaches, most of them in the framework of optimal control [18, 28]. However, the
good performance of these techniques relies on a system model that requires contin-
uous calibrations.

1.2 Motivation and Contribution of the Research

The maintenance of system models and controllers requires qualified personnel that is
not always affordable, especially for small water utilities. The model dependence and
high commissioning costs motivate the use of data-driven techniques that replace the
reliance on detailed system knowledge and facilitate the implementation of optimal
control techniques in a broader number of utilities.
Reinforcement Learning (RL) is a model-free technique that finds an optimal control
policy from only measured data. RL algorithms are successfully applied for the con-
trol of dynamical systems in [15, 19]. However, its use in industrial applications is still
scarce. The learning of an optimal control policy entails the exploration of a broad
region of the state space. Therefore, learning while having an optimal operation are
conflicting objectives that must be balanced. WDN are critical infrastructures that
require a continuous operation; therefore, this approach will prioritise the robust op-
eration of the system versus the optimal operation.
Reinforcement Learning optimises the policy of a system based on a Q-value function.
This function represents an index of performance depending on state and action. This
optimisation is performed over an infinite-dimensional state space where the system
dynamics are unknown. Hence, the resulting optimal policy lacks state constraints.

Some studies have contributed to the improvement of safety in learning controllers
[30] by combining a safe optimisation framework from MPC with the learning capa-
bilities of RL. Gaussian Processes (GP) regressions are used to support the real-time
control, [12] combines a nominal model with a GP regression. By having a learning-
based MPC, the model calibration issues are compensated. Similarly, GP regression
methods are used to provide safety guarantees to learning controllers [22]. Stochastic
methods with MPC are also studied in the WDN domain [10],[26] and [27].
This paper presents an optimal control solution for WDN with an elevated reservoir
without extensive system knowledge. This control strategy regulates the tank filling
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and maintains the water age below safety limits. The proposed control structure com-
bines reinforcement learning control and a safety filter; this method supervises the
learned policy based on a deterministic nominal model and provides local robustness
nearby the safety boundaries. Additionally, the safety filter performance is improved
by including a GP regression that describes the uncertainty.

1.3 Organisation of This Article

The remainder of this article is organised as follows. Section 2 describes the system
model of a water distribution network with an elevated reservoir. The model includes
the tank dynamics and the turnover of the tank. Section 3 develops the model-free
control strategy. Section 4 develops the safety filter that supervises the learning policy.
Section 5 presents the case study and the validation with experimental results. Sec-
tion 7 summarises the contribution of the work and introduces some ideas for future
development of the proposed method.

2 System Model

This section describes a model of a small water distribution network with an elevated
reservoir. This work uses the network configuration of Bjerringbro to validate the
usability of the control scheme. This distribution topology is typically found in small
water utilities; see Figure F.1. This paper considers a non-interrupted (continuous)
operation where the pipe network is designed to avoid water stagnation. However,
a significant water quality risk comes from the water age in the storage tanks. The
turnover in the tank is used to monitor the water age. Therefore, a model of the daily
turnover of the reservoir is developed based on available network measurements. The
topology of this system consists of two pressure zones, and an elevated reservoir, a
simplified map and configuration scheme of the network are illustrated in Figure F.1
and Figure F.2 respectively.

2.1 Water Distribution Network

Water Distribution Networks with elevated reservoirs are stiff systems where the net-
work’s flow dynamics are much faster than the elevated reservoir dynamics. To re-
duce the complexity of the model, this work assumes that the flows at the pumping
stations and end-users are ideally regulated and the dominant system dynamics are
the tank dynamics, given by

Aer ḣ =
ner

∑
j=1

qj(t), (F.1)

where Aer is the cross sectional area of the elevated reservoir, ner is the number of
inlets in a tank and qj is the flow at the tank inlet j. Due to mass conservation in the
network, the relation between the supply flows qp1, qp2, the demand flows d and tank
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Bjerringbro PZ 1
hpz1 ≈16m

Pumping station 1

Pumping station 2

Elevated reservoir

Hjermind PZ 2
hpz2 ≈54m

q

q

dp

Figure F.1: Map of a water distribution network with an elevated reservoir in Denmark. Pressure
Zone 1 (PZ 1) covers the Bjerringbro district, and Pressure Zone 2 (PZ 2) covers Hjermind that
are located at a different elevation (hpz).

qp1

qp2
qj

hpz2hpz1

di

End-user (i)

Pumping
station

Elevated
reservoir

Figure F.2: Scheme of the study case network topology, a WDN with a single pumping station
and an elevated reservoir. It is divided into PZ1 and PZ2 (blue and pink). The nodal demand
di represents the consumption from the end-user i and qj represents the inflow to the tank in
connection j.

flows is described by,

ner

∑
j=1

qj(t) = qp1(t)−
nd

∑
i=1

di(t)− qp2(t), (F.2)

where di > 0 represent demand of end-user in the pressure zone 1, nd is the number
of end-user demand and the flow to pressure zone 2. The demand pattern between
the different end-users is similar, therefore the total demand d̄ in a pressure zone is
described by

di(t) = βid(t) ∀i = 1, . . . , nd , (F.3)

where β is a scaling factor. The total water demand in a WDN d̄ includes the con-
sumption of PZ1 and PZ2, this signal is a stochastic Wienner process that follows a
daily pattern and it can be approximated with a Fourier Series (FS) of Nth order,

d̄(t) = a0 +
N

∑
n=1

(an cos(ωnt) + bn sin(ωnt)) + w, (F.4)
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where a0, an and bn ∈ R are the Fourier coefficients, ωn = 2πn f0 and f0 represents
the fundamental frequency and w is Brownian noise.
Finally, the continuous-time models of the tank (F.1) and total demand (F.4) are trans-
formed into discrete-time state space models, first, the tank model is defined as,

hk+1 = f (hk , uk , d̄k) = Ahk + Buk + Ed̄k , (F.5)

where hk ∈ R is the system state, uk ∈ R is the controlled input flow and d̄k ∈ R

represents the total system disturbances, and A,B and E are constant matrices with
compatible dimensions. Then, the periodic disturbance model is also expressed in a
state space discrete form,

sk+1 = Adsk ,

d̄k = Cdsk ,
(F.6)

where the system matrix Ad = diag(1, F1, . . . , FN), with Fn =
[

cos (ωn∆t) − sin (ωn∆t)
sin (ωn∆t) cos (ωn∆t)

]
where ∆t is the sampling time, and the output matrix Cd includes the Fourier coeffi-
cients. The state vector sk ∈ Rns , with ns = 2N + 1, is subject to the following initial
condition

si,t0 =


c0 if i = 0

cos (ωnt0) if i > 0, i odd

sin (ωnt0) if i > 0, i even

(F.7)

where c0 is a constant, t0 is the initial time value and the index vector i ∈ Z, [0, ns].

2.2 Estimating the water age from measurements

The real-time monitoring of water quality and its regulation is complex since it is
affected by multiple factors such as biological and chemical composition, mixing,
and temperature [5]. This work aims to control the quality of the stored water by
having adequate storage management. Therefore, it focuses only on those factors that
the network management can control. Assuming a low water temperature and ideal
mixing in the tank, the water quality is homogeneous for the stored volume. Thus,
the water age, or Average Residence Time (ART), becomes the principal factor that
impacts water quality. The ART in an elevated reservoir is defined as[7],

ARTk =
vav,k
qav,k

, for qav,k > 0, (F.8)

where vav,k is the average volume, and qav is the average flow entering the tank. The
flow measurements in a water distribution network are limited, the proposed network
have only flow measurements at the pumping stations. The flow measurements at the
tank are not available but they can be inferred from its impact in the tank level due
to mass conservation. Therefore, the ART is reformulated to be computed from level
measurement as follows. Firstly, by discretising the tank dynamics (F.1), the average
volume is defined with previous level measurements,

vav,k =
Aer ∑k

i=k−nav
hi

nav
, (F.9)
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where nav represents the number of samples in a period. Secondly, the average inflow
is denoted as,

qav,k =
Aer ∑k

i=k−nav
δi

nav
, (F.10)

where δ represents only the positive level variations,

δi+1 = max{(hi+1 − hi), 0} (F.11a)

= max{(A−1
er

ner

∑
j=1

qj,i∆t), 0} (F.11b)

where qj,i is the flow at inlet j at time i. Note that (F.11) has two expressions de-
pending on the available measurement, for notational simplicity δ(qk) is represented
as function of the tank flows. Finally, the daily volume turnover [%] is denoted as a
function of the flows in the network and level of the tank,

τk = g(hk , qk) = 100nav
qav,k
vav,k

. (F.12)

For numerical convenience, this paper uses the tank turnover τ̂ over of ART to regu-
late the ageing of the water in the tank.

Incremental average approximation

The turnover is defined in (F.12) as a non-linear equation that depends on past mea-
surements (time-lag), this increases the computational effort and requires data stor-
age.
This paper proposes an approximation of (F.12) by using a incremental average. First,
denote the mean of the level variations δ,

mk(qk) =
1

nav

k

∑
i=k−nav

δi(qk) (F.13)

Then, the new mean is computed by extending (F.13) and including the new input
(F.11) as follows,

m̂k+1 =
1

nm
(δk+1(qk) + (nm − 1)m̂k), (F.14a)

= m̂k +
δk+1(qk)− m̂k

nm
. (F.14b)

where nm is the window length of the moving average filter. Subsequently, the daily
turnover output is approximated as follows,

τ̂k = ĝ(qk) = 100
m̂k
h∗

(F.15)

where h∗ is a constant representing the average level during steady-state operation
and qk is the sum of tank inflows. The computational implementation of this model
uses the expression (F.14b) to reduce the computation precision errors.
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Topology considerations

This section transforms the computation of the water turnover in the tank for differ-
ent hydraulic configurations. The model presented in (F.11) computes positive level
variations in a tank. However, this model is only accurate for tanks with a single inlet.
This issue motivates an alternative formulation of the turnover model that describes
the in-feed of freshwater for multiple inlets.
Consider an example with the hydraulic configuration illustrated in Figure F.2, where
the tank has two pipe connections, one bidirectional and one outflow. This configura-
tion ensures a regular inflow of freshwater during steady-state conditions via inlet 1.
However, the model (F.11), that utilises level measurements or the sum of the flows,
returns zero level variations since ∑ner

j=1 qj(t) = 0.
This model aims to calculate the volume of freshwater introduced to the tank in a
given time. For this, the expression (F.1) is expanded for different tank inlets and
integrated over a time period T as follows,

Aer

∫
T

ḣdt =
∫

T
Aer ḣ1︸ ︷︷ ︸
inlet1

dt−
∫

T
Aer ḣ2︸ ︷︷ ︸
inlet2

dt, (F.16)

where ḣ1 and ḣ2 represent the level rate from inlet 1 and inlet 2 respectively. By
analysing this particular study case, only inlet 1 inflows water to the tank, inlet 2 is
a fixed outfeed but its magnitude is known (measured). The level rate ḣ1 cannot be
measured but it can be computed with the available measurements. With this system
knowledge, the expression (F.16) is discretised and represented in terms of tank level
and PZ2 flow,

∆h1 = ∆h + A−1
er qp2∆t, (F.17)

where ∆h = hk+1 − hk. Then, the positive level variations are computed with ḣ1,

δk+1 = max{∆h1, 0}. (F.18)

Subsequently, the turnover (F.15) is similarly computed with inlet 1 positive level vari-
ations (F.18).

3 Reinforcement Learning Control

This section presents the formulation of an optimal-adaptive controller which adapts
to the hydraulic configuration and the consumption pattern of the network to achieve
the utility management objectives. In the proposed control structure, the RL control
aims to regulate the tank filling and the smoothness of the control. Water quality is
later formulated in Section 4 as a safety problem.

3.1 Augmented state space

This work use the augmented state space model proposed in [23] to construct the
learning scheme. This augmented model consist of the discrete-time tank model and
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the periodic disturbances. Then, by combining (F.5) and (F.6) in an augmented state
space, [

hk+1
sk+1

]
=
[

A ECd
0 Ad

] [
hk
sk

]
+
[

B
0

]
uk , (F.19)

where uk is the controlled input. This work assumes that all the states included in h
and s are measurable. Finally, by defining the state vector xk=

[
hk , sT

k
]T , the system

(F.19) is represented in a compact form,

xk+1 = Aexk + Beuk , (F.20)

where x ∈ Rma , u ∈ Rna . The feedback control policy is given by the following linear
controller,

uk = π(xk) = −Kxk . (F.21)

3.2 Cost function and Bellman equation

A cost function that includes the system objectives is defined as follows,

V(xk) =
∞

∑
i=k

γi−k((xi − x∗)TQe(xi − x∗) + uT
i Rui)

=
∞

∑
i=k

γi−kρ(xi , ui),
(F.22)

where Qe and R are a constants that penalise the tracking error and high control
actions respectively, x∗ ∈ Rma includes the reference of the tank h∗ and γ is a constant
factor, 0< γ < 1, that discounts the rewards obtained in the future. The instant reward
ρk is denoted

ρ(xk , uk) = (xk − x∗)TQe(xk − x∗) + uT
k Ruk . (F.23)

By formulating the previous cost function with the Bellman’s optimality principle, the
optimal value function is expressed with the Bellman equation as presented in [16],

V∗(xk) = min
u

(ρ(xk , uk) + γV∗(xk+1)), (F.24)

with the notation (·∗) representing the optimal value. Consider a candidate parametri-
sation to the value function (F.24) of the form [23],

V(xk) = xT
k Pxk + Gxk + c, (F.25)

Then, combining (F.24) and (F.25) leads to,

V∗(xk) = min
u

(ρ(xk , uk) + γ(xT
k+1Pxk+1 + Gxk+1 + c). (F.26)

Finally, the previous V-value function (F.26) is expressed as a Q-value function and it
is represented in terms of state x and control action u, subsequently where the system
dynamics of the augmented state-space model (F.19) are introduced,

Q(xk , uk) =(xk − x∗)TQe(xk − x∗) + uT
k Ruk

+ γ[(Axk + Buk)T P(Axk + Buk)

+ G(Axk + Buk) + c].

(F.27)
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Then, by rearranging (F.27) into a matrix form

Q(xk , uk) =
[

xk
uk

]T [Mxx Mxu
Mux Muu

] [
xk
uk

]
+[

xk
uk

]T [Nx
Nu

]
+
[

Nx
Nu

]T [xk
uk

]
+ d,

(F.28)

then, the optimal control policy for (F.28) is calculated as

u∗k ∈ argmin
u

Q(xk , uk) = M−1
uu (Muxxk + Nu) (F.29)

3.3 Q-value using linear architecture

The Section 3.2 presents a Q-value function for a linear system that is built with the
system matrices Ae, Be. The following section presents an equivalent control approach
where the Q-value function is approximated since the system matrices are unknown.
This model-free approach proposes a linear parametric approximation for the Q-value
function of the form,

Q̂(xk , uk) = φT(xk , uk)θ, (F.30)

where φ ∈ Rnb is a column vector with the BFs and θ ∈ Rnb is the coordinate vector
with the number of bases nb = (ma + na + 1)(ma + na)/2. The column vector is built with
a finite set of polynomials of 2nd degree, this polynomial approximation is inspired
by the quadratic form of its model-based version (F.28) [23],

φ(xk , uk) = [x2
1,k , x1,kx2,k , . . . , x2

ma ,k , xma ,kuk , u2
k]T . (F.31)

Subsequently, the optimal control law for the approximated Q-value function is de-
termined by

uk ∈ argmin
u

Q̂(xk , uk) = argmin
u

φT(xk , uk)θ (F.32)

Then, the optimal control input is given by the following linear controller,

uk = π̂(θ, xk) = K̂(θ)xk . (F.33)

3.4 Parameter Update

The coordinate vector θ contains the parameters that characterise the Q-value func-
tion. This vector is initially unknown and its parameters have to be identified iter-
atively by using collected data. A Temporal Difference (TD) algorithm is used for
approximating the Q-value function, this algorithm minimises the TD error between
successive iterations [21, 29]. The TD with function approximators is formulated as

φT(xk , uk)θk+1 = (1− α)φT(xk , uk)θk

+ α
[
ρ(xk , uk) + γφT(xk+1, u′k)θk

] (F.34)
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where 0 < α < 1 is a constant learning rate. This method uses batch learning to
minimise the TD, it consists of applying a control policy and collecting the measured
data. When a batch of data is completed with m iterations, (F.34) is solved using Least
Squares as follows

θl+1 = (1− α)θl + α(ΦlΦ
T
l )−1Φl

[
Jl + γΦ′Tl θl

]
(F.35)

where l is the iteration number, Φl = [φl , . . . , φl+m] and Jl = [ρl , . . . , ρl+m]T are a
matrix and a vector generated by evaluating the collected data into the polynomial
BFs (F.31) and reward functions (F.23) respectively.

4 Policy Supervisor

The controller designed in Section 3 provides an optimal control policy for a continu-
ous state-action space. This policy is obtained from a model-free optimisation where
no constraints are considered. However, the operation of physical systems must be
restricted to certain areas that guarantee a safe operation. Therefore, a policy super-
visor module, also referred to as a safety filter, is introduced in the control structure,
see Figure F.3. This module aims to assess the safety of the learned policy, first by

uk
url,k

usa f e

xk

SystemRL
control

Is safe?

xk

switching signal

Safety filter

Figure F.3: Block diagram of the control architecture where the RL control is connected in series
with a policy supervisor (green). The policy supervisor switches the control action based on a
1-step ahead prediction.

predicting a potential violation of the safety regions and then to provide a safe action.
Moreover, this filter is used to restrict the water age in the tank, and it acts as a fall-
back control when the safety limits are violated.
This paper presents two approaches to evaluate the system’s safety: one is based on
a nominal model, and the other is based on a combined model that consists of a
nominal model and a Gaussian Process (GP) regression.

4.1 Safety regions

In this work, the WDN’s safety is built around two factors, the physical limitations
of the tank and the water ageing in the tank. The goal of this filter is to repel the
operation from these unsafe areas while taking into consideration the control policy
(F.33) that now is denoted by url . In this paper, the safety regions are defined as
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follows,

h = H , {h ∈ Rnh |h ≤ h ≤ h̄}, (F.36a)

τ = T , {τ ∈ Rnt |τ ≤ τ ≤ τ̄}, (F.36b)

u = U , {u ∈ Rnu |u ≤ u ≤ ū}, . (F.36c)

where the notation (·) and (·̄) define lower and upper bounds respectively.

4.2 Nominal filter

The filter approach uses a nominal model to predict potential risks in operation and
provide a safe action if necessary. The nominal model is a linear model that is built
with a priory system knowledge, and therefore it does not describe the exact be-
haviour of the system. However, it represents the essential system dynamics necessary
to correct the path.

Nominal model

This paper refers as nominal model, an imperfect version of the model (F.5), a linear
model of the form,

ĥk+1 = f̂ (hk , uk) = Âhk + B̂uk + Êdav , (F.37)

where dav is a constant representing the average of the total demand and Â, B̂ and Ê
are system matrices of the nominal model [24]. The turnover signal is represented by
the algebraic equation (F.15). This signal is computed with the flow model. Although
the tank inflow is not directly measured, qk is inferred from the network flows: the
pump inflow 1, uk(decision variable), the average demand, dav(nominal guess) and
the pump inflow 2, qp2 (measured).

Nominal safe policy

The safety filter is formulated as a constraint optimisation problem:

usa f e ∈ argmin
uk

||url,k − uk||2Q1
+||τ∗ − τ̂k||2Q2

+||ξ||2S (F.38a)

s.t. ĥk+1 = f̂ (hk , uk) (F.38b)

τ̂k = ĝ(qk) (F.38c)

ĥk ≥ h− ξ1 (F.38d)

ĥk ≤ h̄ + ξ1 (F.38e)

τ̂k ≥ τ − ξ2 (F.38f)

u ≤ uk ≤ ū (F.38g)

ξ ≥ 0 (F.38h)

The objective function (F.38a) consists of two terms, the first penalises the difference
between the safe and the learning action, url , and the second term represents the
tracking error between a constant reference value, τ∗, and the turnover of the tank.
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Q1 and Q2 are constants penalising the aforementioned terms. ξ is a slack variable
that relaxes some of the inequality constraints.

Algorithm 8 Safe LS-TD for Q-function - nominal filter.

1: Input: γ, α, ns,
2: Initialisation: l ← 0, x0, θ0 where π̂(θ0) must be an admissible policy.
3: repeat at every iteration k = 0,1,2, . . .
4: apply uk and measure xk+1
5: Υls ← ρ(xk , uk) + γQ̂(xk+1, K̂l xk+1)
6: if k = (l + 1)ns then . Policy update
7: θl+1 ← (1− α)θl + α(ΦlΦT

l )−1ΦlΥl
8: π̂(θl+1, x)← argminu φ(x, u)Tθl+1
9: l ← l + 1

10: end if
11: if ĥk+1 ∈ H and τ̂k ∈ T then . Policy supervisor
12: uk = K̂(θl)xk + εk
13: else
14: uk = usa f e + ε′k
15: end if
16: until

The Algorithm 8 is executed in real-time, and it comprises two main objectives,
updating the RL policy and rectifying the policy during potential unsafe operation
[24]. Remark that the control action in the algorithm consists of the policy and a per-
sistence of excitation signal εk. This signal facilitates that the collected data contains
sufficient information to identify the Q-value function. Safety and learning are con-
flicting since a high gain in the persistence excitation signal might break the safety
guarantees or, on the other hand, strict safety policies might lower the quality of the
collected data. Note that a different persistence of excitation signal ε′k is added to the
safety actuation. The magnitude of this signal is adjusted to have a low impact on
safety but is sufficient to avoid numerical issues during the parameter identification.
This work tolerates the risk of unsafe operation around the boundaries for the benefit
of the overall performance. In this way, the disruptive effect of the safety actions in
the learning is reduced.

4.3 Combined filter

The knowledge of the system is limited in industrial applications, and the filter can
become either conservative or reckless depending on how accurate is the system infor-
mation. The combined filter aims to improve the performance of the previous safety
method by reducing the reliance on the calibration of the nominal model. This method
for compensating the model uncertainty consists of an imperfect linear model (nom-
inal) and a GP regression. The GP regression term is added to the system dynamics
to capture the deviation of the nominal model from the real system.

200



4. Policy Supervisor

Combined model

Consider that the discrete system model is formed by two terms as follows,

hk+1 = f̂ (hk , uk) + Br(r(zk) + wk), (F.39)

where f̂ represents the known nominal model and r the non-modelled dynamics of
the system, both functions f̂ and r are assumed to be differentiable. The observed in-
put vector is built with the augmented system states and control action, zk = [xT

k , uT
k ]T ,

Br is an index matrix and the random variable and wk ∼ N (0, Σw) is i.i.d. process
noise.
The residual function r(z) is unknown, however, by using a GP regression, r(z) can be
inferred. Then, by combining the nominal model with the GP approximation r̂(z), the
system model (F.39) is transformed into,

hk+1 ≈ f̂ (hk , uk) + Br r̂(zk). (F.40)

The derivation of the GP approximation r̂(z) with predictive mean and variance equa-
tions is given in the Appx.A, then the implementation of the GP training is briefly
described.
Subsequently, to compensate the uncertainty in the turnover, this approach considers
the level model h̃ to compute (F.42c).

Combined safe policy

To introduce the residual function (F.40) into the safety filter, a reformulation of the
safe-optimal control problem is required. In this way, the constraints are represented
as chance constraints as follows,

Pr{h ∈ H} ≥ ph , ∀k (F.41a)

Pr{τ ∈ T } ≥ pτ , ∀k (F.41b)

where ph and pτ are the satisfaction probabilities. Finding an algebraic solution to the
problem is difficult when working with chance constraints. Therefore, a transforma-
tion of the chance constraint (F.41) into deterministic equivalents (F.42d), (F.42e), and
(F.42f) is performed. Then, by utilising the mean and variance models from (F.50), the
optimisation problem is formulated as:

usa f e ∈ argmin
uk

||url,k − uk||2Q1
+||τ∗ − τ̂k||2Q2

+||ξ||2S (F.42a)

s.t. h̃k+1 = f̂ (hk , uk) + Brµr
k(zk) (F.42b)

τ̂k = ĝ(h̃) (F.42c)

h̃k+1 ≥ h + Kcσr(zk)− ξ1 (F.42d)

h̃k+1 ≤ h̄− Kcσr(zk) + ξ1 (F.42e)

τ̂(h̃k+1) ≤ τ − ξ2 (F.42f)

u ≤ uk ≤ ū (F.42g)

ξ ≥ 0 (F.42h)
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where the standard deviation σr(zk) =
√

Σr(zk) is computed with the variance model
(F.50c), Kc represents the confidence gain and ξ is a slack variable that relaxes some of
the inequality constraints. Remark that the mean µr

k(zk) and variance function Σr
k(zk)

include the decision variable uk in its input vector zk.
The Algorithm 8 is executed in real-time with the combined safety filter. Then a
prediction is considered safe if meets the following criteria,

h + Kcσr(z′k) ≤ h̃k+1(z′k) ≤ h̄− Kcσr(z′k) (F.43a)

τ ≤ τ̂(h̃k+1) (F.43b)

where the observed input vector z′k is built with the augmented system states and the
RL control action, z′k = [xT

k , uT
rl,k]T . Figure F.4 illustrates a normal distribution and

how the deviation from the mean value is adjusted with Kc. Remark that this method
must fulfil

|Kcσr(zk)|≤ |h̄− h|/2, (F.44)

this condition limits the width of the confidence interval based on the distance be-
tween upper and lower bounds. The standard deviation, σr, is time-variant and its
regression model is trained online. This challenges the selection of a suitable gain.
Therefore, this paper proposes the use of a naive prediction [14] as a protection mech-
anism that makes the safety problem less sensitive to the GP model. It consists on
cancelling the variance term in (F.42d) and (F.42e) by setting Kc= 0 when the condi-
tion (F.44) is not satisfied.

Pr
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y µr − Kcσr µr + Kcσrµr

Figure F.4: Scheme of a normal distribution where red represents the area inside the confidence
interval of the residual function.

Figure F.5 shows a period of a simulation where the safety filter is intermittently
rectifying the system trajectory. The top graph shows the free-exploration prediction
h̃rl

k+1 with Confidence Interval CIrl , they are computed with the measured state hk
and learning control input url , this signal is used for detecting unsafe trajectories.
The safe-exploration prediction is represented by h̃s f

k+1 and it computed with the state
hk and the safe control input usa f e, when no-risk of constraint violation is predicted
both signals are aligned. The bottom graph shows the control signals and how the
safety filter corrects the control action url when the prediction crosses the boundaries.
Furthermore, a clear deviation of ĥrl

k+1 is observed with respect to h̃rl
k+1, this is due to

the poor calibration of the nominal model. The GP model of the uncertainty is trained
online, and the confidence intervals are gradually reduced.

5 Results

The proposed control architecture is validated in a laboratory testbed, first with the
nominal and then with the combined safety. The emulated network represents a WDN
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Figure F.5: Simulation of the WDN with a RL controller and a combined filter. (Top) Blue dots
represent the real level measurement and the dotted line represents the lower boundary. The
nominal model signal ĥrl

k+1 = f̂ (hk , url) and the combined model h̃rl
k+1 = f̂ (hk , url) + Br r̂(z′k) are

1-step ahead predictions, and h̃s f
k+1 = f̂ (hk , uk) + Br r̂(zk) is the safe prediction. (Bottom) The RL

control input url and the control input for safe exploration usa f e.

with an elevated reservoir and two pressure zones, reproducing the network features
of the distribution system shown in Figure F.1.

5.1 Study-case: Bjerringbro

SCADA - CCU

LU

LU

LU

Water Distribution Network Test Bed

MODBUS TCP/IP

Figure F.6: Picture of the testbed at the SWIL. (Left) The laboratory modules emulating a WDN
are placed on the left. (Right) SCADA PC for monitoring and control of the testbed. The commu-
nication architecture between Central Control Unit (CCU) and Local Units (LUs) is represented
in yellow.

A modular laboratory testbed is built at the Smart Water Infrastructures Labo-
ratory (SWIL) at Aalborg University, where the hydraulic configuration of the study
case is emulated.
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The actual network and testbed are divided into two Pressure Zones (PZs), PZ-1 is
supplied directly from the the pumping station 1 and elevated reservoir, and PZ-2
is located at a higher elevation and is supplied from the elevated reservoir with the
pumping station 2, see Figure F.7.
In this testbed, the elevation at the different network areas is emulated by locally
controlling the air pressure at the consumption nodes (collection tanks). Note that
the hydraulic configuration of the laboratory elevated reservoir, with one inlet, differs
from reality, which has two separated inlets (see Figure F.2). This connection makes
a major difference in a real network. However, for this experiment, the impact of this
connection variation is negligible since the quality of the water is not monitored, and
the hydraulic properties are equivalent.
The consumption profiles are emulated with a Fourier series of 2nd order which ap-
proximates the consumption pattern from the entire PZs. The magnitude of the sig-
nals is reduced to fit the testbed scale, the consumption ratio between PZ1 (q2 and q3)
and PZ2 (q4) is kept between 0.73 - 0.27, respectively, reproducing the consumption
between areas. Pump 2 has a local pressure control that boosts the pressure at the PZ-
2 consumer. Finally, the water is transported to the supply reservoir for re-circulation.
Additionally, local PI controllers regulate the pump inflow at the supply nodes and
the valve outflow at the demand nodes. To reduce the impact of these local controllers
in the tests, the sampling time for local controllers is 1 second, and for supervisory
control (RL) is 60 seconds.
The testbed is equipped with multiple sensors. However, only three measurements
are available for the supervisory control, the flow at the pumping units (qp1, qp2) and
the differential pressure (h) at the elevated reservoir. The rest of the sensors are used
for hardware protection and for monitoring the testbed. The data from the testbed is
locally collected at the LUs with Codesys Runtime [1], and it is interfaced with the
CCU via TCP/IP Modbus. The proposed control strategy is implemented in Simulink
at the CCU. A simple representation of the communication architecture is shown in
Figure F.6, a detailed explanation of the laboratory system is presented in [25].
The optimization problems (F.38) and (F.42) are solved with the symbolic framework
CasADI and a primal-dual interior point solver IPOPT is selected to solve the non-linear
optimisation problem [3].

5.2 Experimental Results: Nominal safety

The RL control is tested together with a nominal safety filter in this experiment. The
nominal model used in the filter is calibrated to fit the laboratory specifications and
considers an average consumption, dav = 0.5. The turnover computation is com-
puted with the flow model (F.11b), with an average level of h∗=0.3[m] and a filter size
nm=24. The whole control structure has multiple objectives, which in some opera-
tional scenarios can be conflicting objectives. This work has relaxed the constraints
that represent the water age boundaries (F.38f) to prioritise safety at the tank level
boundaries (F.38d)(F.38e) during the transient.
During the first 5 hours, the learning transient is observed in Figure F.8. The operation
during this period is driven by the safety filter policy that often corrects the system
trajectory. Thus, maintaining the safe operation of the system. During this first part,
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the identification of the Q-value function, and subsequently, the optimal policy K,
continues despite the system chattering around the safety boundaries, see Figure F.9.
After 5 hours of experiment, the RL controller improves and the RL policy becomes
dominant. Finally, the operation of the system is driven by a near optimal policy that
slowly approached to a steady-state.

5.3 Experimental Results: Combined safety

In this experiment, the RL control is tested with a combined safety filter. In this case,
the safety filter is challenged by assuming an inaccurate calibration of the nominal
model which considers 0.4 times the tank size Aer size and 0.5 times the actual av-
erage demand dav. The combined safety filter aims to compensate this poor model
calibration. The GP model is initialised with a prior random input and output batches
and the confidence gain Kc = 1.
The turnover model is computed with level measurements. The graph in Figure F.10
shows turnover signals computed with different models, an error between the approx-
imated flow and level models is observed. This error in the dynamics is especially
patent in steady-state conditions where m̂(q), that is computed with a constant dav,
fails to predict the periodicity of the disturbance.

Figure F.11 shows the experimental results of a RL controller and a combined
safety filter. The graph can be divided into two parts: a learning transient and a
steady-state operation. The learning transient comprises a GP model learning and
a Q-value function learning. During the first 4 hours, when the GP model is not
entirely trained, the predicted model differs from reality. See the bottom graph of
Figure F.12. Therefore, the GP prediction provides a wide Confidence Interval (CI)
which indicates high uncertainty in the prediction. This lack of confidence makes the
safety filter provide a more conservative actuation. This effect is especially noticeable
between hours 0 and 2, where the system path is corrected far from the safety bound-
aries. Once the GP model is improved, hours 3.5-6, the system can safely operate
near the boundaries, hence enlarging the exploration limits. During the steady-state
operation, after hour 6, the RL controller takes over system policy and the safety filter
is only triggered for correcting the approximated turnover signal τ̂. A scaling error
is observed between the approximated and actual turnover signal τ̂ and τ. However,
this error is considered a minor safety risk since the approximated signal represents
a worst-case scenario from a model calibration.
The graph in Figure F.12 shows the convergence of the Algorithm 8 to an optimal
policy where the TD error is minimised. Likewise, the training of the GP model
with Algorithm 9 shows a reduction of the prediction error between the nominal and
combined models.

6 Discussion

Based on the collected results, a brief discussion of the strengths and weaknesses of
the presented method is given.
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ĥ

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

0
2
0

4
0

6
0

8
0

1
0
0

Turnover[%]

τ
∗

m
in

τ
(q

)
τ̂
(q

)

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

0
0
.2

0
.4

0
.6

0
.81

Inflow[
m

3

h]

q
1

S
a
fe

ty
f.

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

0

0
.1

0
.2

0
.3

T
im

e
[h

o
u

rs
]

Demand[
m

3

h]

q
2

q
3

q
4

Fi
gu

re
F.

8:
Ta

nk
le

ve
l

re
gu

la
ti

on
.

D
ai

ly
tu

rn
ov

er
of

th
e

ta
nk

,
re

al
si

gn
al

τ
.

Th
e

in
flo

w
of

th
e

pu
m

pi
ng

st
at

io
n

q 1
w

he
re

th
e

re
d

cr
os

se
s

m
ar

k
th

e
ac

tu
at

io
ns

th
at

ar
e

co
rr

ec
te

d
by

th
e

sa
fe

ty
fil

te
r.

D
em

an
ds

fr
om

PZ
1

(q
2

an
d

q 3
)

an
d

PZ
2

(q
4)

.

207



Paper F.

0 2 4 6 8 10 12
−15

−10

−5

0

P
o
li
cy

-
K

0 2 4 6 8 10 12
0

2

4

6

Time [hours]

T
D

er
ro
r

Figure F.9: Experimental results with RL control and nominal safety filter. Top: Transient of the
learned policy. Bottom: Temporal Difference.
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Figure F.10: Simulation of the positive level rate mean: Blue signal (blue) is computed with
model (F.13), Red and yellow are computed with the approximated model (F.14), with a nominal
flow model (F.11b) and a predicted level (F.11a) respectively.

6.1 Learning Controller

The presented RL method shows to be a suitable solution for obtaining an optimal-
adaptive policy. The linear learning structure with polynomial bases provides a pre-
liminary structure to the Q-value function that suits the linear behaviour of the system
and quadratic rewards to be learned. To facilitate learning an optimal controller and
the quick adaptation to a changing environment. The design criteria in this controller
prioritise the simplicity of the solution over performance. Having such a simple learn-
ing structure increases the interpretability of the results compared to other black-box
methods, thus reducing the commissioning time and cost. Nevertheless, the perfor-
mance of this linear controller relies on the assumption that linear dynamics describe
the system’s behaviour. This becomes a strong assumption when the controller is vali-
dated against a real setup where, in addition to the linear tank dynamics, the actuator
dynamics and communication delays affect the control loop. The convergence of the
learning method requires quadratic rewards (objectives) and the operation around an
operating point. Additionally, this method provides a continuous adaptation (learn-
ing) to the environment. This includes learning during steady-state and safety opera-
tion. The method is based on a Least Squares estimate which is sensitive to the quality
of the collected data. Therefore, a persistence of excitation signal must ensure a suf-
ficient exploration; this also includes safety saturation periods where the exploration
of new areas is limited.
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Figure F.12: Experimental results with RL control and combined safety filter. Top: Transient
of the learned policy.Middle: The temporal difference computed as |K̂l − K̂l+1|. Bottom: The
Root-Mean Square Error (RMSE) of the residual generated by the estimated ĥ and h̃ compared
with the measured level h, The triangles show the GP model updates during the execution of
Algorithm 9.

6.2 Safety Filter

One of the main challenges for deploying learning controllers in real systems is the
uncertainty of their policies, especially during the learning transients. This RL opti-
misation framework does not consider the physical limitations of the system. These
safety guarantees are essential when deploying data-driven/learning controllers in
large scale systems that require a robust operation like water infrastructures.
The experimental results show the importance of including a safety filter for assisting
a learning controller or for any existing controller with uncertain policy. The filter
actions maintain the system’s operation within a safe level region when the operation
is approaching unsafe areas. Additionally, this work includes a management objective
in the safety criteria to limit the water age.
A GP regression combined with a nominal model provides a simple method to im-
prove safety in an uncertain environment. The risk assessment of the RL policy is
performed, including a variable confidence interval. The confidence gain Kc modifies
the learning transient on the application convenience. A high gain represents a lack
of confidence in the RL policy and reduces the RL exploration area. However, a poor
state-space exploration might lead to sub-optimal RL policies. On the other hand, a
low gain relaxes the safety condition and allows the RL policies to explore a wider
state-space region. The feasibility of the safety control problem is an important factor
to be considered when selecting a suitable Kc, high gain increases the influence of the
GP regression model, in particular the variance model. When the GP model is not
completely trained, this influence might be an issue, and the safety problem becomes
unfeasible.
One of the purposes of having real-time training for the GP, Algorithm 9, is to decrease
the confidence interval gradually. Thus, removing the unnecessary safety assistance
and entrusting the RL to drive the system’s policy. In case of reaching large confi-
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7. Conclusion and future work

dence intervals that conflict with the safety optimisation, the algorithm neglects the
variance to find a safe-robust solution. The experimental results conclude that pro-
viding robust safety while learning the GP model is challenging. Insufficient training
of a GP model brings a high uncertainty in the predicted mean and variance. This
study reduces the variance dynamics (Confidence Interval) impact by reducing the
confidence gain Kc to facilitate the computation of a feasible solution. This safety
method is a 1-step ahead optimisation that does not imply significant computational
effort. Moreover, the GP model utilises the same collected data for learning the Q-
value function xk and uk to facilitate the implementation.

Finally, a brief discussion analysing the joint performance of the learning con-
troller and safety block is given. The use of a safety filter allows the inclusion of
management objectives that cannot be incorporated in a linear learning architecture.
Moreover, by strategically formulating RL objectives in the safety objective function,
the filter can be utilised as a learning guideline for an RL controller that does not
have any knowledge of the system. However, RL and safety are decoupled blocks
that have different control objectives. Therefore, the formulation of these objectives
must be balanced such that the filter is not dominant with respect to the existing con-
troller and vice versa. The control actions’ smoothness also conflicts with the learning
performance that requires persistent variations to identify the Q-value function.

7 Conclusion and future work

This paper proposes an optimal-adaptive control solution for a WDN with an elevated
reservoir. The management of this network comprises two main operation objectives:
controlling the network pressure and water age by regulating the tank’s level and
turnover. The control method consists of an RL linear controller that provides the
primary policy and a policy supervisor that predicts and corrects potential viola-
tions of the safety boundaries. The predictions are based on a linear nominal model.
The performance of this filter is subject to the calibration of the model. Therefore, a
GP regression is included in the filter to compensate for incorrect model calibration
and include non-linearities that a linear model cannot capture. The proposed control
strategy is validated in a laboratory setup that emulates the WDN dynamics. The
experimental results reflect the benefits and the limitations of the method.
Although this paper presents promising results that support the implementation of
safe learning techniques in industrial applications, this method is challenged by sev-
eral factors. Future development of this method must consider a non-linear learning
architecture that allows the formulation of non-linear objectives in the reward. It al-
lows learning an optimal policy that includes important management objectives such
as water age or operational costs.
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A Gaussian Process Regression

This model is inspired by the formulation presented in [11] where the uncertainty
between an imperfect nominal model and the real system is modelled with a Gaussian
Process (GP) regression. Then, by applying a GP regression, this method aims to
learn the uncertainty term r(z) represented in (F.39) as follows. First, the residual is
expressed as,

yk = r(xk , uk) + wk = B†
r ( hk+1︸︷︷︸

measure

− f̂ (xk , uk)︸ ︷︷ ︸
nominal

), (F.45)

where B†
r is the Moore-Penrose pseudo-inverse of Br. Then, consider a training data

set D that consists of M observations,

D = {y = [y1, . . . , yM]T ∈ RM

z = [z1, . . . , zM]T ∈ RM×nz}
(F.46)

where z denotes an input vector and y a scalar output (target). This definition is
performed by assuming that each of elements y of the output vector are independent
for a given input data zk. Then, by giving a GP prior on r with kernel k(·, ·) and prior
mean function is zero,

y ∼ N (0, Kzz + Iσ2). (F.47)

The result is a normally distributed measurement where Kzz is the Gram matrix of
the data points such that Kij = k(zi , zj), the selection of the kernel k structure and its
parameterisation determines the distribution of the predicted output. In this paper,
the selected kernel is the squared exponential kernel function,

k(zi , zj) = σ2
f exp(−1

2
(zi − zj)

T L−1(zi − zj)), (F.48)

where L is a positive diagonal length scale matrix and σ2
f the signal variance. This

kernel is selected based on the domain knowledge since the dynamics of the system
present a continuous and smooth behaviour.
The joint distribution of the training data z and the test data z∗ is[

y
y∗

]
∼ N

(
0,
[

Kzz + Iσ2 Kzz∗
Kz∗z Kz∗z∗

])
, (F.49)

where [Kzz∗ ]j = k(zj , z∗), Kz∗z = KT
zz∗ , and similarly Kz∗z∗ = k(z∗ , z∗). The resulting

conditional distribution of the uncertainty residual is Gaussian [8],

r̂(y∗|y) = N (µr(z∗), Σr(z∗)), (F.50a)

µr(z∗) = Kz∗z(Kzz + Iσ2)−1y, (F.50b)

Σr(z∗) = Kz∗z∗ − Kz∗z(Kzz + Iσ2)−1Kzz∗ (F.50c)
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where µp(z∗) and Σp(z∗) are mean and variances of the GP.
The GP model is trained with measured data, the collected data batch shares the
same vector structure as the RL batch, it is built with the pair augmented state vector
x and control action u. The training of the GP is performed by executing Algorithm 9
in real-time, and the hyper-parameters of the GP are obtained with the MATLAB
function fitrgp(). The algorithm needs to be initialised with prior data z0 and y0,
the number of new samples per update ngp and the threshold e∗. This threshold
represents the minimum deviation between the measured variable hk and estimated
h̃k(zk), with zk = [xT

k , uT
k ]T . The collected data is stored between updates in a Last In

First Out stack (LIFO).

Algorithm 9 Training of the GP model.

1: Input: ngp, e∗

2: Initialisation: [σf 0, L0, σ0]← fitrgp (z0, y0)
3: repeat at every iteration k = 1,2, . . .
4: collect data ĥk, zk and yk
5: ek = RMSE(hk - h̃k)
6: if ek ≥ e∗ then . Collect data
7: save zk and yk in stack zj and yj
8: if k = (j + 1)ngp then . GP update
9: [σf , L, σ]← fitrgp (z, y)

10: j = j+1
11: end if
12: end if
13: until
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