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Application of Newton Identities in Solving
Selective Harmonic Elimination Problem
With Algebraic Algorithms

Chenxu Wang ', Qi Zhang™, Student Member, IEEE, Dunzhi Chen™, Student Member, IEEE, Zhaoyuan Li,

Wensheng Yu

Abstract— Algebraic algorithms are powerful methods in solv-
ing the selective harmonic elimination (SHE) problem, which
can find all exact solutions without the requirements of choosing
initial values. However, the huge computational burden and long
solving time limit the solving capability of algebraic algorithms.
This article presents a novel Newton’s identifies-based method to
simplify the SHE equations including the order reduction and the
variable elimination, thereby reducing the computational burden
and the solving time of algebraic algorithms or in other words
improving the solving capability of the algebraic algorithms.
Compared with existing simplification methods, the proposed
method significantly improves the efficiency of solving SHE
equations. With the proposed method, the degree of reduction
is no longer the bottleneck of solving the SHE equations by
using algebraic algorithms. By using the proposed method, the
SHE equations with ten switching angles are completely solved
with the algebraic algorithm for the first time. The simulation
and experimental results indicate that the proposed method is
effective and correct.

Index Terms—Elementary symmetric polynomials (ESPs),
Newton’s identities, power sums, selective harmonic elimination
(SHE).

I. INTRODUCTION
HE power electronic converters usually utilize very low
switching frequency in high-power applications because
of limitations of the switching losses and the electromagnetic
interface (EMI) issue [1]-[7]. With such a low switching fre-
quency, the selective harmonic elimination (SHE) technology
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has been the best modulation strategy due to its outstanding
output harmonic performance in the medium- and high-power
applications, such as motor drives, grid-connected converters,
and active rectifiers [8]-[13]. The switching angles should be
obtained first by solving a group of strong nonlinear tran-
scendental equations namely the SHE equations in practical
applications. However, how to solve the SHE equations is
quite a complicated problem because of the complexity and
the multisolution feature of the SHE equations.

There are three classes of methods to solve the SHE
equations: numerical algorithms [14], intelligent optimiza-
tion algorithms [15]-[23], and algebraic algorithms [24]-[35].
Numerical algorithms are the most traditional methods to solve
the SHE equations. They can provide high accuracy results
with fast convergence. However, they strongly rely on the
guess of initial values which is quite an issue especially for
multilevel converters because there has no systematic method
to find feasible initial values. Moreover, numerical algorithms
cannot handle the multisolution feature of the SHE equations,
and usually, they can provide only one solution or just a part
of the complete solutions. Even though a modified numerical
method [14] was proposed aiming to obtain the complete
solution of the SHE equations, the obtained results cannot
be mathematically proved to be complete solutions of the
SHE equations. Based on numerical computation technol-
ogy, the development of intelligent optimization algorithms
provides new strategies to solve the SHE equations. Intelli-
gent optimization algorithms, to some extent, overcome the
initial values issue, because the initial values of intelligent
optimization algorithms can be selected randomly. However,
intelligent optimization algorithms lack the support of math-
ematical theory and are sensitive to input parameters, so the
precision of solutions is difficult to be guaranteed. Therefore,
most intelligent optimization algorithms focus on the research
of convergence speed and fitness function value, and some
satisfactory results have been obtained [16], [22], [23]. Never-
theless, they also cannot deal with the multisolution feature of
the SHE equations because of the local optimum problem. In a
summary, both the numerical algorithms and the intelligent
optimization algorithms cannot obtain complete solutions to
the SHE equations.

Algebraic algorithms are introduced to solve the SHE equa-
tions because of their outstanding characteristics [27]-[29].

2168-6777 © 2022 1IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 04,2022 at 20:35:07 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-5622-7480
https://orcid.org/0000-0001-9094-9989
https://orcid.org/0000-0001-9050-9334
https://orcid.org/0000-0002-3832-2748
https://orcid.org/0000-0001-9163-2713

WANG et al.: APPLICATION OF NEWTON IDENTITIES IN SOLVING SHE PROBLEM

They are implemented based on the algebraic theory, and all
computations inside are carried out with symbols, not specific
values, and therefore, they do not need to be given any specific
initial values, and the complete solutions can be obtained by
only one solving procedure. Moreover, they can give a direct
and clear conclusion about the complete solutions of the SHE
equations, for example, whether the SHE equations have solu-
tions or not, and the conditions for the SHE equations to have
solutions. So as to say, the algebraic algorithms seem to be the
most powerful tool to solve the SHE equations compared with
numerical and intelligent optimization algorithms. However,
the algebraic algorithms face a big problem to solve the SHE
equations. The algebraic methods require huge computation
sources, for instance, the huge computer burden and the large
random access memory (RAM) space. In addition, the time
for solving is usually very long to solve the SHE equations
with more switching angles. Thus, the solving capability of
the algebraic algorithms is limited.

To improve the solving capability of the algebraic algo-
rithms, our previous study [34] and other publications
[31], [32] found that the SHE equations can be transformed
into the symmetric polynomial system, and it can be further
simplified into a lower-order and less-variables polynomial
system. With the simplification, the computation burden and
the solving time can be reduced, thus the solving capa-
bility of algebraic algorithms can be pushed to a higher
level.

Two attempts have gained success in simplification of the
SHE equations. The power sums-based method was proposed
to simplify the SHE equations [30], in which the SHE equa-
tions are transformed into the form of power sums polynomials
and then solved by the resultant elimination method. With the
power sum simplification method, the solving capability of
the resultant elimination method is improved from three to five
switching angles. However, this simplification faces a problem
that the simplification is coupled with the solving procedure.
It introduces one extra polynomial system, which is, to some
extent, almost the same complicated as the simplified SHE
equations, thus, the solving procedure has to be called twice
and as a result, the solving time becomes longer. Likewise,
the elementary symmetric polynomial (ESP) is also introduced
to simplify the SHE equations. The results published in
[31], [32], and [34] show that the ESP simplification can
significantly improve the solving capability of the Groebner
basis method and the solving capability is pushed to nine
switching angles. However, the efficiency of this simplification
method is not so high enough to deal with the SHE equations
with more switching angles, for example, to simplify the SHE
equations with eight switching angles, it needs more than
34 h in a common workstation to finish the simplification.
Furthermore, if the number of switching angles is larger
than 9, it fails to finish the computation. Consequently, even
though these two methods have been successfully used to
simplify the SHE equations, the simplification method is still
a bottleneck of the algebraic algorithms to solve the SHE
equations.

To improve the performance of the algebraic algorithms
for solving the SHE equations, this article presents a novel
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simplification method based on Newton’s identities for the
SHE equations, including the degree reduction and variable
elimination. Compared with the existing two simplification
methods, the proposed method is much simple and more effec-
tive, so it can dramatically improve the speed and the capa-
bility of the simplification of the SHE equations. If only the
simplification procedure is considered, the proposed method
can deal with the SHE equations with more than 50 switching
angles, and arguably, the bottleneck of the simplification of the
SHE equations can be eliminated with the proposed method.
Obviously, the solving capability of the existing algebraic
algorithms can be further improved with the proposed method.
For example, with the proposed method, the solving capability
of the Groebner basis method can be improved to 10. To our
best knowledge, this is the first time to obtain the complete
solutions of the SHE equations with ten switching angles,
whatever kind of solving method is used. Furthermore, the
proposed method can also be used for the numerical and the
intelligent optimization algorithms, if the SHE equations are
also needed to be simplified. Because this topic is out of the
focus of this article, the details will not be discussed in this
article.

This article is organized as follows. Section II describes the
unified mathematical model of the SHE problem. Section III
first provides basic concepts and principles of Newton’s iden-
tities and then presents the proposed simplification algorithm.
In Section IV, some computational results of nine and ten
switching angles are analyzed to identify the correctness of
the proposed method. Besides, the proposed method is com-
pared and evaluated with the existing simplification method
in Section V. Furthermore, in Section VI, the experiments of
motor-drive applications and inverters are carried out to verify
the effectiveness and correctness of the proposed method.
Finally, this article is concluded in Section VII.

II. MATHEMATICAL MODEL OF THE SHE PROBLEM

The SHE is based on the principle of Fourier expansion.
According to basic concepts of mathematics, any periodic
signal can be expanded into a Fourier series. The output
PWM waveform of converters is commonly periodic, and
obviously it can be expanded into the Fourier series, in which
the amplitude of fundamental and harmonic components is
represented with a sum of trigonometric functions with the
switching angles as variables. If a group of switching angles,
such that the fundamental component of the output waveform
is equal to the desired value while the amplitudes of the
selected harmonics are all equal to zero, can be obtained,
and the output voltage waveform of the converter can be
constructed with the obtained switching angles, then the output
of the converter will not contain the selective harmonics.
According to the conclusion in [35], the switching angles can
be obtained by solving such a group of equations expressed
as (1), namely the SHE equations, in which m = 7z U /4 V.
is the modulation index and n is the number of the switching
angles and also the number of the equations. U is the desired
amplitude of the fundamental component, V. is the voltage of
the dc source, a;(i = 1,2, ..., n) are the switching angles in a

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on November 04,2022 at 20:35:07 UTC from IEEE Xplore. Restrictions apply.



5872
quarter period, and k is the order of the eliminated harmonics
n
Z cos(a;) =m

i=1

> cos(ka;) =0, k=5,7,11,...

i=1

ey

It should be pointed out that the SHE equations expressed
in (1) is a unified model. Although it looks like the traditional
SHE model for the multilevel staircase waveform, they are
completely different in essence. The traditional model is
limited by the switching pattern, that is, the combination of
transition states on each switching angle, so there has an
inequality constraint of switching angles for the traditional
model. However, the unified model removes the inequality
constraint of switching angles and includes all possible switch-
ing patterns, which significantly increase the solution space.
Thus, this model can be used for converters with any topology,
for example, two-level, three-level, or multilevel converters.
For more details, refer to the literature [35].

It can be seen that the SHE equations (1) contain only cosine
functions with switching angles o; as variables. In order to
apply the algebraic algorithms, the SHE equations should be
first transformed into an algebraic polynomial system, and
this procedure can be carried out with the application of
the first-kind Chebyshev polynomial: T (cos(a;)) = cos(ka;),
where T; represents a polynomial expression. Furthermore,
if x; = cos(a;), the Chebyshev polynomial can be rewritten
as Ty(x;) = cos(ka;). Based on the Chebyshev polynomial,
all cosine function terms in the SHE equations (1) can
be transformed into polynomial equations (3) by using the
recursions (2). Finally, the SHE equations (1) is transformed
into the polynomial system (3), based on which the algebraic
algorithms can be applied to solve the system. As mentioned
in Section I, this system is quite complicated, so it is very
hard to solve the polynomial system directly. The proposed
simplification method aims to reduce the order and the amount
of variables of the polynomial system to make it being much
easier to be solved

Ti(x)=x, Tr(x)=2x*-1
. 2
Ti(x) = 2xTi—1 (x) — Tr—2(x)

fiE) =" xi—m=0
i=1

fs(x) =D (5xi — 20x} + 16x7) =0
i=1 3)

fr(x) =D (=7x; + 56x] — 112x] + 64x]) = 0.

i=1

III. SOLVING SHE PROBLEM WITH THE
PROPOSED ALGORITHM

This section proposes a novel simplification method, which
has a simple process and only involves multiplications and
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additions. This simplification method can equivalently trans-
form (3) into a lower-order algebraic polynomial system,
and no solution is lost in this process. Combined with other
algebraic methods, the proposed method can solve the highest
number of switching angles so far. This section will give the
principle of the proposed method and the detailed steps of the
whole solving process.

A. Newton’s Identities

In the algebraic theory [36], Newton’s identifies gives the
relationship between the power sums polynomials and the
ESPs. Let x;, 1 < i < n are variables, the kth power sums
polynomials are defined as

n
2 k

Pk = X
i=l1

And the ESP is defined as

r60 =1
er=x1+tx2+ - +Xx,
ey = Z XiXj
I<i<j<n 4)
€p = X1 X2 Xp
e, =0, for k> n.

Then, Newton’s identities can be stated as follows, and it is
valid for all n > k > 1

k
kex =D (=) eripi. ()
i=1

Also, when k > n > 1, Newton’s identities should be stated
as

k
0= D (=D ecipi. (6)
i=k—n
Therefore, according to the definitions of Newton identities,

power sum polynomials can be recursively expressed in terms
of ESPs, and p; can be concretely rewritten as

P1=é€

D2 =e1p1 —2e

p3 =e1p2 —expy + 3e3
: (7
Pn =€1Pn—1 —€2Pn-2 +--- (_l)n_l(n)en

pe=eipioi +erpiat -+ (=D e, prn.

B. Degree Reduction With Newton’s Identities

The algebraic polynomial system (3) can be simplified based
on the principle of Newton’s identities. As the subsequent
derivation is related to the number of switching angles, for
convenience, the case described following is with ten switch-
ing angles. First, by substituting the power sum polynomials to
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the SHE equations (3), the following equation can be obtained.

It can be seen that (8) is undetermined since the number of

unknown variables is more than the number of equations, so,
it cannot be solved directly:

pr—m=0
5p1—20p3+16p5:0

—Tp1+56p3 — 112ps 4+ 64p; =0 (8)

29p; — 4060p3 + - - - + 268435356 prg = 0.

Based on the principle of Newton identities, the number
of variables of (8) can be reduced to the same number as
equations. According to the Newton’s identities, all the power
sums whose degree higher than n can be rewritten in the
low-order power sums p; ~ p,, which could make the system
balanced. Therefore, the second step is to rewritten ESPs
e; ~ ejo in terms of power sums polynomials p; ~ pjo
according to (5)

€1 = pi1
P% )]
e = — — —
2 2
3
(Pl P2 P
6 2 3
4 2 2 ©)
g PL_PiP2 D3 piPs_ ps
YT 4 4 8 3 4
107 3628800 80640 24 10

The third step is to transform p; ~ pag into p; ~ pjp by
taking the ESPs (9) into the Newton identities (7). The results
are expressed as follows:

[ —pi' Upapt  lpspr | Llpipio

P11 = 3628800 " 725760 21 10

o= —pap)’ p3pi . P2paps | 3papio

127 3628800 ' 362880 4 5
_ =p3pt° . papi . 13p3paps L 13pspio

P13 = 3628800 " 362880 72 30
—p{° pip> PiP3Ps  PiP3D7

P® = 3638800 T80620 T T T8 T a1

(10)

Finally, by substituting the high-order power sums poly-
nomials in (8), that is, pi1, p13, P17, P19, P23, P25, P29, With
their expression in (10), the polynomial system with degree
reduction are obtained as follows:

-

pr—m=0
5p1 — 20p3 + 16p5 =0
—Tp1+56p; — 112ps+64p; =0

—4p}! +220pYps - = 6160p2py = 0 (an

20512 p2- - — 69167561057280000000p3p3 py = 0.
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TABLE 1
COMPARISON OF THE DEGREE OF f9(x) AND fa9(p)
x1/p1 x2/p2  x3/p3  x4/pa x5/D5
fao(z) 29 29 29 29 29
f20(p) 0 14 9 6 5
x6/p6  x7/P7  x8/ps  To/pe  x10/P10
f2o(x) 29 29 29 29 29
f29(p) 4 4 3 3 2
Algorithm 1 Proposed Algorithm
1: Algebraic polynomial system f(xi, X2, ..., X,)
2: Substitute xy,x2,...,X, With pi, pa, ..., Pus--os Pis
f(x1,...,x,) is transformed into f(p1,..., Pus..., Pr)-
3: if The number of p larger than n then
4:  Eliminate p,+1, ..., px according to (7).
5: end if
6: Eliminate all the ESPs ey, e3, ..., e, according to (7), get

the final reduced polynomial system f(pi, p2, ..., Pu)-

7: Solve the Groebner basis of the reduced polynomial sys-
tem, get the results of py, p2, ..., pu-

8: Solve ey, er,...,e, from the results of pi, po,...
according to (7).

9: Using the coefficients ey, ey, ..., e,, construct the uni-
variate higher-order equation with variables xi, xa, . . ., x,,
according to (4).

10: Solve the univariate higher-order equation, and use the
inverse triangle transformation to get the final switching
angles.

> Pn

In (11), as the modulation index m will be preset and
p1 = m, the number of variables is decreased from 10 to 9 and
their degree is greatly reduced. Table I gives the degree of
comparison between the original algebraic SHE equations and
the degree-reduced SHE equations. At this point, the stage of
simplifying SHE equations has been completed. In the process
of simplification, every step is equivalent transformation. Thus,
although the degree of the polynomial system has been sig-
nificantly reduced, the solutions of the simplified polynomial
system are exactly the same as the original polynomial system.

C. Solving Final Results by Algebraic Algorithm

The reduced polynomial system (11) can be solved by using
algebraic algorithms, such as the resultant elimination method,
the Wu’s method, and the Groebner basis method. According
to the published literature [27], the Groebner basis method has
the best computation ability, so the Groebner basis method
is chosen here to solve (11). As the implementation of the
Groebner basis method is beyond the subject of this article,
the detailed principle of this method is omitted here and it can
be found in [27]. In fact, some commercial symbolic comput-
ing software, such as Maple and Mathematica, provide the
computing command of Groebner basis. Here, the command
Basis in Maple is used to compute Groebner basis of (11),
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and the results are shown as follows:

a1 pa2 + ai p®t + -+ arpr+ap =0
bips+ fi(p2) =0

baps+ f2(p2) =0 (12)

bgpio+ f3(p2) =0

where ap, a1, ..., a6 and by, by, ..., bg are all big integers,
and fi, f>, ..., fg are all univariate polynomials in p,, which
are too large to be listed here. It can be seen from (12) that the
first equation is a univariate high-order polynomial equation
in p,. Although the degree of the first equation is very high,
how to solve a univariate higher-order polynomial equation
is well studied in the algebraic field. Therefore, it is easy to
find all solutions of p; in some mathematical software, such
as Maple, Mathematica, and MATLAB. Here, we compute the
first equation in (12) by using the command fsolve in Maple.
Once the solutions of p; are solved, the other eight equations
are converted to univariate linear equations, so all solutions of
P3, P4, ..., P1o can be easily obtained.

After finding all solutions of p,, ps, ..., pio, the last step
is to solve the results of xi, x, ..., x19. Actually, the results
of x can be solved from the univariate polynomial F(x)
with the ESPs as coefficients. Suppose F(x) as a univariate
polynomial equation defined on the real number field with
roots xp, x», ..., X190, which can be written as

F(x)=(x —x)x —x2) -+ (x — x10).

If (13) is expanded, it can be seen that the coefficients
of F(x) have the same form of ESP (4). Therefore, once
the solutions of ej,e,, ..., ey are obtained, the results of
X1, X2,...,X10 can be solved from ESPs (4) by construct-
ing the univariate polynomial equation with coefficients
e1,e,...,e as follows:

13)

flx)= 10 —ex? tex® —esx’ +-- —eox +e19. (14)

The solutions of e, e3,...,ejp can be easily solved by
using (9). Then, the final solutions for the algebraic form of
SHE equations (3) can be easily obtained by solving (14).
Finally, according to arcos(x;) = a;, switching angles
ay, 07, ...,a10 can be obtained. In order to make the algorithm
easier to understand, the whole solving process has been given
in Algorithm 1.

IV. COMPUTATION RESULTS

Based on a workstation with XEON E3-1230 CPU and
16-GB RAM, and the symbolic computing software Maple21,
some results for the SHE equations with nine and ten switching
angles are obtained by combining the proposed method and
the Groebner basis method.

A. SHE Equations With Ten Switching Angles

For the case of ten switching angles described in Section III,
when the modulation index m = 0.8, there are 69 groups of
solutions in total, which are all listed in Table II. The arrows
on the right sides of the angles indicate the transition states
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Switching angles
Switching angles

0 02 04 0.

6 08 1 0 02 04 0.
Modulation index

6 08 1
Modulation index
(b)

Switching angles
Switching angles

02 04 06 08 1 0 02 04 06
Modulatiim index Modulczﬁ‘sm index
c

08 1

'EO 601 '?0 601
= =
S 50 S 50
%0 20
s =
:E 40 § 40
2 =2
=30 =30
= =
“ 20 “ 20
10 10
0 % 0
02 04 06 08 1 0 02 04 06 08 1
Modulation index Modulation index
(e)
90 90
80 80 -
70 > 70 L}
« « o]
& 601 'l) 601
3 50 3 50 ,4.?
%O 40 %0 40 <
= = >
2 w0 R w0
S i
(2 20 5) 20
10 - 10
0 d 0
) 02 04 06 08 1 ) 02 04 06 08 1
Modulation index Modulation index
(€3] (h)
Fig. 1. Solution trajectories of three-level SHE problem. (a)—-(g) One group

of solution and two groups of solutions in (h).

of the PWM waveforms at each switching angle. According
to the levels of the generated waveforms, the 69 groups of
solutions can be further classified into three-level, five-level,
seven-level, and nine-level waveforms, and each of them has
three, 50, 14, and two groups of solutions, respectively. This
is the first time that all the possible solutions for the SHE
equations with ten switching angles are given.

B. SHE Equations With Nine Switching Angles

Fig. 1 is the part of the solutions for three-level PWM
with nine switching angles. It can be seen that there have
four groups of solutions under most modulation indices, and
when m = 0.66, there are nine groups of solutions. The
results indicate that there are many groups of solutions under
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TABLE 1I
SIXTY-NINE GROUPS OF SWITCHING ANGLES FOR m = 4/5

[e31 g Qas (o2 as Qe az asg Qg a10
T 12.89° | 1844° T 214/° ] 53.10°T 5577° 1 7427°F 76.68° ] 8054°F 82.70°] 87.67°7
three-level 2 13.45° ] 1578° 1 21.33° ]  42.06° 1 45.06° ] 52.92°1 55.68° | 82.64°1  84.46°]  88.00°%
3 12.55° ) 17.52°1  2328° ] 37.44° 4 3991° ] 5334°4 5591° | 73.65° 1 75.87°)  87.71°%
4 3853° | 4154° T 47.09° | S3.07° T 5575° ) 7341° ] 75.75° T B8Z09° |  8549°7  88.56°(
5 2147° | 4154° 4  47.10° | 53.07° 1 5575°) 73.38° | 75.68° 1 8333°1  8520°  88.22°%
6 12.89° | 38.53° | 41.56°1 53.09° ¢ 55.77° ) 73.14° 1 75.97° | 7742°1 8327°)  87.74°%
7 1846° 1 21.48° | 47.09° |  53.06° 4 5574° | 73.48° | 76.02° 1 7897° |  84.96°17  88.34°)
8  412°] 3856° | 41.61°1 47.17° | 5321°1 64.18° 1 73.78° | 7632°1  83.07°) 87.67°1
9 12.93° | 2149° | 41.52°1 53.02°1 5572°) 69.67° 1+ 69.79° | 7521°4  84.70°17  88.20°)
10 434° | 2150° ) 41.50° 1+ 47.04° ] 5296° 1 64.30° ¢ 73.13° | 7534°4  84.68°17  88.19°)
11 1322° ) 2157°) 4135° 14 51.54°4 52.37° ) 5429° 1 56.16° | 7544°4  8476°17  88.22°)
12 398 | 1833°4 2141° | 4724° ] 5336°1 64.10° 1 7430° | 7837°4 81.33°]  87.45°%
13 739° |  20153°4  36.58° | 4423° ] 4896° 1 61.59° 1 63.00° | 69.03°4 77.94°]  87.35°)
14 610° )  922°4  37.79° |  4025° 1 4570° | 63.98° 1 66.54° | 78.04° ] 81.55°17 87.28°]
15 1556° ¢ 21.76° |  40.75° + 43.54° | 47.60° | 5331°1 55.87° | 7329° )  85.03°f7  88.35°)
16 85200 28.11°| 33.87°1 4248° | 47.17° 1 59.62° + 60.99° | 69.92° 4  7837°|  82.18°%
17 427° 0 1291° |  1847°1 3852° ] 53.04°1 64.25° 1 7456° 1 7726° | 8346° 87.81°%
18 2234° | 2579° 4 34.72° | 4091° + 46.86° | 52.90° ¥ 55.66° | 73.52° )  7592°7  88.63°,
19 1349° | 15.88° 1 38.68° | 42.11° 1 4504° | 5291° 1 55.67° ] 8231°) 85.85°17 88.75°)
20 22.34° ) 28.07° | 3078° 1  40.79° 4 4679° | 52.84° 1 55.63° | 7354° |  7597°1  85.58°%
21 7.02° 1 12.95° | 18.50° 1 21.50° | S5.68° ] 67.09° | 75.09° 1+ 7837° |  84.62°10  88.15°)
22 438° ) 12982 | 18.52° 1 21.51° ) 52.92° 4 6431°1 75.07° 1 7834° |  84.59°1  88.14°]
23 20.14° 1 23.94° | 2872° 1 33.63° ] 4649° | 52.63°1 5551° ) 73.60° | 75.92°10  79.49°]
24 266° ) 553° 1 1238° ) 3874° | 41.96° 1 64.42°1 67.26° | 7522°1  8275°|  87.55°%
25 8.85° ) 17.74° | 2680°1 30.07° ) 46.82°1 58.68°1 60.05° | 70.08°1 80.73°1  84.64°]
fivelevel 26 S91°]  894° 14  19.53°1 2208 | 4591° | 63.99° 4 6653°] 77.15°]  83.62°1  87.58°)
27 1347° ) 23.70° | 2856° 1 33.48° ] 39.98° 1 52.65° 1 55.53° | 75.44°1 7743 °, 7828t
28 13.0° ) 1645° | 17.63° 1 38.65° [ 42.69° 1 53.00° 1 55.72° |  74.63° 4  8327°)  87.75°%
29 419° )  688° 1 12.89° | 2147° | 41.55° 1 6434°1 67.12° |  75.15° 1  84.69°1  88.20°)
30 1238° ) 1741°1 2739°1 31.88° | 3955° ] 53.50° 1 56.01° ) 73.42° 4  75.75°)  83.10°)
31 68200 1032°1 1523°) 20.86° 1 37.05°) 63.53°1 65.82°) 73.07°+  76.07°) 87.20°)
32 819°] 1251°14 17.36° ) 27.95° | 34.02°1 61.06° 1+ 62.58° | 70.66° 4  73.85°)  81.60°%
33 0366°)  1634°1 23.03° ) 3822°1 4125° ] 4801°) 5391°1 63.78° 4  73.82°)  87.61°%
34 439° ]  2343° ) 2837°1 3338° | 40.14° 1 46.60° ] 5276° 1 64.43° 4  73.89°]  76.53°%
35 10.18° 1 10.37° ) 12.80° ) 21.46° | 41.57°4 52.89° 1+ 55.67° | 75.14° 4  84.68°%  88.19°]
36 428° ) 1376° ) 1630°1 38.77° L 4257° 4 4525° ] 5294° 1 6431°4  83.07°)  87.68°%
37 03.19° ]  1613°1 27.01°4 31.73° | 4053° ] 48.50° ] 54.55° 1  6337° 4  73.71°)  82.67°)
38 7.04° 1  13.05° ) 1527°14 21.46° | 41.60° 1 44.88° ] 55.67° ) 67.10°)  84.65°1  88.18°]
39 437°)  13.11°0 1531°1 21.46° | 41.61° 1 4490° ] 5291°1 6433° 4  84.64°1  88.17°)
40 697°1 12.86°) 21.16°) 2432°4 3551° ) 41.75°1 55.70° |  67.05° |  75.01°7  88.07°,
41 690° 1 1278° ] 21.07°) 28.18°] 32.17°1 41.91° 1 5574° |  66.99° |  74.89°17  84.28°%
42 739° 4 1352°) 20.17°4 24.02°) 2877°1 33.67° 1 5550° ) 67.40° |  75.80°17  79.43°]
43 6.11°)  9.06°+  18.03° L 21.58° 1 3679° | 4345° 1 4645° | 6377°1  66.19°]  87.33°]
44 451° ] 1353° )  20.19° 1 24.04° | 28.79° 1 33.67° | 52.60° 1  64.50° ¢  75.80°17  79.42°)
45  8.88° | 1855° ) 2241°4 28.38° ] 3442°1 3871° | 4652° 4 59.05° 1  60.45°17  70.27°)
46 6.00° L  9.18°+  20.95° 1+ 26.56° ] 31.56° 1 35.75° | 45.49° |  64.11° 1  66.75°)  77.69°)
47 1361° L 16.09° 4+  22.63° |  2624° 4 34.55° | 40.99° ¢ 4446° | 5271°1  55.56°|  88.81°)
48 13.64° | 16.12° 4  22.59° | 27.83° 4 30.34° |  40.83° ¢ 4436° | 52.67° 1 5554°] 85.79°)
49 391° )  677°4  13.18° ) 2323° ] 2825°1 3337° | 4036° 1 64.54° 1  6747°]  75.95°%
50 13.61°) 15.96° ¢ 20.06° 1+ 2391° | 28.71°4 33.63° ] 44.18° | 52.59° 4  55.50°)  79.45°]
S1 13.59° )  18.52° | 19.15° 14  23.79° | 28.65° 4 33.60° | 40.53° +  52.59° 4  55.49°|  75.83°¢
52 747°1  13.92° | 16.58° 1  23.49° | 28.47° 1 33.51° ] 4047° 1+ 44.12° |  5548°]  67.44°]
53 450° ) 13.89° | 16.55° 1 2348° | 28.46° 4 33.50° ] 40.46° ¢ 44.12° |  52.56°1  64.52°1
54 1845° T 3853° | 47.11°] 53.08°F 5577°1 73.16°1 7497° 1 7147°1 8339°] 87.78°7
55 6.84° 1  38.55° | 41.59° 1 47.15° | S5.83° ] 6677°) 73.84° | 7638°1 83.09°|  87.68°%
56 7.00° 1 21.49° | 41.51°1  47.06° [ 55.69° ] 67.05° ] 73.08° | 7530° 1  84.69°%t  88.19°]
57 7.02° 1 12.95° | 38.50° ) 41.50° 4 55.68° ] 67.10° ] 75.14° 1 8131° |  84.46°%  88.10°)
S8 4.39° | 12.98° | 3849° |  4147° 4+ S5291° 1 643201 75.13° 1 8123° |  8436°1  88.06°)
59 675°1  1837° 1 2143° ]  47.19° | 5591° | 66.62° ] 74.40° | 7848° 1  81.41°]  87.47°t
sevenlevel 60  6.94° 4  12.91° ]  1846° 1 38.53° | 55.74° | 6697° | 74.56° 1+ 7727°] 8345°]  87.81°%
61 56200  853° 1  19.22°1 38.10° ) 4621°] 63.98° 1 66.50° | 7654° | 84.47°|  88.26°¢
62  8.58° | 1681° | 2451°] 37.06° 1 47.54° 4 5844° 1 59.76° | 6959 ° 1  79.54°%  88.12°%
63 1320° ) 15.02° 1 18.25° 1 3859° | 4538° | 53.00° 1 55.73° | 77.32° ) 8334°)  87.77°%
64 62201  1642° 1 23.06° ] 38.17°+ 41.18° ] 4794° | 5621° | 66.10° ) 73.91°]  87.62°¢
65 7.28°1 2345° | 2838° 1 3338° ] 40.12° 1 46.59° ] 55.58° | 67.23° | 73.94°]  76.58°%
66 7.10°1  13.80° | 1634° 1  38.77° | 42.58° 1 4526° | 55.69° | 67.06° | 83.08°]  87.69°%
67 435° ]  12.86° ) 21.02° ] 24.15° 1 35.60° 1 41.84° | 52.99° 1 6427°1 74941  88.01°)
mine-level 68 5.67° T 1623° 1 27.08° T 31.72° | 4047° | 4840° | 56.60° ] 6551° 7381°) 82.71°0
69 431°) 12.71° |  20.86° ) 28.17° | 3235° 4 42.11°1 53.08° 1 6422°1 7474°%  84.08°%
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Fig. 2. Comparison of the lowest THD and the maximum THD in full

modulation index range.

most modulation indices, which can be used for the optimal
modulation of converters to improve the THD performance.
In order to show the THD performance of different solutions,
the solutions for SHE equations with nine switching angles are
solved for m in [0, 6.7] with an increment step of Am = 0.01.
Then, the THD performance of the obtained solutions is shown
in Fig. 2, in which the blue line represents the maximum THD
value and the orange line indicates the lowest THD value
of the obtained solutions. It can be seen that in the same
modulation index, different solutions will lead to different
THD performance. Therefore, solving all the solutions can
increase the possibility to find valid solutions for specific
modulation indices. Furthermore, it can be seen that the
continuity of these solutions is difficult to determine. Thus, it is
very hard to solve the trajectories by some numerical methods
[21], [22] or fit them with simple piecewise linear functions
for multilevel converters. Therefore, these solution trajectories
can not only prove the correctness and completeness of the
proposed method, but also provide comprehensive solutions
for multilevel converters.

V. EVALUATION OF THE PROPOSED METHOD

As described in Section III, the procedure of solving SHE
equations with algebraic algorithms can be divided into two
steps: degree reduction with the simplification method, and
solving final results with the algebraic method. Therefore, the
performance of the proposed method is evaluated in terms of
two aspects: the improvement of the simplification effect and
the improvement of the whole solving procedure.

A. Evaluation of the Proposed Method in Terms of the
Simplification Process

To evaluate the simplification effect of the proposed method,
the simplification efficiency and ability are compared with
the commonly used ESP-based method. Table III shows the
comparison of the executing time for the proposed method
and the commonly used method, which are calculated on
a desktop computer with XEON E3-1230 CPU and 16-GB
RAM. It can be seen that the computation time consumed
by the ESP-based method increases dramatically when the
number of switching angles is more than six. When the

IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 10, NO. 5, OCTOBER 2022

TABLE III

COMPARISON OF THE EXECUTING TIME BETWEEN THE SYMMETRIC
POLYNOMIALS METHOD AND THE PROPOSED
METHOD (UNIT: SECOND)

Switching points  Symmetric polynomials  Proposed method

N =5 0.969 0.490
N =6 60.782 0.689
N=7 2062.385 2.624
N =38 122503.216 3.559
N=9 N/A 10.182
N =10 N/A 50.434
100 100
80 80
2l — /]
< 60 60
E 40 40
=
20 20 ~
0 0
0 50 100 150 200 250 300 0 1 2 3 4 5 6
Time (min) Time (s)

(a) (b)

Fig. 3. Comparison of the computer memory between the symmetric
polynomials method and the proposed method. (a) Computer memory used
to solve eight switching angles with the symmetric polynomial method.
(b) Computer memory used to solve eight switching angles with the proposed

method.
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Fig. 4. Degree of comparison between x, e, and p with five switching angles.

number of switching angles is eight, the proposed method
performs 40 800 times faster than the ESP-based method. More
importantly, the ESP-based method totally fails to give the
final results due to the huge computing burden when the
number of switching angles exceeds eight. Besides, Fig. 3
indicates the computer memory occupied by running the two
simplification methods. Fig. 3(a) only shows a 5-h process of
the ESP method, and actually, it needs nearly 35 h to complete
the whole process. It can be seen that the computer memory
occupied by the ESP-based method is almost three times as
large as the proposed method.

In addition to simplification efficiency, the simplification
ability of the proposed method has been improved. As shown
in Figs. 4 and 5, the degree of comparisons for five and seven
switching angles are given, in which the blue, orange, and
yellow represent the original degree of the SHE equations, the
reduced degree achieved by the ESP-based method, and the
proposed method, respectively. It can be seen that the degree of
the SHE equations simplified by the proposed method is lower
than that of the ESP-based method, which can further reduce
the computing burden of the subsequence solving procedure.
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TABLE IV
COMPARISON OF COMPUTATIONAL ABILITY AND EFFICIENCY BETWEEN THE PROPOSED METHOD AND OTHER METHODS (UNIT: SECOND)

Algorithms Running Time Software
N=5 N=6 N=17 N=8 N=9 N =10
Groebner basis method 2.269 N/A N/A N/A N/A N/A Maple
Symmetric polynomials + Groebner basis ~ 1.574  63.282  2079.264  122677.981 N/A N/A Maple
Proposed method + Groebner basis 0.935 3.391 6.251 46.399 365.249  8862.571 Maple
TABLE V

COMPARISON OF THE MAXIMUM SOLVABLE NUMBER OF THE PREVIOUS ALGEBRAIC METHODS AND THE PROPOSED METHOD

Algorithms Literatures  Proposed year = Maximum solvable number
Symmetric polynomial method [36] 2005 9
Simplification Methods Proposed method \ \ >50
Resultant method [32] 2002 3
Wu’s method [33] 2005 4
Resultant+Symmetric polynomial method [36] 2005 5
Complete Algorithms Wu’s+Symmetric polynomial method [28] 2007 5
Groebner basis method [34] 2015 5
Groebner+Symmetric polynomial method [29] 2016 9
Groebner+Proposed method \ \ 10
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Fig. 5. Degree of comparison between x, e, and p with seven switching
angles.

Therefore, the simplification ability of the proposed method is
better than the ESP-based method.

B. Evaluation of the Proposed Method in Terms of the Whole
Solving Procedure

The proposed method can not only improve the effect
and efficiency of the simplification process, but also improve
the computation ability and efficiency of the whole solving
procedure. Table IV shows the executing time of the whole
solving procedure. It can be seen that without using any
simplification method, the Groebner basis method can only
solve five switching angles [27]. With the ESP simplification
method, the Groebner basis can solve eight switching angles
in our computer, but the solving time is very long. However,
by using the proposed simplification method, the executing
time of the whole procedure is significantly reduced, and the
switching angles can be solved to ten.

More importantly, the proposed method breaks the upper
limit of the solving ability of the previous algebraic algorithms.
Table V describes the development process of algebraic algo-
rithms since the resultant elimination method was proposed in
2002. It can be seen that there are only three switching angles
that can be solved by algebraic algorithms at the beginning.
Over the past two decades, the solvable number of switching

angles has increased very slowly. This is the first time that all
solutions of the SHE equations with nine switching angles
within the full modulation index range are given, and the
number of solvable switching angles by algebraic algorithms
is increased to ten. It should be pointed out that one solution of
SHE equations with nine switching angles was given in [34],
but in the limited conditions of our computer, only eight
switching angles can be solved by the ESP-based method.
Therefore, in Table III, the executing time of nine switching
angles represents not applicable.

C. Limitation of the Proposed Method

Since the principle of Newton’s identities is based on the
relation between power sum symmetric polynomials and ESPs,
the proposed method requires the SHE equations should be
symmetric. It means that the output waveform of converters
must be quarter-symmetric and the amplitude of dc voltage
should be equal so that the SHE equations can be transformed
into a symmetric polynomial system.

VI. EXPERIMENTAL VERIFICATION

Two experimental case studies are carried out to verify the
proposed method. The first experimental study is established
on a seven-level cascaded H-bridge (CHB) converter, in which
the IRFP250N MOSFETs are used as switching devices, the
ADum1400 is used as the isolator, and the STM32F407 are
used as the controller to generate the SHEPWM driven single.
The dc power supply of every H-bridge is set to 30 V. The first,
fourth, and 54th solutions shown in Table II are implemented
in the microcontroller to verify the correctness of solutions
solved by the proposed method. Because this experimental
case aims to validate the correctness of solutions, an open-loop
experiment is carried out here. The output PWM waveform is
recorded, and the related FFT results are also given in Fig. 6.
It can be seen that the aimed fifth, seventh, 11th, 13th, 17th,
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Fig. 6. Output voltage and the related FFT analysis of the experiment carried on the seven-level CHB converter. (a) Three-level phase voltage of the CHB
with the first solution in Table II. (b) Five-level phase voltage of the CHB with the fourth solution in Table II. (c) Seven-level phase voltage of the CHB with
the 54th solution in Table II. (d) FFT analysis result of the output voltage with the first solution in Table II. (e) FFT analysis result of the output voltage with
the fourth solution in Table II. (f) FFT analysis result of the output voltage with the 54th solution in Table II.
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Fig. 7. Schematic of SHEPWM-based controller of experimental platform.

19th, 23rd, 25th, and 29th harmonics are precisely eliminated,
which validates the correctness of the solved switching angles.

The second experiment case study aims to present the
performance of solutions solved by the proposed method in
motor-driven applications. The schematic of the controller
is given in Fig. 7. This experiment is established on an
asynchronous motor experimental platform as shown in Fig. 8,
and the parameters of the experimental platform are shown in
Table VI. First, the reference frequency of the asynchronous
motor is given to the V/f controller. To maintain the stability of
torque and magnetic flux of the motor, the ratio of voltage and
frequency is always kept constant, based on which the output
voltage can be solved. Then, according to the output voltage of
the asynchronous motor, the modulation index can be obtained,
and the switching angles can be chosen from the lookup table.
Based on the switching angles a and the input phase angle 6,

dSPACE

Inveter Motor Platform

Fig. 8. Photograph of the asynchronous motor experimental platform.

TABLE VI
PARAMETERS OF THE MOTOR EXPERIMENTAL PLATFORM

Values
Y801-4
Type-L 10kW/4.2mH

Parameters

Type of the motor
Power Filter

Inverter FC-051P15KT4
DC Power Supply 750V
Controller dSPACE DS1006
Switching frequency (for 50 Hz fundamental) 900 Hz
Switching frequency (for 40 Hz fundamental) 720 Hz
Switching frequency (for 30 Hz fundamental) 540 Hz
Load parameters 0- 14 Nm

the SHEPWM Block will output the PWM signal to control the
three-phase inverter and then drive the asynchronous motor.
Besides, the PMSG is used as a controllable load machine.
The reference value of output torque of the PMSG can be
given through the in-built control system implemented in
the dSPACE controller. Besides, the L-type filter is used to
reduce high-frequency noise, because the L-type filter does not
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Fig. 9. Harmonic performance of the steady-state motor current when the
fundamental frequency is 30 Hz. (a) Steady-state current and line-to-line
voltage of the motor with SHEPWM. (b) Steady-state current and line-to-line
voltage of the motor with SPWM. (c) FFT analysis of the steady-state current
in (a). (d) FFT analysis of the steady-state current in (b).
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Fig. 10. Harmonic performance of the steady-state motor current when
the fundamental frequency is 40 Hz. (a) Steady-state current and line-to-line
voltage of the motor with SHEPWM. (b) Steady-state current and line-to-line
voltage of the motor with SPWM. (c) FFT analysis of the steady-state current
of the motor with SHEPWM. (d) FFT analysis of the steady-state current of
the motor with SPWM.

Fig. 11.  Harmonic performance of the steady-state motor current when
the fundamental frequency is 50 Hz. (a) Steady-state current and line-to-line
voltage of the motor with SHEPWM. (b) Steady-state current and line-to-line
voltage of the motor with SPWM. (c) FFT analysis of the steady-state current
of the motor with SHEPWM. (d) FFT analysis of the steady-state current of
the motor with SPWM.

eliminate any order of harmonic, and it can keep the original
effect of the proposed method for eliminating harmonics. Two
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Fig. 12.  Comparison between SPWM and SHEPWM when the load step
changes. (a) Dynamic performance of current and line-to-line voltage of the
motor with SPWM when the load increases to 50% and the fundamental
frequency is 30 Hz. (b) Dynamic performance of current and line-to-line
voltage of the motor with SPWM when the load increases to 50% and the
fundamental frequency is 50 Hz. (c) Dynamic performance of current and
line-to-line voltage of the motor with SHEPWM when the load increases to
50% and the fundamental frequency is 30 Hz. (d) Dynamic performance of
current and line-to-line voltage of the motor with SHEPWM when the load
increases to 50% and the fundamental frequency is 50 Hz.

subcases are carried out in this case to present the harmonic
performance of the solved switching angles and the dynamic
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performance of the proposed scheme. The first subcase aims
to show the steady-state current performance of the solved
angles, and the results are shown in Fig. 9-11. The second
subcase is used to verify the dynamic performance of the
solved switching angles, and the experimental results are
shown in Fig. 12.

The three-phase steady-state output currents, line-to-line
voltage, and the corresponding FFT analysis based on the
solved switching angles are given with the 30-, 40-, and 50-Hz
fundamental frequency in Fig. 9—11. To compare the harmonic
performance between SHEPWM and SPWM, the steady-state
output currents, line-to-line voltage, and FFT analysis based
on SPWM are also given. In Figs. 9-11, it can be seen that,
for SHEPWM, the first uneliminated harmonic is the 29th, but
for SPWM, the first uneliminated harmonic is 16th. Moreover,
at the bandwidth from 3-29th harmonics, the SPWM has
some other harmonics, but the SHEPWM has almost no
harmonics. This phenomenon shows that SHEPWM has a
better performance in low-switching frequency applications.

The experimental results of the dynamic performance of
the proposed method are shown in Fig. 12. The load of the
ac motor has a step change from 50% to 100% (14 Nm). The
time period of the dynamic process is marked in the figure.
Besides, to compare the performance between SHEPWM and
SPWM, the experimental results of SPWM with the same
switching frequency are shown in Fig. 12. The experimental
results show that the solved switching angles almost have the
same performance as the SPWM with the same switching
frequency, no matter at the 30-Hz fundamental frequency or
the 50-Hz fundamental frequency. Based on the experimental
results of the two subcases, the correctness and effectiveness
of the proposed method can be well verified.

VII. CONCLUSION

This article proposes a general degree reduction method to
simplify the SHE equations based on Newton’s identities and
the power sums, which makes the degree reduction no longer
the bottleneck of solving the SHE equations with algebraic
algorithms. The major contributions of the proposed method
are summarized as follows.

1) By combining the proposed simplification method with
the Groebner basis method, the SHE equations with ten
switching angles can be solved by the algebraic algo-
rithm for the first time, which means that the harmonics
below 30th can be accurately eliminated.

2) Compared with the commonly used simplification
method, the simplification efficiency of the proposed
method has been significantly improved. For example,
the proposed method performs almost 40800 times
faster when the number of switching angles is eight.

3) The reduced degree of the simplified SHE equations is
slightly lower than the ESP method.

4) Experimental results verify that the switching angles
solved by this article can obtain good harmonic perfor-
mance in low switching frequency.

This article is aimed at the solving algorithm for SHE

equations and takes motor drive as an example to verify the
practicality of the proposed method. In future work, more
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applications will be explored to use this method, such as grid-
connected converters, active rectifiers, STATCOM systems,
and so on.
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