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Application of Newton Identities in Solving
Selective Harmonic Elimination Problem

With Algebraic Algorithms
Chenxu Wang , Qi Zhang , Student Member, IEEE, Dunzhi Chen , Student Member, IEEE, Zhaoyuan Li,

Wensheng Yu , and Kehu Yang , Member, IEEE

Abstract— Algebraic algorithms are powerful methods in solv-1

ing the selective harmonic elimination (SHE) problem, which2

can find all exact solutions without the requirements of choosing3

initial values. However, the huge computational burden and long4

solving time limit the solving capability of algebraic algorithms.5

This article presents a novel Newton’s identifies-based method to6

simplify the SHE equations including the order reduction and the7

variable elimination, thereby reducing the computational burden8

and the solving time of algebraic algorithms or in other words9

improving the solving capability of the algebraic algorithms.10

Compared with existing simplification methods, the proposed11

method significantly improves the efficiency of solving SHE12

equations. With the proposed method, the degree of reduction13

is no longer the bottleneck of solving the SHE equations by14

using algebraic algorithms. By using the proposed method, the15

SHE equations with ten switching angles are completely solved16

with the algebraic algorithm for the first time. The simulation17

and experimental results indicate that the proposed method is18

effective and correct.19

Index Terms— Elementary symmetric polynomials (ESPs),20

Newton’s identities, power sums, selective harmonic elimination21

(SHE).22

I. INTRODUCTION23

THE power electronic converters usually utilize very low24

switching frequency in high-power applications because25

of limitations of the switching losses and the electromagnetic26

interface (EMI) issue [1]–[7]. With such a low switching fre-27

quency, the selective harmonic elimination (SHE) technology28
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has been the best modulation strategy due to its outstanding 29

output harmonic performance in the medium- and high-power 30

applications, such as motor drives, grid-connected converters, 31

and active rectifiers [8]–[13]. The switching angles should be 32

obtained first by solving a group of strong nonlinear tran- 33

scendental equations namely the SHE equations in practical 34

applications. However, how to solve the SHE equations is 35

quite a complicated problem because of the complexity and 36

the multisolution feature of the SHE equations. 37

There are three classes of methods to solve the SHE 38

equations: numerical algorithms [14], intelligent optimiza- 39

tion algorithms [15]–[23], and algebraic algorithms [24]–[35]. 40

Numerical algorithms are the most traditional methods to solve 41

the SHE equations. They can provide high accuracy results 42

with fast convergence. However, they strongly rely on the 43

guess of initial values which is quite an issue especially for 44

multilevel converters because there has no systematic method 45

to find feasible initial values. Moreover, numerical algorithms 46

cannot handle the multisolution feature of the SHE equations, 47

and usually, they can provide only one solution or just a part 48

of the complete solutions. Even though a modified numerical 49

method [14] was proposed aiming to obtain the complete 50

solution of the SHE equations, the obtained results cannot 51

be mathematically proved to be complete solutions of the 52

SHE equations. Based on numerical computation technol- 53

ogy, the development of intelligent optimization algorithms 54

provides new strategies to solve the SHE equations. Intelli- 55

gent optimization algorithms, to some extent, overcome the 56

initial values issue, because the initial values of intelligent 57

optimization algorithms can be selected randomly. However, 58

intelligent optimization algorithms lack the support of math- 59

ematical theory and are sensitive to input parameters, so the 60

precision of solutions is difficult to be guaranteed. Therefore, 61

most intelligent optimization algorithms focus on the research 62

of convergence speed and fitness function value, and some 63

satisfactory results have been obtained [16], [22], [23]. Never- 64

theless, they also cannot deal with the multisolution feature of 65

the SHE equations because of the local optimum problem. In a 66

summary, both the numerical algorithms and the intelligent 67

optimization algorithms cannot obtain complete solutions to 68

the SHE equations. 69

Algebraic algorithms are introduced to solve the SHE equa- 70

tions because of their outstanding characteristics [27]–[29]. 71
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They are implemented based on the algebraic theory, and all72

computations inside are carried out with symbols, not specific73

values, and therefore, they do not need to be given any specific74

initial values, and the complete solutions can be obtained by75

only one solving procedure. Moreover, they can give a direct76

and clear conclusion about the complete solutions of the SHE77

equations, for example, whether the SHE equations have solu-78

tions or not, and the conditions for the SHE equations to have79

solutions. So as to say, the algebraic algorithms seem to be the80

most powerful tool to solve the SHE equations compared with81

numerical and intelligent optimization algorithms. However,82

the algebraic algorithms face a big problem to solve the SHE83

equations. The algebraic methods require huge computation84

sources, for instance, the huge computer burden and the large85

random access memory (RAM) space. In addition, the time86

for solving is usually very long to solve the SHE equations87

with more switching angles. Thus, the solving capability of88

the algebraic algorithms is limited.89

To improve the solving capability of the algebraic algo-90

rithms, our previous study [34] and other publications91

[31], [32] found that the SHE equations can be transformed92

into the symmetric polynomial system, and it can be further93

simplified into a lower-order and less-variables polynomial94

system. With the simplification, the computation burden and95

the solving time can be reduced, thus the solving capa-96

bility of algebraic algorithms can be pushed to a higher97

level.98

Two attempts have gained success in simplification of the99

SHE equations. The power sums-based method was proposed100

to simplify the SHE equations [30], in which the SHE equa-101

tions are transformed into the form of power sums polynomials102

and then solved by the resultant elimination method. With the103

power sum simplification method, the solving capability of104

the resultant elimination method is improved from three to five105

switching angles. However, this simplification faces a problem106

that the simplification is coupled with the solving procedure.107

It introduces one extra polynomial system, which is, to some108

extent, almost the same complicated as the simplified SHE109

equations, thus, the solving procedure has to be called twice110

and as a result, the solving time becomes longer. Likewise,111

the elementary symmetric polynomial (ESP) is also introduced112

to simplify the SHE equations. The results published in113

[31], [32], and [34] show that the ESP simplification can114

significantly improve the solving capability of the Groebner115

basis method and the solving capability is pushed to nine116

switching angles. However, the efficiency of this simplification117

method is not so high enough to deal with the SHE equations118

with more switching angles, for example, to simplify the SHE119

equations with eight switching angles, it needs more than120

34 h in a common workstation to finish the simplification.121

Furthermore, if the number of switching angles is larger122

than 9, it fails to finish the computation. Consequently, even123

though these two methods have been successfully used to124

simplify the SHE equations, the simplification method is still125

a bottleneck of the algebraic algorithms to solve the SHE126

equations.127

To improve the performance of the algebraic algorithms128

for solving the SHE equations, this article presents a novel129

simplification method based on Newton’s identities for the 130

SHE equations, including the degree reduction and variable 131

elimination. Compared with the existing two simplification 132

methods, the proposed method is much simple and more effec- 133

tive, so it can dramatically improve the speed and the capa- 134

bility of the simplification of the SHE equations. If only the 135

simplification procedure is considered, the proposed method 136

can deal with the SHE equations with more than 50 switching 137

angles, and arguably, the bottleneck of the simplification of the 138

SHE equations can be eliminated with the proposed method. 139

Obviously, the solving capability of the existing algebraic 140

algorithms can be further improved with the proposed method. 141

For example, with the proposed method, the solving capability 142

of the Groebner basis method can be improved to 10. To our 143

best knowledge, this is the first time to obtain the complete 144

solutions of the SHE equations with ten switching angles, 145

whatever kind of solving method is used. Furthermore, the 146

proposed method can also be used for the numerical and the 147

intelligent optimization algorithms, if the SHE equations are 148

also needed to be simplified. Because this topic is out of the 149

focus of this article, the details will not be discussed in this 150

article. 151

This article is organized as follows. Section II describes the 152

unified mathematical model of the SHE problem. Section III 153

first provides basic concepts and principles of Newton’s iden- 154

tities and then presents the proposed simplification algorithm. 155

In Section IV, some computational results of nine and ten 156

switching angles are analyzed to identify the correctness of 157

the proposed method. Besides, the proposed method is com- 158

pared and evaluated with the existing simplification method 159

in Section V. Furthermore, in Section VI, the experiments of 160

motor-drive applications and inverters are carried out to verify 161

the effectiveness and correctness of the proposed method. 162

Finally, this article is concluded in Section VII. 163

II. MATHEMATICAL MODEL OF THE SHE PROBLEM 164

The SHE is based on the principle of Fourier expansion. 165

According to basic concepts of mathematics, any periodic 166

signal can be expanded into a Fourier series. The output 167

PWM waveform of converters is commonly periodic, and 168

obviously it can be expanded into the Fourier series, in which 169

the amplitude of fundamental and harmonic components is 170

represented with a sum of trigonometric functions with the 171

switching angles as variables. If a group of switching angles, 172

such that the fundamental component of the output waveform 173

is equal to the desired value while the amplitudes of the 174

selected harmonics are all equal to zero, can be obtained, 175

and the output voltage waveform of the converter can be 176

constructed with the obtained switching angles, then the output 177

of the converter will not contain the selective harmonics. 178

According to the conclusion in [35], the switching angles can 179

be obtained by solving such a group of equations expressed 180

as (1), namely the SHE equations, in which m = πU/4Vdc 181

is the modulation index and n is the number of the switching 182

angles and also the number of the equations. U is the desired 183

amplitude of the fundamental component, Vdc is the voltage of 184

the dc source, αi (i = 1, 2, . . . , n) are the switching angles in a 185
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quarter period, and k is the order of the eliminated harmonics186 ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

cos(αi ) = m

n∑
i=1

cos(kαi ) = 0, k = 5, 7, 11, . . .

(1)187

It should be pointed out that the SHE equations expressed188

in (1) is a unified model. Although it looks like the traditional189

SHE model for the multilevel staircase waveform, they are190

completely different in essence. The traditional model is191

limited by the switching pattern, that is, the combination of192

transition states on each switching angle, so there has an193

inequality constraint of switching angles for the traditional194

model. However, the unified model removes the inequality195

constraint of switching angles and includes all possible switch-196

ing patterns, which significantly increase the solution space.197

Thus, this model can be used for converters with any topology,198

for example, two-level, three-level, or multilevel converters.199

For more details, refer to the literature [35].200

It can be seen that the SHE equations (1) contain only cosine201

functions with switching angles αi as variables. In order to202

apply the algebraic algorithms, the SHE equations should be203

first transformed into an algebraic polynomial system, and204

this procedure can be carried out with the application of205

the first-kind Chebyshev polynomial: Tk(cos(αi )) = cos(kαi),206

where Tk represents a polynomial expression. Furthermore,207

if xi = cos(αi ), the Chebyshev polynomial can be rewritten208

as Tk(xi) = cos(kαi). Based on the Chebyshev polynomial,209

all cosine function terms in the SHE equations (1) can210

be transformed into polynomial equations (3) by using the211

recursions (2). Finally, the SHE equations (1) is transformed212

into the polynomial system (3), based on which the algebraic213

algorithms can be applied to solve the system. As mentioned214

in Section I, this system is quite complicated, so it is very215

hard to solve the polynomial system directly. The proposed216

simplification method aims to reduce the order and the amount217

of variables of the polynomial system to make it being much218

easier to be solved219 ⎧⎪⎪⎨
⎪⎪⎩

T1(x) = x, T2(x) = 2x2 − 1
...

Tk(x) = 2xTk−1(x) − Tk−2(x)

(2)220

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) =
n∑

i=1

xi − m = 0

f5(x) =
n∑

i=1

(
5xi − 20x3

i + 16x5
i

) = 0

f7(x) =
n∑

i=1

(−7xi + 56x3
i − 112x5

i + 64x7
i

) = 0.

...

(3)221

III. SOLVING SHE PROBLEM WITH THE222

PROPOSED ALGORITHM223

This section proposes a novel simplification method, which224

has a simple process and only involves multiplications and225

additions. This simplification method can equivalently trans- 226

form (3) into a lower-order algebraic polynomial system, 227

and no solution is lost in this process. Combined with other 228

algebraic methods, the proposed method can solve the highest 229

number of switching angles so far. This section will give the 230

principle of the proposed method and the detailed steps of the 231

whole solving process. 232

A. Newton’s Identities 233

In the algebraic theory [36], Newton’s identifies gives the 234

relationship between the power sums polynomials and the 235

ESPs. Let xi , 1 ≤ i ≤ n are variables, the kth power sums 236

polynomials are defined as 237

pk =
n∑

i=1

xk
i . 238

And the ESP is defined as 239⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e0 = 1

e1 = x1 + x2 + · · · + xn

e2 =
∑

1≤i< j≤n

xi x j

...

en = x1x2 · · · xn

ek = 0, for k > n.

(4) 240

Then, Newton’s identities can be stated as follows, and it is 241

valid for all n ≥ k ≥ 1 242

kek =
k∑

i=1

(−1)i−1ek−i pi . (5) 243

Also, when k > n ≥ 1, Newton’s identities should be stated 244

as 245

0 =
k∑

i=k−n

(−1)i−1ek−i pi . (6) 246

Therefore, according to the definitions of Newton identities, 247

power sum polynomials can be recursively expressed in terms 248

of ESPs, and pk can be concretely rewritten as 249

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = e1

p2 = e1 p1 − 2e2

p3 = e1 p2 − e2 p1 + 3e3

...

pn = e1 pn−1 − e2 pn−2 + · · · + (−1)n−1(n)en

...

pk = e1 pk−1 + e2 pk−2 + · · · + (−1)k−1en pk−n .

(7) 250

B. Degree Reduction With Newton’s Identities 251

The algebraic polynomial system (3) can be simplified based 252

on the principle of Newton’s identities. As the subsequent 253

derivation is related to the number of switching angles, for 254

convenience, the case described following is with ten switch- 255

ing angles. First, by substituting the power sum polynomials to 256
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the SHE equations (3), the following equation can be obtained.257

It can be seen that (8) is undetermined since the number of258

unknown variables is more than the number of equations, so,259

it cannot be solved directly:260

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1 − m = 0

5 p1 − 20 p3 + 16 p5 = 0

−7 p1 + 56 p3 − 112 p5 + 64 p7 = 0
...

29 p1 − 4060 p3 + · · · + 268435356 p29 = 0.

(8)261

Based on the principle of Newton identities, the number262

of variables of (8) can be reduced to the same number as263

equations. According to the Newton’s identities, all the power264

sums whose degree higher than n can be rewritten in the265

low-order power sums p1 ∼ pn, which could make the system266

balanced. Therefore, the second step is to rewritten ESPs267

e1 ∼ e10 in terms of power sums polynomials p1 ∼ p10268

according to (5)269 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 = p1

e2 = p2
1

2
− p2

2

e3 = p3
1

6
− p1 p2

2
+ p3

3

e4 = p4
1

24
− p2

1 p2

4
+ p2

2

8
+ p1 p3

3
− p4

4
...

e10 = p10
1

3628800
− p2 p8

1

80640
+ · · · + p4 p6

24
− p10

10

. (9)270

The third step is to transform p11 ∼ p29 into p1 ∼ p10 by271

taking the ESPs (9) into the Newton identities (7). The results272

are expressed as follows:273

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p11 = −p11
1

3628800
+ 11 p2 p9

1

725760
− · · · − 11 p3 p7

21
+ 11 p1 p10

10

p12 = −p2 p10
1

3628800
+ p3 p9

1

362880
+ · · · − p2 p4 p6

4
+ 3 p2 p10

5

p13 = −p3 p10
1

3628800
+ p4 p9

1

362880
+ · · · − 13 p3 p4 p6

72
+ 13 p3 p10

30
...

p29 = −p10
1

3628800
+ p8

1 p2

80640
+ · · · + p1 p3 p6

18
− p1 p3 p7

21
.

274

(10)275

Finally, by substituting the high-order power sums poly-276

nomials in (8), that is, p11, p13, p17, p19, p23, p25, p29, with277

their expression in (10), the polynomial system with degree278

reduction are obtained as follows:279 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 − m = 0

5 p1 − 20 p3 + 16 p5 = 0

−7 p1 + 56 p3 − 112 p5 + 64 p7 = 0

−4 p11
1 + 220 p9

1 p2 − · · · − 6160 p2 p9 = 0
...

20512 p29
1 · · · − 69167561057280000000p3

2 p2
4 p9 = 0.

(11)280

TABLE I

COMPARISON OF THE DEGREE OF f29(x) AND f29(p)

Algorithm 1 Proposed Algorithm
1: Algebraic polynomial system f (x1, x2, . . . , xn)
2: Substitute x1, x2, . . . , xn with p1, p2, . . . , pn, . . . , pk ,

f (x1, . . . , xn) is transformed into f (p1, . . . , pn, . . . , pk).
3: if The number of p larger than n then
4: Eliminate pn+1, . . . , pk according to (7).
5: end if
6: Eliminate all the ESPs e1, e2, . . . , en according to (7), get

the final reduced polynomial system f (p1, p2, . . . , pn).
7: Solve the Groebner basis of the reduced polynomial sys-

tem, get the results of p1, p2, . . . , pn.
8: Solve e1, e2, . . . , en from the results of p1, p2, . . . , pn

according to (7).
9: Using the coefficients e1, e2, . . . , en , construct the uni-

variate higher-order equation with variables x1, x2, . . . , xn,
according to (4).

10: Solve the univariate higher-order equation, and use the
inverse triangle transformation to get the final switching
angles.

In (11), as the modulation index m will be preset and 281

p1 = m, the number of variables is decreased from 10 to 9 and 282

their degree is greatly reduced. Table I gives the degree of 283

comparison between the original algebraic SHE equations and 284

the degree-reduced SHE equations. At this point, the stage of 285

simplifying SHE equations has been completed. In the process 286

of simplification, every step is equivalent transformation. Thus, 287

although the degree of the polynomial system has been sig- 288

nificantly reduced, the solutions of the simplified polynomial 289

system are exactly the same as the original polynomial system. 290

C. Solving Final Results by Algebraic Algorithm 291

The reduced polynomial system (11) can be solved by using 292

algebraic algorithms, such as the resultant elimination method, 293

the Wu’s method, and the Groebner basis method. According 294

to the published literature [27], the Groebner basis method has 295

the best computation ability, so the Groebner basis method 296

is chosen here to solve (11). As the implementation of the 297

Groebner basis method is beyond the subject of this article, 298

the detailed principle of this method is omitted here and it can 299

be found in [27]. In fact, some commercial symbolic comput- 300

ing software, such as Maple and Mathematica, provide the 301

computing command of Groebner basis. Here, the command 302

Basis in Maple is used to compute Groebner basis of (11), 303
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and the results are shown as follows:304 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a162 p162
2 + a161 p161

2 + · · · + a1 p2 + a0 = 0

b1 p3 + f1(p2) = 0

b2 p4 + f2(p2) = 0
...

b8 p10 + f8(p2) = 0

(12)305

where a0, a1, . . . , a162 and b1, b2, . . . , b8 are all big integers,306

and f1, f2, . . . , f8 are all univariate polynomials in p2, which307

are too large to be listed here. It can be seen from (12) that the308

first equation is a univariate high-order polynomial equation309

in p2. Although the degree of the first equation is very high,310

how to solve a univariate higher-order polynomial equation311

is well studied in the algebraic field. Therefore, it is easy to312

find all solutions of p2 in some mathematical software, such313

as Maple, Mathematica, and MATLAB. Here, we compute the314

first equation in (12) by using the command fsolve in Maple.315

Once the solutions of p2 are solved, the other eight equations316

are converted to univariate linear equations, so all solutions of317

p3, p4, . . . , p10 can be easily obtained.318

After finding all solutions of p2, p3, . . . , p10, the last step319

is to solve the results of x1, x2, . . . , x10. Actually, the results320

of x can be solved from the univariate polynomial F(x)321

with the ESPs as coefficients. Suppose F(x) as a univariate322

polynomial equation defined on the real number field with323

roots x1, x2, . . . , x10, which can be written as324

F(x) = (x − x1)(x − x2) · · · (x − x10). (13)325

If (13) is expanded, it can be seen that the coefficients326

of F(x) have the same form of ESP (4). Therefore, once327

the solutions of e1, e2, . . . , e10 are obtained, the results of328

x1, x2, . . . , x10 can be solved from ESPs (4) by construct-329

ing the univariate polynomial equation with coefficients330

e1, e2, . . . , e10 as follows:331

f (x) = x10 − e1x9 + e2x8 − e3x7 + · · · − e9x + e10. (14)332

The solutions of e2, e3, . . . , e10 can be easily solved by333

using (9). Then, the final solutions for the algebraic form of334

SHE equations (3) can be easily obtained by solving (14).335

Finally, according to arcos(xi) = αi , switching angles336

α1, α2, . . . , α10 can be obtained. In order to make the algorithm337

easier to understand, the whole solving process has been given338

in Algorithm 1.339

IV. COMPUTATION RESULTS340

Based on a workstation with XEON E3-1230 CPU and341

16-GB RAM, and the symbolic computing software Maple21,342

some results for the SHE equations with nine and ten switching343

angles are obtained by combining the proposed method and344

the Groebner basis method.345

A. SHE Equations With Ten Switching Angles346

For the case of ten switching angles described in Section III,347

when the modulation index m = 0.8, there are 69 groups of348

solutions in total, which are all listed in Table II. The arrows349

on the right sides of the angles indicate the transition states350

Fig. 1. Solution trajectories of three-level SHE problem. (a)–(g) One group
of solution and two groups of solutions in (h).

of the PWM waveforms at each switching angle. According 351

to the levels of the generated waveforms, the 69 groups of 352

solutions can be further classified into three-level, five-level, 353

seven-level, and nine-level waveforms, and each of them has 354

three, 50, 14, and two groups of solutions, respectively. This 355

is the first time that all the possible solutions for the SHE 356

equations with ten switching angles are given. 357

B. SHE Equations With Nine Switching Angles 358

Fig. 1 is the part of the solutions for three-level PWM 359

with nine switching angles. It can be seen that there have 360

four groups of solutions under most modulation indices, and 361

when m = 0.66, there are nine groups of solutions. The 362

results indicate that there are many groups of solutions under 363
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TABLE II

SIXTY-NINE GROUPS OF SWITCHING ANGLES FOR m = 4/5
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Fig. 2. Comparison of the lowest THD and the maximum THD in full
modulation index range.

most modulation indices, which can be used for the optimal364

modulation of converters to improve the THD performance.365

In order to show the THD performance of different solutions,366

the solutions for SHE equations with nine switching angles are367

solved for m in [0, 6.7] with an increment step of �m = 0.01.368

Then, the THD performance of the obtained solutions is shown369

in Fig. 2, in which the blue line represents the maximum THD370

value and the orange line indicates the lowest THD value371

of the obtained solutions. It can be seen that in the same372

modulation index, different solutions will lead to different373

THD performance. Therefore, solving all the solutions can374

increase the possibility to find valid solutions for specific375

modulation indices. Furthermore, it can be seen that the376

continuity of these solutions is difficult to determine. Thus, it is377

very hard to solve the trajectories by some numerical methods378

[21], [22] or fit them with simple piecewise linear functions379

for multilevel converters. Therefore, these solution trajectories380

can not only prove the correctness and completeness of the381

proposed method, but also provide comprehensive solutions382

for multilevel converters.383

V. EVALUATION OF THE PROPOSED METHOD384

As described in Section III, the procedure of solving SHE385

equations with algebraic algorithms can be divided into two386

steps: degree reduction with the simplification method, and387

solving final results with the algebraic method. Therefore, the388

performance of the proposed method is evaluated in terms of389

two aspects: the improvement of the simplification effect and390

the improvement of the whole solving procedure.391

A. Evaluation of the Proposed Method in Terms of the392

Simplification Process393

To evaluate the simplification effect of the proposed method,394

the simplification efficiency and ability are compared with395

the commonly used ESP-based method. Table III shows the396

comparison of the executing time for the proposed method397

and the commonly used method, which are calculated on398

a desktop computer with XEON E3-1230 CPU and 16-GB399

RAM. It can be seen that the computation time consumed400

by the ESP-based method increases dramatically when the401

number of switching angles is more than six. When the402

TABLE III

COMPARISON OF THE EXECUTING TIME BETWEEN THE SYMMETRIC
POLYNOMIALS METHOD AND THE PROPOSED

METHOD (UNIT: SECOND)

Fig. 3. Comparison of the computer memory between the symmetric
polynomials method and the proposed method. (a) Computer memory used
to solve eight switching angles with the symmetric polynomial method.
(b) Computer memory used to solve eight switching angles with the proposed
method.

Fig. 4. Degree of comparison between x , e, and p with five switching angles.

number of switching angles is eight, the proposed method 403

performs 40 800 times faster than the ESP-based method. More 404

importantly, the ESP-based method totally fails to give the 405

final results due to the huge computing burden when the 406

number of switching angles exceeds eight. Besides, Fig. 3 407

indicates the computer memory occupied by running the two 408

simplification methods. Fig. 3(a) only shows a 5-h process of 409

the ESP method, and actually, it needs nearly 35 h to complete 410

the whole process. It can be seen that the computer memory 411

occupied by the ESP-based method is almost three times as 412

large as the proposed method. 413

In addition to simplification efficiency, the simplification 414

ability of the proposed method has been improved. As shown 415

in Figs. 4 and 5, the degree of comparisons for five and seven 416

switching angles are given, in which the blue, orange, and 417

yellow represent the original degree of the SHE equations, the 418

reduced degree achieved by the ESP-based method, and the 419

proposed method, respectively. It can be seen that the degree of 420

the SHE equations simplified by the proposed method is lower 421

than that of the ESP-based method, which can further reduce 422

the computing burden of the subsequence solving procedure. 423
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TABLE IV

COMPARISON OF COMPUTATIONAL ABILITY AND EFFICIENCY BETWEEN THE PROPOSED METHOD AND OTHER METHODS (UNIT: SECOND)

TABLE V

COMPARISON OF THE MAXIMUM SOLVABLE NUMBER OF THE PREVIOUS ALGEBRAIC METHODS AND THE PROPOSED METHOD

Fig. 5. Degree of comparison between x , e, and p with seven switching
angles.

Therefore, the simplification ability of the proposed method is424

better than the ESP-based method.425

B. Evaluation of the Proposed Method in Terms of the Whole426

Solving Procedure427

The proposed method can not only improve the effect428

and efficiency of the simplification process, but also improve429

the computation ability and efficiency of the whole solving430

procedure. Table IV shows the executing time of the whole431

solving procedure. It can be seen that without using any432

simplification method, the Groebner basis method can only433

solve five switching angles [27]. With the ESP simplification434

method, the Groebner basis can solve eight switching angles435

in our computer, but the solving time is very long. However,436

by using the proposed simplification method, the executing437

time of the whole procedure is significantly reduced, and the438

switching angles can be solved to ten.439

More importantly, the proposed method breaks the upper440

limit of the solving ability of the previous algebraic algorithms.441

Table V describes the development process of algebraic algo-442

rithms since the resultant elimination method was proposed in443

2002. It can be seen that there are only three switching angles444

that can be solved by algebraic algorithms at the beginning.445

Over the past two decades, the solvable number of switching446

angles has increased very slowly. This is the first time that all 447

solutions of the SHE equations with nine switching angles 448

within the full modulation index range are given, and the 449

number of solvable switching angles by algebraic algorithms 450

is increased to ten. It should be pointed out that one solution of 451

SHE equations with nine switching angles was given in [34], 452

but in the limited conditions of our computer, only eight 453

switching angles can be solved by the ESP-based method. 454

Therefore, in Table III, the executing time of nine switching 455

angles represents not applicable. 456

C. Limitation of the Proposed Method 457

Since the principle of Newton’s identities is based on the 458

relation between power sum symmetric polynomials and ESPs, 459

the proposed method requires the SHE equations should be 460

symmetric. It means that the output waveform of converters 461

must be quarter-symmetric and the amplitude of dc voltage 462

should be equal so that the SHE equations can be transformed 463

into a symmetric polynomial system. 464

VI. EXPERIMENTAL VERIFICATION 465

Two experimental case studies are carried out to verify the 466

proposed method. The first experimental study is established 467

on a seven-level cascaded H-bridge (CHB) converter, in which 468

the IRFP250N MOSFETs are used as switching devices, the 469

ADum1400 is used as the isolator, and the STM32F407 are 470

used as the controller to generate the SHEPWM driven single. 471

The dc power supply of every H-bridge is set to 30 V. The first, 472

fourth, and 54th solutions shown in Table II are implemented 473

in the microcontroller to verify the correctness of solutions 474

solved by the proposed method. Because this experimental 475

case aims to validate the correctness of solutions, an open-loop 476

experiment is carried out here. The output PWM waveform is 477

recorded, and the related FFT results are also given in Fig. 6. 478

It can be seen that the aimed fifth, seventh, 11th, 13th, 17th, 479
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Fig. 6. Output voltage and the related FFT analysis of the experiment carried on the seven-level CHB converter. (a) Three-level phase voltage of the CHB
with the first solution in Table II. (b) Five-level phase voltage of the CHB with the fourth solution in Table II. (c) Seven-level phase voltage of the CHB with
the 54th solution in Table II. (d) FFT analysis result of the output voltage with the first solution in Table II. (e) FFT analysis result of the output voltage with
the fourth solution in Table II. (f) FFT analysis result of the output voltage with the 54th solution in Table II.

Fig. 7. Schematic of SHEPWM-based controller of experimental platform.

19th, 23rd, 25th, and 29th harmonics are precisely eliminated,480

which validates the correctness of the solved switching angles.481

The second experiment case study aims to present the482

performance of solutions solved by the proposed method in483

motor-driven applications. The schematic of the controller484

is given in Fig. 7. This experiment is established on an485

asynchronous motor experimental platform as shown in Fig. 8,486

and the parameters of the experimental platform are shown in487

Table VI. First, the reference frequency of the asynchronous488

motor is given to the V/f controller. To maintain the stability of489

torque and magnetic flux of the motor, the ratio of voltage and490

frequency is always kept constant, based on which the output491

voltage can be solved. Then, according to the output voltage of492

the asynchronous motor, the modulation index can be obtained,493

and the switching angles can be chosen from the lookup table.494

Based on the switching angles α and the input phase angle θ ,495

Fig. 8. Photograph of the asynchronous motor experimental platform.

TABLE VI

PARAMETERS OF THE MOTOR EXPERIMENTAL PLATFORM

the SHEPWM Block will output the PWM signal to control the 496

three-phase inverter and then drive the asynchronous motor. 497

Besides, the PMSG is used as a controllable load machine. 498

The reference value of output torque of the PMSG can be 499

given through the in-built control system implemented in 500

the dSPACE controller. Besides, the L-type filter is used to 501

reduce high-frequency noise, because the L-type filter does not 502
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Fig. 9. Harmonic performance of the steady-state motor current when the
fundamental frequency is 30 Hz. (a) Steady-state current and line-to-line
voltage of the motor with SHEPWM. (b) Steady-state current and line-to-line
voltage of the motor with SPWM. (c) FFT analysis of the steady-state current
in (a). (d) FFT analysis of the steady-state current in (b).

Fig. 10. Harmonic performance of the steady-state motor current when
the fundamental frequency is 40 Hz. (a) Steady-state current and line-to-line
voltage of the motor with SHEPWM. (b) Steady-state current and line-to-line
voltage of the motor with SPWM. (c) FFT analysis of the steady-state current
of the motor with SHEPWM. (d) FFT analysis of the steady-state current of
the motor with SPWM.

Fig. 11. Harmonic performance of the steady-state motor current when
the fundamental frequency is 50 Hz. (a) Steady-state current and line-to-line
voltage of the motor with SHEPWM. (b) Steady-state current and line-to-line
voltage of the motor with SPWM. (c) FFT analysis of the steady-state current
of the motor with SHEPWM. (d) FFT analysis of the steady-state current of
the motor with SPWM.

eliminate any order of harmonic, and it can keep the original503

effect of the proposed method for eliminating harmonics. Two504

Fig. 12. Comparison between SPWM and SHEPWM when the load step
changes. (a) Dynamic performance of current and line-to-line voltage of the
motor with SPWM when the load increases to 50% and the fundamental
frequency is 30 Hz. (b) Dynamic performance of current and line-to-line
voltage of the motor with SPWM when the load increases to 50% and the
fundamental frequency is 50 Hz. (c) Dynamic performance of current and
line-to-line voltage of the motor with SHEPWM when the load increases to
50% and the fundamental frequency is 30 Hz. (d) Dynamic performance of
current and line-to-line voltage of the motor with SHEPWM when the load
increases to 50% and the fundamental frequency is 50 Hz.

subcases are carried out in this case to present the harmonic 505

performance of the solved switching angles and the dynamic 506
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performance of the proposed scheme. The first subcase aims507

to show the steady-state current performance of the solved508

angles, and the results are shown in Fig. 9–11. The second509

subcase is used to verify the dynamic performance of the510

solved switching angles, and the experimental results are511

shown in Fig. 12.512

The three-phase steady-state output currents, line-to-line513

voltage, and the corresponding FFT analysis based on the514

solved switching angles are given with the 30-, 40-, and 50-Hz515

fundamental frequency in Fig. 9–11. To compare the harmonic516

performance between SHEPWM and SPWM, the steady-state517

output currents, line-to-line voltage, and FFT analysis based518

on SPWM are also given. In Figs. 9–11, it can be seen that,519

for SHEPWM, the first uneliminated harmonic is the 29th, but520

for SPWM, the first uneliminated harmonic is 16th. Moreover,521

at the bandwidth from 3–29th harmonics, the SPWM has522

some other harmonics, but the SHEPWM has almost no523

harmonics. This phenomenon shows that SHEPWM has a524

better performance in low-switching frequency applications.525

The experimental results of the dynamic performance of526

the proposed method are shown in Fig. 12. The load of the527

ac motor has a step change from 50% to 100% (14 Nm). The528

time period of the dynamic process is marked in the figure.529

Besides, to compare the performance between SHEPWM and530

SPWM, the experimental results of SPWM with the same531

switching frequency are shown in Fig. 12. The experimental532

results show that the solved switching angles almost have the533

same performance as the SPWM with the same switching534

frequency, no matter at the 30-Hz fundamental frequency or535

the 50-Hz fundamental frequency. Based on the experimental536

results of the two subcases, the correctness and effectiveness537

of the proposed method can be well verified.538

VII. CONCLUSION539

This article proposes a general degree reduction method to540

simplify the SHE equations based on Newton’s identities and541

the power sums, which makes the degree reduction no longer542

the bottleneck of solving the SHE equations with algebraic543

algorithms. The major contributions of the proposed method544

are summarized as follows.545

1) By combining the proposed simplification method with546

the Groebner basis method, the SHE equations with ten547

switching angles can be solved by the algebraic algo-548

rithm for the first time, which means that the harmonics549

below 30th can be accurately eliminated.550

2) Compared with the commonly used simplification551

method, the simplification efficiency of the proposed552

method has been significantly improved. For example,553

the proposed method performs almost 40 800 times554

faster when the number of switching angles is eight.555

3) The reduced degree of the simplified SHE equations is556

slightly lower than the ESP method.557

4) Experimental results verify that the switching angles558

solved by this article can obtain good harmonic perfor-559

mance in low switching frequency.560

This article is aimed at the solving algorithm for SHE561

equations and takes motor drive as an example to verify the562

practicality of the proposed method. In future work, more563

applications will be explored to use this method, such as grid- 564

connected converters, active rectifiers, STATCOM systems, 565

and so on. 566
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