

Aalborg Universitet

BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule

Zhang, Miao; Pan, Shirui; Chang, Xiaojun; Su, Steven; Hu, Jilin; Haffari, Gholamreza; Yang,
Bin
Published in:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Publication date:
2022

Link to publication from Aalborg University

Citation for published version (APA):
Zhang, M., Pan, S., Chang, X., Su, S., Hu, J., Haffari, G., & Yang, B. (2022). BaLeNAS: Differentiable
Architecture Search via the Bayesian Learning Rule. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://vbn.aau.dk/en/publications/ef6fc295-67cf-44a0-8dfa-47965d7955d8

BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule

Miao Zhang1 Shirui Pan2 Xiaojun Chang3,4 Steven Su5* Jilin Hu1 Gholamreza Haffari2 Bin Yang1

1Aalborg University 2Monash University 3ReLER, AAII, UTS
4RMIT University 5Shandong First Medical University

{miaoz, hujilin, byang}@cs.aau.dk, xiaojun.chang@uts.edu.au

{shirui.pan, gholamreza.haffari}@monash.edu, steven.su@uts.edu.au

Abstract

Differentiable Architecture Search (DARTS) has received
massive attention in recent years, mainly because it signifi-
cantly reduces the computational cost through weight shar-
ing and continuous relaxation. However, more recent works
find that existing differentiable NAS techniques struggle to
outperform naive baselines, yielding deteriorative architec-
tures as the search proceeds. Rather than directly optimizing
the architecture parameters, this paper formulates the neu-
ral architecture search as a distribution learning problem
through relaxing the architecture weights into Gaussian dis-
tributions. By leveraging the natural-gradient variational
inference (NGVI), the architecture distribution can be easily
optimized based on existing codebases without incurring
more memory and computational consumption. We demon-
strate how the differentiable NAS benefits from Bayesian
principles, enhancing exploration and improving stability.
The experimental results on NAS benchmark datasets con-
firm the significant improvements the proposed framework
can make. In addition, instead of simply applying the argmax
on the learned parameters, we further leverage the recently-
proposed training-free proxies in NAS to select the optimal
architecture from a group architectures drawn from the opti-
mized distribution, where we achieve state-of-the-art results
on the NAS-Bench-201 and NAS-Bench-1shot1 benchmarks.
Our best architecture in the DARTS search space also ob-
tains competitive test errors with 2.37%, 15.72%, and 24.2%
on CIFAR-10, CIFAR-100, and ImageNet, respectively.

1. Introduction
Neural Architecture Search (NAS) [12, 25–27, 38, 45,

52–56] is attaining increasing attention in the deep learn-

ing community by automating the labor-intensive and time-

consuming neural network design process. More recently,

NAS has achieved the state-of-the-art results on various deep

*Corresponding Author: Steven Su

learning applications, including image classification [41], ob-

ject detection [11], stereo matching [13]. Although NAS has

the potential to find high-performing architectures without

human intervention, the early NAS methods have extremely-

high computational requirements [18, 37]. This high com-

putational requirement in NAS is unaffordable for most re-

searchers and practitioners. Since then, more researchers

shift to improve the efficiency of NAS methods [19, 28, 36].

Weight sharing NAS, also called One-Shot NAS [2, 36], de-

fines the search space as a supernet, and only the supernet

is trained for once during the architecture search. The ar-

chitecture evaluation is based on inheriting weights from

the supernet without retraining, thus significantly reducing

the computational cost. Differentiable architecture search
(DARTS) [31], which is one of the most representative works,

further relaxes the discrete search space into continuous

space and jointly optimize supernet weights and architec-

ture parameters with gradient descent, to further improve

efficiency. Through employing two techniques, weight shar-

ing [2, 36] and continuous relaxation [6, 15, 31, 46], DARTS

reformulates the discrete operation selection problem in NAS

as a continuous magnitude optimization problem, which re-

duces the computational cost significantly and completes the

architecture search process within several hours on a single

GPU.

Despite notable benefits on computational efficiency from

differentiable NAS, more recent works find it is still unreli-

able [8, 50] to directly optimize the architecture magnitudes.

For example, DARTS is unable to stably obtain excellent

solutions and yields deteriorative architectures during the

search proceeds, performing even worse than random search

in some cases [49]. This critical weakness is termed as insta-
bility in differentiable NAS [50]. Zela et al. [50] empirically

point out that the instability of DARTS is highly correlated

with the dominant eigenvalue of the Hessian of the valida-

tion loss with respect to the architectural parameters, while

which increases during the architecture search. Accordingly,

they proposed a simple early-stopping criterion based on

this dominant eigenvalue to robustify DARTS. In addition,

11871

Wang et al. [44] observe that the instability in DARTS’s final

discretization process of architecture selection, where the

optimized magnitude could hardly indicate the importance of

operations. On the other hand, several works [9, 29, 39, 56]

state that directly optimizing the architecture parameters

without exploration easily entails the rich-gets-richer prob-

lem, leading to those architectures that converge faster while

achieve poor performance at the end of training, e.g. archi-

tectures with intensive skip-connections [14, 30].

Unlike most existing works that directly optimize the

architecture parameters, we investigate differentiable NAS

from a distribution learning perspective, and introduce the

Bayesian Learning rule [22, 23, 33, 35] to the architecture

optimization in differentiable NAS with considering natural-

gradient variational inference (NGVI) methods to optimize

the architecture distribution, which we call BaLeNAS. We

theoretically demonstrate how the framework naturally en-

hance the exploration for differentiable NAS and improves

the stability, and the experimental results confirm that our

framework enhances the performance for differentiable NAS.

Rather than simply applying argmax on the mean to get a dis-

crete architecture, we for the first time leverage the training

free proxies [1, 7, 32] to select a more competitive architec-

ture from the optimized distribution, without incurring any

additional training costs. Specifically, our approach achieves

state-of-the-art performance on NAS-Bench-201 [16] and

improves the performance on NAS-Bench-1shot1 [51] by

large margins, and obtains competitive results on CIFAR-

10, CIFAR-100, and ImageNet datasets in the DARTS [31]

search space, with test error 2.37%, 15.72%, and 24.2%,

respectively. Our contributions are summarized as follows.

• Firstly, this paper formulates the neural architecture

search as a distribution learning problem and builds

a generalized Bayesian framework for differentiable

NAS. We show that the proposed Bayesian framework

is a practical solution to enhance exploration for differ-

entiable NAS and improve stability as a by-product via

implicitly regularizing the Hessian norm.

• Secondly, instead of directly applying the argmax on the

learned parameters to get architectures, we for the first

time leverage zero-cost proxies to select competitive

architectures from the optimized distributions. As these

proxies are calculated without any training, architecture

selection can be finished extremely efficiently.

• Thirdly, the proposed framework is built based on

DARTS and is also comfortable to be extended to other

differentiable NAS methods with minimal modifica-

tions through leveraging the natural-gradient variational

inference (NGVI). Experiments show that our frame-

work consistently improves the baselines with obtaining

more competitive architectures in various search spaces.

2. Preliminaries
2.1. Differentiable Architecture Search

Differentiable architecture search (DARTS) is built on

weight-sharing NAS [2, 36], where the supernet is trained

for once per the architecture search cycle. Rather than using

the heuristic methods [36, 56] to search for the promising ar-

chitecture in the discrete architecture space A, DARTS [31]

proposes the differentiable NAS framework by applying a

continuous relaxation (usually a softmax) to the discrete

architecture space and enabling gradient descent for architec-

ture optimization. Therefore, architecture parameters αθ and

supernet weights w could be jointly optimized during the

supernet training, and the promising architecture parameters

α∗
θ are searched from the continuous search space Aθ once

the supernet is trained. The bilevel optimization formulation

is usually adopted to alternatively learn αθ and w:

min
αθ∈Aθ

Lval

(
argmin

w
Ltrain(w(αθ), αθ)

)
, (1)

and the best discrete architecture α∗ is obtained after apply-

ing argmax on α∗
θ .

Despite notable benefits on computational efficiency from

DARTS, more recent works find it is still unreliable [8, 50]

that directly optimizes the architecture magnitudes, where

DARTS usually observes a performance collapses with

search progresses. This phenomenon is also called the in-

stability of differentiable NAS [8]. Zela et al. [50] observed

that the there is a strong correlation between the dominant

eigenvalue of the Hessian of the validation loss and the archi-

tecture’s generalization error in DARTS, and keeping the the

Hessian matrix’s norm in a low level plays a key role in robus-

tifying the performance of differentiable NAS [8]. In addi-

tion, as described above, the differentiable NAS first relaxes

the discrete architectures into continuous representations

to enable the gradient descent optimization, and projects

the continuous architecture representation αθ into discrete

architecture α after the differentiable architecture optimiza-

tion. However, more recent works [44] cast doubts on the

robustness of this discretization process in DARTS that the

magnitude of architecture parameter α∗
θ could hardly indi-

cate the importance of operations with argmax. Taking the

DARTS as example, the searched architecture parameters

αθ are continuous, while α is represented with {0, 1} after

argmax. DARTS assumes that the Lval(w
∗, α∗

θ) is a good

indicator to the validation performance of α, Lval(w
∗, α∗).

However, when we conduct the Taylor expansion on the

local optimal α∗
θ [8, 9], we have:

Lval(w
∗, α∗) = Lval(w

∗, α∗
θ) + �αθ

Lval(w
∗, α∗

θ)
T (α∗ − α∗

θ)

+
1

2
(α∗ − α∗

θ)
TH(α∗ − α∗

θ)

= Lval(w
∗, α∗

θ) +
1

2
(α∗ − α∗

θ)
TH(α∗ − α∗

θ)

(2)

11872

where �αθ
Lval = 0 due to the local optimality condition,

and H is the Hessian matrix of Lval(w
∗, αθ). We can see

that the incongruence of the final continuous architecture

representation and the final discrete architecture relates to

the Hessian matrix’s norm. However, as demonstrated by

the empirical results in [50], the eigenvalue of this Hessian

matrix increases during the architecture search, incurring

more incongruence.

2.2. Bayesian Deep Learning

Given a dataset D = {D1,D1, ...,DN} and a deep neural

network with parameters θ, the most popular method to learn

θ with D is Empricial Risk Minimization (ERM):

min �̄(θ) :=

N∑
i=1

�i(θ) + ηR(θ), (3)

where �i is a loss function, e.g., �i = −log p(Di | θ) for

classification and R is the regularization term.

In contrast, the Bayesian deep learning estimate the pos-

terior distribution of θ, p(θ | D) := p(D | θ)p(θ)/p(D),
where p(θ) is the prior distribution. However, the normal-

ization constant p(D) =
∫
p(D | θ)p(θ)dθ is difficult to

compute for large DNNs. The variational inference (VI) [17]

resolves this issue in Bayesian deep learning by approximat-

ing p(θ | D) with a new distribution q(θ), and minimizes

the Kullback-Leibler (KL) divergence between p(θ | D) and

q(θ),
argminθKL(q(θ) ‖ p(θ | D)). (4)

When considering both p(θ) and q(θ) as Gaussian distribu-

tions with diagonal covariances:

p(θ) := N (θ | 0, I/δ), q(θ) := N (θ | μ, diag(σ2)), (5)

where δ is a known precision parameter with δ > 0, the mean

μ and deviation σ2 of q can be estimated by minimizing the

negative of evidence lower bound (ELBO) [3]:

L(μ, σ) : = −
N∑
i=1

Eq [log p(Di | θ)] + KL(q(θ) ‖ p(θ))

= −Eq

N∑
i=1

log p(Di | θ) + Eq

[
log

q(θ)

p(θ)

] (6)

A straightforward approach is using the stochastic gra-

dient descent to learn μ and σ2 along with minimizing L,

called as the Bayes by Backprob (BBB) [4]:

μt+1 = μt − ςt∇̂μLt, σt+1 = σt − ϕt∇̂σLt, (7)

where ςt and ϕt are the learning rates, and ∇̂μLt and ∇̂σLt

are the unbiased stochastic gradient estimates of L at μt

and σt. However, VI remains to be impractical for learning

large deep networks. The obvious issue is that VI introduces

more parameters to learn, as it needs to replace all neural

networks weights with random variables and simultaneously

optimize two vectors μ and σ to estimate the distribution

of θ, so the memory requirement is also doubled, leading a

lot of modifications when fitting existing differentiable NAS

codebases with the variational inference.

2.3. Training Free Proxies for NAS

Training Free NAS tries to identify promising architec-

tures at initialization without incurring training. Mellor et
al. [32] empirically find that the correlation between sample-

wise input-output Jacobian can indicate the architecture’s

test performance, and propose using the Jacobian to score a

set of randomly sampled models with randomly initialized

weights, which greedily chooses the model with the high-

est score. TE-NAS [7] utilizes the spectrum of NTKs and

the number of linear regions to analyzing the trainability

and expressivity of architectures. Rather than evaluating

the whole architecture, TE-NAS uses the perturbation-based

architecture selection as [44], to measure the importance of

each operation for the supernet prune.

Zero-cost NAS [1] extends the saliency metrics in the

network pruning at initialization to score an architecture,

through summing scores of all parameters θ in the architec-

ture. There are three popular saliency metrics, SNIP [24],

GraSP [43], and Synflow [42]:

Ssnip(θ) =

∣∣∣∣∂L∂θ � θ

∣∣∣∣ , Sgrasp(−θ) = −(H
∂L
∂θ

)� θ, SSF(θ) =
∂RSF

∂θ
� θ, (8)

where L is the common loss based on initialized weights,

H is the Hessian matrix, and RSF is defined as RSF =

1T
(∏L

l=1

∣∣θ[l]∣∣)1 that makes SynFlow data-agnostic.

Since these scores can be obtained without any training,

zero-cost NAS utilizes these zero-cost proxies to assist NAS

by warmup different search algorithms, e.g., initializing pop-

ulation or controller for aging evolution NAS and RL based

NAS, respectively. Different from zero-cost NAS that lever-

ages proxies before the search, we utilize these zero-cost

proxies for the architecture selection after search, to select

more competitive architectures from optimized distributions.

3. The Proposed Method: BaLeNAS
3.1. Formulating NAS as Distribution Learning

Differentiable NAS normally considers the architecture

parameters αθ as learnable parameters and directly conducts

optimization in this space. Most previous differentiable NAS

methods first optimize the architecture parameters based on

the gradient of the performance, then update the supernet

weights based on the updated architecture parameters. Since

architectures with updated supernet weights are supposed

to have higher performance, architectures with better per-

formance in the early stage have a higher probability of

11873

being selected for the supernet training. The supernet train-

ing again improves these architectures’ performance. This

is to say, directly optimizing αθ without exploration eas-

ily entails the rich-get-richer problem [29, 56], leading to

suboptimal paths in the search space that converges faster

at the beginning but plateaued quickly [9, 39]. In contrast,

formulating the differentiable NAS as a distribution learning

problem by relaxing architecture parameters can naturally in-

troduce stochasticity and encourage exploration to resolve

this problem [8, 9].

In this paper, we formulate the architecture search as a

distribution learning problem, that for the first time consider

the more general Gaussian distributions for the architecture

parameters to optimize the posterior distribution p(αθ | D)
rather than αθ. Considering both p(θ) and q(θ) as Gaussian

distributions as Eq.(5), the bilevel optimization problem in

Eq.(1) could be reformulated as the distribution learning

based NAS:

min
μ,σ

Eq(αθ|μ,σ)Lval(w
∗(αθ), αθ),

s.t. w∗(αθ) = argmin
w

Ltrain(w(αθ), αθ),
(9)

where μ and σ are the two learnable parameters for the dis-

tribution q(αθ | μ, σ) := N (αθ | μ, diag(σ2)). Considering

the variational inference and Bayesian deep learning, based

on Eq.(4)-(6), the loss function for the outer-loop architec-

ture distribution optimization problem could be defined as:

Eq [Lval] := −Eq

N∑
i=1

log p(Di | αθ) + Eq

[
log

q(αθ)

p(αθ)

]
.

(10)

Since the architecture parameters αθ are random variables

sampled from the Gaussian distribution q(αθ | μ, σ), the

distribution learning-based method naturally encourages ex-

ploration during the architecture search.

3.2. Natural-Gradient VI for NAS

As describe in Sec.2.2, the traditional variational infer-

ence has double memory requirement and needs to re-design

the object function, making it difficult to fit with the differ-

entiable NAS. Thus, this paper considers natural-gradient

variational inference (NGVI) methods [22, 35] to optimize

the architecture distribution p(αθ | D) in a natural parameter

space, which requires the same number of parameters as

the traditional learning method. By leveraging NGVI, the

architecture parameter distribution could be learned by only

updating a natural parameter λ during the search.

NGVI parameterizes the distribution q(αθ) with a natural

parameter λ, considering q(αθ | λ) in a class of minimal

exponential family with natural parameter λ [21]:

q(αθ | λ) := h(αθ)exp
[
λTφ(αθ)−A(λ)

]
, (11)

where h(αθ) is the base measure, φ(αθ) is a vector con-

taining sufficient statistics, and A(λ) is the log-partition

function.

When h(αθ) ≡ 1, the distribution q(αθ | λ) could be

learned by only updating λ during the training [22, 23], and

λ could be learned in the natural-parameter space by:

λt+1 = (1− ρt)λt − ρt∇μEqt

[
�̄(αθ)

]
, (12)

where ρt is the learning rate, �̄ is in the form of Eq.(3), and

the derivative ∇μEqt(αθ)

[
�̄(αθ)

]
is taken at μ = μt which is

the expectation parameter with Markov Chain Monte Carlo

(MCMC) sampling. And qt is the q(αθ | λ) parameterized

by λt, μ = μ(λ) is the expectation parameter of q(αθ | λ).
This is also called as the Bayesian learning rule [23].

When we consider Gaussin mean-field VI that p(αθ) and

q(αθ) are in the form of Eq.(5), the Variational Online-

Newton (VON) method proposed by Khan et. al. [22] shows

that the NGVI update could be written as following:

μt+1 = μt − βt(ĝ(θt) + δ̃μt)/(st+1 + δ̃), (13)

st+1 = (1− βt)st + βt diag[∇̂2�̄(θt)], (14)

where βt is the learning rate, θt ∼ N (αθ | μt, σ
2
t) with

σ2
t = 1/[N(st + δ̃)] and δ̃ = δ/N . ĝ is the stochastic

estimate with respect to q through MCMC sampling that,

ĝ(θt) =
1
M

∑
i∈M ∇αθ

�̄i(αθ), and the minibatch M con-

tains M samples. More details are in [22]. Variational

RMSprop (Vprop) [22] further uses gradient magnitude

(GM) [5] approximation to reformulate Eq.(14) as:

st+1 = (1− βt)st + βt[ĝ(θt) ◦ ĝ(θt)], (15)

with ∇̂2
j,j �̄(θt) ≈

[
1
M

∑
i∈Mt

gi(α
j
θ)
]2

= [ĝ(θjt)]
2 [5]. The

most important benefit of VON and Vprop is that they only

need to calculate one parameter’s gradient to update posterior

distribution. In this way, this learning paradigm requires the

same number of parameters as traditional learning methods

and easy to fit with existing codebases.

We implement the proposed BaLeNAS based on the

DARTS [31] framework, the most popular differentiable

NAS baseline. Similar to DARTS, BaLeNAS also considers

an Adam-like optimizer for the architecture optimization,

updating the natural parameter λ of p(θ | D) as:

λt+1 = λt − ρt∇λLt + γt(λt − λt−1), (16)

where the last term is the momentum. Based on the Vprop

in Eq.(13) and (15), the update of μ and σ for the Adam-

like optimizer with NGVI, also called as Variational Adam

(VAdam), could be defined as following:

μt+1 =μt − βt(ĝ(θt) + δ̃μt) ◦ 1

(st+1 + δ̃)

+ γt

⌊
st + δ̃

st+1 + δ̃

⌋
◦ (μt − μt−1),

(17)

11874

Algorithm 1 BaLeNAS

Initialize a supernet with supernet weights w and architecture

parameters αθ

while not converged do
2: Update μ and σ2 for q(αθ | μ, σ2) based on Eq.(17)

and Eq.(18), with VAdam optimizer.

Update supernet weights w based on cross-entropy

loss with the common SGD optimizer.

4: end while
Obtain discrete architecture α∗ through argmax on μ; or

sample a set of αθ from q(α∗
θ | μ, σ2), and utilize the

training free proxies for selection.

st+1 = (1− βt)st + βt[ĝ(θt) ◦ ĝ(θt)]. (18)

where “◦” stands for element-wise product, θt ∼ N (αθ |
μt, σ

2
t) with σ2

t = 1/[N(st+ δ̃)]. As pointed out in Sec. 2.2

and shown in Eq.(17) and Eq.(18), the distribution q(αθ) =
N (αθ | μ, σ2) is now optimized, needing to calculate the

gradient of only one parameter.

Implicit Regularization from MCMC Sampling: Several

recent works [8,9,50] empirically and theoretically show that

the performance of differentiable NAS is highly related to the

norm of H, the Hessian matrix of Lval(w
∗, αθ), and keep-

ing this norm in a low level plays a key role in robustifying

differentiable NAS. As described before, we know the loss

Eqt(αθ)

[
�̄(αθ)

]
of architecture optimization in BaLeNAS is

calculated based on MCMC sampling, showing the natural-

ity of enhancing exploration. Besides, Eqt(αθ)

[
�̄(αθ)

]
also

has the naturality to enhance the stability in differentiable

NAS as SDARTS [8]. When conducting the Taylor expan-

sion, the loss function for the architecture parameters update

Eqt(αθ)

[
�̄(αθ)

]
could be described as:

Eqt(αθ)

[
�̄(αθ)

]
=Eq(αθ|μ,σ)Lval(w,αθ) = Eε∼N (0,σ2)Lval(w, μ+ ε)

=Eε∼N (0,σ2)[Lval(w, μ) + �μLval(w, μ)
T ε+

1

2
εTHε]

=Eε∼N (0,σ2)

[
Lval(w, μ) +

1

2
εTHε

]

=Lval(w, μ) +
σ2

2
Tr {H} ,

(19)

where the line 4 in Eq.(19) is obtained since

Eε∼N (0,σ2)[�μLval(w,αθ)
T ε] = Eε∼N (0,σ2)[ε] ∗

�μLval(w,αθ) = 0, as ε ∼ N (0, σ2) is a Gaussian

distribution with zero mean, and E(ε2) = σ2. μ is the

expectation parameter of q(αθ | μ, σ2), and H is the

Hessian matrix of Lval(w, μ). We can find the loss function

that could implicitly control the trace norm of H similar

as [8, 9], helping stabilizing differentiable NAS.

3.3. Architecture Selecting from the Distribution

After the optimization of BaLeNAS, we learns an opti-

mized Gaussian distribution for the architecture parameters

q(α∗
θ | μ, σ2), which is used to get the optimal architec-

ture α∗. In this paper, we consider two methods to get

the discrete architecture α∗. The first one is a simple and

direct method, which utilizes the expectation of α∗
θ to se-

lect the best operation for each edge through the argmax
as DARTS, where the expectation term is simply the mean

μ [9]. However, as we described in Sec. 2.1, this method

may result in instability and incongruence. The second one

is more general, which samples a set of α from the distribu-

tion q(α∗
θ | μ, σ2) for architecture selection. However, in the

neural architecture search, evaluating a set of architectures

will incur unaffordable computational costs. In this paper,

instead of utilizing training-free proxies to assist NAS by

warmup before search as [1], we leverage these proxies, in-

cluding SNIP [24], GraSP [43], and Synflow [42], to score

the sampled architectures for selection after search.

Algorithm 1 gives a simple implementation of BaLeNAS,

where only the red part is different from DARTS. As shown,

in our BaLeNAS, only architecture parameter optimization

is different from DARTS which uses the VAdam optimizer,

making it easy to be implemented and also easy to be adapted

to other existing differentiable NAS methods with minimal

modifications.

4. Experiments and Results

In this section, we consider three different search spaces

to analyze the proposed BaLeNAS framework. The first

two are NAS benchmark datasets, NAS-Bench-201 [16] and

NAS-Bench-1shot1 [51]. The ground-truth for all candi-

date architectures in the two benchmark datasets is known.

The NAS methods could be evaluated without retraining the

searched architectures based on these benchmark datasets,

thus greatly relieving the computational burden. The third

one is the commonly-used CNN search space in DARTS [31].

We first analyze our proposed BaLeNAS in the two bench-

mark datasets, then compare BaLeNAS with state-of-the-art

NAS methods in the DARTS search space.

4.1. Experiments on Benchmark Datasets

The NAS-Bench-201 [16] has a unified cell-based search

space, where the cell structure is densely-connected, con-

taining four nodes with five candidate operations applied on

each node, resulting in 15,625 architectures. NAS-Bench-

201 reports the CIFAR-10, CIFAR-100, and Imagenet per-

formance for all architecture in this search space. The NAS-

Bench-1shot1 [51] is built from the NAS-Bench-101 bench-

mark dataset [48], through dividing all architectures in NAS-

Bench-101 into 3 different unified cell-based search spaces,

containing 6,240, 29,160, and 363,648 architectures, respec-

11875

Table 1. Comparison results with state-of-the-art NAS approaches on NAS-Bench-201.

Method
CIFAR-10 CIFAR-100 ImageNet-16-120

Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

Random baseline 83.20±13.28 86.61±13.46 60.70±12.55 60.83±12.58 33.34±9.39 33.13±9.66

RandomNAS [28] 85.63±0.44 88.58±0.21 60.99±2.79 61.45±2.24 31.63±2.15 31.37±2.51

GDAS [15] 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90

DrNAS [9] 91.55±0.00 94.36±0.00 73.49±0.00 73.51±0.00 46.37±0.00 46.34±0.00

DARTS (1st) [31] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

DARTS (2nd) [31] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

Zero-cost NAS [1] 90.19±0.66 93.45±0.28 70.55±1.61 70.73±1.36 43.24±2.52 43.64±2.42

BaLeNAS (1st) 91.03±0.15 93.62±0.12 70.88±0.60 70.98±0.41 45.19±0.75 45.25±0.86

BaLeNAS (2nd) 91.32±0.09 94.02±0.14 71.53±0.08 71.93±0.27 45.39±0.17 45.48±0.39

BaLeNAS-TF 91.52±0.04 94.33±0.03 72.67±0.41 72.95±0.28 46.14±0.23 46.54±0.36

optimal 91.61 94.37 73.49 73.51 46.77 47.31

The best single run of BaLeNAS-TF achieves 94.37%, 73.22%, and 46.71% test accuracy on three datasets, respectively. Our

BaLeNAS-TF considers the Synflow based proxy for architecture selection in this experiment.

0 5 10 15 20 25 30 35 40
Epoch

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Er
ro

r

DARTS(1st) Valid
BaLeNAS(1st) Valid
DARTS(1st) Test
BaLeNAS(1st) Test

(a) First order approximation

0 5 10 15 20 25 30 35 40
Epoch

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Er
ro

r

DARTS(2nd) Valid
BaLeNAS(2nd) Valid
DARTS(2nd) Test
BaLeNAS(2nd) Test

(b) Second order approximation

Figure 1. Validation and test error of BaLeNAS and DARTS on the

search space 3 of NAS-Bench-1shot1.

tively, and the CIFAR-10 performance for all architectures

are reported. The architectures in each search space have

the same number of nodes and connections, making the

differentiable NAS could be directly applied to each space.

4.1.1 Reproducible Comparison on NAS Benchmarks

Table 1 summarizes the performance of BaleNAS on NAS-

Bench-201 compared with differentiable NAS baselines,

where the statistical results are obtained from 4 indepen-

dent search experiments with four different random seeds.

In our BaLeNAS, we consider the expectation of αθ with

argmax to get the valid architecture, while BaLeNAS-TF

consider the training-free proxies for the architecture selec-

tion, with the sample size is set as 100. As shown in Table 1,

BaLeNAS achieves the best results on the NAS-Bench-201

benchmark and greatly outperforms other baselines on all

three datasets. As described in Sec. 3, BaLeNAS is built

based on the DARTS framework, with only modeling the

architecture parameters into distributions and introducing

Bayesian learning rule for optimization. As shown in Ta-

ble 1, BaLeNAS with first and second-order approximations

both outperform DARTS by large margins, verifying the

effectiveness of our method. More interesting, combining

with the training-free proxies, BaLeNAS-TF can achieve bet-

Table 2. Ablation study on the sample size.

Method (size)
Test Accuracy

CIFAR-10 CIFAR-100 ImageNet

Zero-cost NAS(10) 92.12±1.25 68.1±2.49 40.07±1.86

Zero-cost NAS(50) 92.52±0.05 70.27±0.25 42.92±0.95

Zero-cost NAS(100) 93.45±0.16 69.87±0.35 44.43±0.75

BaLeNAS-TF(10) 94.08±0.13 72.55±0.42 45.82±0.30

BaLeNAS-TF(50) 94.33±0.03 72.95±0.28 46.54±0.36
BaLeNAS-TF(100) 94.33±0.03 72.95±0.28 46.54±0.36

ter results, showing that apart from warmup, these proxies

could also assist differentiable NAS at architecture selection.

The best single run of our BaLeNAS-TF achieves 94.37%,

73.22%, and 46.71% test accuracy on three datasets, respec-

tively, which are state-of-the-art on this benchmark dataset.

We also conduct a comparison study on the NAS-Bench-

1shot1 dataset to further verify the effectiveness of our BaLe-

NAS which reformulates architecture search as a distribution

learning problem. We have compared BaLeNAS with the

baseline DARTS on the three search spaces of NAS-Bench-

1shot1 with tracking the validation and test performance

of the search architectures in every iteration. As shown in

Fig. 1, our BaLeNAS, without training-free proxies based

architecture selection, generally outperforms DARTS during

the architecture search in terms of validation and test error

in the most complicated search space 3, both with first and

second-order approximation. More specifically, our BaLe-

NAS significantly outperforms the baseline in the early stage,

demonstrating our BaLeNAS could quickly find the supe-

rior architectures and is more stable. The results on both

NAS-Bench-201 and NAS-Bench-1shot1 verify that, by for-

mulating the architecture search as a distribution learning

problem and introducing the Bayesian learning rule to op-

timize the posterior distribution, BaLeNAS can relieve the

instability and naturally enhance exploration to avoid local

optimum for differentiable NAS.

11876

Table 3. Comparison results with state-of-the-art weight-sharing NAS approaches.

Method
Test Error (%) Param FLOPs Search Architecture

CIFAR-10 CIFAR-100 ImageNet (M) (M) Cost Optimization

RandomNAS [28] 2.85±0.08 17.63 27.1 4.3 595 2.7 random

SNAS [46] 2.85±0.02 20.09 27.3 / 9.2 2.8 467 1.5 gradient

BayesNAS [58] 2.81±0.04 - 26.5 / 8.9 3.40 - 0.2 gradient

GDAS [15] 2.93 18.38 26.0 / 8.5 3.4 538 0.21 gradient

PDARTS [10] 2.50 16.63 24.4 / 7.4 3.4 543 0.3 gradient

PC-DARTS [47] 2.57±0.07 17.11 25.1 / 7.8 3.6 571 0.3 gradient

DrNAS [9] 2.54±0.03 16.30 24.2 / 7.3 4.0 644 0.4 gradient

DARTS+ [30] 2.50±0.11 16.28 - 3.7 - 0.4 gradient

DARTS (1st) [31] 2.94 - - 2.9 505 1.5 gradient

DARTS (2nd) [31] 2.76±0.09 17.54 26.9 / 8.7 3.4 530 4 gradient

BaLeNAS 2.50±0.07 16.84 25.0 / 7.7 3.82 593 0.6 gradient

BaLeNAS-TF 2.43±0.08 15.72 24.2 / 7.3 3.86 597 0.6 gradient

4.1.2 Ablation Study on the Architecture Selection

As described, our BaLeNAS-TF samples several architec-

tures from the optimized distribution and leverages the

training-free proxies for architecture selection, rather than

simply applying argmax on the mean. In this subsection,

we conduct ablation study to investigate the benefits of our

training-free based architecture selection. We considered 3

different training-free proxies as described in Sec. 2.3, in-

cluding SNIP, GraSP, and Synflow. We find that Synflow is

the most reliable proxies in the architecture selection, as it

achieves better performance than the remaining two proxies

for both zero-cost NAS and BaLeNAS, and also consis-

tently enhances the performance with the increase of sample

size. Zero-cost NAS [1] randomly generates samples and

calculates the scores based on the proxies for architecture

selection, while our BaLeNAS-TF generates samples based

on the optimized distribution (α∗
θ | μ, σ2).

Table 2 compared zero-cost NAS and BaLeNAS-TF with

different sample sizes in the architecture selection. As shown,

the Synflow proxy can assist NAS as zero-cost NAS with dif-

ferent sample sizes achieve much better results than the Ran-

dom baseline in Table 1, and these proxies also enhance our

BaLeNAS, where our BaLeNAS-TF achieve higher accuracy.

These results again verified that the architecture selection

with train-free proxies can further improve the performance

for distribution learning based NAS. More interesting, Table

2 also showed that our BaLeNAS-TF outperformed zero-cost

NAS by a large margin, suggesting that our BaLeNAS can

converge to a competitive distribution.

4.2. Experiments on DARTS Search Space

To compare with the state-of-the-art differentiable NAS

methods, we applied BaLeNAS to the typical DARTS search

space [15,28,31] for convolutional architecture search, where

all experiment settings are following DARTS [31] for fair

comparisons as the same as the most recent works. Our

BaLeNAS-TF also considers the Synflow proxy in this ex-

periment. The architecture search in DARTS space generally

contains three stages: First searches for micro-cell structures

on CIFAR-10, then stack more cells to form the full structure

for evaluation, and the best-found cell is finally transferred

to larger datasets to evaluate its transferability.

4.2.1 Search Results on CIFAR-10

The comparison results with the state-of-the-art NAS meth-

ods are presented in Table 3. The best architecture searched

by our BaLeNAS-TF achieves a 2.37% test error on CIFAR-

10, which outperforms state-of-the-art NAS methods. We

can also see that both BaLeNAS-TF and BaLeNAS outper-

form DARTS by a large margin, demonstrating the effective-

ness of the proposed method. Besides, although BaLeNAS

introduced MCMC during architecture optimization, it is

still efficient in the sense that the whole architecture search

phase in BaLeNAS (2nd) only took 0.6 GPU days.

4.2.2 Transferability Results Analysis

Following DARTS experimental setting, the best-searched ar-

chitectures on CIFAR-10 are then transferred to CIFAR-100

and ImageNet to evaluate the transferability. The comparison

results with state-of-the-art differentiable NAS approaches

on CIFAR-100 and ImageNet are demonstrated in Table 3.

As shown in Table2, BaLeNAS-TF achieves a 15.72% test

error on the CIFAR-100 dataset, which is a state-of-the-art

performance and outperforms peer algorithms by a large

margin. On the ImageNet dataset, the best-discovered ar-

chitecture by our BaLeNAS-TF also achieved a competitive

result with 24.2 / 7.3 % top1 / top5 test error, outperforming

or on par with all peer algorithms.

11877

0 5 10 15 20 25 30 35 40 45 50
Epoch

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
at

io

Figure 2. The ratio of skip-connection the searched normal cells

during the architecture search in the DARTS space.

NNormal cell for DARTS Reduction cell for DARTS

Normal cell for BaLeNAS Reduction cell for BaLeNAS

Figure 3. Trajectory of the Hessian norm in DARTS space.

4.2.3 Analysis on the Effect of Exploration

Several recent works [9, 39, 56] point out that directly opti-

mizing architecture parameters without exploration easily

entails the rich-gets-richer problem, leading to those archi-

tectures that converge faster at the beginning while achieve

poor performance at the end of training, e.g. architectures

with intensive skip-connections [14, 30]. However, when the

number of skip-connections is larger than 3, the architec-

ture’s retraining accuracy is usually extremely low [30, 50].

To relieve this issue, BaLeNAS formulates the differentiable

neural architecture search as a distribution learning problem,

and this experiment verifies how the proposed formulation

naturally enhance the exploration to relieve this issue. Fig. 2

plots the ratio of skip-connection in the searched normal cell

for BaLeNAS and DARTS (the total number of operations

in a cell is 8). As shown, DARTS is likely to select more

than 3 skip-connection in the normal cell during the search.

In contrast, in BaLeNAS, the number of skip-connections is

generally less than 2 in the normal cell during the search.

4.2.4 Tracking of the Hessian norm

As described in Section 2.1, a large Hessian norm deteriorate

the robustness of DARTS, and the incongruence between

Lval(w
∗, α∗

θ) and Lval(w
∗, α∗) is not negligible if we could

not maintain the maintains the Hessian norm at a low level.

The analysis in Sec. 3.2 and Eq. (19) shows that the loss

function of the proposed BaLeNAS implicitly controls the

trace norm of H similar as [8, 9], helping stabilizing differ-

entiable NAS. We plot the trajectory of the Hessian norm of

BaLeNAS compared with the vanilla DARTS in Fig. 3. As

show, the Hessian norm in our BaLeNAS is always kept in

a low level. Although the Hessian norm of BaLeNAS also

increases with the supernet training similar as DARTS, BaLe-

NAS’s largest Hessian norm is still smaller than DARTS in

the early stage, showing the effectiveness of implicit regular-

ization of our BaLeNAS as described in Sec. 3.2.

5. Conclusion

In this paper, we have formulated the architecture opti-

mization in the differentiable NAS as a distribution learning

problem and introduced a Bayesian learning rule to opti-

mize the architecture parameters posterior distributions. We

have theoretically demonstrated that the proposed frame-

work can enhance the exploration for differentiable NAS

and implicitly impose regularization on the Hessian norm

to improve the stability. The above properties show that

reformulating differentiable NAS as distribution learning

is a promising direction. In addition, with leveraging the

training-free proxies, our BaLeNAS can select more compet-

itive architectures from the optimized distributions instead

of applying argmax on the mean to get the the discrete ar-

chitecture, so that alleviate the discretization instability and

enhance the performance. We operationalize the framework

based on the common differentiable NAS baseline, DARTS,

and experimental results on NAS benchmark datasets and

the common DARTS search space have verified the proposed

framework’s effectiveness. Although BaLeNAS improves

the differentiable NAS baseline by large margins, it compu-

tational consumption and memory consumption are similar

with DARTS where our BaLeNAS is built on. Further ques-

tions include how to further decrease the computational and

memory cost in differentiable NAS [10].

Acknowledgments

This work was partially supported by Independent Re-

search Fund Denmark under agreements 8022-00246B and

8048-00038B, the VILLUM FONDEN under agreement

34328, and the Innovation Fund Denmark centre, DIREC.

This research is partly supported by the ARC Future Fellow-

ship FT190100039. This work was also partially supported

by Academic Promotion Project of Shandong First Medi-

cal University. This work is sponsored by the Air Force

Research Laboratory and DARPA under agreement number

FA8750-19-2-0501. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon.

11878

References
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak,

and Nicholas D Lane. Zero-cost proxies for lightweight nas.

In ICLR, 2021. 2, 3, 5, 6, 7

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In International Conference on
Machine Learning, pages 549–558, 2018. 1, 2

[3] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Vari-

ational inference: A review for statisticians. Journal of the
American statistical Association, 112(518):859–877, 2017. 3

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and

Daan Wierstra. Weight uncertainty in neural network. In

International Conference on Machine Learning, pages 1613–

1622, 2015. 3

[5] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimiza-

tion methods for large-scale machine learning. Siam Review,

60(2):223–311, 2018. 4

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. ICLR,

2019. 1

[7] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural

architecture search on imagenet in four gpu hours: A theoreti-

cally inspired perspective. In ICLR, 2021. 2, 3

[8] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable

architecture search via perturbation-based regularization. In

ICML, 2020. 1, 2, 4, 5, 8

[9] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng

Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural architecture

search. In ICLR, 2021. 2, 4, 5, 6, 7, 8, 13

[10] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive

differentiable architecture search: Bridging the depth gap

between search and evaluation. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1294–

1303, 2019. 7, 8, 11

[11] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,

Xinyu Xiao, and Jian Sun. Detnas: Backbone search for object

detection. In Advances in Neural Information Processing
Systems, pages 6642–6652, 2019. 1

[12] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yunchao

Dai, Xiaojun Chang, Tom Drummond, Hongdong Li, and

Zongyuan Ge. Hierarchical Neural Architecture Search for

Deep Stereo Matching. In NeurIPS, 2020. 1

[13] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao

Dai, Xiaojun Chang, Tom Drummond, Hongdong Li, and

Zongyuan Ge. Hierarchical neural architecture search for

deep stereo matching. In NeurIPS, 2020. 1

[14] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-

nas: Rethinking evaluation fairness of weight sharing neural

architecture search. arXiv preprint arXiv:1907.01845, 2019.

2, 8

[15] Xuanyi Dong and Yi Yang. Searching for a robust neural

architecture in four gpu hours. In IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE Computer Soci-

ety, 2019. 1, 6, 7, 13

[16] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the

scope of reproducible neural architecture search. ICLR, 2020.

2, 5, 11

[17] Alex Graves. Practical variational inference for neural net-

works. In Advances in neural information processing systems,

pages 2348–2356, 2011. 3

[18] Minghao Guo, Zhao Zhong, Wei Wu, Dahua Lin, and Junjie

Yan. Irlas: Inverse reinforcement learning for architecture

search. In CVPR, 2019. 1

[19] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot

neural architecture search with uniform sampling. Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2019. 1

[20] Martin Jankowiak and Fritz Obermeyer. Pathwise deriva-

tives beyond the reparameterization trick. In International
Conference on Machine Learning, pages 2235–2244, 2018.

13

[21] Mohammad Khan and Wu Lin. Conjugate-computation vari-

ational inference: Converting variational inference in non-

conjugate models to inferences in conjugate models. In Artifi-
cial Intelligence and Statistics, pages 878–887. PMLR, 2017.

4

[22] Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin,

Yarin Gal, and Akash Srivastava. Fast and scalable bayesian

deep learning by weight-perturbation in adam. In Interna-
tional Conference on Machine Learning, pages 2611–2620,

2018. 2, 4, 11

[23] Mohammad Emtiyaz Khan and Haavard Rue. Learning-

algorithms from bayesian principles. arXiv preprint
arXiv:2002.10778, 2020. 2, 4

[24] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.

Snip: Single-shot network pruning based on connection sen-

sitivity. In International Conference on Learning Representa-
tions, 2019. 3, 5

[25] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,

Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-wisely

supervised neural architecture search with knowledge distil-

lation. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 1986–1995, 2020. 1

[26] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,

Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:

Exploring hybrid cnn-transformers with block-wisely self-

supervised neural architecture search. CoRR, abs/2103.12424,

2021. 1

[27] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,

Zhihui Li, and Xiaojun Chang. Dynamic slimmable net-

work. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021, pages

8607–8617. Computer Vision Foundation / IEEE, 2021. 1

[28] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. In UAI, 2019. 1, 6,

7

[29] Xiang Li, Chen Lin, Chuming Li, Ming Sun, Wei Wu, Junjie

Yan, and Wanli Ouyang. Improving one-shot nas by suppress-

ing the posterior fading. In Proceedings of the IEEE/CVF

11879

Conference on Computer Vision and Pattern Recognition,

pages 13836–13845, 2020. 2, 4

[30] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He,

Weiran Huang, Kechen Zhuang, and Zhenguo Li. Darts+: Im-

proved differentiable architecture search with early stopping.

arXiv preprint arXiv:1909.06035, 2019. 2, 7, 8

[31] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In ICLR, 2019. 1, 2, 4, 5,

6, 7

[32] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J Crow-

ley. Neural architecture search without training. arXiv
preprint arXiv:2006.04647, 2020. 2, 3

[33] Xiangming Meng, Roman Bachmann, and Moham-

mad Emtiyaz Khan. Training binary neural networks using

the bayesian learning rule. arXiv preprint arXiv:2002.10778,

2020. 2

[34] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong

Jin, and Lihi Zelnik. Xnas: Neural architecture search with

expert advice. In Advances in Neural Information Processing
Systems, pages 1975–1985, 2019. 12

[35] Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E

Khan, Anirudh Jain, Runa Eschenhagen, Richard E Turner,

and Rio Yokota. Practical deep learning with bayesian princi-

ples. In Advances in neural information processing systems,

pages 4287–4299, 2019. 2, 4

[36] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff

Dean. Efficient neural architecture search via parameter shar-

ing. In International Conference on Machine Learning, pages

4092–4101, 2018. 1, 2

[37] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. AAAI, 2019. 1

[38] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,

Zhihui Li, Xiaojiang Chen, and Xin Wang. A comprehensive

survey of neural architecture search: Challenges and solutions.

arXiv preprint arXiv:2006.02903, 2020. 1

[39] Yao Shu, Wei Wang, and Shaofeng Cai. Understanding ar-

chitectures learnt by cell-based neural architecture search. In

International Conference on Learning Representations, 2020.

2, 4, 8

[40] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik,

Margret Keuper, and Frank Hutter. Nas-bench-301 and the

case for surrogate benchmarks for neural architecture search.

arXiv preprint arXiv:2008.09777, 2020. 11

[41] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114, 2019. 1

[42] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya

Ganguli. Pruning neural networks without any data by itera-

tively conserving synaptic flow. Advances in Neural Informa-
tion Processing Systems, 33, 2020. 3, 5

[43] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking

winning tickets before training by preserving gradient flow. In

International Conference on Learning Representations, 2020.

3, 5

[44] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng

Tang, and Cho-Jui Hsieh. Rethinking architecture selection

in differentiable nas. In ICLR, 2021. 2, 3

[45] Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin

Yang, and Christian S. Jensen. Autocts: Automated correlated

time series forecasting. Proc. VLDB Endow., 15(4):971–983,

2021. 1

[46] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:

stochastic neural architecture search. ICLR, 2019. 1, 7, 13

[47] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial chan-

nel connections for memory-efficient architecture search. In

ICLR, 2020. 7, 11

[48] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,

Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards

reproducible neural architecture search. In ICML, pages 7105–

7114, 2019. 5, 11

[49] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,

and Mathieu Salzmann. Evaluating the search phase of neural

architecture search. In ICLR, 2020. 1

[50] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-

rakchi, Thomas Brox, and Frank Hutter. Understanding and

robustifying differentiable architecture search. In ICLR, 2020.

1, 2, 3, 5, 8

[51] Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-

1shot1: Benchmarking and dissecting one-shot neural archi-

tecture search. In ICLR, 2020. 2, 5, 11

[52] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Zongyuan

Ge, and Steven Su. Differentiable neural architecture search

in equivalent space with exploration enhancement. Advances
in Neural Information Processing Systems, 33:13341–13351,

2020. 1

[53] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, and Steven

Su. Overcoming multi-model forgetting in one-shot nas with

diversity maximization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 7809–7818, 2020. 1

[54] Miao Zhang, Huiqi Li, Shirui Pan, Xiaojun Chang, Chuan

Zhou, Zongyuan Ge, and Steven Su. One-shot neural architec-

ture search: Maximising diversity to overcome catastrophic

forgetting. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 43(9):2921–2935, 2020. 1, 12

[55] Miao Zhang, Huiqi Li, Shirui Pan, Taoping Liu, and Steven

Su. One-shot neural architecture search via novelty driven

sampling. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20. Interna-

tional Joint Conferences on Artificial Intelligence Organiza-

tion, 2020. 1

[56] Miao Zhang, Huiqi Li, Shirui Pan, Taoping Liu, and Steven

Su. One-shot neural architecture search via novelty driven

sampling. In International Joint Conference on Artificial
Intelligence, 2020. 1, 2, 4, 8

[57] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang,

Jianzhuang Liu, and Qi Tian. Multinomial distribution learn-

ing for effective neural architecture search. In International
Conference on Computer Vision (ICCV), 2019. 13

[58] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan.

Bayesnas: A bayesian approach for neural architecture search.

In International Conference on Machine Learning, pages

7603–7613, 2019. 7, 13

11880

