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A B S T R A C T   

Background: Currently, more than forty discrimination formulae based on red blood cell (RBC) parameters and 
some supervised machine learning algorithms (MLAs) have been recommended for β-thalassemia trait (BTT) 
screening. The present study was aimed to evaluate and compare the performance of 26 such formulae and 13 
MLAs on antenatal woman data with a recently developed formula SCSBTT , which is available for evaluation in 
over seventy countries as an Android app, called SUSOKA [16]. 
Methods: A diagnostic database of 2942 antenatal females were collected from PGIMER, Chandigarh, India and 
was used for this analysis. The data set consists of hypochromic microcytic anemia, BTT, Hemoglobin E trait, 
double heterozygote for Hemoglobin S and BTT, heterozygote for Hemoglobin D Punjab and normal subjects. 
Performance of the formulae and the MLAs were assessed by Sensitivity, Specificity, Youden’s Index, and AUC- 
ROC measures. A final recommendation was made from the ranking obtained through two Multiple Criteria 
Decision-Making (MCDM) techniques, namely, Simultaneous Evaluation of Criteria and Alternatives (SECA) and 
TOPSIS. 
Results: It was observed that Extreme Learning Machine (ELM) and Gradient Boosting Classifier (GBC) showed 
maximum Youden’s index and AUC-ROC measures compared to all discriminating formulae. Sensitivity remains 
maximum for SCSBTT . K-means clustering and the ranking from MCDM methods show that SCSBTT , Shine & Lal 
and Ravanbakhsh-F4 formula ensures higher performance among all formulae. The discriminant power of some 
MLAs and formulae was found considerably lower than that reported in original studies. 
Conclusion: Comparative information on MLAs can aid researchers in developing new discriminating formulae 
that simultaneously ensure higher sensitivity and specificity. More multi-centric verification of the formulae on 
heterogeneous data is indispensable. SCSBTT and Shine & Lal formula, and ELM and GBC are recommended for 
screening BTT based on MCDM. SCSBTT can be used with certainty as a tangible cost-saving screening tool for 
mass screening for antenatal women in India and other countries.   

1. Introduction 

Hemoglobinopathies are a group of inherited hemoglobin (Hb) dis-
orders with abnormal production or structure of the globin polypeptide 
chain(s). According to the World Health Organization (WHO), approx-
imately 5% of the world population are carriers of Hemoglobinopathies 
and prevalence of anemia in antenatal women is alarmingly high 
(> 40%) mostly in low-and middle-income countries1. The common 
causes of anemia include deficiencies of iron, vitamin B12 and folate; 

and are reasons for estimated 273,000 annual deaths [12]. 
Iron deficiency anemia (IDA) can be considered an acquired disorder 

and can be treated with iron therapy. However, thalassemia is an 
inherited genetic disease and needs early identification and prognosis as 
the carriers can transmit their defective gene to the next generation. It is 
essential to differentiate between IDA and β-thalassemia traits (BTT) to 
advise partners in screening for BTT and unnecessary use of iron ther-
apy. However, discrimination of BTTs by RBC parameters is always a 
challenge in countries where anemia syndromes are concurrently 

1 www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-women-of-reproductive-age-(-) 
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prevalent. Definitive methods for differential diagnosis between carriers 
and IDA include quantitative detection of Hemoglobin A2 (HbA2) and 
DNA studies. But these are expensive and time-consuming for mass 
screening. Moreover, availability and accessibility of such differential 
diagnostic tests are limited in low-resource countries. It leads to a sub-
stantial challenge to develop an inexpensive, easily accessible, and 
interpretable screening formula. A cost-effective, evidence-based carrier 
screening formula can reduce significant healthcare burden, increase the 
efficiency of resource utilization, and, most importantly, early inter-
vention can reduce the burden of these disorders. 

This study evaluates the performance of formulae and MLAs on he-
matological data of Indian antenatal females, where β-thalassemia is 
prevalent across the country (3–4%) along with other symptomatic he-
moglobinopathies like HbS, HbE, and asymptomatic hemoglobin disor-
ders like HbQ, and HbD Punjab or Iran. According to a 2016 medical 
report published by the Ministry of Health & Family welfare2, Govern-
ment of India, the number of thalassemia major is near about 1.5 lakhs 
and the number of β-thalassemia carriers is almost 42 million. In certain 
communities, such as Sindhis, Punjabis, Gujaratis, Bengalis, Kolis, Sar-
aswats, Lohanas and Gaurs, an unexpected higher frequency (approxi-
mately 40%) are reported. In India, approximately 10,000–15,000 
babies are born with thalassemia major and has the largest number of 
thalassemia major children in the world. Offering a DNA test analysis for 
all subjects to detect causative mutation can lead to a substantial 
healthcare burden for the government. The definitive treatment avail-
able for these children is bone marrow transplantation (BMT). However, 
the existing facilities of BMT can support only a few children because of 
the prohibitive cost, paucity of BMT centers, or non-availability of a 
suitable Human Leukocyte Antigens (HLA) matched donor. The esti-
mated 40-year lifespan cost of treating a patient is $97,500, and early 
identification can save such cost and expedite clinical workflow. 

Over the last couple of decades, various mathematical formulae 
based on RBC parameters have been recommended, and over forty such 
formulae are presently available. Noticeably, in these formulae’ speci-
ficity or sensitivity measures varied considerably under independent 
validation. [12]. These discrepancies could be associated with analytical 
factors for a model development methodology, limited data sources, 
regional differences, demographic characteristics, and others. Recently, 
some researchers recommended the use of machine learning algorithms 
(MLAs) instead of the formulae [24,41]. We present a brief overview of 
the present state-of-art (mainly after 2000) of screening BTT by 
formulae and MLAs in Table 1 and subsequent recommendation across 
the world. 

Table 1 indicates that some authors preferred MLAs and overlooked 
the comparative evaluation of the available formulae [2,47] while 
others emphasized only on formulae [26,80]. Additionally, many au-
thors used the data set with limited variants, excluding other possible 
variants (such as: HbE, HbS) that may affect the outcome [32,48] while 
implementing mass thalassemia screening program. 

The performance measures used for screening tests have their unique 
merits and limitations. For example, sensitivity and specificity are often 
recommended to measure performance because they provide informa-
tion on how well a dichotomous test can distinguish between diseased 
and non-diseased samples at a given cut-point threshold. Knowing the 
performance of a particular measure of a screening formula/algorithm 
used in clinical decision-making is paramount for clinicians. However, it 
is not necessary that a single formula or algorithm can ensure the highest 
measure for all performance indicators. Therefore, multi-criteria deci-
sion making (MCDM) can be a structural and practical approach for 
making a final recommendation. Weight for each criterion (performance 
indicator) directly influences the final ranking of the MCDM method, 
and those can be defined objectively or subjectively. However, 

subjective weights can be assigned based on the experiences of the ex-
perts, and objective weights can be used through mathematical calcu-
lations based on the structure of the data set. In this study, we use 
Simultaneous Evaluation of Criteria and Alternatives (SECA) and 
Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) to generate a final ranking based on all four performance in-
dicators. TOPSIS, developed by Hwang and Yoon in 1981, is one of the 
simple MCDM ranking methods used extensively to solve real-world 
decision problems in diverse application areas [9,65]. We use a 
similar approach was used by Mishra et al. [53] while implementing the 
TOPSIS method. However, the SECA method is developed recently by 
Keshavarz-Ghorabaee et al. [39] and two key advantages of the method 
are: first, there is no need to weight the criteria separately, and second, 
the method can set weights for each criterion and generate final ranking 
by solving a multi-objective non-linear programming model. This 
method has also gained popularity in solving real-life conflicting 
decision-making problems quickly due to its easy application [19,4]. 

Earlier, we hybridized decision trees (DTs) and artificial neural 
network (ANN); and proposed screening formula SCSBTT [16]. The 
critical hypothesis of that study was to strictly identify BTTs (with 
sensitivity as high as possible), even if a fraction of normal individuals or 
other variants were recommended for further evaluation (compromising 
with specificity). The objective was to ensure a tangible cost-saving tool 
for medical practitioners and other organizations so that most of the 
population could be competently excluded with certainty during a car-
rier screening program. Later, the formula was implemented in an 
android based application software, called ’SUSOKA’, freely available in 
over seventy countries for blind evaluation. Despite several decades of 
research, the RBC-based discriminant formulae are yet to make the 
transition to routine clinical diagnostics. Further, the multitude of 
available formulae makes it difficult to choose between them based on 
the various performance measure to arrive at a diagnostic conclusion. 
This study aims to assess the diagnostic performance of a newly- 
designed web application-based screening strategy for diagnosing the 
BTTs and common hemoglobinopathies. We compared the 27 different 
discriminating formulae (including SCSBTT) and 13 MLAs on data of 
antenatal subjects and made decisions about a referral through the 
MCDM theory. The objective is to provide practical guidance on using 
low-cost tests (e.g., complete blood count (CBC), which costs <$2) 
instead of using expensive confirmatory tests (such as HPLC, which costs 
$20–50 per test). Further, from the perspective of academic research, we 
aim to identify the premier MLAs that can be used to develop the BTT 
screening formula. Further, we conducted the trade-off analysis among 
various performance measures through MCDM approaches for selecting 
appropriate methods to screen the patients proven to have various 
inherited hemoglobinopathies. 

2. Material and Methods 

Population evaluated: The formula SCSBTT , was developed from 
data set collected from the Postgraduate Institute of Medical Education 
and Research (PGIMER), Chandigarh during 2016–2018 [16]. For the 
present study, we collected a new data set containing all active patient 
recruited during December 2019 to March 2022 from the Department of 
Hematology at PGIMER, Chandigarh, India, for valiadation of the 
formulae and the MLAs. Routine diagnoses for thalassemia and hemo-
globinopathies are performed in this institute. The data set consisted of 
2942 samples (513 IDA, 1663 normal individuals, 665 BTT, and 101 
other hemoglobin variants). Out of 513 IDA samples: 184 had been 
diagnosed with “moderate anemia”, 27 with “severe anemia”, and the 
rest with “mild anemia”. Out of the 665 BTT samples: 118 had 
concomitant IDA. Out of the 101 other variants: 74 had HbE trait, 22 had 
HbD Punjab trait, 2 had HbD Iran trait, 1 had HbQ India trait, 1 had Hb 
Fontainebleau and 1 had homozygous HbE. The hemogram laboratory at 
PGIMER is under the United Kingdom National External Quality 
Assessment Service (UK NEQAS) Hematology program, and 

2 http://nhm.gov.in/images/pdf/programmes/RBSK/Resource_Documents/ 
Guidelines_on_Hemoglobinopathies_in%20India.pdf 
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recommended controls as advised by the respective manufacturers are 
used. We refer to Fig. 1 for the overview of computational scheme used 
in this study. 

Ethical consideration: Because only a retrospective evaluation of 
the automated red cell indices was carried out, the ethical clearance was 
not taken. No additional samples were taken, or tests were performed on 
the samples. All methods were performed following the relevant 
guidelines and the institution’s regulations. 

Diagnostic Performance: Based on the literature, 27 discrimination 
formulae and 13 MLAs were considered for evaluation (mostly from 
Table 1) by using measures such as Sensitivity(TPR) =

TP
TP+FN ;  Specificity(TNR) = TN

TN+FP ;  Youden’sIndex(YI) = TPR+ TNR − 1; 
AUC-ROC = 1

2-
FPR
2 +TPR

2 =1
2 −

FP
2(FP+TN)

+ TP
2(TP+FN)

, where TP, true positive; 
TN, true negative; FP, false positive; FN, false negative. If a formula or 
MLA had sensitivity, specificity, Youden’s index, and AUC-ROC near to 
1, it was considered a better differential performance. 

Statistical analysis: K- means cluster and ANOVA were conducted 
where the significance level was set at p <0.05. Statistical analyses were 
performed using IBM SPSS-277 for Windows (IBM Corp, NY, USA). 

Supervised learning models: This study compares 13 supervised 
MLAs: Random Forest (RF); Linear Support Vector Machine (SVM-L); 
Logistic Regression (LR); K-Nearest Neighbors (KNN); Decision Tree 
Classifier (DTC); Extra Trees Classifier (ETC); Bagging classifier (BC); 
Multi-layer Perceptron (MLP); Radial Basis Function kernel SVM (RBF- 
SVM); AdaBoost classifier(ADA); Linear Discriminant Analysis (LDA); 

Gradient Boosting for classification (GBC) and Extreme Learning Ma-
chine (ELM) were used for binary classifications and define a mapping 
between sample and output label. The data file was split into 70% 
training and 30% testing partitions using a defined seed value. Different 
seeds were chosen to maintain the training and testing set distributions. 
While applying the supervised learning algorithm, we used the following 
label: 1  = in favour of BTT and 0  = in favour of all other samples. An 
overview of the selected algorithms is presented in the Supplementary 
file. All MLAs were performed, and performance metrics were computed 
using the Python module Scikit-learn [60]. 

TOPSIS and SECA multi-criteria decision-making methods: We 
present the complete methodology for TOPSIS [5,55] and SECA [17,3] 
with explanation in the Supplementary file. 

3. Results 

In this study, we used five parameters: hemoglobin (Hb), mean 
corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), red 
blood cell (RBC), and red cell distribution width (RDW) of 2942 ante-
natal subjects. The Supplementary file shows the variation of these five 
parameters among four groups. The mean age was 27.6 years (standard 
deviation (SD)= 12.5). It was found that the mean and median values of 
MCV, MCH, and Hb were higher, and RDW and RBC were lower for the 
normal subjects (NS) compared to IDA, BTT, and other groups. The 
performance of the 27 formulae on the data set is presented in Table 2. 

Table 1 
Related work on evaluating formulae and MLAs.  

Formula Location Major Methods Data set Best       
variants        

[2] Italy α thalassemia, BTT, NS SVM, KNN, MLP Train and MLP         
test set: 304      

[56] Greece IDA, BTT 6 formulae Test set: 493 G & K     
[68] China IDA, BTT 12 formulae Test set: 300 G & K, E&F          

Ricerca(RDWI)     
[32] France IDA, BTT 11 formulae Test set: 129 Green & King     
[66] Thailand α thalassemia, BTT, HbE, DT(C4.5), NB, MLP Train set: 1402 MLP, NB       

Homozygous Hb E, NS  Test set: 8054      
[47] Italy α thalassemia, BTT, NS RBF, PNN, KNN Train set: 196 RBF         

Test set: 108      
[7] Israel α thalassemia, BTT ANN Train and ANN       

IDA, NS, MDS  test set: 526      
[78] Spain α thalassemia, BTT MDA Train set: 480 MDA       

IDA, IDA-BTT  Test set: 628      
[26] Taiwan α thalassemia, BTT, IDA 10 formulae Test set: 877 S & L     
[49] Brazil α thalassemia, IDA, BTT Fisher discriminant, ROC curve Train set: 291 Matos &         

Test set: 227 Carvalho formula     
[63] Italy BTT, NS PLS-DA Test set: 63 PLS-DA     
[30] Iran IDA, BTT DTs (QUEST, CHAID,CART, Train set: 144 CRUISE        

CRUISE,GUIDE, E-CHAID)       
[36] Pakistan α thalassemia, BTT, RF, DT(CART), 12 formulae Train set: 428 KF2       

HbE, HbS, IDA  Test set: 182      
[1] Palestine BTT, NS KNN, DT, NB, MLP Train and MLP, NB         

test set: 45,498      
[42] Thailand BTT, IDA KNN, DT, RF, ANN, SVM, 13 formulae Train set: 186 KF2, SVM     
[48] Indonesia BTT, IDA Shine & Lal formula Test set: 196 S & L     
[16] India α thalassemia, BTT MLP, DT, RBF Train set: 1076 SCSBTT       

HbE, IDA  Test set:492      
[14] Turkey BTT, IDA RELM, SVM, KNN, ELM, LR Train set: 342 RELM     
[24] Spain α thalassemia, BTT, IDA ROC, 23 formulae Test set: 2218 G & K, Jayabose     
[29] India BTT, NS DT(C4.5), ANN, NB Train and ANN         

test set: 420      
[80] Sri Lanka IDA, BTT 11 formulae Test set: 111 S & L     

Present Study India IDA, BTT, HbE, NS 27 formulae, 13 MLAs Test set: 2942 SCSBTT, S & L,          
ELM, GBC     

ANN, artificial neural network; CART, classification and regression trees; CHAID, CHi-squared automatic interaction detector; CRUISE, classification rule with un-
biased interaction selection and estimation; DT, decision tree; E-CHAID, exhaustive CHAID; ELM, extreme learning machine; GUIDE, generalized, unbiased, interaction 
detection and estimation; KNN, k-nearest neighbor; LR, logistic regression; MDA, multiple discriminant analysis; MLA, machine learning algorithm; MLP, multi-layer 
perceptron; NB, naive bayes; PLS-DA, partial least square discriminant analysis; PNN, probabilistic neural network; QUEST, quick, unbiased, efficient statistical tree; 
RBF, radial basis function; RELM, regularized extreme learning machine; RF, random forest; ROC, receiver operating characteristic; SVM, support vector machine. 
MDS, myelodysplastic syndrome. 
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We excluded some formulae such as Index26 [31] or Janel(11T) [32] 
as these authors used a combination of several formulae, which might be 
difficult to explain for clinicians. In addition, we excluded formula M/

Hratio = %MicroR
%HypoHe [77]; MSI = %MicroR

MCV × MCHC × Hb [12], because these 
formulae use parameters that required analyzers and methods that 
might not widely available in regions where healthcare resources are 
limited. It appears that the application of SCSBTT can ensure maximum 
sensitivity and is comparable with S&L formula and Ricerca formula 
(Table 2). However, the specificity of SCSBTT is low compared to many 
formulae (Table 2). S&L formula ensures the highest ROC-AUC and YI 
among all. SCSBTT and Ravanbakhsh-F4 remain comparable to each 
other in terms of YI and AUC-ROC. Next, we compared the performance 
of the 13 MLAs on the present data set, and the result is shown in 
Table 3. 

From the perspective of MLAs, ELM and GBC demonstrate higher YI 
and AUC-ROC. Noticeably, all MLAs show higher specificity but lower 
sensitivity. Since the performance of formulae and MLAs varies 
considerably for each performance measure, we conducted K-mean 
clustering. The aim was to identify a subset of formulae and MLAs which 
ensure comparable performance with respect to all four measures 
(Fig. 2). 

We conducted ANOVA for the cluster analysis (Table 2 in supple-
mentary file), and the outcome shows that each measure makes a sig-
nificant impact on deciding cluster members (p < 0.05). It is also 
observed from Fig. 2 that each performance measure varies considerably 
among the clusters. For example, Fig. (2b) demonstrates that Cluster-5 
includes all those formulae (S&L, RF-4, and SCSBTT) whose sensitivity, 
YI and AUC-RUC are relatively higher, whereas, Cluster-4 includes all 
those formulae (Bessman, Sirachainan, Huber-Herklotz) which showed 
comparatively lower performances. Note that while a high sensitivity 
and high specificity are preferable, however, usually there is a trade-off 
between sensitivity and specificity: as one increases, the other decreases 
[13,51]. Therefore, Cluster-5 includes all those formulae whose sensi-
tivity is high compared to other algorithms without too much-sacrificing 
of the specificity measure. Similarly, Fig. (2 a) demonstrates that 
Cluster-2 includes all those MLAs (ADA, GBC, ELM, MLP) whose sensi-
tivity, specificity, YI, and AUC-ROC are high. Overall, SCSBTT, Sirdah, 
ELM and ELM & GBC show higher sensitivity, specificity, YI, AUC-ROC, 

respectively (Tables 2 and 3). However, the Sirdah formula does not 
appear in a good cluster because its specificity is too low, whereas 
Ravanbakhsh-F4 or ADA appears in good clusters because of relatively 
higher performance for all four measures. 

Regarding the performance metrics to evaluate predictive screening 
methods, there is no unique guideline. Moreover, each measure has it 
own advantage and limitation [70]. For example, as stated by [73], the 
Youden index is not a truly optimal decision rule for setting thresholds. 
Therefore, MCDM methods are implemented and the final ranking is 
presented in the following Tables 4 and 5. 

The results for the final ranking are consistent with the claim by 
Keshavarz-Ghorabaee et al. [39], Bahrami and Rastegar [6], where the 
author compares the outcome of the SECA method with other MCDM 
methods. Results reflect that the ranking for the two methods is almost 
similar and may further be used for final recommendation. 

4. Discussion 

A definitive diagnosis of BTTs should under ideal circumstances be 
performed by molecular genetic analysis. But one-third of the world 
population lacks access to essential health services, and has been 
continuously facing an extreme burden of health expenses of the costly 
methods of diagnosis (https://apps.who.int/iris/bitstream/handle/ 
10665/311654/9789289054058-eng.pdf?sequence=1&isAllowed=y, 
accessed March 21, 2022). Noticeably, the cost of prevention through 
screening for BTTs is only one-tenth of the treatment costs [37, 22]. 

Therefore, early identification of BTT is the cornerstone of reducing 
the burden of thalassemia syndromes morbidity and mortality in most 
high-prevalence areas. The aim of using RBC-based formulae is to make 
early identification of BTT subjects to reduce unnecessary evaluation 
costs and resource utilization for large populations. It can significantly 
alleviate the burden of hemoglobinopathies on clinical services in 
middle and low-income countries [30]. However, RBC-based ap-
proaches suffer from interference of microcytosis and hypochromia, 
most notably iron deficiency, anemia of chronic disorders, and clinically 
much less relevant α-thalassemia trait/silent carrier state. The latter is 
less relevant in South Asia due to the prevalence of α + genotypes. The 
interference may also be caused by lead poisoning and vitamin C and E 

Fig. 1. Computational scheme for the study and MCDM methods.  
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deficiencies. RBC indices may be normal in BTT persons with coexisting 
megaloblastosis or co-inherited α-thalassemia. RBC counts will also be 
largely normal or minimally deranged in persons with sickle cell traits. 
On the other hand, HPLC might also be equivocal in persons with certain 
borderline HbA2 mutations like the CAP+1(A>C), IVS-1–110(G>A), 
which could further be affected by α-thalassemia, iron/B12/folate de-
ficiencies as well as by hyperthyroidism or Zidovudine therapy. There-
fore, a formula/MLA that ensures higher performance measures can 
radically improve the healthcare workflow to manage the available re-
sources and efficiently utilize them. 

It is revealed from the present study that the diagnostic performance 
of the formulae available is not comprehensive. In contrast to high- 
performance measures claimed by the respective authors, many 
formulae often show relatively lower performance measures when 
tested by others on different subjects. For example, [36] claimed that 
they obtained both maximum sensitivity and specificity (100%), which 
is not validated by other [30] as well as in the present study. Similar to 
[68], the present study revealed a higher performance measure for the 
Ricerca formula, but specificity was quite low. Still, the performance 
measure for some formulae found in the present study remained quite 

similar to that reported in the original study [6,14]. While one of the key 
focus of this study was to evaluate and compare the efficiency of SCSBTT, 
we found that the specificity of this formula was low compared to the 
original research [16]; but still, it demonstrated 100% sensitivity. 
Moreover, the outcome of SCSBTT can be evaluated globally (https://pl 
ay.google.com/store/apps/details?id=com.something.susoka&hl 
=en&gl=US, accessed March 19, 2022), and especially countries such 
as: Brazil [58], Africa [67], where the hemoglobinopathies are rapidly 
spreading. The evaluation and comparative analysis support the appli-
cation of BTT screening in a semi-automated manner and we recom-
mended that the implementation of a robust and easily accessible 
application has the potential to be a tangible mass-screening tool for 
functional clinical laboratory diagnosis if it is further validated and 
improved with multi-centric data. 

As revealed from the present study, S&L formula shows higher per-
formance in differentiating BTTs from others, which is consistent with 
some other studies conducted in Sri Lanka [80], Taiwan [26], Indonesia 
[48]. Indeed, each high-frequency population in the world might carry a 
few common mutations that are unique to a particular region [44]. 
Therefore, we recommend developing and testing a region-specific 

Table 2 
Performance analysis of discriminant formulae.  

Study Discriminating formula Cut-off Sens. Spec. YI AUC-ROC      
for BTT        

Srivastava MCH
RBC 

<3.8 0.420 0.987 0.407 0.703    

[74]          
E&F [21] MCV − RBC − 5Hb <0 0.262 0.997 0.259 0.630    

Mentzer [50] MCV
RBC 

<13 0.541 0.990 0.531 0.766    

RBC [40] RBC > 5 0.580 0.950 0.531 0.765    
S&L [69] MCV2 × MCH

100 
<1530 0.939 0.879 0.818 0.910    

Bessman [10] RDW < 14 0.021 0.659 -0.320 0.340    
Ricerca [62] RDW

RBC 
<4.4 0.905 0.198 0.103 0.552    

G&K [23] MCV2 × RDW
100Hb 

<65 0.391 0.968 0.359 0.680    

Das Gupta [18] 1.89RBC – 0.33RDW – 3.28 > 0 0.707 0.628 0.335 0.667    
Telmissani – MDHL [75] MCH × RBC

MCV 
>1.75 0.214 0.994 0.208 0.604    

Jayabose-RDWI [33] MCV × RDW
RBC 

<220 0.547 0.945 0.492 0.746    

Huber– Herklotz [27] MCH × RDW
10RBC

+ RDW 
< 20 0.051 0.954 0.005 0.503    

Sirdah [72] MCV − RBC − 3Hb <27 0.371 0.999 0.370 0.685    
Kerman-I [15] MCH × MCV

RBC 
<300 0.388 0.969 0.357 0.679    

Ehsani [20] MCV − 10× RBC <15 0.538 0.989 0.528 0.764    
Wongprachum [81] MCV × RDW

RBC
− 10Hb <104 0.454 0.917 0.371 0.686    

Nishad [54] 0.615MCV + 0.518MCH <59 0.589 0.968 0.557 0.778     
+ 0.446RDW         

Sirachainan [71] 1.5Hb − 0.05MCV >14 0.167 0.679 -0.154 0.423    
Bordbar [11] |80 − MCV| × |27 − MCH| >44.76 0.428 0.816 0.224 0.578    

Ravanbakhsh-F2 [61] RDW − 3RBC < 1.5 0.523 0.646 0.169 0.584    
Ravanbakhsh-F3 [61] MCV× RDW − 100RBC < 600 0.528 0.915 0.443 0.721    
Ravanbakhsh-F4 [61] MCV × Hb

RDW × RBC 
< 10 0.874 0.858 0.731 0.866    

Kandhro-2 [36] 5RDW
RBC 

< 16.8 0.558 0.644 0.202 0.601    

Merdin-1 [52] RDW × RBC
MCV 

> 1.27 0.568 0.949 0.518 0.759    

Merdin-2 [52] RDW × RBC × Hb
MCV 

> 14.7 0.380 0.985 0.366 0.683    

Roth [64] 1.45(MCV − 82.8)
10.28

+
< 0 0.584 0.967 0.551 0.776     

0.66(MCH − 27.0)
3.9

+ 0.98         

SCSBTT[16] 0.2815MCV + 0.2015MCH <24.99 1.000 0.720 0.720 0.860     
− 0.2641RBC − 0.1693RDW          

+0.0835Hb         
Best  SCSBTT Sirdah S&L S&L    

AUC, area under the curve; Hb, hemoglobin; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean cell volume; RBC, 
red blood cell; RDW, RBC distribution width; ROC, receiver operating characteristic; YI, Youden’s Index. 
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formula for a reliable and robust discrimination power. 
In many countries, the law allows to opt for termination of pregnancy 

(https://en.wikipedia.org/wiki/Abortion_law, accessed March 29, 
2022). Recent technology advancements include ultrasound-guided and 
invasive procedures to examine chorionic villus sampling (CVS) at about 
11–13 weeks or amniotic fluid sampling (amniocentesis) at about 16–20 
weeks to confirm. A high percentage of parents who had experience in 
managing hemoglobinopathies individuals revealed that they would opt 
for termination of pregnancy [57]. International organizations such as 
WHO and Thalassaemia International Federation still do not make any 
strategy for mandatory antenatal screening [76]. To our knowledge, this 
is the first study of BTT screening based on antenatal women data. It is 
found that a class of MLAs, as well as formulae, can ensure higher 
specificity as well as sensitivity. The expected highest prevalence of BTT 
will be among the relatives of patients. Because of the growing number 
of consanguineous marriages, we recommend initiating a national pro-
gram to encourage comprehensive self-screening among relatives, at 
least using such a simple formula. 

Our pre-analysis, presented in the Supplementary file, shows that 
significantly higher RBC count, Hb, and significantly decreased values of 
MCV found in the BTT group compared to IDA, which agreed with 
previous studies. Noticeably, the two well-performed formulae, SCSBTT 
[16] and RF-4 [61] include Hb as additional parameter. Moreover, the 

Table 3 
Performance analysis of MLAs.  

ML algorithms Sens. Spec. YI AUC-ROC      

RF [83] 0.767 0.966 0.733 0.870      
SVM-L [64] 0.762 0.960 0.722 0.860      

LR [35] 0.750 0.951 0.701 0.850      
KNN [47] 0.781 0.964 0.745 0.870      
DTC [79] 0.734 0.939 0.674 0.840      
ETC [59] 0.779 0.960 0.740 0.870      
BC [25] 0.802 0.951 0.753 0.880      

MLP [16] 0.807 0.968 0.775 0.890      
SVM-RBF[64] 0.800 0.941 0.741 0.870      

ADA [43] 0.855 0.966 0.821 0.910      
LDA [34] 0.752 0.941 0.693 0.850      
GBC [28] 0.875 0.957 0.832 0.920      
ELM [45] 0.866 0.972 0.838 0.920      

Best GBC ELM ELM GBC & ELM      

ADA, adaboost classifier; AUC, area under the curve; BC, bagging classifier; DTC, 
decision tree classifier; ELM, extreme learning machine; ETC, extremely ran-
domized trees classifier; GBC, gradient boosting classifier; KNN, k-nearest 
neighbor; LDA, linear discriminant analysis; LR, logistic regression; MLA, ma-
chine learning algorithm; MLP, multilayer perceptron; RBF, radial basis func-
tion; RF, random forest; ROC, receiver operating characteristic; Sens., 
sensitivity; Spec., specificity; SVM, support vector machine; YI, Youden’s Index. 

Fig. 2. K-mean cluster for formulae and MLAs.  

Table 4 
Final ranking of MLAs by using TOPSIS and SECA methods.  

TOPSIS SECA     

MLAs Closeness Rank MLAs Performance Rank      
index   of each alternatives      

ELM 0.9708 1 ELM 0.9964 1     
GBC 0.9678 2 GBC 0.9925 2     
ADA 0.8870 3 ADA 0.9839 3     
MLP 0.5940 4 MLP 0.9514 4     
BC 0.4819 5 BC 0.9357 5     

SVM-RBF 0.4215 6 KNN 0.9289 6     
KNN 0.4118 7 SVM-RBF 0.9262 7     
ETC 0.3849 8 ETC 0.9255 8     
RF 0.3346 9 RF 0.9215 9     

SVM (Linear) 0.2739 10 SVM (Linear) 0.9126 10     
LR 0.1546 11 LR 0.8978 11     

LDA 0.1185 12 LDA 0.8925 12     
DTC 0 13 DTC 0.8785 13      
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formula proposed by [72], which ensures the highest specificity, also 
includes Hb as one of the determining parameters. The antenatal women 
are clinically advised to keep higher hemoglobin levels (11–16 g/DL), 
sometimes through additional therapy. But most of the formulae ignore 
the impact of Hb (Table 2). Therefore, we strongly recommend including 
Hb as a crucial parameter while developing a formula for BTT screening, 
at least for antenatal women. 

Enthusiasm for applying MLAs in BTT screening mainly focuses on 
their potential to expedite and automate the early discrimination pro-
cess. This work is also in line to evaluate how these algorithms will 
simulate a human clinician’s decision-making processes, and when 
MLAs developed by training heterogeneous data can support fast and 
efficient mass-screening. Fig. 2; if we look at the best performing MLAs, 
then we have the following key observations: GBC and AdaBoost are 
based on Ensemble Learning principle, where instead of using a single 
predictor, multiple predictors were used and aggregated. Both MLAs are 
successfully implemented for multi-task learning in different fields 
[43,82]. However, ELM does not rely on gradient-based back-propaga-
tion principles [8,46], rather the method is based on Moore–Penrose 
generalized inverse principles. Therefore, the present study indicates 
that integrating more advanced MLAs in screening formulae and multi- 
centric validation can yield a tangible formula. Therefore, we recom-
mend the integration of more advanced MLAs in developing new 
formulae. In this regard, one of the key strengths of SCSBTT is that it was 
developed by a hybrid algorithm (DTs and ANN) and was managed by a 
multidisciplinary team, and now it is open for review. 

While evaluating the final recommendation, we found that a single 
formula or MLA fails to ensure the highest performance measure. Note 
that the decision-makers choice of some specific performance measure 
should not influence the final cut-off for formulae. A prioritization and 
performance measure scheme can ensure that ML algorithm or formulae 
can offer the potential to improve the success and efficiency of clinical 
research, increasing its positive impact on all stakeholders. Therefore, 
we recommend the use of the MCDM technique for the final recom-
mendation from a set of criteria. 

The results presented in Table 3 support the adaptability of the su-
pervised MLAs in BTT screening in a realistic setting. However, different 
performance measures might likely be anomalous if hyper-parameters 

related to the algorithms are not set correctly. Moreover, we must also 
be cautious not to rely heavily on the isolated judgments made by MLAs. 
We intentionally did not mix the outcome of all MLAs and formulae in 
cluster analysis or MCDMs because: First, some of the formulae had 
already gone through a rigorous prospective and retrospective valida-
tion process by clinical researchers, whereas some of the MLAs, we 
considered in this study, were not yet validated and even implemented 
for BTT screening. Moreover, we used MLAs only for retrospective 
analysis, i.e., use historically labeled data as training and test sets. 
Therefore, before implementing the best-recommended MLAs (e.g., 
ELM), we need to conduct further trials to reduce bias and brittleness. 
Second, the performance of MLAs needs a specific hyper-parameter 
optimization scheme. Additionally, human barriers to adopting MLAs 
are substantial because it is difficult to set those parameters by clini-
cians, or sometimes there might be a scarcity of ML experts. The 
parameter setting might vary considerably based on the training and test 
sets. Therefore, standardization of hyperparameters associated with 
each MLAs is critical before implementing the MLAs. In this respect, we 
refer to [38] for the further discussion on essential barriers for direct 
implementation of MLAs in the clinical decision. Additionally,it is noted 
in EU General Data Protection Regulation (Recital 71) “ Such processing 
includes ’profiling’ that consists ’.. to obtain an explanation of the decision 
reached after such assessment and to challenge the decision.” 3. Therefore, 
the clear understandability of outcomes, both for patients and clinicians, 
is always important. How MLAs can be implemented in clinical decision- 
making also raises some key discussion areas: “Trustworthy AI”, 
“Explainable AI”; a key challenge remains to ensure a stable and scalable 
outcome. Therefore, the intention of the present study is not to try to 
exceed the performance of the trained medical personnel but to show 
that the screening task can be performed well in a semi-automated 
fashion. 

5. Conclusion and future research direction 

Developing a screening formula is essential in diagnosing and 

Table 5 
Final ranking of formulae by using TOPSIS and SECA methods.  

TOPSIS SECA     

MLAs Closeness Rank MLAs Performance Rank      
index   of each alternatives      

S&L 0.9678 1 S&L 0.9432 1     
SCSBTT 0.9010 2 SCSBTT 0.8879 2     

Ravanbakhsh F4 0.8863 3 Ravanbakhsh F4 0.8846 3     
Nishad 0.6554 4 Nishad 0.7604 4     
Roth 0.6489 5 Roth 0.7565 5     
RBC 0.6291 6 RBC 0.7430 6     

Mentzer 0.6199 7 Mentzer 0.7419 7     
Ehsani 0.6164 8 Ehsani 0.7395 8     

Merdin-1 0.6141 9 Merdin-1 0.7342 9     
Jayabose 0.5848 10 Jayabose 0.7169 10     

Ravanbakhsh F3 0.5339 11 Ravanbakhsh F3 0.6844 11     
Srivastava 0.4767 12 Srivastava 0.6568 12     
Das Gupta 0.4697 13 Wongprachum 0.6351 13     

Wongprachum 0.4490 14 Sirdah 0.6310 14     
Sirdah 0.4312 15 Merdin-2 0.6285 15     

Merdin-2 0.4291 16 G & K 0.6248 16     
G & K 0.4245 17 Kerman-I 0.6234 17     

Kerman-I 0.4220 18 Das Gupta 0.6217 18     
Ricerca 0.3544 19 E & F 0.5551 19     

Kandhro-2 0.3199 20 Bordbar 0.5397 20     
Bordbar 0.3050 21 Kandhro-2 0.5299 21     
E & F 0.3042 22 Telmissani (MDHL) 0.5201 22     

Ravanbakhsh F2 0.2846 23 Ravanbakhsh F2 0.5071 23     
Telmissani (MDHL) 0.2476 24 Ricerca 0.4798 24     

Huber-Herklotz 0.0808 25 Huber-Herklotz 0.3826 25      

3 https://eur-lex.europa.eu/eli/reg/2016/679/oj 
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planning to control hemoglobinopathies. This study evaluates the per-
formance of 27 formulae and 13 MLAs using a data set of 2942 samples 
from antenatal females. It is revealed from the evaluation of the present 
data set as well as from the review of literature that the performance 
measures of the formulae and the MLAs might change considerably 
when verified on a different data set, mainly from other regions of the 
world. Depending on the mutations detected in different countries, the 
RBC-based parameters change considerably, which might affect the 
performance measures. Independent verification of the performance 
measures of the formulae and MLAs is scarce. To fully appreciate the 
diagnostic performance, we strongly recommend that region-specific 
independent verification of a formula or an MLA should be mandatory 
before it is used for mass screening. 

This study reveals that the performance measures of the formulae 
S&L and SCSBTT and from the MLAs, GBC and ELM are high as the 
ranking obtained through the SECA and TOPSIS. S&L formula has been 
tested on a wide variety of populations. Therefore, we recommend the 
use of S&L, SCSBTT, GBC, and ELM for a wide range of samples. A better 
interpretation is possible if the best performing formulae and the MLAs 
could be applied together for a certain data set. However, application 
software is required for quick screening to validate the performance of a 
large data set, irrespective of the method used - formula or MLA. Finally, 
this study presents the first initiative of mass screening of BTT in ante-
natal women through this freely available software. The formula SCSBTT 
was developed based on the data set collected form PGIMER, Chandi-
garh, India (Das et al. [16]). The present analysis is also conducted on 
data from the same institution. Therefore further evaluation is necessary 
on the data set collected from other independent sources, and future 
trials are necessary to validate the performance measures by application 
software if formulae and MLAs are applied jointly on a data set. 
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