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Abstract—The power electronics system reliability is strongly
dependent on the environmental and operating conditions at
the installation site. During the reliability modelling, a mission
profile-based procedure is traditionally employed to account for
this dependency. To accurately estimate the reliability, mission
profiles need to include the low resolution time intervals (e.g.,
several minutes per sample). The main forecasting challenge is
the accurate prediction of such profiles for long-term prediction
horizons, such as several years ahead. Therefore, in this paper,
a mission profile forecasting method suitable for long-term
reliability-oriented planning is proposed. The benefit of this
method includes multi-year mission profile prediction with high
time resolution (i.e., 1 minute per sample) suitable for power
electronics reliability studies. A case study reveals that the
proposed forecasting method enables power electronics modelling
with less than 5% relative error in reliability estimation over
different time horizons.

Index Terms—Long-term forecasting, power electronics, relia-
bility, design

I. INTRODUCTION

Renewable energy-based systems, such as photovoltaic and
wind power plants are nowadays designed for the operational
span of 30-40 years [1]. The power converter design has
a significant impact on the optimum design and reliable
operation of such systems [2]. Data from the previous field
experience indicate power electronics failure as the one of
the leading reasons for system downtime [3]. For example,
power electronics failure was listed as one of the top five
common failure causes of wind power plants in UK [4].
Moreover, in the photovoltaic applications, it is reported that
the half of the system failures were attributed to the power
electronics [5]. Similar is concluded in [6], where it is shown
that the power converter reliability design significantly impacts
the maintenance strategies and long-term system planning.
Therefore, design for reliability of power converters needs to
be included in the process of the system design.

The power electronics reliability is strongly dependent on
the application-specific operating and environmental condi-
tions. Those conditions are included in the form of a mission
profile for which the power converter reliability is determined
during the design process. If the reliability level is not
sufficient, corrective design actions are performed until an
optimum design is reached [7]. To assure accurate prediction
of the converter reliability, several requirements are set for
the mission profile. 1) Mission profile needs to accurately
represent the operating conditions at the installation site [8].
2) The time horizon of the mission profile needs to match the

design horizon of the system the power converter is a part
of [9]. 3) The time resolution needs be in a minute range to
capture the changes in the converter loading that cause damage
accumulation [10].

A common way to represent the operating conditions is to
use historical data of the installation site as a mission profile
[11]. For example, in solar photovoltaic applications, one year
historical data are used to represent expected intra-year and
seasonal patterns [12]. It is assumed that the estimated yearly
degradation occurs repetitively until the failure of the unit due
to wear-out happens [13]. In such approach, inaccuracies are
introduced due to using historical data instead of predicted
data, as well as using only a single year instead of several
years. The later is investigated in [14], [15]. In [14], it is
reported that using a one-year mission profile repetitively
instead of five years of historical data introduces 7% error in
the reliability estimation. However, the analysis was conducted
for a installation site in an arid climate, which impacted
the accuracy of the results to large extend. In [15], the
mission profiles with a higher level of intra-year variations
are examined. The difference in failure percentage of more
than 20% is reported. In fact, the study concluded that a
single-year mission profile approach can lead to significant
differences in the optimum design solution. Further on, it can
be assumed that the error becomes more pronounced for longer
design horizons. Another approach includes simplifications of
the mission profile. For example, in [16], a mission profile is
generated based on the application-specific operating scenario
with the highest probability of occurrence. However, the
impact of the assumptions on the accuracy of the reliability
prediction in the long-term planning is not investigated.

A more accurate approach would be to use a forecasting
method to predict the mission profile instead of using historical
data. The long-term planning methods used in power system
domain can be used to predict environmental conditions for
several decades ahead [17]. Hence, those methods match
the mission profile time horizon requirement. However, in
the power system domain, the forecast profiles require sig-
nificantly lower time resolution (e.g., 1 month or 1 year
per sample) than the ones for power electronics reliability
applications. To overcome this issue, the short-term forecasting
method can be used to generate the high resolution profiles
[18]. Nonetheless, their accuracy decreases as time horizons
extends [19]. Therefore, they are not suitable for time horizons
in a range of years.
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Fig. 1. Proposed mission profile forecasting framework for reliability mod-
elling of power converters in the long-term planning shown on the example
of solar irradiance S. Input is Ny years of historical data with ∆t = 1
min/sample resolution, output is TPH years of predicted data with ∆t = 1
min/sample resolution.

In this paper, an approach to do long-term mission profile
forecasting for reliability modelling of power converters is
presented. The proposed approach connects the long-term
forecasting methods with the time resolution requirements of
the power converters reliability modelling. Hence, it over-
comes the limitations of long-term forecasting methods in
application to mission profile prediction for power electronics
reliability studies. The rest of the paper is organized as follows.
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Fig. 2. Procedure for determination of the lifetime consumption LC for input
solar irradiance S and ambient temperature Ta profiles on the example of the
photovolatic (PV) arrays connected to the DC/DC boost converter. PPV is
output power of PV arrays, Ploss is DC/DC converter loss, Tj is junction
temperature of Insulated-Gate Bipolar Transistor s1, Tjm and ∆Tj are mean
and cycle amplitude of the junction temperature, and ton is a cycle period.

In Section II, a detailed description of the framework for
mission profile forecasting is provided. In Section III, a case
study is conducted, where the forecast accuracy for reliability
modelling is examined. In Section IV, the main conclusions
of the study are provided.

II. THE PROPOSED FRAMEWORK

The proposed framework for mission profile forecasting in
design for reliability of power converters is shown in Fig.
1. It can be used for a multi-year forecasting with a high
time resolution (e.g., 1 minute per sample), which is suitable
for reliability modelling of power electronics. The framework
consists of two main parts, namely training and prediction.

As part of the training process, historical data is organized
into daily profiles. These profiles are then characterized and
clustered into characteristic daily profiles. Afterwards, the
Naı̈ve Bayes Classifier is used to determine the conditional
probability of each characteristic daily profile occurrence given
daily characteristics. In the second step, a daily profile is
characterized and used together with the trained model for
prediction. More details on the implementation of each step
are provided in following.

A. Training Process

The input to the training process are Ny profiles of historical
data. Each profile has a time horizon Ty of one year and a
time resolution ∆t of 1 minute per sample. The Ny profiles
are sorted into Nd = Ny × 365 daily profiles (time horizon
td = 1 day). During the training process, the daily profiles
are divided into clusters based on their impact on power
electronics reliability.

1) Lifetime Estimation & Profile Characterization: A life-
time consumption LC is selected as a relevant reliability
parameter. Its value is determined for each daily profile in the



input training set by following the procedure shown in Fig. 2.
To determine LC, a converter loading for the input conditions
(i.e., daily mission profile) is first investigated. Then, the junc-
tion temperature Tj of the Insulated-Gate Bipolar Transistor
(IGBT), being the reliability-critical component considered
in this paper, is determined by means of an electro-thermal
model [20]. The relevant stress information, such as mean
junction temperature Tjm, the cycle amplitude ∆Tj and the
cycle period ton, are extracted from Tj profile. Those are used
to determine the number of cycles to failure Nf described with
the lifetime model in (1) based on [21]. Then, LC is defined
in (2) as a ratio of the number of cycles for given operating
conditions ni and the number of cycles to failure Nf .

Nf = K · (∆Tj)
β1 · e

β2
Tjm+273 ·

(ton)
β3 · Iβ4 · V β5 ·Dβ6 (1)

LC =
∑
i

ni

Nfi
(2)

Each daily profile is also characterized by series of features
and included in the feature array Xp. The features are defined
with respect to the parameters, which best describe the charac-
teristic of the daily profiles and can provide information about
the daily, weekly and monthly characteristics. For example,
those parameters can be daily mean, peak, standard deviation,
and maximum difference between two samples in the profile.

2) Data Clustering: The K-means method discussed in
[22] is used to optimally cluster the LC values of each daily
profile. The method is used to find the optimal number of
clusters, where all the LC values belonging to one cluster
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Fig. 3. Training data set (9 years) with 1 minute per sample time resolution
for Las Vegas, Nevada installation site: (a) Solar irradiance S, and (b) Ambient
temperature Ta.

have the highest degree of associations and vice versa. The
objective function to be minimized is defined as follows:

J =

Nd∑
i=1

K∑
k=1

uik∥LCi − Ck∥ (3)

where Ck is k-th cluster centroid and uik represent the
membership of the i-th LC to a cluster k.

Therefore, the output of the clustering process is K number
of clusters, where the k-th cluster is represented with a cluster
centroid Ck. This value is a mean value of all the LC
values belonging to the cluster. To find the characteristic daily
profiles, cluster centroid Ck is compared to all LC elements
belonging to the cluster k. Daily profiles of the element with
LC closest to Ck are used to represent the characteristic
profiles of a cluster.

3) Naı̈ve Bayes Classifier Training: In this step, the proba-
bility of the occurrence of a cluster k given certain conditions
in Xp needs to be determined. This is done by means of Naı̈ve
Bayes Classifier [23]. Input to the model is a matrix which
consists of the feature array Xp and cluster information for
each daily profile in the training set. Hence, during training,
both features and association to certain cluster are known for
each day in the input training set. Therefore, Naı̈ve Bayes
Classifier determines the prior probability distribution for each
cluster with respect to input matrix information. Moreover, it
evaluates the probability of features given that the outcome
cluster is know (i.e., likelihood). The output of the procedure is
the trained model, which is then used in the prediction process.

B. Prediction Process

A probabilistic forecast is employed to determine a multi-
year mission profile, which is a combination of the charac-
teristic daily profiles. The input to the prediction is Xp array,
that is defined based on the characteristics of the previously

TABLE I
CASE STUDY: SYSTEM DESIGN PARAMETERS AND CHARACTERISTICS.

PV array rated power 7.2 kW
DC/DC converter rated power 6 kW (3kW x 2 units)
Reliability-critical component IGBT (s1)
Failure mechanism Bond wire lift-off
Stress parameter Junction temperature Tj of s1
Lifetime model Number of cycles to failure Nf

TABLE II
CASE STUDY: IGBT LIFETIME MODEL PARAMETERS.

Factor Value Description Constant Value
β1 −4.416

I 10 A Bond wire current β2 1285

V 0.6 kV Blocking voltage β3 −0.463

D 300 µm Bond wire diameter β4 −0.716

K 2.03×1014 Technology factor β5 −0.761

β6 −0.5
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Fig. 4. Clustering results for input training set (9 years of data with 1 minute per sample resolution) yielding K = 10 clusters (C1 − C10). Each cluster
is characterized by the cluster centroid Ck and characteristic daily profiles (1 minute per sample resolution) of solar irradiance S (blue curve) and ambient
temperature Ta (red curve).

determined daily profiles. The process of defining Xp is the
same as in the case of model training. However, the data used
to define Xp are observation and prediction data, which differ
from the training data. Information in Xp are used together
with the trained model based on the Naı̈ve Bayes Classifier to
find the cluster with the highest probability of occurrence for
the following day, which is defined as [23]:

max(P (Spred
i = Ck|Xp)) =

max

{
L∏

l=1

P (Xpi
(l)|Spred

i = Ck) · P (Spred
i = Ck)

}
(4)

where Spred
i is the i-th daily predicted profile, Xpi

(l) is the
l-th feature of the i-th day feature array, and L is the length
of the feature array.

Once a daily profile is predicted, it is used as the input to
the procedure to predict the subsequent profile. The process is
repeated until the prediction horizon TPH is reached.

III. CASE STUDY

A. Case Study Description

The proposed framework is demonstrated on an example of
the photovoltaic arrays connected to the DC/DC converter (see
Fig. 2). The main characteristics of the system are provided
in Table I. Moreover, the lifetime data for the switch s1 used
in the lifetime model described by (1) is given in Table II.

The input to the PV array is solar irradiance S and ambient
temperature Ta, which need to be predicted. In the first step,
the forecast model is trained on the input training data set
shown in Fig. 3. Training data consists of Nd = 3285 daily
profiles (Ny = 9 years × 365 days). They corresponds to the
historical data for installation site in Las Vegas, Nevada in

period from 2008 to 2016 [24]. In the second step, the trained
model is used to predict solar irradiance Spred and ambient
temperature T pred

a profiles for TPH = 4 years (2017-2020).

B. Mission Profile Forecasting

Training results are shown in Fig. 4, where the output of
the cluster procedure is shown. The input training set (Nd =
3285 daily profiles) is clustered into K = 10 characteristic
clusters. The optimum number of clusters is determined by
Calinski-Harabasz criterion [25]. Each cluster is represented
with centroid Ck (i.e., mean LC value) and the characteristic
daily S and Ta profiles. The centroid results show that the
higher LC values are represented with more clusters than the
low LC values. This refers to that a larger number of daily
profiles belong to e.g., the cluster with centroid C1 than the
cluster with centroid C10. In the case of low LC values, a
similar result is obtained, regardless of differences in low S
and Ta daily profiles. Therefore, more profiles are clustered
together. In contrary to this, high daily S and Ta contribute
more to the LC accumulation. The differences in those daily
profiles lead to a larger variation of LC. Thus, a larger number
of clusters need to be defined to assure that reliability can be
determined accurately based on the forecast mission profiles.

The obtained characteristic profiles are used in the pre-
diction process to construct the forecast profiles of solar
irradiance Spred and ambient temperature T pred

a by using
trained Naı̈ve Bayes Classifier. The forecast results are shown
in Fig. 5 together with the actual data (historical profiles for
2016-2020). There are certain discrepancies between predicted
and actual profiles, which need to be investigated. However,
the traditional metrics for evaluation of forecast accuracy, such
as mean average error, are not suitable in this case. Those
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metrics investigate point difference between actual and pre-
dicted profiles. Such approach does not align with the forecast
accuracy requirements in this study. The predicted profiles
are used as mission profiles to determine the reliability of
the power converter. Therefore, the suitability of the predicted
profiles accuracy for usage in design for reliability of power
electronics needs to be evaluated, as done in following.

C. Forecasting Accuracy for Reliability Modelling

To investigate the accuracy of the predicted profiles for
reliability studies, three cases are studied. In each case, a
different input mission profile is used to evaluate LC of
DC/DC converter. In the first case, the actual solar irradiance
Sact and ambient temperature T act

a profiles for period 2017-
2020 are used. This case includes profiles with 100% forecast
accuracy, and the output result is marked as LCact. In the
second case, the predicted profiles Spred and T pred

a that are
obtained with the proposed model are used. The purpose of
this case is to investigate the impact of forecast inaccuracy
on reliability results. The output result is marked as LCpred.
In the third case, a one-year historical profile from 2016 (last
year of training data in Fig. 3) is repetitively used for four
years. This case represents a state-of-art approach to design
for reliability. The output result is marked as LChist.

Yearly LC results for the three cases are shown in Fig.
6(a). LCpred is closer to LCact than LChist in each year.
This shows that using predicted results for each year is a
more favorable option than repetitively using one-year his-
torical data. To investigate further the impact of predicted
and historical mission profile on the reliability accuracy, the
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following metrics is applied:

∆Rpred =

∣∣∣∣LCpred − LCact

LCact

∣∣∣∣× 100% (5)

∆Rhist =

∣∣∣∣LChist − LCact

LCact

∣∣∣∣× 100% (6)



TABLE III
CASE STUDY RESULTS: LIFETIME CONSUMPTION ACCURACY FOR

PREDICTED AND HISTORICAL MISSION PROFILES.

No. years
1 year
(2017)

2 years
(2017-2018)

3 years
(2017-2019)

4 years
(2017-2020)

∆Rpred 1.19% 5.06% 1.30% 3.04%
∆Rhist 3.94% 8.81% 9.47% 9.18%

where ∆Rpred is a relative error between yearly LCpred and
LCact, while ∆Rhist is a relative error between yearly LChist

and LCact.
The accumulated LC results are shown in Fig. 6(b). More-

over, the relative errors ∆Rpred and ∆Rhist are summarized
in Table III. The predicted mission profiles, even though
represented with only 10 characteristic daily profiles, results
in a reliability prediction error significantly lower than the
one of the historical mission profiles. In fact, the difference
in the relative error of the two cases is becoming larger as
the time horizon extends. Therefore, it is more accurate to use
predicted results than repetitively use one-year historical data.
Furthermore, ∆Rpred reveals that the predicted mission profile
results with no more than approximately 5% error regardless
the time horizon investigated. Therefore, the predicted mission
profile can be used in the reliability modelling of power
electronics.

IV. CONCLUSION

In this paper, a mission profile forecasting framework for
reliability modelling of power converters is presented. The
proposed framework considers power electronics reliability
within the forecasting procedure. Case study results indicate
that the forecast mission profile can be used for the reliability
modelling of power converters. In fact, the reliability predic-
tion results indicate that the relative error in yearly lifetime
consumption of the predicted mission profile is less than 5%
over a four year prediction range.
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