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A Fast Impedance Measurement Method for
Lithium-ion Battery Using Power Spectrum

Property
Jichang Peng, Jinhao Meng, IEEE Member, Xinghao Du, Lei Cai and Daniel-Ioan Stroe, IEEE Member

Abstract—Electrochemical Impedance Spectroscopy
(EIS) can provide fruitful information for Lithium-ion (Li-ion)
battery modelling and diagnosis, yet EIS measurement is
time-consuming with low-frequency signal injection. By
stacking a group of broadband signals, Pseudo Random
Sequence (PRS) makes it possible to obtain the battery
EIS in a few seconds at the expense of measurement
accuracy and Signal-to-Noise Ratio (SNR). Thus, this paper
focuses on developing a highly effective signal processing
procedure to extract useful information from the PRS for
accurate EIS measurement. To enhance the ability of the
data cleaning procedure, a three-dimensional cloud is
firstly reconstructed for each impedance by integrating
its Power Spectrum (PS). The impedance with lower PS
can be easily removed through a statistical based multiple
selection mechanism, which enables the extraction
of the EIS without altering the original measurement.
Experimental results on a 3000mAh Li-ion battery prove
the effectiveness of the proposed method.

Index Terms—Lithium-ion battery, Pseudo random se-
quence, Power spectrum, Statistical selection, Electro-
chemical impedance spectroscopy.

I. INTRODUCTION

THANKS to their superior properties in comparison to
other technologies, Lithium-ion (Li-ion) batteries have

been a dominant component for energy storage applications
such as Electric Vehicles (EV) and consumer electronics.
Considering that there have been nearly 6.74 million units for
global EV sales in 2021 [1], advanced technologies to help
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manage the usage of Li-ion batteries are of great importance
in every aspect.

The battery can transfer the chemical energy to electrical
energy utilizing the electrochemical potential between the two
electrodes. Unfortunately, due to various aging mechanisms,
the performance of the batteries is incrementally decreasing
being visible as capacity decreases and resistance increases
(i.e., power fade). The lithium metal (-3.04V, 3850mAh/g) has
a higher reduction potential and gravimetric capacities than the
others materials like sodium (-2.71V, 1165mAh/g), magnesium
(-2.37V, 2046mAh/g) and aluminum (-1.66V, 2978mAh/g)
[2]. Thus, the Li-ion battery has the great merits of high
energy/power density, but its voltage is still limited to less
than 5V which indicates one single cell can not fulfil the
requirement of a high power load as EVs. Normally, a group of
cells will be connected in series or parallel to implement such a
task. In this thread, Battery Management System (BMS) plays
a key role in the electric, thermal and lifespan management of
each cell, and the battery SOX (state of charge, state of health,
state of power, state of function, etc.) is the critical indicators
for a BMS functionality. Therefore, there is an urgent need
to diagnose and prognose the status of the Li-ion battery, and
to understand its electrochemical reactions mechanism for a
specific battery-based application.

Electrochemical Impedance Spectroscopy (EIS) can provide
fruitful information for the electrode kinetics, which has a
great potential to be used for the Li-ion battery SOX esti-
mation [3]–[5], the degradation pattern identification [6], [7],
internal temperature estimation [8], [9], and safety monitor-
ing [10], [11]. For example, over 20,000 EIS measurements
from 45mAh Li-ion cells can accurately reflect the battery
degradation pattern by Gaussian process regression in [6]. The
distribution of relaxation times is analyzed in [7] to diagnose
the degradation mechanisms in the electrodes of the cell.
Few specially selected frequencies are chosen to diagnose the
battery SOH in [5], which indicates EIS could be possibly used
in batteries’ second-life applications. The authors in [11] use
AC impedance to predict the overcharge and thermal runaway
of the Li-ion battery.

Battery EIS measurement is performed in the range of
kHz to mHz [12]–[14]. It is a time-consuming procedure for
EIS measurement, especially in low frequency areas. Another
requirement is that the battery itself should be kept in thermo-
electrical equilibrium during the test period. Accordingly, only
a small signal can be injected into the Li-ion battery for not
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triggering any significantly electrochemical reactions [15]. In
[13], the authors measure the EIS of a 6.5Ah Li-ion battery
with only 0.5A AC current amplitude for a frequency sweep
from 10mHz to 5kHz. It can be concluded that EIS is a sensi-
tive measurement, which is challenging to be implemented
in BMS and applied online. Recently, some works [10],
[12], [16]–[18] have managed to design a low cost prototype
for a friendly EIS measurement in battery applications. An
impedance-based BMS is designed to measure the impedance
of a 50 Ah battery from 1 to 1000Hz [10]. Additionally, a
low-complexity onboard impedance measurement system is
proposed in [12] utilizing a high-power dual active bridge
converter, which can measure the frequency in the range of
0.1-500 Hz. A MOSFET-based equalization circuit for the
battery impedance measurement with a sinusoidal signal is
proposed in [16]. A wireless charger is used to measure the
battery impedance online in [18]. Besides hardware design,
signal generation and processing also require more attention
since more informative injection and accurate EIS calculation
are always preferred in this case. More research is still needed
to improve the efficiency as well as the accuracy of the EIS
measurements.

To alleviate the above issues, great efforts have been made
on developing the excitation signals with a series of frequency
superposition and related data processing methods [19], [20].
Recently, multi-steps [21], multi-sines [22]–[25], and Pseudo
Random Sequence (PRS) [8], [19], [26]–[28], etc. have been
investigated for battery EIS measurement. Mutilsinusoidal
signal in the ranges of 1-1.8 kHz has been chosen to obtain the
battery impedance in [23], which is further used to estimate the
battery capacity. A step signal is proposed in [21] to improve
the measurement speed of the multi-sines method, and a 200
Hz step waveform is selected to test a 2.6 Ah 18650 Li-ion
battery for validation. A random integer number white noise
approximation is proposed in [28] to measure the impedance
of the battery online, while the cross-correlation technique is
used for signal generation. Among all the broadband signal
generation methods, PRS has a similar statistical property to
white noise and is easy to implement as explained in [19],
[29].

According to the above description, it’s clear that much
effort has been made to generate the multi-frequencies signal
for battery EIS measurement. However, the responses of those
broadband signals are more difficult to be processed compared
with single frequency injection. A powerful signal processing
procedure should be designed to accurately extract the useful
EIS measurement from the especially low Signal-to-Noise
Ratio (SNR) signals. Most existing works still use the Moving
Average Filter (MAF) [19], [28] to smooth the measured
impedance. Large deviations may exist because of the limited
ability of those linear filters, which inspires us to propose
a novel impedance measurement method utilizing the power
spectral density characteristics of the exciting signal.

This paper proposes a fast Li-ion battery impedance mea-
surement method to extract the impedance spectra from the
PRS signals. Considering that the synthetic signals composed
of multi-frequencies can not receive high SNR responses at
all broadband frequencies, we design a novel data cleaning

a1 a2 ... an NL

c1 c2 cn...

Output

2
mod

Fig. 1. The linear feedback shift registers for PRS generation

procedure to extract the worthwhile information from the
original measurement by integrating the real and imaginary
parts, and PS into a three Dimensional (3D) cloud. The
Power Spectrum (PS) reflects the power of a signal at various
frequencies and can be regarded as a critical indicator to
evaluate the effectiveness of the measured impedance. To the
best of our knowledge, this is the first time to use a 3D cloud
data cleaning method for improving the accuracy of the battery
EIS measurement.

The main contributions of this paper lie in the following
aspects:
1) A Nyquist plot-based 3D cloud is first reconstructed for

the data cleaning of impedance measured by PRS, which
utilizes the PS property of the injected signal.

2) A statistical based multiple selection mechanism is de-
signed to remove the outliers and obtain a smooth battery
EIS curve without any deformations.

3) The accuracy of our method is proven through the experi-
mental tests on a 3000mAh Li-ion battery under different
SOCs and temperatures.

This paper is organized into five sections. Section II in-
troduces the implementation of the fast battery impedance
measurement. The proposed data processing procedure is
detailed in Section III. Experimental validation is illustrated
in Section IV. Section V summarises the main conclusion of
this work.

II. FAST BATTERY IMPEDANCE MEASUREMENT

PRS is used to measure the battery EIS in a short time.
This section will briefly introduce the principle of PRS and its
characteristics, and the battery impedance calculation method.

A. Pseudo Random Sequence
PRS can simulate the white noise in discrete time, and is a

superior way to excite the battery at all frequencies in theory
compared with other signals. The Maximum Length Binary
Signal (MLBS) is one of the commonly used PRSs, which
could be finalized by multi-stage linear feedback shift registers
as shown in Fig. 1. Let us define NL as the length of PRS,
and the PRS can be generated by an n-th order shift registers
as follows.

NL = 2n − 1 (1)

Afterwards, an can be obtained by modulo 2 operation,

an = (

n∑
i=1

ciai) mod (2) (2)
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Fig. 2. An example of MLBS with NL = 63 and fc = 1Hz

where an has only two states 0 or 1 which indicate the binary
sequence generates in GF(2).

The coefficients ci can be calculated by a primitive poly-
nomial according to the values of n and NL. It is easy to
understand the frequency resolution fr of PRS should be,

fr = fc/NL (3)

where fc is the clock frequency of the PRS.
A MLBS with NL = 63 and fc = 1Hz is illustrated in

Fig. 2 to explain the feature of a typical PRS. The amplitudes
of the MLBS toggle between level 1 and -1 as Fig. 2(a).
The Root Mean Square (RMS) of the MLBS is 1. In the
frequency domain, the power spectrum magnitude follows
the (sin2x)/x2 envelope as illustrated in Fig. 2(b). It means
that the PS of the MLBS gradually decays with increasing
frequency. Additionally, the amplitude of the MLBS at fn can
be calculated as,

AMLBS(fn) =
2a
√
NL + 1

NL

sin(πn/NL)

(πn/NL)
(4)

where fn = (n− 1)fr.
When the fn = 1/3fc, the magnitude of MLBS rapidly

decreases. Thus, NL and fc must be carefully designed for a
specific application.

B. Battery Impedance Calculation

For the battery impedance measurement with PRS, the
MLBS should be injected into the battery within the frequen-
cies [fmax, fmin]. According to the property of MLBS, fmin

has to be larger than fr and fmax should be set to 0.4fc.
In the frequency range [fmin, fmax], the impedance can

be calculated from the injected signal and the corresponding
battery responses. Let’s define the current i(t) is injected into

a Li-ion battery, and the voltage v(t) is measured accordingly.
Then, the Fourier transform of i(t) and v(t) can be obtained,{

V (k) =
∑N−1

k=0 v(t)e−j2πkt/N

I(k) =
∑N−1

k=0 i(t)e−j2πkt/N
(5)

From (5), the battery impedance at a specific frequency is
calculated by,

Ẑ(k) =
V (k)

I(k)
(6)

where Ẑ(k) is the impedance of the k-th frequency.
The k-th frequency is kfk, while the fk is defined as,

fk = fs/Ns (7)

where fs is the sampling frequency, and Ns is the number of
the sampling data.

III. THE PROPOSED DATA PROCESSING PROCEDURE

Although PRS can inject a broadband signal into the battery
within a short period, impedance measurement through PRS
suffers from noise and other interferences. Considering the
fact that the signal with low PS is easily contaminated by
noise and the PS of all the frequencies in Fig. 2 is not equally
distributed, the PS property of PRS is utilized in this section
for an accurate battery impedance measurement.

A. Power Spectrum

PS describes the distribution of the signal’s power with
frequency variation. Since white noise is a stationary process,
the PS of a PRS can be described by its autocorrelation
function according to Wiener-Khinchin theorem as follows,

Sxx(f) =

+∞∑
k=−∞

rxx[k]e
−j2πkf (8)

rxx(f) = E[x[n]x[n− k]] (9)

where Sxx is the power spectrum of X[n].
Once the periodogram is used for the PS calculation, the

MLBS can be regarded as a finite energy sequence. According
to (4), the PS PMLBS(fn) can be computed as,

PMLBS(fn) =
(IMLBS(fn))

2

fn
(10)

PMLBS n(fn) =
(IMLBS(fn))

2

fn ∗ PMLBS(f1)
(11)

where IMLBS(fn) is the amplitude of the MLBS at frequency
fn after Fourier transform.

It is easy to understand that there always exists a
PMLBS n(fn) for each fn, which creates an opportunity to
integrate the PS to the battery impedance. Once the PS is low,
the signal is less informative with a lower possibility to be a
valid value. Thus, PS can be regarded as a critical index to
evaluate the signal at different frequencies.
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Fig. 3. The impedance of a Li-ion battery with MLBS

B. Reconstruction of the 3D Cloud

Li-ion battery should be treated as a linear system for the
impedance measurement, and we will use the galvanostatic
mode in this work. The following impedance in Fig. 3 can
be obtained from a Li-ion battery when using MLBS. It is
found from Fig. 3 that the high frequency area is contaminated
by noise, and the shape of the normal impedance could only
be seen in low frequency range. The main reason for such a
phenomenon is the attenuation of the PS with the increasing
frequency. Therefore, it is difficult to directly obtain useful
impedances from the Nyquist curve in Fig. 3.

The PMLBS n(fn) of the MLBS signal for the above
battery impedance is shown in Fig. 4. We find that the PS
of the MLBS gradually attenuates with the increase of the
frequency. Also, it is clearly recognized that the PS fluctuates
even between similar frequencies. Generally, a large PS signal
means more power is injected into the battery, which has a
higher chance against noise interference and then measures an
accurate impedance. Then, besides the impedance value for
specific frequencies, can be regarded as another property for
the impedance measurement. Based on the above rules, we
reconstruct the Nyquist plot of the battery impedance with PS
information to form a 3D cloud in Fig. 5. In this way, the PS
property is merged into the battery impedance measurement,
which could be further used for data cleaning.

In Fig. 5, the colormap of the 3D cloud shows the intensity
of the PS for each measured impedance. For example, the
green and yellow dots have a higher PS than the blue ones.
It is obvious from Fig. 5 that the blue dots deviate from
the main data group, which are more likely to be outliers of
the EIS measurement. In addition, the green color dots with
high-intensity PS are centered in the middle of the dataset
which is also consistent with the basic shape of the impedance
spectrum. Massive scattered and disordered blue dots in Fig.
5 also prove the correctness of the above analysis. Therefore,
by the reconstruction of a 3D cloud, the PS property can
be used to process the impedance measurement of a Li-ion
battery. Once the impedance with low-intensity PS is removed,
accurate battery impedance measurements can be expected.
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Fig. 4. The normalized power spectrum of a Li-ion battery with MLBS
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Fig. 5. The 3D cloud of Li-ion battery impedance

C. 3D Cloud Cleaning Method for Impedance Measure-
ment

From the above analysis, it is possible to clean the
impedance on the foundation of the reconstructed 3D cloud.
Here, we propose a statistical based multiple selection mech-
anism to obtain the battery EIS.

As shown in Fig. 5, the density of the dots in the 3D
cloud can be utilized to process the calculation results of the
impedance. In order to evaluate the statistical characteristics
of the impedance dots in Fig. 5, a neighbourhood area A is
defined at first. The average Euclidean distance dk of the k-th
dot with coordinate (xk, yk, zk) in A is then calculated as,

dk = (1/m) ∗
m∑

a=1

√
(xk − xa)2 + (yk − ya)2 + (zk − za)2

(12)
where (xa, ya, za) ∈ A and m is number of dots in area A.

The mean E[dk] and variance E[dk] of dk can be obtained
from (13) and (14),

E[dk] = (1/Nk) ∗
n∑

k=1

dk (13)

∆[dk] =

√√√√(1/Nk) ∗
Nk∑
k=1

(dk − E[dk])2 (14)

where Nk is m+ 1.
Afterwards, a reconstructed 3D cloud cleaning method

is proposed in Algorithm 1 for automatically selecting the
effective impedance values. Considering the natural diversity
of the impedance in the high and low frequency region of the
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(Fig. 5)

MLBS
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Battery impedance
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Data cleaning 

(Algorithm 1)

EIS

Fig. 6. The diagram of the proposed fast battery impedance measure-
ment

3D cloud, all the measurements are divided into Ng groups for
the convenience of data cleaning. In each group, a threshold
Γth is calculated from the step 3 of Algorithm 1, where Nth

is a coefficient tuning the threshold Γth. Then, the cleaning
step can utilize Γth to decide which dot should be removed
from the 3D cloud. After receiving the flag Impflag,k from
Algorithm 1, the battery EIS ẐEIS(k) can be obtained through
the following operation,

ẐEIS(k) = Ẑ(k) ∗ Impflag,k (15)

Algorithm 1 Reconstructed 3D Cloud Cleaning

Input: E[dk], ∆[dk], A
1: Initialization: Divide the impedance values into Ng

groups
2: for i← 1 to Ng do
3: Γth ← E[dk] +Nth ∗∆[dk] //Calculate the threshold
4: for j ← 1 to m do
5: dk calculation //From (12)
6: if dk < Γth then
7: Impflag,k ← 1
8: else
9: Impflag,k ← 0

10: end if
11: end for
12: end for
13: return Impflag

Then, it is possible to fast and accurately obtain the Li-
ion battery EIS through the above well-designed procedures
in Fig. 6. The MLBS signal is generated for battery impedance
measurement at first, and then the impedance and its PS are
calculated in the frequency domain. Afterwards, a 3D cloud
is reconstructed by integrating the impedance with its PS
property. According to a statistical based multiple selection
mechanism, the effective impedance could be kept as the final
results.
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Fig. 7. The test bench for experimental validation
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IV. EXPERIMENTAL VALIDATION

A. Experimental Test Bench
In this section, we validate the proposed method using the

test bench shown in Fig. 7. A bi-directional power source is
chosen to provide the injected signals for the Li-ion battery,
a data acquisition board is used to obtain all the voltage and
current measurements. A 18650 NMC based Li-ion battery,
with a capacity of 3000mAh and a voltage range between
2.0V and 4.25V, is chosen to verify the proposed method.
The battery is placed in a temperature chamber to control
the ambient temperature during the test. In this work, the
impedance is measured within the frequency range between
0.21Hz and 3.5kHz, which is enough to show the impedance
shape of the chosen 18650 Li-ion battery. All the Li-ion
battery impedance in this work are measured using the setup
presented by Fig. 7. The reference EIS in this work is obtained
by injecting only one frequency each time to the battery.
The Kramers-Kronig relations are tested at first to prove the
reliability and accuracy of the reference. As shown in Fig. 8,
the residuals of the reference values are quite small, which
indicates the measured reference is effective to be used for
the experimental validation.

B. Validation of the 3D Cloud Cleaning
Following the steps in Algorithm 1, the number of dots in

the nearest area m is defined as 100. Then, the 3D cloud in Fig.
5 is transferred to Fig. 9. By comparing the 3D cloud in those
two figures, we find that those obvious outliers are removed
from the dataset if only using the 3D cloud cleaning method
one time. The contour of the EIS curve can be recognized
from the dots in Fig. 9. When the impedance dots in the 3D
cloud are converted to the Nyquist plot in Fig. 10, the result
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Fig. 9. 3D cloud cleaning with Algorithm 1
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Fig. 10. 3D cloud cleaning results in Nyquist plot with Ng=1

from one-time 3D cloud cleaning is not satisfactory. The red
curve around the reference values reflects that there is still too
much useless impedance information left.

In order to clean the data with higher efficiency, the 3D
cloud is divided into groups in line with the frequency range
characteristics. Considering that the PS has a good linear
relationship with frequency variation in logarithmic coordi-
nates, those dots in the 3D cloud can be briefly grouped into
three frequency regions at [0.21Hz, 10Hz], [10Hz, 1kHz], and
[1kHz, 3.5kHz]. Thus, it forms three groups based on the fre-
quency regions above, and Ng in Algorithm 1 will be 3 in the
following experiments. The division of the frequency ranges
can follow the distribution of the impedance measurement
in a 3D cloud, especially, the number of the measurements
and their PS characteristics should be fully considered. In this
way, the characteristics of PS in the low, moderate, and high
frequency areas can be fully utilized.

The results for 3D cloud cleaning with Ng=3 are shown in
Fig. 11 that only 102 useful points are left, which indicates
that the noise data is effectively removed after the 3D cloud
cleaning procedure. The battery impedance values in Fig.
11 can be easily processed by data smooth filters such as
Savitzky-Golay filter. Since the data smooth after 3D cloud
cleaning is not difficult, other filters could also be used here.

C. Validation on EIS measurement
This section validates the EIS measurement of the proposed

method. MAF is chosen to deal with the battery impedance
measurements in [19], [30] when PRS is used. Thus, MAF is
selected as a comparison method in this work. The expression
of MAF is as follows,
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Fig. 11. 3D cloud cleaning with Ng=3

ZMAF (i) =
1

Mw

Mw∑
k=i

Z(i+ k) (16)

where Mw is the size of the moving window.
The EIS measurement results of the 18650 Li-ion battery

under different SOCs are shown in Fig. 12. For SOC=20%,
the proposed method is clearly close to the reference compared
with the MAF method as illustrated in Fig. 12(a). Although
there exist some offsets in the low frequency area, no outliers
are identified in the impedance spectra presented in Figs.
12(b)-(c) for the proposed method. Meanwhile, the MAF
method shows a larger error, and several outliers exist in the
middle or high frequency area.

In order to quantitative analysis of the accuracy of EIS mea-
surement for different methods, the Mean Absolute Percentage
Error (MAPE) and the Normalized Root Mean Square Error
(NRMSE) are calculated as follows,

MAPE =
1

M

M∑
i=1

|1− Zm(i)

Zr(i)
| (17)

NRMSE =

√√√√ 1

M

M∑
i=1

(1− Zm(i)

Zr(i)
)2 (18)

where M is the number of the measurement, Zm and Zr

are the measured impedance and the corresponding reference
respectively.

According to (16) and (17), the MAPE and NRMSE are
listed in the TABLE. I. The average MAPE of the proposed
method is 0.89%, while it is 1.62% for MAF. As for NRMSE,
the proposed method is less than 33 % of the average NRMSE
of MAF. Thus, both the MAPE and NRMSE of the proposed
method are less than that of MAF, which proves the good
accuracy of the proposed method.

For further verifying the performance of the proposed
method under temperature variations, the test ambient temper-
ature is controlled to 15oC and 35 oC, and the Li-ion battery
SOC is kept to 50%. The EIS measurement results of 15oC
are shown in Fig. 13. We find that large errors exist for MAF
method in the middle frequency range. The proposed method
still performs better than MAF in the whole frequency range.
The MAPE and NRMSE of the results in 15oC and 35 oC
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Fig. 12. A comparison of the EIS measurement results at T=25oC
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Fig. 13. EIS measurement results for SOC=50%, T=15oC

are shown in the TABLE. II. It is noted that the accuracy of
the proposed method has also been confirmed by a series of
repeated tests. Based on the above validations, the superior
performance of the proposed method can be confirmed.

V. CONCLUSION

This paper utilizes the PS property of the injected MLBS
signal to reconstruct a 3D cloud for fast Li-ion battery

TABLE I
MAPE AND NRMSE OF EXPERIMENTAL RESULTS AT DIFFERENT

SOCS

Methods Error SOC=80% SOC=50% SOC=20%

MAF
MAPE 2.23% 1.32 % 1.30%
NRMSE 1.83% 1.03 % 0.82%

Proposed
MAPE 1.04% 0.90 % 0.74%
NRMSE 0.12% 0.49 % 0.60%

TABLE II
MAPE AND NRMSE OF EXPERIMENTAL RESULTS AT DIFFERENT

TEMPERATURES

Methods Error T=15oC T=25oC T=35oC

MAF MAPE 2.92% 1.32 % 2.52%
NRMSE 2.60% 1.03 % 2.05%

Proposed MAPE 1.69% 0.90 % 2.39%
NRMSE 0.64% 0.49 % 1.37%

impedance measurement. By creating a statistical based mul-
tiple selection mechanism for data cleaning, the massive
impedance data can be effectively extracted from the origi-
nal measurement. According to the PS characteristics in the
different frequency ranges, the originally measured impedance
is divided into 3 groups for 3D cloud data cleaning with higher
efficiency. In this way, the proposed method can help measure
the battery EIS accurately with MLBS in a short period.

The proposed method is validated on a 3000mAh Li-ion
battery under various SOCs (20%, 50%, 80%) and tempera-
tures (15oC, 25oC, 35oC). The MAPE and NRMSE of the
proposed method are much lower than the commonly used
MAF method. The average MAPE of the proposed method is
around 55% of MAF, and the average NRMSE of the proposed
method is less than 33% of MAF for different SOCs. The
advantages of the proposed method are thus proved through
experimental validation. It is noted the proposed method can
help the onboard EIS measurement with low-cost hardware,
which is critical for improving the capability of BMS.

Future work will be to develop advanced PRS signals for a
more efficient and accurate battery EIS measurement.
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