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Models linking surface characteristics within incident solar radiation are inexorably
dependent on the topography of the given region. To date, however, most operational
surface reflectance retrievals treat this dependence by assuming a flat terrain, leading to
significant deviations in the estimated reflectance. Here, we demonstrate that
incorporating dynamic topography directly into the joint surface and atmospheric
model during retrievals has several advantages. First, it allows for a more complete
physical accounting of downwelling illumination, providing more accurate estimates of
the absolute magnitude of reflectance. Second, it facilitates a superior resolution of the
atmospheric state, most notably due to the confounding influence of atmospheric aerosols
and unresolved topographic effects. Our methodology utilizes a practical, high-fidelity,
model-driven approach to separate out diffuse and direct irradiation and account for
topographic effects during the joint inversion of atmosphere and surface properties. We
achieve this by enhancing the atmosphere/surface inversion to account for the radiative
transfer effects of surface slope. We further demonstrate how uncertainties in topographic
features can be quantified and leveraged within our formulation for a more realistic
posterior uncertainty estimates. Our results demonstrate that the inclusion of
topographic effects into the retrieval model reduces errors in the reflectance of an only
moderately rugged terrain by more than 15%, and that a post hoc accounting of
topography cannot achieve these same results.

Keywords: atmospheric correction, topographic correction, radiative transfer modeling, optimal estimation,
optimization, surface reflectance, intrinsic reflectance

1 INTRODUCTION

Earth observing airborne and orbital imaging spectrometers measure the electromagnetic radiation
reaching the aperture of an instrument in narrow and continuously spaced spectral channels. Passive
instruments sensitive to the Visible-to-ShortWave InfraRed (VSWIR, 350–2,500 nm) such as
NASA’s upcoming Earth Venture Instrument Earth Surface Mineral Dust Source Investigation
(EMIT), rely on solar illumination as the radiation source, and measure the radiation reflected from
Earth’s surface and atmosphere (Connelly et al., 2021). The magnitude and shape of the reflectance at
any given point on the surface is a complex combination of material structure and molecular
composition. Consequently, these instruments can be used for a plethora of Earth Science
applications, ranging from surface classification, estimating vegetation traits and genetics,
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mapping of soil properties and snow conditions, and many others
(Clark et al., 2003; Painter et al., 2003; Asner et al., 2017; Carmon
and Ben-Dor, 2017; Gholizadeh et al., 2017; Pelta et al., 2019;
Chadwick et al., 2020; Blonder et al., 2021; Bohn et al., 2021;
Cawse-Nicholson et al., 2021). However all of these
biogeophysical retrievals are predicated on the accurate
characterization of surface reflectance, which in the context of
remote sensingmust be estimated from at-sensor radiance using a
coupled surface and atmospheric model, a routine colloquially
referred to as atmospheric correction.

Most operational atmospheric correction routines are
performed using an inversion strategy, where either
optimization or algebra is used to solve for surface and
atmospheric state variables by comparing the results of a
forward model of at-sensor radiance with the actual
measurements (Thompson et al., 2018). A simplified forward
model that is commonly used is

lobs � e0π
−1μs ρa +

tρs
1 − sρs

( ) (1)

where lobs is the modeled at-sensor radiance measurement, eo is
the solar irradiance at top of atmosphere, μs is the cosine of the
solar zenith angle (SZA), ρa is the atmospheric reflectance, t is the
direct plus diffuse atmospheric transmittance for the sun to
surface to sensor path, s is the surface spherical albedo, and ρs
is the unknown surface reflectance. Lowercase bold letters are m-
vectors, wherem is the number of channels in the instrument, and
lowercase non-bold letters indicate scalars. In this equation and
elsewhere, multiplication of vectors is interpreted as element-
wise, that is, wavelength-by-wavelength, multiplication.

The atmospheric optical coefficients like transmittance vary
over space, time, and observing geometry. To calculate these
parameters for a specific observation, atmospheric Radiative
Transfer Models (RTMs) are used to simulate the interaction
of radiation with atmospheric constituents. RTMs account for
observational conditions known in advance, such as the sensor’s
geometry and altitude, and the position of the sun. They also
consider the atmospheric state, i.e., the presumed atmospheric
conditions typically parameterized by the columnar water vapor
concentration and the aerosol optical depth at 550 nm, assuming
a default aerosol type (Carmon et al., 2020). The RTM maps
between the atmospheric state and the atmospheric coefficients to
be used in the forward model (ρa, t, and s, in Eq. 1). The
atmospheric coefficients are vectors in the same dimension of
the measurement, representing different physical phenomena
occurring in the interaction of radiation with the atmosphere
and surface.

Traditional atmospheric correction software (e.g., ATCOR,
ATREM, ACORN, FLAASH) use a sequential approach where
first the unknown state of the atmosphere is estimated, and then,
given a fixed atmosphere, the forward model is algebraically
inverted for the unknown surface reflectance (Richter and
Schläpfer, 2019). A number of techniques for estimating the
atmospheric state from the data have been developed. Most
aim at finding the water vapor amount that fits the radiance
curve best, quantified using simple band ratio calculations around
the water absorption bands, and using general assumptions about

the surface (Green et al., 1998). This approach performs well
under optimal atmospheric and environmental conditions, but its
performance degrades with more challenging conditions such as
low illumination, clouds, high aerosols, and rugged terrain
(Thompson et al., 2019). One of the main reasons for the
degradation of atmospheric correction performance in such
conditions is indeterminacy between signals from the surface
reflectance and atmosphere occupying the same spectral range.
This makes the separation of the individual contributions an ill-
posed problem, as multiple combinations of the surface and
atmospheric states can be explained equally well by the
forward model. One strategy for tackling the issue of
indeterminacy that has been gaining traction is the use of a
Bayesian optimization formulation, referred to as optimal
estimation (OE) (Rodgers, 2000). In contrast to the sequential
approach, this methodology simultaneously estimates both the
surface and atmosphere, allowing all unknown variables to be
adapted jointly to maximize the goodness of fit subject to prior
constraints.

Areas with rugged surface topography, i.e., hilly and
mountainous regions, are especially challenging for
atmospheric correction, as the surface geometry changes the
projection of the illumination flux onto the pixel (Richter
et al., 2009). Rugged topography in a scene changes the
spectrum of atmospheric downwelling solar radiation falling
on a given pixel as a function of its slope and aspect,
expressed by the angle between the normal direction to the
surface and the Sun’s direction, termed the local or effective
solar zenith angle (eSZA) (Richter and Schläpfer, 2005). This
leads to inconsistencies in surface illumination even if the
atmospheric state is constant across the scene. Future orbital
instruments, including NASA’s Surface Biology and Geology
(SBG) and Earth surface Mineral dust source InvesTigation
(EMIT) and ESA’s Copernicus Hyperspectral Imager
(CHIME), will provide global coverage, where topographic
uniformity is more scarce than it is common. Many key
scientific questions and applications are also inherently
coupled with topography, such as those centered on the
distribution, function, and diversity of ecosystems, the security
and quality of snow as a water resource, or the fire fuel load at
wildlife-urban interface. These and many more questions will be
within reach with this next generation of imaging spectroscopy
measurements, but only if the true influence of topography on
biogeophysical processes can be disentangled from biases in the
surface reflectance induced by similar topographic effects (Dozier
et al., 2022).

The traditional approach to compensate for topographic
effects is to perform an atmospheric correction that assumes
the terrain is flat, and then apply a post hoc topographic
correction on the retrieved surface reflectance (Hantson and
Chuvieco, 2011). Although this approach helps to even out the
visual differences in terrain shading within the scene, it is far from
optimal. In principle, topography affects both the color and
intensity of downwelling illumination onto the pixel via the
magnitudes of diffuse and direct flux per unit area (Thompson
et al., 2022). This could modify the atmospheric correction
solution, in particular the interpretation of aerosol scattering
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that causes similar distortions to the spectral shape. Post hoc
topographic correction thus withholds information that is
necessary to achieve the correct atmospheric solution.
Additionally, most post hoc topographic correction approaches
assume that the topographic effect is spectrally uniform, purely
due to the photometry of surface aspect to the direct solar beam.
In the few cases where post hoc corrections account for both
diffuse and direct illumination, the relationship is empirically
derived and may be inconsistent with the retrieved atmospheric
constituents (Teillet et al., 1982). Only a pure model driven
solution, in which atmosphere and surface are estimated
together while accounting for local topography, can correctly
account for these issues and obtain a globally consistent answer.

In this work we describe a new model named TOPOFLUX,
that incorporates the effects of variable pixel topography into the
forward model within an OE atmospheric correction algorithm,
yielding a more precise estimation of surface reflectance and
atmospheric conditions. In contrast to the post hoc correction,
here we fold the radiative transfer effects of topography into the
initial correction, capturing more of the radiative-transfer physics
in the forward model, and thereby yielding higher fidelity
modeled radiances and retrieved reflectances.

2 METHODS

Our experiments are performed using optimal estimation (OE)
techniques, which provide several advantages over traditional
atmospheric-correction approaches, and which have proven
effective in prior work (Nguyen et al., 2015; Natraj et al., 2017;
Carmon et al., 2020; Thompson et al., 2020). Partitioning
downwelling flux, at each wavelength, into direct and diffuse
components allows their separate radiative effects to be balanced
with atmospheric effects, all jointly within the OE radiance-fitting
procedure. For clarity, we motivate the OE setup and show how it
uses the notion of a forward model. Section 2.1 gives the
mathematical framework description of the OE algorithm in
the context of atmospheric correction. Section 2.2 describes
the theoretical background of surface reflectance retrieval
(Section 2.2.1), the radiative transfer fluxes and components
(Section 2.2.2), and concludes with a description of two
alternative forward models; a topography-naive (Section 2.2.3)
and a topography-aware (Section 2.2.4).

2.1 Optimal Estimation for Atmospheric
Correction
The OE formulation of surface and atmospheric modeling uses an
inverse approach where the at-sensor radiance is an indirect
measurement of the surface and atmospheric states. A real
physics forward function maps between the unknown state to
the at-sensor radiance, and the goal is to “invert” this function
and retrieve the state from the measurement.

We define x to be the “state vector” of free parameters, made
up of sub-components for the surface xsurf, and the atmosphere
xatm. The surface component contains an entry for each spectral
channel, i.e., xsurf � [xλ1, xλ2, . . . , xλm]T, and the atmospheric

component contains free parameters for the atmospheric water
vapor and aerosol optical depth, i.e., xatm � [xwv, xAOD]T. The at-
sensor observed radiance for each instrument channel is
contained in a measurement vector y � [yλ1, yλ2, . . . , yλm]T.
The at-sensor radiance is related to the unknown state
through a forward function, i.e., the actual physics of the
system. As the actual forward function is unknown, we use a
forward model to model that measurement. The observation
model is

[True Radiance ]︸�������︷︷�������︸
yI � f (x)

→ [MeasuredRadiance ]︸���������︷︷���������︸
y � f (x)+δ1

→ [ModeledRadiance ]︸���������︷︷���������︸
f (x) �F(x)+δ2

,

where f (·) is the ideal forward function applied to the true state
vector, and δ1 is the added error due to instrument noise
δ1~N (0, Sy). We approximate the true physics with a forward
model F(·), which incurs additional model discrepancy error δ2,
δ2 ~ N (0, Sm). Next, we can represent the at-sensor radiance
measurement as:

y � F x( ) + δ1 + δ2
� F x( ) + .

We assume that the expected value for  is zero, i.e., E() = 0, and
that δ1 and δ2 are independent of each other, which implies the
following:

 ~ N 0, S( ), where

S � Sy + Sm.

To find the most probable solution for x, OE uses Bayes’ law of
conditional probability that reads:

P x |y( ) � P y |x( )P x( )
P y( ) , (2)

where P (x | y) is the posterior likelihood of the unknown state
given the measurement. P(y|x) is the likelihood of the
measurement given the state, and P(x) is the prior
probability of the state. Typically in remote sensing
applications, P(y|x) and P(x) are modeled with multivariate
Gaussian distributions, and the behavior as a function of the
already-observed y is not of interest. Equation 2 becomes

P x |y( )∝ e−
1
2|y−F x( )|2S e−

1
2|x−xa |2Sa (3)

where we abbreviate the weighted vector magnitude
|y|2S � yTS−1y. The prior P(x) expresses the knowledge about
the solution prior to the measurement. We represent the prior
using a collection of multivariate Gaussian distributions that
capture our assumptions about the variance and correlations
of the state vector components. This work follows established
statistical analysis methodologies, where we obtain the prior for
the surface state vector from a spectral library of terrestrial
materials, clustered using an unsupervised classification
algorithm where on each cluster we calculate the mean xa and
covariance Sa (Thompson et al., 2020). We then assign one prior
cluster to each pixel at run-time, to ensure the correct surface is
represented. The prior for the atmospheric state vector is derived
using general assumptions and meteorological observations.
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Formally, the prior represents the best guess of the solution
without the measurement, and its relationship to the state x is
expressed as x ~ N (xa, Sa).

To compute the most probable solution given the
measurement, we define a cost function C which arises from
the negative log posterior probability in Eq. 3 and is:

C x( ) � y − F x( )( )TS−1 y − F x( )( ) + x − xa( )TSa−1 x − xa( ). (4)
This two-term cost function can be interpreted as a
Lagrangian, in which the left term expresses the objective of
“goodness of fit” of the measurement to the model’s prediction,
accounting for instrument noise, and the right term penalizes
for any departure from the mean of the prior distribution,
accounting for the prior uncertainty characterized by its
covariance.

Minimizing the cost function is equivalent to maximizing the
posterior probability in Eq. 2. We minimize C using an iterative
gradient descent optimization algorithm, where the solution is
found usually within 20 iterations. The solution state x̂ is the
maximum a posteriori (MAP) estimate of x given the
observation y. The uncertainty of this estimate is the posterior
covariance Ŝ, and is calculated by linearizing the forward model at
the solution state, leading to:

Ŝ � KTS
−1K + Sa

−1( )−1,where
K � zF x( )

zx
| x�x̂ .

(5)

When P (y | x) and P(x) are multivariate normal, then x̂ and Ŝ
define the full posterior distribution of the solution state, formally
defined as x |y ~ N (x̂, Ŝ). To summarize, the output of this
atmospheric correction procedure is a reflectance product

known as level-2A, with a per-pixel reflectance and
uncertainty estimates.

2.2 The Forward Model
2.2.1 Theoretical Background
The forward model F(x) → y translates conditions in the state
space into the radiance-measurement space by formulating the
physical system as an algebraic expression. This section describes
the imaging geometry and a radiance decomposition that are key
to understanding the topographic adjustments we propose.

Figure 1 shows a graphical representation of the observation
system. The instrument, positioned at top of atmosphere (TOA),
observes Earth at a given viewing zenith angle (VZA), and records
the TOA radiance arriving at the sensor’s aperture (known as the
at-sensor radiance). This radiation originates from the Sun (the
solar irradiance), and is reflected from Earth’s surface and
atmosphere into the instrument’s line of sight (LOS). When
downwelling and upwelling through the atmosphere, the solar
radiation interacts with atmospheric gases and aerosols/clouds
via molecular and particulate absorption and scattering. The
source attenuation is called total, direct plus diffuse,
atmospheric transmittance, and is a function of the
atmospheric state, with the water vapor columnar
concentration and the aerosol optical depth being the most
influential unknowns under cloud-free sky conditions.

The radiation illuminating a given pixel is called the incident
radiation, or the global flux eg. The global flux has direct and
diffuse components, where the direct component represents
photons strictly in the Sun-to-surface direction, and the

FIGURE 1 | The global illumination flux onto the pixel is omni-directional
and is the sum of the direct and the diffuse fluxes. The direct flux is directional
and comes strictly from the sun-to-target direction, while the diffuse flux is
hemispherical and is coming from all upwards directions compared to
the target. The observation is conical, but assumed directional.

FIGURE 2 | Radiation components for a flat surface that enter the line of
sight and contribute to the at-sensor radiance measurement. A and A′ are the
direct and diffuse atmospheric path radiance, respectively, and do not interact
with the surface. B is the direct solar flux illuminating the target pixel. C is
the diffuse hemispherical downwelling flux illuminating the target pixel. D is the
atmosphere reflectivity (spherical albedo) from the surface, and E is upwelling
diffuse radiation from the surface.
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diffuse component represents photons from the entire
hemisphere (see Figure 1). This radiation illuminates the
surface of a given pixel, and the materials within the pixel
interact with the incident radiation via transmittance,
absorption and reflectance. Whereas the global flux arrives at
the pixel from the entire hemisphere, the instrument observes the
target from a single direction, and hence the correct retrieved
quantity for surface reflectance is the hemispherical-directional
reflectance factor (HDRF), i.e., illuminated by the hemisphere,
observed from a direction. Simply put, the HDRF is the ratio
between the surface-leaving radiance, sampled from a single
direction, and the incident radiation, arriving from all
directions, capturing the spectral reflectance of the materials in
a given pixel (Schaepman-Strub et al., 2006). In this work we use
the notion of an intrinsic reflectance, i.e., a reflectance that is an
intrinsic property of the materials that cover the pixel’s surface.

2.2.2 Radiation Components
Following common approach in atmospheric RTM-related
publications, we separate the at-sensor radiance into five
components: path radiance (direct and diffuse), direct-
reflected, diffuse-reflected, spherical albedo, and adjacency
effects (Figure 2) (Guanter et al., 2009; Berk et al., 1999). The
path radiance represents photons that are reflected into the line of
sight (LOS) by the atmosphere, without interacting with the
surface, and is mostly affected by atmospheric aerosols and
Rayleigh scattering. The direct-reflected component represents
photons strictly in the sun-to-surface-to-sensor path, and is
strongly affected by the concentration of atmospheric gases.
The diffuse-reflected component comprises photons
illuminating the target from the entire hemisphere (excluding
the Sun’s direction) and reflected into the LOS. The spherical
albedo component are photons reflected from the surface to the

atmosphere and back, before illuminating the target pixel. And
finally, adjacency effects represent diffuse radiation from the
surface entering the LOS.

For the following discussion it is useful to think about the
radiance model in terms of incident fluxes. The global or total flux
eg incident upon a given area on the surface is the sum of the
direct and diffuse fluxes, i.e., eg = edir + edif. The materials on the
surface interact with the incident flux, and the ratio between the
outgoing and the incident fluxes for a given pixel is ρs, the “surface
reflectance,” the sum of the bi-hemispherical reflectance for the
incoming diffuse illumination and the hemispherical directional
reflectance for the incident direct flux. The outgoing flux, the
hemispherical integral of the “surface-leaving radiance,” is then
attenuated by the absorption and scattering of the intervening
particles and gases in the atmosphere, characterized by the direct
upwelling atmospheric transmittance t↑, before arriving at the
sensor. Hence, we can describe the at-sensor spectral channel
radiance as:

lobs � lp + egρst
↑,

where lp is the atmospheric path radiance, i.e., the path
length integral over the sum of the direct solar irradiance
and incident diffuse radiance reflected into the LOS of the
sensor.

The global flux eg is comprised of the downwelling direct flux
edir, i.e., photons in the sun-to-surface direction, and the
downwelling diffuse flux edif, i.e., photons downwelling from
the entire hemisphere illuminating the target pixel. The diffuse
flux can be partitioned into two components: purely atmospheric
diffuse solar radiation, and a surface reflected solar term. The
former is comprised of photons illuminating the surface without
any prior interaction with it, while the latter are photons that have
been multiply reflected/scattered by the surface and atmosphere
before eventually illuminating the target pixel. To decouple the
purely atmospheric flux from the surface reflectance signature, we
use the spherical albedo coefficient vector s that defines the
fraction of surface leaving photons that return to the surface
after being scattered by the atmosphere:

eg � eg 0( )
1 − sρs

(6)

� e↓dir + e 0( )↓dif
1 − sρs

,

where the symbol (0) describes the fluxes for a black, zero
reflectance, surface. Now, the decoupled downwelling direct
and diffuse fluxes take the following form:

e↓dir � e0μϕπ
−1 t↓dir

e 0( )↓dif � e0μθπ
−1t↓dif

where μϕ and μθ are the cosines of the solar zenith angle at the
surface and top of atmosphere (TOA), respectively. Note, for a
flat surface and plane-parallel atmosphere without refraction
these angles are identical. The spectral channel t↓dir and t↓dif
are the downwelling direct and diffuse atmospheric
transmittances, respectively.

FIGURE 3 | The effective SZA and TOA SZA are equal when the target
pixel is flat, but if the pixel is sloped, the effective SZA is different.
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Next, we will describe two alternative forward models; the
“original”model, F0, and an “augmented”model, F1. The original
model assumes that all pixels in the scene are flat, ignoring the
topography of the terrain. Any variability in the upwelling
radiance field at the bottom of the atmosphere is assumed to
be a result of the surface reflectance. In contrast, the augmented
model accounts for the variability in pixel geometry, represented
by its effective solar zenith angle (eSZA), defined in the
introduction.

2.2.3 Topography Naive Forward Model
The original forward model assumes that all pixels in the scene
are horizontal, and that the effective and TOA solar zenith angles
are essentially equal (i.e., μϕ = μθ). In this case there is no need to
decouple the downwelling fluxes, and the forwardmodel takes the
form:

F0: lobs � lp + eg 0( )
1 − sρs

t↑ρs,where

eg 0( ) � e0μθπ
−1 t↓dir + t↓dif( ). (7)

This model performs well under many conditions, but has limited
capacity in scenes with variable topography, as it cannot capture
the change in the spectral shape of the illumination when the
pixels have a slope and aspect, as shown in the next section. In

these cases, the effective solar zenith angle differs significantly
from the TOA SZA.

2.2.4 Topography Aware Forward Model
This augmented model is based on the fact that the direct
downwelling flux edir onto a given pixel is scaled according to
the effective SZA ϕ, i.e., the angle between the pixel’s normal
direction and the Sun’s direction, and not by the TOA SZA θ
(Figure 3). For Sun-facing slopes, the relative composition of the
global flux would favor the direct component, and for non-Sun-
facing slopes, it would favor the diffuse component, compared to
a flat surface. Moreover, for non-Sun-facing slopes the
atmospheric path radiance also has a higher relative
contribution to the at-sensor radiance, as is well established
for strongly shadowed pixels.

The importance of this distinction is paramount. The direct
and diffuse fluxes have different spectral shapes, and leveraging
this physical structure in the forward model will significantly
reduce model discrepancy errors. Figure 4 shows the spectral
shape variation between the different components, and the
errors incurred if assuming a horizontal surface.
Implementing this augmented forward model requires
knowledge about the surface topography, usually retrieved
from a digital surface model (DSM). To calculate the
effective SZA ϕ, we use the relationship:

FIGURE 4 | The direct illumination flux has a significantly large difference in spectral shape compared with the diffuse flux and the path radiance. Whereas the former
is scaled by the cosine of the eSZA, the two latter are scaled by the cosine of the TOA SZA. Panel (A) shows normalized vectors of the three radiation components to
illustrate this difference. If not accounting for the eSZA of a pixel, these differences will lead to errors in the modeled radiance within the inversion. Panel (B) shows the
spectral shape of radiance errors due to not accounting for the eSZA. The plots show errors between at-sensor radiance modeled with the correct eSZA to a
topography naive simulation, for different eSZA values indicated by the colorbar. The radiance were modeled with a spectrally uniform 50% surface reflectance. Both A
and B panels show outputs with atmospheric coefficients simulated using MODTRAN 6.0, for standard atmospheric conditions.
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μϕ � cos θ( )cos α( ) + sin θ( )sin α( )cos γs − β( ), (8)
where θ is the TOA SZA, α is the slope, γs is the solar azimuth, and
β is the pixel’s aspect (the geographical direction to which the
pixel’s slope is facing).

The augmented forward model decouples the direct and
diffuse downwelling fluxes, and scales them based on pixel
geometry. The diffuse downwelling flux is scaled by μθ, the
cosine of the TOA SZA, while the direct downwelling flux is
scaled by μϕ, the cosine of the effective SZA on the surface,
from Eq. 8. The augmented forward model takes the following
form:

F1: lobs � lp +
eoπ−1μϕt

↓
dir + eoπ−1μθt

↓
dif

1 − sρs
ρst

↑. (9)

For horizontal pixels μθ = μϕ and F1 reduces to F0, but when
μθ ≠ μϕ this model allows for two differently-weighted flux
sources, a generalization that is particularly important in
variable terrain when the diffuse illumination has a different
spectral shape than the direct illumination.

2.3 Experiments
2.3.1 Study Site
To test and compare between these two alternative forward models
we selected a study site in Valencia, Santa Clarita, CA (henceforth,
Valencia), characterized by rugged terrain and mostly bare soil with
sparse green and non-photosynthetic vegetation (See Figure 5).

Multiple radiance images were acquired over Valencia using
NASA’s Next Generation Airborne Visible Infrared Imaging
Spectrometer (AVIRIS-NG) (Chapman et al., 2019), producing
spectral cubes with 425 channels, with spatial resolution of 2–3 m.
We selected three flightlines taken on different dates and at
different times-of-day to capture variable TOA-SZA and eSZA
conditions (see Table 1).

FIGURE 5 | The selected study site is mostly bare soil with hilly terrain, located in Valencia, Santa Clarita, California. Bottom panel shows the eSZA cosine for
standard illumination conditions.

TABLE 1 | Flightlines used in this study, showing identification numbers, with
per-flightline mean TOA SZA (degrees from zenith), solar azimuth angle
(degrees clockwise from North), and spatial resolution.

Tag Flight ID SZA(◦) SAA(◦) Spatial Resolution (m2)

A ang20160910t185702 32 158 2
B ang20160917t181611 41 160 3
C ang20161003t192244 52 161 2.5
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2.3.2 Preprocessing
To compare images on a per-pixel basis, we co-registered all flightlines
to a consistent grid based on Landsat 8’s panchromatic band. Using a
high-resolution 1-m DSM from the USGS (USGS, 2015), we
calculated the eSZA for each image at each pixel and saved the
results for later use. We spatially resampled all images to a 15 × 15m2

spatial resolution to simulate an orbital instrument and for
computational efficiency. Each radiance image was processed twice,
with the original forward model, F0, and with the topography-aware
model, F1. The result was a set of six reflectance maps, two for each
date, to be used in the following analysis.

3 RESULTS AND DISCUSSION

Evaluation of the effectiveness of the proposed model is
challenging without in situ data. We use two methods to
demonstrate the improvements offered by the augmented
model: an increased spatial consistency of the retrieved
reflectance (Section 3.1), and a decorrelation of this
reflectance from topographic information (Section 3.2). We
also demonstrate that difficult-to-fix atmospheric errors can be
introduced by the naive model (Section 3.3). Next, we show how
topographic uncertainties may be handled (Section 3.5), and

finally, we provide a comparison of our approach with a common
post hoc topographic correction, for completeness (Section 3.4).

3.1 Reduction of Topographic Shadow
A forward model naive to the effective SZA will assume all pixels are
flat, and hence, will model a global flux which adds significant errors.
This is especially evident when a given pixel is sloped away from the
Sun’s direction but not shadowed. In these cases, the direct solar
illumination onto the pixel is weaker, as the direct flux stretches over a
larger area on the surface. A topography-naive forward model is
unaware of this and simulates an incident flux with a magnitude that
is too high. Consequently, optimization procedure will compensate
for this error by significantly lowering the best-fit reflectance.Figure 6
shows this phenomenon. The left column gives the distribution of
eSZA across each flightline. The center column is a reflectance map
calculated with the naive forward model, while the right column is
calculated with the augmented model, for each fligthline. Recall that
the North-Western hill slope of Valencia is facing to the opposite
direction from the Sun, clearly visible from the bottom panel of
Figure 5. As can be seen here, in the naive case, the reflectance maps
show a patch of very dark pixels, which disappears in the augmented
model. These results suggest that the dark patch shown in the
reflectance results of the original model is not intrinsic to the
surface but is an outcome of model discrepancy. Also, the results

FIGURE 6 | True Color images of reflectance retrieval over the study site for the three flightlines. Center column shows results of the original model, and right column
using the augmented model. Left column show histograms of the eSZA for each acquisition, for all pixels in the image.
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suggest that the augmentedmodel removes this discrepancy and gives
a reflectance solution closer to the intrinsic surface conditions.

3.2 Decorrelation of Reflectance From
Topography
While a reduction in shadows suggests the topographic enhancement
is beneficial, it is a subjective measure and does not indicate the
magnitude of improvement. To our knowledge, all previous studies of
topographic correction in imaging spectroscopy have used similarly
qualitative evaluations. To provide a more objective performance
metric, we evaluated the correlation between the reflectance maps

and the cosine of the effective solar zenith angle. Because the solar angle
is highly variable over time, it would be surprising if the surface
materials were highly correlatedwith the specific sun-surface geometry
observed on any particular overflight. If the surfacematerials are evenly
distributed on landscape scales, then the sun angle and surface spectra
should be mostly uncorrelated with surface reflectances. Nominally,
one would expect that the true reflectances measured normal to the
pixels should not very significantly with this angle.

Based on this premise, the degree of correlation between surface
and solar angle can be used as a quantiative performance metric to
assess improvements from topography-aware atmospheric
correction. To calculate this we used a correlogram, a graph

FIGURE 7 |Decorrelation plots showing how the retrieved reflectance is less correlated with topography using the augmented model, compared to the original. The
left panels show a scatter plot between the 1st principal-component projection of the reflectance and the eSZA for the twomodels. The right column panels show a per-
channel r2 between reflectance and eSZA, AKA “correlograms”. For clarity, we divided the calculation for the correlograms into two pixel groups; pixels with eSZA larger
than TOA-SZA, and smaller than TOA-SZA, as represented by the contentious and dashed lines, respectively. The letter codes follow Table 1 to represent the three
different flightlines.
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that quantifies the r2 (coefficient of correlation) between the
reflectance values (the square of the correlation coefficient) and
the geometry value, for each pixel in the map. This calculation is
done independently at each wavelength, and the resulting
correlogram quantify the amount of correlation between the
reflectance value at each band and the response (Carmon and
Ben-Dor, 2019).

Figure 7 demonstrates how using the augmented model
decorrelates the reflectance result from topography. The left
column of the figure provides a scatter plot between the
reflectance primary Principal Components (PC) score and the
eSZA, while the right panels display the correlograms. This figure
serves as a validation and give evidence that the reflectance
retrieved with the augmented model is closer to the intrinsic
reflectance of the materials in the pixel.

The reader should note that although our results strongly
suggests a physically driven decorrelation of reflectance from
topography, still, surface conditions are naturally correlated with
illumination patterns via various mechanisms. Hence, the
conclusion that these results suggests the augmented model is
better at retrieving a more accurate surface reflectance is
contrasted by the caveat that there should be a correlation
between surface conditions and topography. Still, we motivate
this conclusion by the fact that the reduction in correlation was
achieved through a forward model that incorporates additional
physics, and that the correlograms for the augmented model still
show some degree of correlation with topography.

3.3 Estimating Atmospheric State
RTM-based atmospheric correction algorithms search for the
unknown atmospheric state that best fits the data. Significant
amounts of atmospheric water vapor and aerosols strongly
attenuate the spectral atmospheric coefficients that go into the
forward model, and lead to large errors in the reflectance if the
wrong value is assigned. If that occurs, a post hoc topographic
correction will be incapable of compensating for these errors: the
post hoc correction assumes that the retrieved atmospheric state
was correct. In this section we use a simulation experiment to

demonstrate how the augmented TOPOFLUX model retrieves
the correct atmospheric state in all surface geometries, while the
naive model results in atmospheric state errors that increase with
increasing difference between the TOA-SZA and the eSZA.

We use the augmented model F1, defined in Eq. 18, to simulate
at-sensor radiance given a fixed atmospheric and surface states,
changing only the value of μϕ. We use a standard vegetation
reflectance spectrum as the true surface state, and an atmospheric
state where the water vapor amount is 1.6 g/cm2, and AOD is 0.25,
representing common atmospheric conditions. We sample from a
Gaussian distribution representing the eSZA angle, where the mean
equals the TOA SZA θ and equals to 32°, with a variance of 40°. We
sampled 1,000 times from this distribution, and calculated at-sensor
radiance for each sample. We then ran our atmospheric correction
algorithm with the original and the augmented models, retrieving
surface and atmospheric state for each.

In Figure 8 we show the estimated atmospheric state for the
topography aware model (left) and the topographic naive model
(right). One can clearly see that the topography-aware model
performs well in all surface geometry conditions, while the naive
model performs well only when the eSZA is close to the TOA-SZA.
From the topography-naive panel we can see that not including the
eSZA in the model would lead to errors in both water and aerosol
estimates, and that these errors are correlated to the eSZA and increase
as the difference between the eSZA and the TOA-SZA is increasing.

3.4 Comparison to a post hoc Topographic
Correction
For completeness, we evaluate the performance of the topography-
aware model against a popular and commonly used post hoc
topographic correction algorithm, the Sun Canopy Sensor
algorithm with C-correction (SCS + C) (Soenen et al., 2005). In
Figure 9 we show a comparison of 3 models: the augmented model,
the SCS + C model and the original model, which notably differ
substantially. Without extensive, spatially-explicit in situ data, we
cannot make a definitive statement about which method is more
accurate. However, post hoc corrections are inherently an attempt at

FIGURE 8 | Atmospheric state vector retrievals for the two models, varying eSZA, with a constant reflectance and atmosphere. We used a topography-aware and
topography-naive inversions to obtain state estimates under these conditions. Points in the scatter plots are colored by μϕ = cos (eSZA).
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approximating the true physics of the system, lending support for the
topography-aware approach.

3.5 Propagating Uncertainties From the
Digital Surface Model
The TOPOFLUXmodel is based on an estimate of the eSZA, which
is usually derived from an external DSM. For operational use in a
global investigation, uncertainties in the DSM will depend on the
quality of the original measurement, its spatial resolution, and its
temporal proximity to the radiance measurement to be inverted. In
some areas, such as our California study site, recently acquired high-
resolution 1m LIDAR-based DSMs are available, providing
excellent quality surface geometry information. In contrast, the
only freely-available dataset covering other regions may be the

Shuttle Radar Topography Mission (SRTM) DEM at 30m,
acquired in the early 2000s (National Academies of Sciences E
and Medicine, 2018, section 10.2). In such regions, a wide variety of
physical processes can affect surfaces such as volcanoes and snow-
covered mountains, producing significant topography alteration
over decadal timescales (Henderson and Pritchard, 2017; Cigna
and Tapete, 2021). Hence, a principled management of uncertainty
is required to ensure a correct use of these data within the
atmospheric correction algorithm.

In this section we provide a mechanism to quantify, leverage,
and propagate uncertainties from the DSM within the OE
inversion, based on existing formulations (Rodgers, 2000). We
demonstrate how to quantify the effect of DSM uncertainty
within the atmospheric correction algorithm, how to leverage
these quantities to make better estimates of the unknown surface

FIGURE 9 | Comparison of 3 reflectance spectra from the study site (see green markers in upper panels for locations), retrieved using the topography-aware
Topoflux model (blue), the SCS+C posthoc topographic correction (red), and the original topography-naive model (in orange).
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and atmospheric states, and finally, how to propagate these
uncertainties forward and capture their effect in the posterior
uncertainty associated with each pixel.

Rodgers (2000, Section 3.2) provides a formulation for
“forward model parameters,” components which affect the
forward model but are not a part of the state vector. Here, we
treat these auxiliary variables as a part of the forwardmodel that is
known with some measurement uncertainties, however it is not
retrieved as part of the state vector. The OE formulation can treat
these sources of uncertainty in the algorithm, where we can
capture their effect on the forward model, leverage it, and
incorporate it within the inversion. In order to follow the
notation of Rodgers, we will relabel μϕ as bμϕ, leading to the
model representation:

y � F1 x, bμϕ( ) + 0

where 0 denotes the measurement uncertainties for the
radiances. This formulation allows to capture the effect of
the bμϕ variable on the forward model, assign an uncertainty
level, and leverage the effect in the inversion. Recall that the F1
model in Eq. 9 is non-linear, but we assume that it can be
linearized through a Taylor series expansion in the bμϕ variable
around the true value bμϕ ,0:

y � F1 x, bμϕ ,0( ) + Jb x0, bμϕ ,0( ) bμϕ − bμϕ ,0( ) + 0

� F1 x, bμϕ ,0( ) + Kb bμϕ − bμϕ ,0( ) + 0
(10)

whereJb is the Jacobian of the forward model with respect to bμϕ,
Kb � Jb(x0, bμϕ ,0) is the partial derivative with respect to bμϕ that is
evaluated at (x0, bμϕ ,0), and 0 is measurement noise. So we see
that an error in the DSM-supplied value of bμϕ can be
approximated as an additive error that fans out across the
entire spectrum, and viewed as a new (larger) error term 
that account for modelling errors originating in topographic
uncertainties. That is,

 � Kb bμϕ + 0.

We assume that bμϕ is independent of x and 0, and the new
measurement uncertainty Sϵ = var() is

Sϵ � var ( ) � Sy + KbSbK
T
b (11)

where Sy = var() is strictly instrument noise, Kb is the forward
model’s sensitivity to the bμϕ variable, and Sb is the degree of
uncertainty of the underlying bμϕ variable, i.e., the variance of μϕ.

The gradient Kb is the partial derivative of the forward model
with respect to bμϕ. It can be found using finite differences, but
due to the form of Eq. 9, the gradient can readily be found
analytically:

Kb � zF1

zμϕ
� e0t

↓
dir

π 1 − sρ( ) ρt↑. (12)

This formulation is equivalent to inflating Sϵ with a physically-
structured uncertainty weighed by the accuracy of bμϕ. Because μϕ
directly affects all radiances, this uncertainty can have a
significant effect on the inversion processes via the cost
function’s likelihood term, and on the resulting posterior
covariance.

Adding to Sϵ this structured noise leads to weighting down the
radiance residual’s influence on data portion of the cost function,
which now has the form:

y − F x( )( )T Sy + KbSbK
T
b( )−1 y − F x( )( ). (13)

Formulating μϕ as an auxiliary variable affects the retrieval in
two ways. First, it would shift the balance in the cost function and
will weight down the measurement leverage where μϕ affects the
spectra the most. This would lead to the solution state to converge
on a different location in the sample space. Second, it changes the
posterior uncertainty, which now takes the form

Ŝ � KT Sy + KbSbK
T
b( )−1K + S−1a( )−1

. (14)

Here there is an additional variance term of rank 1, which will
inflate the posterior variance along a certain direction that is a
function of K. Recall that K is the matrix of partial derivatives of
the forward model with respect to the state vector, evaluated at
the solution. Because the solution state changes upon
introduction of the model noise term, so does K, causing a
secondary change to the overall Ŝ.

To evaluate these assumptions, we conducted an uncertainty
quantification experiment, where we quantify uncertainties in the
DSM, propagate them through to μϕ and into the retrieval. First,
to get a realistic value for μϕ uncertainty, we calculated the error in
μϕ as a function of errors in pixel slope and aspect, for standard
conditions. We started with a “true” (reference) μϕ for a sloped
pixel of 30°, with an aspect of 90°. We selected standard solar
illumination conditions with a TOA SZA of 30°, and a solar
azimuth angle of 150°. We then drawn random samples of slope
and aspect, where we changed the variance of these variables
increasing attractively. For each unique combination of slope and
aspect variance, we drew 10,000 samples, and calculated the

FIGURE 10 | Uncertainty μϕ, the eSZA cosine, as a function of
uncertainties in the DSM.
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difference between the simulated and reference μϕ. We tabulated
the results based on the slope and aspect uncertainty, and finally
we calculated the standard deviation of the difference for each
combination.

Figure 10 shows uncertainty in the μϕ variable as a function of
uncertainty in the slope and aspect. We selected slope standard
deviations ranging between 0 and 20°, and aspect standard
deviations from 0 to 30°. From the figure, we can see that for
a relatively accurate DSM, with errors in slope of up to 10°, and
errors in aspect of up to 10°, we can expect a standard error in μϕ
of around 0.05. This level of accuracy is consistent with our
experiments, as we have resampled the 1 m2 USGSDSM to 15 m2,
resulting with errors of this range or less.

In Figure 11 we show the effect of this formulation in two
ways. First panel A gives the shape of the effect in radiance space,
for different values of μϕ uncertainties by showing the square-root
of the diagonal element of KbSbKT

b . Next, in panel B we show the
influence of bμϕ on the posterior standard error, for the same
uncertainty values.

Adding this uncertainty to the retrieval algorithm can be
useful in buffering against small errors in μϕ value, but at the
cost of reducing the information content of the retrieved
quantities. Due to the magnitude of this effect, a standard
error greater than 5–10% for βμϕ leads to the solution to come
mainly from the priors. Hence, if the DSM is highly uncertain one
could assign μϕ as a state vector parameter and optimize for it
simultaneously with the surface and atmosphere.

4 CONCLUSION

Atmospheric correction of imaging spectroscopy observations is the
critical step in estimating biogeophysical properties of the Earth’s
surface from instrument-measured radiance. Errors in this first step
thus affect all subsequent analyses and products, and systematic
deviations from true reflectance may lead to commensurate—or
even exaggerated—effects downstream. The purpose of this work
was to improve the accuracy of reflectance estimates and their
uncertainties using topographic information. By enhancing the
physical formulation of the forward model we aimed to retrieve a
surface reflectance estimatemore intrinsic to thematerials within the
pixel as opposed to an apparent reflectance that is affected by the
environmental conditions of the scene.

A topography-naive forward model will poorly model a radiance
measurement originating from a pixel of high slope, facing away from
the sun’s direction. This topographic shadow effect is common in
rugged terrains, many of which are ecosystems of critical interest for
analyses. Topography-naive models treat each horizontal pixel of the
surface as having equivalent area, an assumption that breaks down
with non-zero slope. This in turn leads to the projection of equivalent
solar radiation onto a larger area on the surface, introducing
topographically-based biases. This effect can be demonstrated by
comparing forward models directly (Figure 4, highlighting an effect
most dominant in wavelengths less than 1,000 nm, but present
throughout the spectrum). The implications of this correction
become even more pronounced when examining real retrievals,

FIGURE 11 | μϕ uncertainty effects and propagation. Panel (A) shows the direction of uncertainty in radiance space for different μϕ uncertainties. Panel (B) shows
the effect of these uncertainties on the posterior variance.
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as in Figure 6, where we contrast the topography naive and
aware models in a rugged landscape. We show how a naive
model estimates the reflectance of these pixels as dark, while a
topographically aware model provides a brighter, and more
spectrally consistent, result. The topography-aware model is
able to disassociate the illumination pattern onto this area
from the retrieved reflectance, resulting with more consistent
and intrinsic estimates of the surface reflectance.

We further investigate the consequences of a topography-aware
forward model by showing a simplified comparison of retrieved
reflectance and topography. Figure 7 demonstrates a reduced
correlation between the first principle component of the
reflectance generally understood to indicate brightness (Sousa
et al., 2022) and effective solar zenith angle. The reduction in
correlation is large (≈75%), though the expected rate of
correlation reduction is clouded by likely ecological and
geomorphological drivers of surface-topography relationships. An
important consideration of this expansion is that the topographic
influence is really a coupled solar-angle and topographic effect; in
other words, the effect is dominant when the direction normal to the
surface is not parallel with the angle of direct solar illumination. This
means that, for the same location, acquisitions that occur during
different times of day (meaning different solar angles) will experience
the effect at differentmagnitudes. If not accounted for in the forward
model, this leads to a potentially significant bias that can also
manifest in the spatial and temporal domains.

Figure 4 demonstrates that the difference between the
topography naive and aware forward models is consistent with
effects due to the presence of aerosols. Any conflation between the
two sources (aerosols and topography) may then also influence
the retrieval of atmospheric water vapor, leading to a spectrally
distorted solution. We hypothesized that a topography-naive
model will result in greater errors in the retrieved atmospheric
state. A simulation experiment described in Section 3.3
supported this hypothesis, with topography-aware retrievals
leading to more consistent aerosol optical depth and water
vapor values (Figure 8).

From a practical standpoint, it is useful to also understand how a
post hoc correction compares to the topography-aware retrieval. To
that end, Figure 9 shows spectra throughout a landscape that
highlight how different the reflectance estimates are between the
topography-aware model and at least one common post hoc
correction (SCS + C). We do not make the claim that aligning a
physically-based correction and post hoc correction is impossible, but
we do note that common current corrections do not yet concur.
And, given that the post hoc correction is an inherent approximation,
we believe the topographically-aware retrieval is more likely correct.
We suggest that post hoc corrections that attempt to incorporate
differences between direct and diffuse transmission from radiative
transfer modeling, historically rejected due to the substantial

computational requirements, may be more effective and now
tractable given advances in emulating atmospheric radiative
transfer (Brodrick et al., 2021).

Global imaging spectroscopy missions will encounter variable
topography, challenging atmospheric conditions, and a wide
diversity of surface types various surface biomes. Accounting
for topography in the initial inversion of radiance will help to
ensure that retrieved reflectance estimates are buffered against
systematic error related to variable terrain.
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