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NONUNIFORM LOW-PASS FILTERS
ON NON ARCHIMEDEAN LOCAL FIELDS∗
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Abstract. In real life application all signals are not obtained from uniform
shifts; so there is a natural question regarding analysis and decompositions
of this types of signals by a stable mathematical tool. Gabardo and Nashed
(J. Funct. Anal. 158:209-241, 1998) filled this gap by the concept of nonuni-
form multiresolution analysis. In this setting, the associated translation set
Λ = {0, r/N} + 2Z is no longer a discrete subgroup of R but a spectrum asso-
ciated with a certain one-dimensional spectral pair and the associated dilation
is an even positive integer related to the given spectral pair. The main aim of
this article is to provide the characterization of nonuniform low-pass filters on
non-Archimedean local fields.
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1. INTRODUCTION

Multiresolution analysis is an important mathematical tool since it provides
a natural framework for understanding and constructing discrete wavelet sys-
tems. The concept of MRA has been extended in various ways in recent
years. These concepts are generalized to L2(Rd), to lattices different from Zd,
allowing the subspaces of MRA to be generated by Riesz basis instead of or-
thonormal basis, admitting a finite number of scaling functions, replacing the
dilation factor 2 by an integer M ≥ 2 or by an expansive matrix A ∈ GLd(R)
as long as A ⊂ AZd. All these concepts are developed on regular lattices, that
is the translation set is always a group. Recently, Gabardo and Nashed [25]
considered a generalization of Mallat’s [42] celebrated theory of MRA based on
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spectral pairs, in which the translation set acting on the scaling function asso-
ciated with the MRA to generate the subspace V0 is no longer a group, but is
the union of Z and a translate of Z. Based on one-dimensional spectral pairs,
Gabardo and Yu [26] considered sets of nonuniform wavelets in L2(R). In real
life application all signals are not obtained from uniform shifts; so there is a
natural question regarding analysis and decompositions of this types of signals
by a stable mathematical tool. Gabardo and Nashed [25] and Gabardo and
Yu [26] filled this gap by the concept of nonuniform multiresolution analysis.

During the last two decades, there is a substantial body of work that has
been concerned with the construction of wavelets on local fields. Even though
the structures and metrics of local fields of zero and positive characteristics
are similar, their wavelet and MRA (multiresolution analysis) theory are quite
different. For example, R. L. Benedetto and J. J. Benedetto [18] developed
a wavelet theory for local fields and related groups. They did not develop
the multiresolution analysis (MRA) approach, their method is based on the
theory of wavelet sets and only allows the construction of wavelet functions
whose Fourier transforms are characteristic functions of some sets. Khren-
nikov, Shelkovich and Skopina [31] constructed a number of scaling functions
generating an MRA of L2(Qp). But later on in [15], Albeverio, Evdokimov and
Skopina proved that all these scaling functions lead to the same Haar MRA
and that there exist no other orthogonal test scaling functions generating an
MRA except those described in [31]. Some wavelet bases for L2(Qp) differ-
ent from the Haar system were constructed in [14, 22]. These wavelet bases
were obtained by relaxing the basis condition in the definition of an MRA
and form Riesz bases without any dual wavelet systems. For some related
works on wavelets and frames on Qp, we refer to [16, 30, 34, 35]. On the other
hand, Lang [37, 38, 39] constructed several examples of compactly supported
wavelets for the Cantor dyadic group. Farkov [23, 24] has constructed many
examples of wavelets for the Vilenkin p-groups. Jiang et al. [29] pointed out
a method for constructing orthogonal wavelets on local field K with a con-
stant generating sequence and derived necessary and sufficient conditions for
a solution of the refinement equation to generate a multiresolution analysis of
L2(K). During the last two decades, p-adics has been extensively applied to
a variety of problems in theoretical physics (string theory, cosmology, quan-
tum theory, and disordered systems,) and biology (in modeling the thinking
process and in genetics) [17, 33, 36, 32, 43, 45, 53, 54, 52].

Recently, Shah and Abdullah [50] have generalized the concept of multireso-
lution analysis on Euclidean spaces Rn to nonuniform multiresolution analysis
on local fields of positive characteristic, in which the translation set acting on
the scaling function associated with the multiresolution analysis to generate
the subspace V0 is no longer a group, but is the union of Z and a translate of Z,
where Z = {u(n) : n ∈ N0} is a complete list of (distinct) coset representation
of the unit disc D in the locally compact Abelian group K+.More precisely, this
set is of the form Λ = {0, r/N}+Z, where N ≥ 1 is an integer and r is an odd
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integer such that r and N are relatively prime. They call this a nonuniform
multiresolution analysis on local fields of positive characteristic.The notion of
nonuniform wavelet frames on non-Archimedean local fields was introduced by
Ahmad and Sheikh [12] and established a complete characterization of tight
nonuniform wavelet frames on non-Archimedean local fields. More results in
this direction can also be found in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 41, 48, 49]
and the references therein.

W. Lawton [40] gave the necessary and sufficient conditions for a trigono-
metric polynomial to be a low-pass filter of an MRA on L2(R). Later, Hernan-
dez and Weiss [28] gave a characterization of low-pass filters by using Cohen’s
approach. They considered certain smooth classes of low-pass filters. Then
Papadakis, Sikic, and Weiss [44] gave a complete characterization by assuming
only the Holder condition at the origin instead of smoothness condition. Fur-
thermore, San Antolin [46] generalized it to a general dilation matrix. R. F.
Gundy [27] gave necessary and sufficient conditions for an arbitrary periodic
function to be a low-pass filter. His technique is also useful if we consider that
the translates of scaling function form a Riesz basis instead of an orthonormal
basis for V0. E. Curry [20] extended this result for multivariable wavelets.

The article is organized as follows. Section 2 contains a brief introduction
to local fields and Fourier analysis on such a field. In Section 3, we give some
definitions and state the main theorem of this article, which gives necessary
and sufficient conditions for a function to be a low-pass filter on local fields of
positive characteristic. In the last section, we continue the proof of our main
result via probability and martingale methods.

2. PRELIMINARIES ON NON-ARCHIMEDEAN LOCAL FIELDS

2.1. Non-Archimedean Local Fields. A non-Archimedean local field K is
a locally compact, non-discrete and totally disconnected field. If it is of char-
acteristic zero, then it is a field of p-adic numbers Qp or its finite extension.
If K is of positive characteristic, then K is a field of formal Laurent series
over a finite field GF (pc). If c = 1, it is a p-series field, while for c 6= 1,
it is an algebraic extension of degree c of a p-series field. Let K be a fixed
non-Archimedean local field with the ring of integers D = {x ∈ K : |x| ≤ 1}.
Since K+ is a locally compact Abelian group, we choose a Haar measure dx
for K+. The field K is locally compact, non-trivial, totally disconnected and
complete topological field endowed with non–Archimedean norm | · | : K→ R+

satisfying
(a) |x| = 0 if and only if x = 0;
(b) |x y| = |x| · |y| for all x, y ∈ K;
(c) |x+ y| ≤ max {|x|, |y|} for all x, y ∈ K.
Property (c) is called the ultrametric inequality. Let B = {x ∈ K : |x| < 1}

be the prime ideal of the ring of integers D in K. Then, the residue space D/B
is isomorphic to a finite field GF (q), where q = pc for some prime p and c ∈ N.
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Since K is totally disconnected and B is both prime and principal ideal, so
there exist a prime element p of K such that B = 〈p〉 = pD. Let D∗ = D\B =
{x ∈ K : |x| = 1}. Clearly, D∗ is a group of units in K∗ and if x 6= 0, then can
write x = pny, y ∈ D∗. Moreover, if U = {am : m = 0, 1, . . . , q − 1} denotes
the fixed full set of coset representatives of B in D, then every element x ∈ K
can be expressed uniquely as x =

∑∞
`=k c` p

` with c` ∈ U . Recall that B is
compact and open, so each fractional ideal Bk = pkD =

{
x ∈ K : |x| < q−k

}
is also compact and open and is a subgroup of K+. We use the notation in
Taibleson’s book [51]. In the rest of this paper, we use the symbols N,N0 and Z
to denote the sets of natural, non-negative integers and integers, respectively.

Let χ be a fixed character on K+ that is trivial on D but non-trivial on B−1.
Therefore, χ is constant on cosets of D so if y ∈ Bk, then χy(x) = χ(y, x), x ∈
K. Suppose that χu is any character on K+, then the restriction χu|D is a
character on D. Moreover, as characters on D, χu = χv if and only if u−v ∈ D.
Hence, if {u(n) : n ∈ N0} is a complete list of distinct coset representative of
D in K+, then, as it was proved in [51], the set

{
χu(n) : n ∈ N0

}
of distinct

characters on D is a complete orthonormal system on D.
We now impose a natural order on the sequence {u(n)}∞n=0. We have D/B ∼=

GF (q) where GF (q) is a c-dimensional vector space over the field GF (p). We
choose a set {1 = ζ0, ζ1, ζ2, . . . , ζc−1} ⊂ D∗ such that span{ζj}c−1

j=0
∼= GF (q).

For n ∈ N0 satisfying
0 ≤ n < q, n = a0 + a1p+ · · ·+ ac−1p

c−1, 0 ≤ ak < p, and k = 0, 1, . . . , c− 1,
we define

(n) = (a0 + a1ζ1 + · · ·+ ac−1ζc−1) p−1.(2.1)

Also, for n = b0+b1q+b2q2+· · ·+bsqs, n ∈ N0, 0 ≤ bk < q, k = 0, 1, 2, . . . , s,
we set

u(n) = u(b0) + u(b1)p−1 + · · ·+ u(bs)p−s.(2.2)
This defines u(n) for all n ∈ N0. In general, it is not true that u(m+ n) =

u(m)+u(n). But, if r, k ∈ N0 and 0 ≤ s < qk, then u(rqk+s) = u(r)p−k+u(s).
Further, it is also easy to verify that u(n) = 0 if and only if n = 0 and
{u(`) + u(k) : k ∈ N0} = {u(k) : k ∈ N0} for a fixed ` ∈ N0. Hereafter we use
the notation χn = χu(n), n ≥ 0.

Let the local field K be of characteristic p > 0 and ζ0, ζ1, ζ2, . . . , ζc−1 be as
above. We define a character χ on K as follows:

χ(ζµp−j) =
{

exp(2πi/p), µ = 0 and j = 1,
1, µ = 1, . . . , c− 1 or j 6= 1.(2.3)

2.2. Fourier Transforms on Non-Archimedean Local Fields. The Fourier
transform of f ∈ L1(K) is denoted by f̂(ξ) and defined by

F
{
f(x)

}
= f̂(ξ) =

∫
K
f(x)χξ(x) dx.(2.4)
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It is noted that

f̂(ξ) =
∫
K
f(x)χξ(x)dx =

∫
K
f(x)χ(−ξx) dx.

The properties of Fourier transforms on non-Archimedean local field K are
much similar to those of on the classical field R. In fact, the Fourier transform
on non-Archimedean local fields of positive characteristic have the following
properties:

• The map f → f̂ is a bounded linear transformation of L1(K) into
L∞(K), and

∥∥f̂∥∥∞ ≤ ∥∥f∥∥1.
• If f ∈ L1(K), then f̂ is uniformly continuous.
• If f ∈ L1(K) ∩ L2(K), then

∥∥f̂∥∥2 =
∥∥f∥∥2.

The Fourier transform of a function f ∈ L2(K) is defined by

f̂(ξ) = lim
k→∞

f̂k(ξ) = lim
k→∞

∫
|x|≤qk

f(x)χξ(x) dx,(2.5)

where fk = f Φ−k and Φk is the characteristic function of Bk. Furthermore,
if f ∈ L2(D), then we define the Fourier coefficients of f as

f̂
(
u(n)

)
=
∫
D
f(x)χu(n)(x) dx.(2.6)

The series
∑
n∈N0 f̂

(
u(n)

)
χu(n)(x) is called the Fourier series of f . From the

standard L2-theory for compact Abelian groups, we conclude that the Fourier
series of f converges to f in L2(D) and Parseval’s identity holds:∥∥f∥∥2

2 =
∫
D

∣∣f(x)
∣∣2dx =

∑
n∈N0

∣∣∣f̂(u(n)
)∣∣∣2 .

2.3. Uniform MRA on Non-Archimedean Local Fields. In order to be
able to define the concepts of uniform MRA and wavelets on non-Archimedean
local fields, we need analogous notions of translation and dilation. Since⋃
j∈Z p

−jD = K, we can regard p−1 as the dilation and since {u(n) : n ∈ N0}
is a complete list of distinct coset representatives of D in K, the set Z =
{u(n) : n ∈ N0} can be treated as the translation set. Note that Λ is a sub-
group of K+ and unlike the standard wavelet theory on the real line, the
translation set is not a group. Let us recall the definition of a uniform MRA
on non-Archimedean local fields of positive characteristic introduced by Jiang
et al. in [29].

Definition 2.1. Let K be a non-Archimedean local field of positive charac-
teristic p > 0 and p be a prime element of K. An MRA of L2(K) is a sequence
of closed subspaces {Vj : j ∈ Z} of L2(K) satisfying the following properties:

(a) Vj ⊂ Vj+1 for all j ∈ Z;
(b)

⋃
j∈Z Vj is dense in L2(K);

(c)
⋂
j∈Z Vj = {0};
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(d) f(x) ∈ Vj if and only if f(p−1x) ∈ Vj+1 for all j ∈ Z;
(e) There exists a function φ ∈ V0, such that

{
φ
(
x− u(k)

)
: k ∈ N0

}
forms

an orthonormal basis for V0.

According to the standard scheme for construction of MRA-based wavelets,
for each j, we define a wavelet space Wj as the orthogonal complement of Vj
in Vj+1, i.e., Vj+1 = Vj ⊕Wj , j ∈ Z, where Wj ⊥ Vj , j ∈ Z. It is not difficult
to see that

f(x) ∈Wj if and only if f(p−1x) ∈Wj+1, j ∈ Z.(2.7)

Moreover, they are mutually orthogonal, and we have the following orthog-
onal decompositions:

L2(K) =
⊕
j∈Z

Wj = V0 ⊕

⊕
j≥0

Wj

 .(2.8)

As in the case of Rn, we expect the existence of q − 1 number of func-
tions ψ1, ψ2, . . . , ψq−1 to form a set of basic wavelets. In view of (2.7) and
(2.8), it is clear that if {ψ1, ψ2, . . . , ψq−1} is a set of function such that the
system

{
ψ`
(
x− u(k)

)
: 1 ≤ ` ≤ q − 1, k ∈ N0

}
forms an orthonormal basis for

W0, then
{
qj/2ψ`(p−jx − u(k)

)
: 1 ≤ ` ≤ q − 1, j ∈ Z, k ∈ N0

}
forms an

orthonormal basis for L2(K).

3. NONUNIFORM LOW-PASS FILTERS ON NON-ARCHIMEDEAN FIELDS

For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ qN − 1 such that
r and N are relatively prime, we define

Λ =
{

0, u(r)
N

}
+ Z.

where Z = {u(n) : n ∈ N0}. It is easy to verify that Λ is not a group on
non-Archimedean local field K, but is the union of Z and a translate of Z.
Following is the definition of nonuniform multiresolution analysis (NUMRA)
on non-Archimedean local fields of positive characteristic given by Shah and
Abdullah [50].

Definition 3.1. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤
qN − 1 such that r and N are relatively prime, an associated NUMRA on
non-Archimedean local field K of positive characteristic is a sequence of closed
subspaces {Vj : j ∈ Z} of L2(K) such that the following properties hold:

(a) Vj ⊂ Vj+1 for all j ∈ Z;
(b)

⋃
j∈Z Vj is dense in L2(K);

(c)
⋂
j∈Z Vj = {0};

(d) f(·) ∈ Vj if and only if f(p−1N ·) ∈ Vj+1 for all j ∈ Z;
(e) There exists a function ϕ in V0 such that {ϕ(· − λ) : λ ∈ Λ}, is a com-

plete orthonormal basis for V0.
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It is worth noticing that, when N = 1, one recovers from the definition
above the definition of an MRA on non-Archimedean local fields of positive
characteristic p > 0. When, N > 1, the dilation is induced by p−1N and
|p−1| = q ensures that qNΛ ⊂ Z ⊂ Λ.

For every j ∈ Z, define Wj to be the orthogonal complement of Vj in Vj+1.
Then we have

Vj+1 = Vj ⊕Wj and W` ⊥W`′ if ` 6= `′.

It follows that for j > J ,

Vj = VJ ⊕
j−J−1⊕
`=0

Wj−` ,

where all these subspaces are orthogonal. By virtue of condition (b) in the
Definition 3.1, this implies

L2(K) =
⊕
j∈Z

Wj ,

a decomposition of L2(K) into mutually orthogonal subspaces.
As in the standard scheme, one expects the existence of qN − 1 number

of functions so that their translation by elements of Λ and dilations by the
integral powers of p−1N form an orthonormal basis for L2(K).

Let ϕ be a scaling function for a NUMRA {Vj : j ∈ Z} of L2(K). For f ∈
L2(K), we define fj,k(x) = (qN)j/2f

(
(p−1N)jx− λ

)
, j ∈ Z, λ ∈ Λ. Since

ϕ ∈ V0 ⊂ V1, and {ϕ1,λ : λ ∈ Λ} is an orthonormal basis in V1, we have

ϕ(x) =
∑
λ∈Λ

hλ(qN)1/2ϕ(p−1Nx− λ),(3.1)

where hλ = 〈ϕ,ϕ1,λ〉 and {hλ : λ ∈ Λ} ∈ `2(Λ). Taking Fourier transforms, we
get

ϕ̂(ξ) = (qN)−1/2 ∑
λ∈Λ

hλχλ(pNξ)ϕ̂(pNξ) = m(pNξ)ϕ̂(pNξ),(3.2)

where m(ξ) = (qN)−1/2∑
λ∈Λ hλχλ(ξ) is an integral-periodic function, called

the nonuniform lowpass filter associated with the scaling function ϕ. For such
a low-pass filter m we have the following relation.

qN−1∑
`=0
|m(ξ + pNu(`))|2 = 1 a.e. ξ ∈ K.

Consider two operators P andR respectively on L∞(D) and L1(K)∩L∞(K)
defined by

Pf =
qN−1∑
`=0
|m(pN(·+ u(`)))|2f(pN(·+ u(`))),

Rf = |m(pN ·)|2f(pN ·).
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Corresponding to the scaling function ϕ, the associated low-pass filter is m
therefore by virtue of (3.2) |ϕ̂(ξ)|2 is a fixed point of the operator R. Define
Jϕ(ξ) =

∑
λ∈Λ |ϕ̂(ξ + λ)|2, therefore we have

Jϕ(ξ) =
∑
λ∈Λ
|ϕ̂(ξ + λ)|2

=
qN−1∑
`=0

∑
λ∈Λ
|ϕ̂(ξ + u(`+ qNλ))|2

(3.3)

=
qN−1∑
`=0

∑
λ∈Λ
|ϕ̂(ξ + u(`) + (p−1N)−1λ)|2

=
qN−1∑
`=0

∑
λ∈Λ
|ϕ̂(pNξ + pNu(l + λ))|2|m(pNξ + pNu(`) + λ))|2

=
qN−1∑
`=0
|m(pNξ + pNu(`))|2Jϕ(pN(ξ + u(l))) (since m is integral-periodic)

= PJϕ(ξ)

Therefore, Jϕ(ξ) is a fixed point of the operator P.

Definition 3.2. Let g ∈ L1(K)∩L∞(K). A function f is almost everywhere
g-continuous at the origin if

lim
j→∞

f((p−1N)−jξ)
|g((p−1N)−jξ)|2

exists and is constant almost everywhere.

Definition 3.3. D∞(ϕ̂) is a space of function h(ξ) satisfying
(i) both h(ξ) and h−1(ξ) belong to L∞(D).
(ii) h(ξ) is almost everywhere ϕ̂-continuous at the origin and h(0)

|ϕ̂(0)|2 = 1.

Note that if ϕ(x) is a scaling function then Jϕ is almost everywhere ϕ̂-
continuous at the origin. In fact, Jϕ(ξ) ∈ D∞(ϕ̂). Using this weak form
of continuity, Gundy [34] has given a characterization of low-pass filter for
dyadic dilations. E. Curry [24] has generalized this characterization for the
multivariable case.

Definition 3.4. We call a function ϕ a pre-scaling function associated
with a NUMRA {Vj : j ∈ Z} of L2(K) if its translates {ϕ(· − λ) : λ ∈ Λ} form
a Riesz basis for V0.

Let H be a closed subspace of L2(K). A system {fk : k ∈ N0} of functions
in L2(K) is said to be a Riesz basis of H if for any f ∈ H, there exists a
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sequence {ak : k ∈ N0} ∈ `2(N0) such that f =
∑
k∈N0 akfk with convergence

in L2(K) and

A1
∑
k∈N0

|ak|2 ≤
∥∥∥∥ ∑
k∈N0

akfk

∥∥∥∥2

2
≤ A2

∑
k∈N0

|ak|2(3.4)

where the constants A1 and A2 are independent of f .

Remark 3.5. (i) Note that if we take A1 = A2 = 1, then the Riesz basis is
an orthonormal basis for H.

(ii) A function ϕ ∈ L2(K) that satisfies the refinement equation (3.1) for
some scalars {hk}k∈N0

but need not satisfy the Riesz basis property (3.4) is
called a refinement function. So, every pre-scaling function is a refinement
function. �

We have the following lemma for integral-periodic unimodular functions on
K. This lemma will be helpful for proving our main result.

Lemma 3.6. Let µ be an integral-periodic unimodular function on K. That
is,

(i) µ(ξ) = µ(ξ + λ) almost everywhere for every λ ∈ Λ, and
(ii) |µ(ξ)| = 1 almost everywhere on K.
Then there is a unimodular function t on K such that

µ(ξ) = t(p−1Nξ)t(ξ) a.e. on K.(3.5)

Proof. Let Γj =
{
x ∈ K : |x| = (qN)j

}
. Observe that K\ {0} = ∪j∈ZΓj .

Let t be any measurable unimodular function defined on Γ0. For example, we
can take t(ξ) = 1 for all ξ ∈ Γ0.

Consider ξ ∈ Γ1; then |pNξ| = q−1N |ξ| = 1. This implies pNξ ∈ Γ0. Hence,
t(p−1Nξ) is well defined for ξ ∈ Γ1. Define

t(ξ) = t(p−1Nξ)µ((p−1N)ξ)(3.6)
We now proceed inductively. Suppose that t is defined for Γ1,Γ2, ...,Γn−1

so that equation (3.5) satisfies for ∪n−1
j=0 Γj . Define t by (3.6) if ξ ∈ Γn. Hence,

the induction is complete.
Similarly, if ξ ∈ Γ−1, then p−1Nξ ∈ Γ0. Hence, t(p−1ξ) is defined. Using

(3.6), we define
t(ξ) = t(p−1Nξ)µ(ξ)(3.7)

Again using induction we can define t by equation (3.7) for Γj , j ≤ −1.
Therefore, we define t(ξ) for ξ ∈ Γj , j 6= 0, by

t(ξ) =


t(p−1Nξ)µ(p−1Nξ), for ξ ∈ Γj , j ≥ 1

t(p−1Nξ)µ(ξ), for ξ ∈ Γj , j ≤ −1,
(3.8)

Thus, (3.4) follows from (3.8) if we set t(0) = 1. �
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We are now ready to present our main theorem, which gives necessary and
sufficient conditions of a function to be a low-pass filter for a local field K of
positive characteristic.

Theorem 3.7. Let m be a low-pass filter associated with a pre-scaling func-
tion ϕ.Then the following hold.

(i) m is integral-periodic, m ∈ L2(D), and |m(ξ)|2 is almost everywhere
ϕ-continuous at the origin with

lim
j→∞

∣∣∣m ((p−1N)−jξ
)∣∣∣ = 1 a.e.

(ii) The operators P and R have nontrivial fixed points, Jϕ(ξ) ∈ L∞(D)
and |ϕ̂|2 ∈ L1(K) ∩ L∞(K), respectively

(iii) The fixed point Jϕ of operator P is the unique function in the class
D∞(ϕ̂).

Conversely, if a function m satisfies (i), (ii), and (iii), then m is a low-pass
filter associated with a pre-scaling function ϕ for a NUMRA {Vj : j ∈ Z} of
L2(K).

Proof. First we prove the converse part.
Suppose that the operator R has a fixed point |ϕ̂(ξ)|2.The fixed point Jϕ(ξ)

of the operator P is the unique function in D∞(ϕ̂). Then by [4, Prop. 3.5],
the ratio |ϕ̂|/J 1/2

ϕ is a scaling function for a NUMRA {Vj : j ∈ Z} of L2(K).
The low-pass filter corresponding to this scaling function is

m0(ξ) = |m(ξ)|
{

Sϕ(ξ)
Sϕ(p−1Nξ)

}1/2
.

This leads us to define

m̃0(ξ) = m(ξ)
{

Sϕ(ξ)
Sϕ(p−1Nξ)

}1/2
.

Note that m̃0(ξ) = sgnm(ξ)m0(ξ)
By Lemma 3.6 we can write sgnm(ξ) = t(p−1Nξ)t(ξ), where t is an uni-

modular function on K. Define
ϕ̂(ξ) : = t(ξ)|ϕ̂(ξ)| = t(ξ)t(pNξ)t(pNξ)|m(pξ)ϕ̂(pNξ)|

= sgnm(pNξ)|m(pNξ)|ϕ̂(pNξ) = m(pNξ)ϕ̂(pNξ).
Since t(ξ) is a unimodular function and hence, ϕ(ξ) is a required pre-scaling

function for NUMRA.
Now let m(ξ) be a low-pass filter associated with a pre-scaling function ϕ

for a NUMRA {Vj : j ∈ Z} of L2(K). By definition, the operator R has a
fixed point |ϕ̂|2. And also from (3.3), Jϕ is a fixed point of the operator P.
Furthermore, J −1

ϕ ∈ L2(D). This implies that the function γ(x), defined by

|γ̂(ξ)|2 = |ϕ̂(ξ)|2

Jϕ(ξ)
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is a scaling function for the same NUMRA and that∑
λ∈Λ
|γ̂(ξ + λ)|2 = 1.

By the characterization of scaling function, we have

1 = lim
j→∞

|γ̂((p−1N)−jξ)|2 = lim
j→∞

|ϕ̂((p−1N)−jξ)|2

Jϕ((p−1N)−jξ) a.e.

This shows that Jϕ(ξ) is almost everywhere ϕ̂-continuous at zero. It only
remains to prove that Jϕ is the unique function in the class D∞(ϕ̂). �

4. PROOF OF THE UNIQUENESS

In this section, we want to prove that Jϕ(ξ) is a unique function in D∞(ϕ̂).
Suppose h(ξ) is another such function. We claim that Jϕ(ξ) = h(ξ) for almost
every ξ. Since γ(ξ) is a scaling function of a NUMRA, it is obvious that the
Fourier transform of γ at ξ = 0 is 1. Also, we have

∑
λ∈Λ |γ̂(ξ + λ)|2 = 1 for

almost every ξ ∈ D and limj→∞ |γ̂((p−1N)−jξ)|2 = 1 for almost every ξ on K.
Therefore, we can interpret |γ̂(ξ+λ)|2, λ ∈ Λ, as a probability distribution on
Λ for almost every ξ ∈ D.

Let µ be the low-pass filter associated with the scaling function γ. Then

µ(ξ) = ϕ̂(p−1Nξ)
Sϕ(p−1Nξ) ·

Jϕ(ξ)
ϕ̂(ξ) = m(ξ) Jϕ(ξ)

Jϕ(p−1ξ) .

Let M(ξ) = |µ(ξ)|2. Notice that M(ξ) is an integral-periodic function and
satisfies M(0) = 1 and

qN−1∑
`=0

M(ξ + pNu(`)) = 1, a.e. ξ ∈ D.(4.1)

Every non-negative integer k ∈ N0 can be expressed uniquely as

k =
∞∑
j=1

ωj(k)qj−1, 0 ≤ ωj(k) ≤ qN − 1

We identify k with the sequence (0, ω1(k), ω2(k), ...) and define ω0(k) = 0.
The integer zero is identified with the sequence zero. Note that each such
sequence has finitely many non zero terms.

Let D = {1, 2, ..., qN − 1} and D0 = D ∪ {0}. Let Ω = DN
0 be the set of

sequences. We identify N0 with the subset of Ω consisting of finite sequences.
Fix λ ∈ Λ. For J ≥ 1, let λJ = {ω : ωi = ωi(λ), 0 ≤ i ≤ J)}, be a finite
cylinder in Ω.

For each ξ ∈ D, we define probability ΓJξ on the set of all such cylinders as
follows.
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For 0 ≤ λ ≤ (qN)J − 1, we set

ΓJξ (λ) =
N∏
j=1
M((p−1N)−j(ξ + λ)).(4.2)

Lemma 4.1. It holds ∑
0≤k≤(qN)J−1

ΓJξ (k) = 1.(4.3)

Proof. We will prove this lemma by using induction on J . Define conditional
probability by

M((p−1N)−j(ξ + λ)) = Γξ(ωj(λ)||ωj−1, ..., ω1).

Equation (4.3) can also be written as ΓJξ (λJ) = 1.
For J = 1,

Γ1
ξ(λ) =M((p−1N)−1(ξ + λ)) = Γξ(ω1(λ))

Using equation (4.1), we can easily see that the result is true for J = 1.

Γ1
ξ(λ1) =

∑
ω1∈D0

Γξ(ω1(λ)) =
qN−1∑
λ=0
M((p−1N)−1(ξ + λ)) = 1 a.e ξ.

Assume that it is true for J − 1, i.e., ΓJ−1
ξ (λJ−1) = 1. Now we want to

prove it is true for J . We write

ΓJξ (λ) =
( J−1∏
j=1
M((p−1N)−j(ξ + λ))

)
×M((p−1N)−J(ξ + λ))

=ΓJ−1
ξ (λ)× Γξ

(
ωJ(λ))‖ωJ−1, ..., ω1

)
,

ΓJξ (λJ) =ΓJ−1
ξ (λJ−1)× Γξ

(
ωJ(λJ))‖ωJ−1, ..., ω1

)
Where,

Γξ
(
ωJ(λJ))‖ωJ−1, ..., ω1

)
=

=
qN−1∑
ωJ =0

M
(
(p−1N)J(ξ + u(ω1) + p−1Nu(ω2) + · · ·+ (p−1N)−J+1u(ωJ))

)

=
qN−1∑
ωJ =0

M((p−1N)Jξ + (p−1N)Ju(ω1) + (p−1N)J−1u(ω2) + · · ·+ p−1Nu(ωJ)).

Note that the summation is only on ωJ as ω1, ..., ωJ−1 are given. Again
using (4.1), we get

Γξ
(
ωJ(λJ))‖ωJ−1, ..., ω1

)
= 1

Hence, the induction is complete.
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Therefore, ΓJξ , J ≥ 1, specifies a probability. By the basic Kolmogorov
theorem, the family ΓJξ extends to a probability say Pξ on the Borel sets of Ω.
If we assume that infinite product of (4.2) exists, then we have

1 =
∑
λ∈Λ
|γ̂(ξ + λ)|2 =

∑
λ∈Λ

lim
J→∞

J∏
j=1
M((p−1N)−j(ξ + λ))

=
∑
λ∈Λ

lim
J→∞

ΓJξ (λ) for a.e. ξ

Hence, ΓJξ is tight in the Prokorov sense on the set of finite sequence. There-
fore, Pξ is concentrated on finite sequences. We say Pξ(Λ) = 1 for almost every
ξ.

ConsiderXj(ω(λ)) = ωj(λ), where ωj(λ) ∈ D0.Define ξ1(λ) := ξ and ξj+1(λ) :=
pN(ξj + u(ωj(λ))).

For 0 ≤ λ ≤ (qN)J − 1, we write λ =
∑J
j=1 ωj(λ)(qN)j−1, 0 ≤ ωj(λ) ≤

qN − 1. And

u(λ) = u(ω1)+pNu(ω2)+···+(p−1N)−J+1u(ωJ),using equation (2.2).

Also, we can write

(p−1N)−J(ξ + λ) =
= (p−1N)−J

(
ξ + u(ω1) + pNu(ω2) + · · ·+ (p−1N)−J+1u(ωJ)

)
= pN

(
(p−1N)J−1ξ + (p−1N)J−1u(ω1)

+ (p−1N)J−2u(ω2) + · · ·+ pNu(ωJ−1) + u(ωJ)
)

= pN
(
ξJ + u(ωJ)

)
.

Now we can define the conditional probability of Xj given Xj−1, ..., X1 as

M
(
(p−1N)−1(ξj + u(ωj(λ)))

)
for each j ≥ 1. Since Pξ is concentrated on finite sequences for almost every
ξ, hence, the sequence {Xj}j≥1 converges to zero relative to Pξ.

Now
Pξ(ξj+1‖ξj , ..., ξ1) =M

(
pN(ξj + u(ωj(λ)))

)
.

By construction, Pξ(ξj+1‖ξj , ..., ξ1) = Pξ(ξj+1‖ξj). Thus, {ξj}j≥1 is a Markov
process.

Since Pξ is concentrated on a finite sequence, hence, sequence {ξj}j≥1 con-
verges to zero.

Now we will come back to uniqueness question. Consider r(ξ) = h(ξ)
Jϕ(ξ) . We

want to show that r(ξ) = 1 for almost every ξ. We know that h(ξ) and Jϕ(ξ)
are fixed points of the operator P and Jϕ(ξ) = 1 almost everywhere, hence,
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r(ξ) satisfies

r(ξ) =
qN−1∑
`=0
|m((p−1N)−1(ξ + u(`)))|2r((p−1N)−1(ξ + u(`))).

Therefore, the composition r(ξj) is a martingale, i.e.,
E
(
r(ξj+1)‖r(ξj), ..., r(ξ1)

)
= E

(
r(pN(ξj + u(ωj))

)
‖r(ξj), ..., r(ξ1)

)
= E

(
r(pN(ξj + u(ωj)))‖r(ξj)

)
=

∑
ωj∈D0

M
(
pN(ξj + u(ωj))

)
r
(
pN(ξj + u(ωj))

)
= r(ξj).

The martingale r(ξj) is strictly positive, bounded, and converges Pξ-almost
surely to r(0) = 1 for almost every ξ, since ξj → 0. By Lebesgue dominated
converges theorem and for all j ≥ 1, we get
r(0) = E

(
r(0)‖r(ξj)

)
= E

(
lim
n→∞

r(ξn)‖r(ξj)
)

= lim
n→∞

E
(
r(ξn)‖r(ξj)

)
= r(ξj).

Thus,
r(0) = r(ξ) = h(ξ)

Jϕ(ξ)
for almost every ξ. This gives h(ξ) = Jϕ(ξ) for almost every ξ, which proves
the uniqueness assertion of the theorem.
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[32] A. Khrennikov, K. Oleschko, M.J.C. López, Application of p-adic wavelets to model
reaction-diffusion dynamics in random porous media, J. Fourier Anal. Appl., 22 (2016),
pp. 809–822, https://doi.org/10.1007/s00041-015-9433-y.

[33] A. Khrennikov, Modeling of Processes of Thinking in p-adic Coordinates, Fizmatlit,
Moscow (2004), in Russian.

[34] S. Kozyrev, A. Khrennikov, p-adic integral operators in wavelet bases, Doklady
Math., 83 (2011), pp. 209–212, https://doi.org/10.1134/s1064562411020220.

[35] S. Kozyrev, A. Khrennikov, V. Shelkovich, p-Adic wavelets and their applications,
Proc. Steklov Inst. Math., 285 (2014), pp. 157–196, https://doi.org/10.1134/s008
1543814040129.

[36] S.V. Kozyrev, Ultrametric analysis and interbasin kinetics, in: p-Adic Mathematical
Physics (AIP Conf. Proc., Vol. 826, A. Yu. Khrennikov, Z. Rakic, and I. V. Volovich,
eds.), AIP, Melville, New York (2006), pp. 121–128, https://doi.org/10.1063/1.21
93116.

[37] W.C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal.,
27 (1996), pp. 305–312, https://doi.org/10.1137/s0036141093248049.

[38] W.C. Lang, Wavelet analysis on the Cantor dyadic group, Houston J. Math., 24 (1998),
pp. 533–544.

[39] W.C. Lang, Fractal multiwavelets related to the Cantor dyadic group, Int. J. Math.
Math. Sci., 21 (1998), pp. 307–314, https://doi.org/10.1155/s0161171298000428.

[40] W.M. Lawton, Necessary and sufficient conditions for constructing orthonormal
wavelet bases, J. Math. Phys., 32 (1991), pp. 57–61. https://doi.org/10.1063/1.
529093.

[41] D.F. Li, H.K. Jian, The necessary condition and sufficient conditions for wavelet frame
on local fields, J. Math. Anal. Appl., 345 (2008), pp. 500–510, https://doi.org/10.1
016/j.jmaa.2008.04.031.

[42] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R),
Trans. Amer. Math. Soc., 315 (1989), pp. 69–87, https://doi.org/10.1090/s0002-
9947-1989-1008470-5.

[43] K. Oleschko, A.Y. Khrennikov, Applications of p-adics to geophysics: Linear and
quasilinear diffusion of water-in-oil and oil-in-water emulsions, Theor. Math Phys., 190
(2017), pp. 154–163.
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