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BALL CONVERGENCE OF POTRA-PTAK-TYPE METHOD WITH
OPTIMAL FOURTH ORDER OF CONVERGENCE

IOANNIS K. ARGYROS∗ and SANTHOSH GEORGE†

Abstract. We present a local convergence analysis Potra-Ptak-type method
with optimal fourth order of convergence in order to approximate a solution of
a nonlinear equation. In earlier studies such as [1], [5]–[28] hypotheses up to
the fourth derivative are used. In this paper we use hypotheses up to the first
derivative only, so that the applicability of these methods is extended under
weaker hypotheses. Moreover the radius of convergence and computable error
bounds on the distances involved are also given in this study. Numerical examples
are also presented in this study.
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1. INTRODUCTION

Let F : D ⊆ S → S is a nonlinear function, D is a convex subset of S and
S is R or C. Consider the problem of approximating a locally unique solution
x∗ of equation
(1) F (x) = 0.
Newton-like methods are famous for finding solution of (1), these methods are
usually studied based on: semi-local and local convergence [3, 4, 20, 21, 22,
24, 26].

Third order methods such as Euler’s, Halley’s, super Halley’s, Chebyshev’s
[1]–[28] require the evaluation of the second derivative F ′′ at each step, which
in general is very expensive. That is why many authors have used higher order
multipoint methods [1]–[28]. In this paper, we study the local convergence of
fourth order method defined for each n = 0, 1, 2, . . . by

yn = xn − F ′(xn)−1F (xn)
zn = xn − F ′(xn)−1(F (xn) + F (yn))
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xn+1 = xn − F (xn)−2F ′(xn)−1F (yn)2(2F (xn) + F (yn)),(2)
where x0 is an initial point. Method (2) was studied by Cordero et.al. in
[13]. In particular the fourth order of convergence was shown under hypothe-
ses reaching up to the fourth derivative of function F. Notice that method (2)
involves three functional evaluations. Therefore the efficiencyindex EI = p

1
m

where p is theorder of convergence and m is the number of functional evalua-
tions per step gives EI = 4

1
3 = 1.5874. Kung and Traub conjecture [28] that

the order of convergence of any multipoint method without memory cannot
exceed the bound 2m−1 (called the optimal order). Thus, the optimal order
for a method with three function evaluations per step should be four.

Other single and multi-point methods can be found in [2, 3, 20, 25] and
the references therein. The local convergence of the preceding methods has
been shown under hypotheses up to the fourth derivative (or even higher).
These hypotheses restrict the applicability of these methods. As a motivational
example, let us define function f on D = [−1

2 ,
5
2 ] by

f(x) =
{
x3 ln x2 + x5 − x4, x 6= 0
0, x = 0

Choose x∗ = 1. We have that
f ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,
f ′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x
f ′′′(x) = 6 ln x2 + 60x2 − 24x+ 22.

Then, obviously, function f ′′′ is unbounded on D. In the present paper we
only use hypotheses on the first Fréchet derivative. This way we expand the
applicability of method (2).

The rest of the paper is organized as follows: Section 2 contains the local
convergence analysis of methods (2). The numerical examples are presented
in the concluding Section 3.

2. LOCAL CONVERGENCE ANALYSIS

We present the local convergence analysis of method (2) in this section. Let
L0 > 0, L > 0 and M ≥ 1. It is convenient for the local convergence analysis
of method (2) to introduce some functions and parameters. Define functions
g1, g2, h2, g3, h3 on the interval [0, 1

L0
) by

g1(t) = Lt
2(1−L0t) ,

g2(t) = 1
2(1−L0t) [Lt+ 2Mg1(t)],

h2(t) = g2(t)− 1

g3(t) = g2(t) + M3g2
1(t)(2+g1(t))

(1−L0
2 t)2(1−L0t)

,

h3(t) = g3(t)− 1
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and parameter
rA = 2

2L0+L .

We have that h2(0) = −1 < 0 and h2(rA) = M
1−L0rA

> 0, since LrA
2(1−L0rA) = 1

and 1 − L0rA > 0. It then follows from the intermediate value theorem that
function h2 has zeros in the interval (0, rA). Denote by r2 the smallest such
zero. Similarly, we have that h3(0) = −1 < 0 and h3(r2) > 0. Denote by r the
smallest zero of function h3 in the interval (0, r2). Then, for each t ∈ [0, r) we
have
(3) 0 ≤ g1(t) < 1,

(4) 0 ≤ g2(t) < 1,
and
(5) 0 ≤ g3(t) < 1.
Denote by U(v, ρ), Ū(v, ρ) the open and closed balls in S, respectively, with
center v ∈ S and of radius ρ > 0. Next, we show the following local convergence
result for method (2) using the preceding notation.

Theorem 1. Let F : D ⊆ S → S be a differentiable function. Suppose that
there exist x∗ ∈ D, L0 > 0, L > 0 and M ≥ 1 such that for each x, y ∈ D
(6) F (x∗) = 0, F ′(x∗) 6= 0,

(7) |F ′(x∗)−1(F ′(x)− F ′(x∗))| ≤ L0|x− x∗|,

(8) |F ′(x∗)−1(F ′(x)− F ′(y))| ≤ L|x− y|,

(9) |F ′(x∗)−1F ′(x)| ≤M,

and
(10) Ū(x∗, (1 +M0)r) ⊆ D,
where r is defined above Theorem 1. Then, the sequence {xn} generated by
method (2) for x0 ∈ U(x∗, r) − {x∗} is well defined, remains in U(x∗, r) for
each n = 0, 1, 2, · · · and converges to x∗. Moreover, the following estimates
hold
(11) |yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| < |xn − x∗| < r,

(12) |zn − x∗| ≤ g2(|xn − x∗|)|xn − x∗| < |xn − x∗|
and
(13) |xn+1 − x∗| ≤ g3(|xn − x∗|)|xn − x∗| < |xn − x∗|,
where the “g” functions are defined above in Theorem 1. Furthermore, if that
there exists T ∈ [r, 2

L0
) such that Ū(x∗, T ) ⊂ D, then the limit point x∗ is the

only solution of equation F (x) = 0 in Ū(x∗, T ).
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Proof. We shall use induction to show estimates (11)–(13). Using the hy-
pothesis x0 ∈ U(x∗, r)− {x∗}, (7) and the definition of r, we have that
(14) |F ′(x∗)−1(F ′(x0)− F ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1.
It follows from (14) and the Banach Lemma on invertible functions [3, 4, 19,
20, 22, 23] that F ′(x0) 6= 0 and
(15) |F ′(x0)−1F ′(x∗)| ≤ 1

1−L0|x0−x∗| <
1

1−L0r .

Hence, y0 and x0 are well defined. We also get from (2), (3), (8) and (15) that

|y0−x∗| ≤|F ′(x0)−1F ′(x∗)||
∫ 1

0
F ′(x∗)−1(F ′(x∗+θ(x0−x∗))−F ′(x0))(x0−x∗)dθ

≤ L|x0−x∗|2
2(1−L0|x0−x∗|)(16)

=g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,(17)

which shows (11) for n = 0 and y0 ∈ U(x∗, r). We can write

(18) F (x0) = F (x0)− F (x∗) =
∫ 1

0
F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ.

Then, by (9), (18) we obtain that

|F ′(x∗)−1F (x0)| ≤ |
∫ 1

0
F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ|

≤ M |x0 − x∗|,(19)
where we also used |x∗+ θ(x0−x∗)−x∗| = θ|x0−x∗| < r. That is x∗+ θ(x0−
x∗)− x∗ ∈ U(x∗, r). We also have that
(20) |F ′(x∗)−1F (y0)| ≤M |y0 − x∗| ≤Mg1(|x0 − x∗|)|x0 − x∗|.
Then, by the second substep of method (2) for n = 0, (4), (6) and (20) we get
that

|z0 − x∗| ≤ |x0 − x∗ − F ′(x0)−1F (x0)|
+|F ′(x0)−1F ′(x∗)||F ′(x∗)−1F (y0)|

≤ L|x0−x∗|2
2(1−L0|x0−x∗| + M |y0−x∗|

1−L0|x0−x∗|

≤ (L|x0−x∗|+2Mg1(|x0−x∗|))|x0−x∗|
2(1−L0|x0−x∗|)

= g2(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,(21)
which shows (12) for n = 0 and z0 ∈ U(x∗, r). Next, we show that F (x0) 6= 0.
Using (7), we get that

|(F ′(x∗)(x0 − x∗))−1[F (x0)− F (x∗)− F ′(x∗)(x0 − x∗)]|

≤ |x0 − x∗|−1|
∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x∗))(x0 − x∗)dθ|

≤ |x0 − x∗|−1 L0|x0−x∗|2
2
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≤ L0|x0−x∗|
2 < L0r

2 < 1.(22)

it follows from (22) that F (x0) 6= 0 and
(23) |F (x0)−1F ′(x∗)| ≤ 1

|x0−x∗|(1−L0
2 |x0−x∗|)

.

Hence x1 is well defined. Then, using the last substep of method (2) for n = 0,
(5), (15), (19), (20), (21) and (23) we get in turn that

|x1 − x∗| ≤ |z0 − x∗|+ |F ′(x∗)−1F (y0)|2|F ′(x∗)−1F (x0)|−2

× |F ′(x∗)−1F ′(x0)|−1(2|F ′(x∗)−1F (x0)|
+ |F ′(x∗)−1F (y0)|)
≤ g2(|x0 − x∗|)|x0 − x∗|

+ M3|y0−x∗|2(2|x0−x∗|+|y0−x∗|)
|x0−x∗|2(1−L0

2 |x0−x∗|)2(1−L0|x0−x∗|)

≤ [g2(|x0 − x∗|)

+ M3g2
1(|x0−x∗|)(2+g1(|x0−x∗|)

(1−L0
2 |x0−x∗|)2(1−L0|x0−x∗|)

]|x0 − x∗|

= g3(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r,

which shows (13) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, z0, x1
by xk, yk, zk, xk+1 in the preceding estimates we arrive at estimates (11)–(13).
Using the estimate |xk+1−x∗| < |xk−x∗| < r, we deduce that xk+1 ∈ U(x∗, r)
and limk→∞ xk = x∗. To show the uniqueness part, let Q =

∫ 1
0 F

′(y∗ + θ(x∗ −
y∗)dθ for some y∗ ∈ Ū(x∗, T ) with F (y∗) = 0. Using (7) we get that

|F ′(x∗)−1(Q− F ′(x∗))| ≤
∫ 1

0
L0|y∗ + θ(x∗ − y∗)− x∗|dθ

≤
∫ 1

0
(1− θ)|x∗ − y∗|dθ ≤ L0

2 R < 1.(24)

It follows from (24) and the Banach Lemma on invertible functions that Q
is invertible. Finally, from the identity 0 = F (x∗) − F (y∗) = Q(x∗ − y∗), we
deduce that x∗ = y∗. �

Remark 2. 1. In view of (7) and the estimate
‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖

≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + L0‖x− x∗‖
condition (9) can be dropped and M can be replaced by

M(t) = 1 + L0t.

2. The results obtained here can be used for operators F satisfying au-
tonomous differential equations [3] of the form

F ′(x) = P (F (x))
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where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) =
P (0), we can apply the results without actually knowing x∗. For ex-
ample, let F (x) = ex − 1. Then, we can choose: P (x) = x+ 1.

3. The radius rA was shown by us to be the convergence radius of New-
ton’s method [2]–[4]

(25) xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · ·

under the conditions (7) and (8). It follows from the definition of r
that the convergence radius r of the method (2) cannot be larger than
the convergence radius rA of the second order Newton’s method (25).
As already noted in [3, 4] rA is at least as large as the convergence ball
given by Rheinboldt [27]

(26) rR = 2
3L .

In particular, for L0 < L we have that

rR < r

and
rR
rA
→ 1

3 as L0
L → 0.

That is our convergence ball rA is at most three times larger than
Rheinboldt’s. The same value for rR was given by Traub [28].

4. It is worth noticing that method (2) is not changing when we use the
conditions of Theorem 1 instead of the stronger conditions used in
[1, 5, 12]–[28]. Moreover, we can compute the computational order of
convergence (COC) defined by

ξ = ln
(‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

( ‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln
(‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

( ‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that
avoids the bounds involving estimates using estimates higher than the
first Fréchet derivative of operator F.

3. NUMERICAL EXAMPLES

We present numerical examples in this section.

Example 3. Let D = [−∞,+∞]. Define function f of D by

(27) f(x) = sin(x).

Then we have for x∗ = 0 that L0 = L = M = 1, α = 1. The parameters are
rA = 0.6667, r2 = 0.6667, r = 0.3991 and ξ1 = 5.1010.
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Example 4. Let D = [−1, 1]. Define function f of D by

(28) f(x) = ex − 1.

Using (28) and x∗ = 0, we get that L0 = e − 1 < L = M = e, α = 1. The
parameters are rA = 0.3249, r2 = 0.1458, r = 0.0699 and ξ1 = 3.9088.

�
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