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EXTENDING THE SOLVABILITY OF EQUATIONS USING
SECANT-TYPE METHODS IN BANACH SPACE

IOANNIS K. ARGYROS∗ and SANTHOSH GEORGE†

Abstract. We extend the solvability of equations defined on a Banach space
using numerically efficient secant-type methods.The convergence domain of these
methods is enlarged using our new idea of restricted convergence region. By using
this approach, we obtain a more precise location where the iterates lie than in
earlier studies leading to tighter Lipschitz constants. This way the semi-local
convergence produces weaker sufficient convergence criteria and tighter error
bounds than in earlier works. These improvements are also obtained under the
same computational effort, since the new Lipschitz constants are special cases of
the old ones.
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1. INTRODUCTION

Let F : Ω ⊂ B1 −→ B2 be a nonlinear operator, B1, B2 be Banach spaces and
Ω be a convex set. Numerous iterative methods for solving equation F (x) = 0
can be written like
(1) xn+1 = xn − LnF (xn) for each n = 0, 1, 2, . . .

where Ln ∈ L(B2, B1) the space of bounded linear operators from B2 into B1 for
each n ∈ N∪{0}. The most widely used methods like (1) are Newton’s method,
where Ln = F ′(xn)−1, and the secant method, where Ln = δF (xn, xn−1)−1

and δF stands for a consistent approximation to the Fréchet-derivative of F [6,
26]. A lot of problems in control theory, optimization, inverse problems theory,
Mathematical Physics, Chemistry, Economics, Biology and also in engineering
can be brought in the form of equation F (x) = 0 using Mathematical modeling
[1, 2, 3, 6, 11, 12, 13, 14, 22, 23, 26, 29]. Closed form solutions are preferred but
this is rarely possible. Consequently, mostly iterative methods are utilized say
like method (1) to generate a sequence approximating a locally unique solution
x∗ of equation F (x) = 0 under some conditions. It is well known from the
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numerical efficiency that it is not advantageous to change the operator Ln

at each step of the iterative method. If one keeps the operator piecewise
constant more efficient iterative methods can be obtained. Optimal recepts
can be obtained based on the dimension of the space [29]. Iterative methods
of this type have been studied by Traub [29], Potra and Pták [26], Bosarg
and Falb [7, 8], Dennis [9], Potra [26, 27], Amat [1, 2], Ezquerro et al. [12],
Hernandez et al. [14, 15, 16], Argyros [3, 4, 5, 6] (see also the references in
the preceding papers).

In this paper we are motivated by the work by Potra [25, 26] who improved
the work by [7, 8, 9, 29]. Let us choose

(2) Ln ∈ {δF (xpn , xqn)−1, δF (xqn , xpn)−1} for each n = 0, 1, 2, . . . ,

where {pn} and {qn} are non-decreasing sequences of integers such that
(3) q0 = −1, p0 = 0, qn ≤ pn ≤ n for each n = 1, 2, 3, . . . .

The convergence region of method (1)–(2) is small in general. That is why, we
find in this paper a more accurate location containing the iterates {xn} than Ω
leading to tighter Lipschitz constants. This way we obtain: weaker sufficient
convergence criteria, tighter error bounds on the distances ∥xn+1 −xn∥, ∥xn −
x∗∥ and at least as precise information on the location of the solution x∗. It is
worth noticing that the preceding improvements are obtained under the same
computational effort, since in practice the computation of the old Lipschitz
constants requires the computation of the new constants as a special cases.

The rest of the paper is structured as follows. Section 2 and Section 3
contain the semi-local convergence of secant-type and Newton-type methods,
respectively.

2. SEMI-LOCAL CONVERGENCE PN ̸= QN FOR EACH N

We shall study the iterative procedure (1) and (2) in this section for the
triplets (F, x0, x−1) belonging to the class A(α0, α, β, γ) defined as follows:

Definition 1. Let α0 > 0, α > 0, β ≥ 0, γ ≥ 0 satisfy
(4) αβ + 2

√
αβ ≤ 1.

We say that the triplet (F, x0, x−1) belongs to the class A(α0, α, β, γ) if :
(c1) F is a nonlinear operator defined on a convex subset Ω of a Banach

space B1 and with values in a Banach space B2.
(c2) x0 and x−1 are two points belonging to the interior Ω◦ of Ω and satisfies

the inequality
(5) ∥x0 − x−1∥ ≤ β.

(c3) F is Fréchet differentiable on Ω◦ and there exists a mapping δF :
Ω◦ × Ω◦ −→ L(B1, B2) such that:

linear operator L0, where L0 is either δF (x0, x−1)
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(6) or δF (x−1, x0), is invertible, its inverse L0 = P −1
0 is bounded

(7) ∥L0F (x0)∥ ≤ α;
(8)
∥L0(δF (x, y) − F ′(x0))∥ ≤ α0(∥x − x0∥ + ∥y − x0∥) for each x, y ∈ Ω, a0 > 0.

Set Ω0 = Ω◦ ∩ U(x0, r0), r0 = 1−a0c
2a0

.

(9) ∥L0(δF (x, y) − F ′(z))∥ ≤ α(∥x − z∥ + ∥y − z∥) for each x, y, z ∈ Ω0

and
(10) α0 ≤ α.

(c4) The set Ωγ = {x ∈ Ω : F is continuous at x} contains the ball Ū(x1, r1) ⊂
V with center x1 = x0 − L0F (x0) and radius r1 = 1

2α [1 − α(2β + γ) −√
(1 − αγ)2 − 4αβ].

We associate the class A(α0, α, β, γ) with the constant δ and sequence
{sn}n≥−1 given by the formulae:

(11) s−1 = 1 + αγ

2α
, s0 = 1 − αγ

2α
, sn+1 = sn − s2

n − δ2

spn − sqn

, n = 0, 1, 2, . . .

and δ = 1
2α

√
(1 − αγ)2 − 4αβ.

Using the above notation we present the following semi-local convergence
result.

Theorem 2. If (F, x0, x−1) ∈ A(α0, α, β, γ) then the iterative algorithm
(1)–(2) is well defined, the sequence {xn}n≥1 generated by it converges to a
solution x∗ ∈ U(x0, r1) of the equation F (x) = 0. Moreover, the following
items hold:

∥xn − x∗∥ ≤ s0 − ∥xn − x0∥ − [(sn − ∥xn − x0∥2

−(∥xn − xpn−1∥ + ∥xn−1 − xpn−1∥
+∥xpn−1 − xqn−1∥)∥xn − xn−1∥]1/2 ≤ sn − δ(12)

and
∥xn − x∗∥ ≥ [(s0 − 1

2(∥xpn − xqn∥ + ∥xpn − x0∥ + ∥xqn − x0∥) − ∥xn − xpn∥)2

+(2s0 − ∥xpn − x0∥ − ∥xqn − x0∥)∥xn − xn+1∥]1/2(13)
−s0 + 1

2(∥xpn − xqn∥ + ∥xpn − x0∥ + ∥xqn − x0∥) + ∥xn − xpn∥.

Proof. The linear operator M = δF (u, v) is invertible for each u, v ∈ Ω◦

with
(14) ∥u − x0∥ + ∥v − x0∥ < 2s0.

It follows from (7) that
∥I − L0M∥ = ∥L0(M0 − M)∥ ≤ ∥L0(M − F ′(x0))∥ + ∥L0(F ′(x0) − M0)∥
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≤ α0(∥u − x0∥ + ∥v − x0∥) + ∥x0 − x−1∥ < 1.

Hence, by the Banach Lemma [6, 28, 30, 31, 32] M is invertible and

(15) ∥(L0M)−1∥ ≤ [1 − α0(∥u − x0∥ + ∥v − x0∥ + γ)]−1.

Note that the condition (7) implies the following Lipschitz condition for F ′

(16) ∥L0(F ′(u) − F ′(v))∥ ≤ 2α∥u − v∥, u, v ∈ Ω◦
0.

Using the integral representation

(17) F (x) − F (y) =
∫ 1

0
F ′(y + θ(x − y))dθ(x − y)

we obtain that
(18) ∥L0(F (x) − F (y) − F ′(u)(x − y))∥ ≤ α(∥x − u∥ + ∥y − u∥)∥x − y∥
for all x, y ∈ Ω◦

0.
Finally form (9) and (17) we have

(19) ∥L0(F (x)−F (y)−δF (u, v)(x−y)∥ ≤ α(∥x−u∥+∥y−u∥+∥u−v∥)∥x−y∥
for all x, y, u, v ∈ Ω◦

0. Estimates (16), (17),(18), by a continuity argument,
remain valid if x and/or y belong to Ωγ . Using the above inequalities we shall
prove that
(20) ∥xn − xn+1∥ ≤ sn − sn+1

for n = −1, 0, 1, . . . .
Clearly, the sequence {sn}n≥1 given by (11) is decreasing and converges to

δ. Hence, if (1)-(2) is well defined for n = 0, 1, 2, . . . , k, and if (20) holds for
n ≤ k than

∥x0 − xn∥ ≤ s0 − sn < s0 − δ

for n ≤ k. That is (14) is satisfied for u = xi and v = xj with i, j ≤ k.
Therefore, (1)-(2) will be well defined for n = k + 1 as well.

For n = −1 and n = 0 (20) reduces to ∥x−1 − x0∥ ≤ γ and ∥x0 − x−1∥ ≤ β
(see (5) and (7)). Suppose (20) holds for n = −1, 0, 1, . . . , k, where k ≥ 0.
Denote Mn = L−1

n , where Ln is given by (2). Notice that
(21) F (xk+1) = F (xk+1) − F (xk) − Mk(xk+1 − xk).
Then, using (14) and (18) we can write

∥xk+1 − xk+2∥ = ∥Lk+1F (xk+1)∥ = ∥(L0Mk+1)−1L0F (xk+1)∥

≤ α(∥xk+1 − xpk
∥ + ∥xk − xpk

∥ + ∥xpk
− xqk

∥)
1 − α0(∥xpk+1 − x0∥ + ∥xqk+1 − x0∥ + γ) ∥xk − xk+1∥

≤ α((spk
− sk+1 + spk

− sk + sqk
− spk

)
1 − α0(s0 − spk+1 − s0 − sqk+1 + s−1 − s0)(sk − sk+1)

≤ spk
+ sqk

− sk+1 − sk

spk+1 + sqk+1

(sk − sk+1) = sk+1 − sk+2.
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So, (19) holds for each n. B1 is a complete space. Hence, the sequence {xn}n≥0
converges to x∗ and
(22) ∥xn − x∗∥ ≤ sn − δ.

Next, by (18) and (20), we obtain
(23) ∥L0F (xk+1)∥ ≤ α(∥xk+1 − xpk

∥ + ∥xk − xpk
∥ + ∥xpk

− xqk
∥)∥xk − xk+1∥,

so it follows that F (x∗) = 0.

Let x = xn and y = x∗ in (17) and denote A =
∫ 1

0 F ′(x∗ + θ(xn − x∗))dθ.
Then, by (19) and (21) we get in turn that

∥xn − x0∥ + ∥x∗ − x0∥ + ∥x0 − x−1∥ ≤ 2∥xn − x0∥ + ∥xn − x∗∥ + γ

< 2(∥xn − x0∥ + ∥xn − x∗∥)
≤ 2(s0 − sn + sn − δ) + γ

≤ 2s0 + γ = 1
α .

In view of (8) and the Banach’s lemma we show as in (15) that, A is invertible
and
(24) ∥(L0A)−1∥ ≤ [1 − α0(2∥xn − x0∥ + ∥xn − x∗∥ + γ)−1.

Using (22) and (24), we have
∥xn − x∗∥ = ∥A−1F (xn)∥ ≤ ∥(L0A)−1∥∥L0F (xn)∥

≤ α(∥xn−xpn−1 ∥+∥xn−1−xpn−1 ∥+∥xpn−1 −xqn−1 ∥)
1−α0(2∥xn−x0∥+∥xn−x∗∥+γ) ∥xn − xn−1∥.

It is easy to see that the above inequality together with (10) and ∥xn−x∗∥ < s0
imply the estimate (12).

By the identity
xn+1 − xn = x∗ − xn + (L0Mn)−1L0(F (x∗) − F (xn) − Mn(x∗ − xn)),

(20) and (19), we obtain

∥xn+1 − xn∥ ≤ α(2∥xn−xpn ∥+∥x∗−xn∥+∥xpn −xqn ∥)
1−α0(∥xpn −x0∥+∥xqn −x0∥+γ ∥xn − x∗∥ + ∥xn − x∗∥,

so (12) is shown. □

Corollary 3. Suppose (F, x0, x−1) ∈ A(α0, α, β, γ). Then the equation
F (x) = 0 has a solution x∗ ∈ U and this is the only solution of the equation
in the set Q1 = {x ∈ Ωγ : ∥x − x0∥ ≤ r} if δ > 0, r = δ − s0 − γ + 1

α0
, or in

the set Q2 = {x ∈ Ωγ : ∥x − x0∥ ≤ s0} if δ = 0.

Proof. The existence has been shown in the Theorem2. Suppose δ > 0 and
let x∗ ∈ U and y∗ ∈ Q1 be solutions of the equation F (x) = 0. Let us denote
S∗ =

∫ 1
0 F ′(y∗ + θ(x∗ − y∗))dθ. Using (8), we have

∥I − L0S∗∥ = ∥L0(M0 − S∗)∥ ≤ α0(∥y∗ − x0∥ + ∥x∗ − x0∥ + ∥x0 − x−1∥)
< α0(r + s0 − δ + γ) = 1.

That is S∗ is invertible. Then, by (17) we deduce that x∗ = y∗.
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Case δ = 0. Let Mn = 0 and qn = −1 for n = 0, 1, 2, . . . then the iterative
procedure (1)-(2) becomes
(25) xn+1 = xn − L0F (xn), n = 0, 1, 2, . . . .

By Theorem 2 it follows that the sequence {xn}n≥0 given by (25) converges
to a solution x∗ of the equation F (x) = 0. It also follows that
(26) ∥xn − xn+1∥ ≤ sn − sn+1,

where
(27) s0 = ( β

α0
)1/2, sn+1 = sn − α0s2

n, n = 0, 1, 2, . . . .

Using induction we get that

(28) sn ≥
( β

α0
)1/2

n + 1 , n = 0, 1, 2, . . . .

Let y∗ ∈ Q2 be a solution of the equation F (x) = 0 and denote An =∫ 1
0 F ′(y∗ + θ(xn − y∗))dθ. According to (8), (14), (24) and (25) we have

∥xn+1 − y∗∥ = ∥L0(M0 − An)(xn − y∗)∥
≤ α0∥xn − y∗∥(∥y∗ − x0∥ + ∥xn − x0∥ + ∥x0 − x−1∥)
≤ ∥xn − y∗∥(1 − α0sn) ≤ . . .

≤ ∥x1 − y∗∥
n∏

j=1
(1 − α0sj).

By (28), we deduce that limn−→∞
∏n

j=1(1 − α0sj) = 0. Hence, we conclude
that y∗ = limn−→∞ xn = x∗. □

Next, we show that the results obtained in this section are sharp within the
class A(α0, α, β, γ).

Proposition 4. [27] Suppose α0 > 0, α > 0, β ≥ 0, γ ≥ 0 satisfy inequality
(4). Then, the following items hold:

(i) There exist a function F : R −→ R and two points x0, x−1 ∈ R such
that the triplet (F, x0, x−1) ∈ A(α0, α, β, γ) and for this triplet the
estimates (11) are attained at each n = 0, 1, 2, 3, . . . .

(ii) For each n = 0, 1, 2, . . . there exist a function fn : R −→ R and two
points x0, x−1 ∈ R such that the triplet (F, x0, x−1) ∈ A(α0, α, β, γ)
and for this triplet (12) holds with equality.

Concerning the domain of uniqueness of the solution x∗ established in the
Corollary 3 we have

Proposition 5. [27] Suppose α0 > 0, α > 0, β ≥ 0, γ ≥ 0 s satisfy(4). Let
δ be the constant defined by (11).

(i) If δ > 0 then there exist a function F : R −→ R and four points
x0, x−1, x∗, y∗ ∈ R such that (F, x0, x−1) ∈ A(α0, α, β, γ), F (x∗) =
F (y∗) = 0, |x0 − x∗| = s0 − δ, |x0 − y∗| = s0 + δ.
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(ii) If δ = 0, then for each ϵ > 0 there exist a function fϵ : R −→ R and
four points x0, x−1, x∗, y∗

ϵ ∈ R such that (F, x0, x−1) ∈ A(α0, α, β, γ),
F (x∗) = F (y∗

ϵ ) = 0, |x0 − x∗| = s0, |x0 − y∗
ϵ | = s0 + ϵ.

Next, we shall consider some particular cases of the iterative procedure (1)-
(2) and shall compare the results obtained in the preceding section with some
known results.

Remark 6. (a1) In earlier studies on Secant-type methods condition
(29) ∥L0(δF (x, y) − F ′(z))∥ ≤ α1(∥x − z∥ + ∥y − z∥)
for each x, y, z ∈ Ω together with the condition
(30) α1γ + 2

√
α1β ≤ 1

are used [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Notice that (29) implies
(8), (9),

α0 ≤ α1
α ≤ α1,

and α1
α can be arbitrarily large [3, 4, 5, 6]. Moreover, we have by (4) and (30)

that
(30) =⇒ (4)

but not necessarily vice versa, unless, if α = α1. Furthermore, in [27] r̄ = s0 +δ
and

r̄ ≤ r,

so the uniqueness of the solution is extended under our approach. Finally, it
follows from the proof of Theorem 2 that sequence {sn} defined by

s−1 = 1+α0γ
2α0

> t−1,

s0 = 1−α0γ
2α0

> t0

sn+2 = sn+1 + α(spn −sn+1+sqn −sn)
1−α0(s0−spn+1 +s−1−sqn+1

(31)

is also a majorizing sequence for {xn} and we can have instead of the corre-
sponding estimates given in Theorem 2, the more precise estimates

∥xn − x∗∥ ≤ α(∥xn−xpn−1 ∥+∥xn−1−xpn−1 ∥+∥xpn−1 −xqn−1 ∥)
1−α0(2∥xn−x0∥+∥xn−x∗∥+γ) ∥xn − xn−1∥(32)

and
∥xn+1 − xn∥ ≤ α(2∥xn−xpn ∥+∥x∗−xn∥+∥xpn −xqn ∥)∥xn−x∗∥

1−α0(∥xpn −x0∥+∥xqn −x0∥+γ) + ∥xn − x∗∥,(33)

respectively. Estimates (32) and (33) are clearly more precise than the corre-
sponding ones given in [25, 26] by

∥xn − x∗∥ ≤ α1(∥xn−xpn−1 ∥+∥xn−1−xpn−1 ∥+∥xpn−1 −xqn−1 ∥)
1−α1(2∥xn−x0∥+∥xn−x∗∥+γ) ∥xn − xn−1∥(34)

and
∥xn+1 − xn∥ ≤ α1(2∥xn−xpn ∥+∥x∗−xn∥+∥xpn −xqn ∥)∥xn−x∗∥

1−α1(∥xpn −x0∥+∥xqn −x0∥+γ) + ∥xn − x∗∥,(35)
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respectively. The preceding results are obtained assuming that α0 ≤ α. How-
ever, if α ≤ α0, then the preceding results hold with α0 replacing α. The
advantages in this study were obtained under the same computational cost as
in [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32], since in practice the computation of α1 requires the computation
if α0 and α as special cases.

The preceding results can be improved even further, if we replace Ω0 by Ω1
defined by

Ω1 = Ω0 ∩ U(x1, r0 − ∥L0F (x0)∥).
Notice that Ω1 ⊆ Ω0, so the corresponding condition to (9) hold on Ω1 and
the corresponding constant ᾱ will be such that ᾱ ≤ α. Examples where strict
inequalities α0 < α1, α0 < α, α < α1 and ᾱ < α can be found in [3, 4, 5, 6].
In the rest of the remarks our results compare favorable to earlier ones.

(a2) If pn = n and qn = n − 1 for each n = 1, 2, . . . then (1)–(2) reduces to
the secant method. The error estimates (12) and (13) improves (32) and (33)
which in turn improved the ones in [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
21, 22, 23, 24, 29, 30, 31, 32].

(a3) If pn = 0 and qn = −1 for n = 0, 1, 2, . . . then (1)–(2) reduces to the
simplified secant method. The result contained in Theorem 2 improves in this
case the result from [27].

(a4) If pkm+j = km, qkm+j = km − 1, (q−1 = q0 = −1), j = 0, 1, . . . , m −
1, k = 0, 1, . . . , then (1)-(2) reduces to a procedure considered by Traub [29]
for scalar equations. A local analysis for this procedure has been done by
Potra and Pták, [26], Laasonen [18] made a semi-local analysis for the case
m = 2.When pn = qn +1 the iterative processes (1)–(2) was studied by Dennis
[9]. The results obtained in Theorem 2 improves all the above mentioned
results. Note that by taking yn = xnm one contains a sequence {yn}n≥0
which converges to x∗ with R−order (m +

√
m2 + 4)/2. The parameter m can

be chosen according to the dimension of the space in order to maximize the
numerical efficiency of the procedure (see [25, 26]). □

3. SEMI-LOCAL CONVERGENCE ANALYSIS pn = qn FOR EACH n

If x−1 = x0 and pn = qn for each n = 0, 1, 2, . . . , then the iterative procedure
(1)-(2) becomes

(36) xn+1 = xn − F ′(xpn)−1F (xn), n = 0, 1, 2, . . . .

In [9, 10], Dennis proved that this iterative procedure converges under the
hypotheses of the Kantorovich theorem. This fact follows by taking γ = 0 in
Theorem 2. To be more precise let us consider the class A′(α0, α, β) defined
below.

Definition 7. Let α0 > 0, α > 0 and β ≥ 0 satisfy

(37) 4αβ ≤ 1.
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We say that a pair (F, x0) belongs to the class A′(α0, α, β), if
(c1’) F is a nonlinear operator defined on a convex subset Ω of a Banach

space B1 and with values in a Banach space B2.
(c2’) x0 is a point belonging to the interior Ω◦ of Ω.
(c3’) F is Fréchet differentiable on Ω◦, F ′(x0) is boundedly invertible

(38) ∥F ′(x0)−1(F ′(x) − F ′(x0))∥ ≤ 2α0∥x − x0∥ for each x, y ∈ Ω.

Set Ω0 = Ω ∩ U(x0, r0), r0 = 1
2α0

and

(39) ∥F ′(x0)−1(F ′(x) − F ′(y))∥ ≤ 2α∥x − y∥ for each x, y ∈ Ω0.

(c4’) The set Ωc = {x ∈ Ω, F is continuous at x} contains the closed ball U
with center x1 = x0 − F ′(x0)−1F (x0) and radius r1 = 1

2α(1 − 2αβ −√
1 − 4αβ).

It is easy to see that (F, x0) ∈ A′(α0, α, β) if and only if (F, x0, x0) ∈
A(α0, α, β). In this case from Theorem 2 it follows that the iterative procedure
(36) converges and the following estimates hold:

∥xn − x∗∥ ≤ s0 − ∥xn − x0∥
−[(s0 − ∥xn − x0∥)2 − (∥xn − xpn−1∥ + ∥xn−1 − xpn−1∥)
×∥xn − xn−1∥]1/2(40)

and

∥xn − x∗∥ ≥ [s0 − ∥xpn − x0∥ − ∥xn − xpn∥)2

+2(s0 − ∥xpn − x0∥)∥xn − xn+1∥]1/2 − s0 + ∥xpn − x0∥)
×∥xn − xpn∥.(41)

Remark 8. Set γ = 0 in the cases of Remark 6 to obtain the corresponding
improvements for Newton-type methods over the ones in [25, 26, 27] and the
works earlier than the preceding. □
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