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Abstract. In the paper a local and a semi-local convergence of combined it-
erative process for solving nonlinear operator equations is investigated. This
solver is built based on Newton solver and has R-convergence order 1.839 . . .
The radius of the convergence ball and convergence order of the investigated
solver are determined in an earlier paper. Modifications of previous conditions
leads to extended convergence domain. These advantages are obtained under
the same computational effort. Numerical experiments are carried out on the
test examples with nondifferentiable operator.
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1. INTRODUCTION

Consider the operator equation
H(x) ≡ F (x) +Q(x) = 0,(1)

where F and Q are nonlinear operators, defined on an subset D of a Banach
space E1 with values in a Banach space E2. It is known, that F is a differen-
tiable by Frèchet operator, Q is a continuous operator, whose differentiability
in general is not required.

A plethora of problems from diverse disciplines can be converted to equation
(1) via mathematical modelling [1–27]. Therefore, the task of computing a
solution x∗ is of extreme importance. We resort to iterative solvers, since
closed form solutions can be obtained in rare cases.

The Newton solver [2] can not be used to find a solution of equation (1),
because of the nondifferentiable Q. However, in this case the Newton-type
solver [3], or one of combined iterative processes may be applicable [3]– [18].
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The special case of (1) is the equation F (x) = 0. Usually, to find the
solution Newton’s solver is used

xn+1 = xn − [F ′(xn)]−1F (xn), n ≥ 0,
whose convergence order is quadratic [19, 20]. Hence, one can use the differ-
ence solvers. These solvers use only a nonlinear operator, and do not require
analytical derivatives. One of these solvers has R-convergence order 1.839 . . .
xn+1 = xn − [F (xn, xn−1) + F (xn−2, xn)− F (xn−2, xn−1)]−1F (xn), n ≥ 0,

where F (u, v) is a divided difference of order one. This solver was proposed
by J. Traub for solving one nonlinear equation [21], later it was generalized
to Banach spaces by F. Potra [22], and investigated under different conditions
in [23,24].

In the paper [25] a combined iterative process was proposed, which is built
based Newton’s and Potra’s solvers

xn+1 =xn −A−1
n H(xn), n ≥ 0,(2)

An =F ′(xn) +Q(xn, xn−1) +Q(xn−2, xn)−Q(xn−2, xn−1),
where Q(x, y) is a divided difference of order one, to be defined later.

This solver was studied in [26] under weak ω-conditions. In this work we
continue the study of a local and a semi-local convergence of solver (2). It
is established that the convergence order of the combined iterative process
(2) is similar to the convergence order of the Potra solver. But also it is im-
portant to extend the convergence region in particular without requiring an
additional hypotheses. This fact will extend the number of initial approxima-
tions. By applying a new approach we achieve fewer iterations to obtain a
result with predetermined accuracy, at least as many initial points, and same
or less computational cost.

The rest of the paper is structured as follows: In Section 2, we present the
local convergence analysis of the solver (2) and a Corollary. Section 3 contains
the proofs of semi-local convergence and uniqueness of solution. In Section 4,
we provide the numerical example. The article ends with some conclusions.

2. LOCAL CONVERGENCE OF SOLVER (2)

Note that we used the classic Lipschitz conditions for the derivative of first
order of operator F and for divided differences of order one and two of operator
Q. The following theorem present the convergence radius and the convergence
speed of iterative process (2). Although we assume, that Q is differentiable
by Fréchet operator.

Set U = U(x∗, r∗) = {x : ‖x− x∗‖ < r∗}. Let x, y, z ∈ D.
Definition 1. The linear operator from E1 to E2 denoted as Q(x, y) is

called divided difference of order one of Q by points x, y, (x 6= y) if it satisfies
the condition

Q(x, y)(x− y) = Q(x)−Q(y).
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Definition 2. The operator Q(x, y, z) is called divided difference of order
two of Q by points x, y, z if it satisfies the condition

Q(x, y, z)(y − z) = Q(x, y)−Q(x, z).

Theorem 3. Let F and Q are nonlinear operator, which are defined on
open convex subset D of a Banach space E1 with values in a Banach space
E2. Suppose, that equation (1) has a solution x∗ ∈ D and the inverse Fréchet
derivative [H ′(x∗)]−1 exists. Let Q(·, ·) and Q(·, ·, ·) are the divided differences
of order one and two of operator Q, which are defined on the set D, and the
Lipschitz conditions are satisfied for each x, y, z ∈ D

‖H ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 2l0∗‖x− x∗‖,(3)

‖H ′(x∗)−1(Q(x∗, x∗)−Q(x, x∗))‖ ≤ a‖x∗ − x‖,(4)

‖H ′(x∗)−1(Q(z, x∗)−Q(z, x))‖ ≤ b‖x∗ − x‖,(5)

‖H ′(x∗)−1(Q(x, x∗, y)−Q(z, x∗, y))‖ ≤ q0
∗‖x− z‖,(6)

for each x, y, z ∈ D0 = D ∩ U(x∗, r0),

r0 = 1
l0∗+p0

∗+
√

(l0∗+p0
∗)2+2q0

∗
,(7)

‖H ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 2l∗‖x− y‖,(8)

‖H ′(x∗)−1(Q(x, x∗)−Q(x, x))‖ ≤ c‖x∗ − x‖,(9)

‖H ′(x∗)−1(Q(x, x)−Q(x, y))‖ ≤ d‖x− y‖,(10)

‖H ′(x∗)−1(Q(x, x, y)−Q(z, x, y))‖ ≤ q∗‖x− z‖,(11)

where 2p0
∗ = a+ b, p∗ = c+ d,

r∗ = 2
2(l0∗+p0

∗)+l∗+p∗+
√

(2(l0∗+p0
∗)+l∗+p∗)2+8(q∗+q0

∗)
(12)

Then for each x−2, x−1, x0 ∈ U iterative process (2) is well defined, and gen-
erates a sequence {xn}n≥0 ∈ U , which converges to x∗ and satisfies the esti-
mation

‖xn+1 − x∗‖ ≤
(13)

≤ l∗+p∗
Cn
‖xn − x∗‖2+ q∗

Cn
(‖xn − x∗‖+‖xn−2 − x∗‖)‖xn−1 − x∗‖‖xn − x∗‖,

where Cn = 1−2(l0∗+p0
∗)‖xn−x∗‖− q0

∗(‖xn−x∗‖+‖xn−2−x∗‖)‖xn−1−x∗‖.
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Proof. Let x, y, z ∈ U . Denote A = F ′(x) + Q(x, y) + Q(z, x) − Q(z, y).
Then in view of conditions (3)–(6), we obtain

‖I −H ′(x∗)−1A‖ =
= ‖H(x∗)−1[F ′(x∗)− F ′(x) +Q(x∗, x∗)−Q(x, y)−Q(z, x) +Q(z, y)]‖
≤ ‖H(x∗)−1 [F ′(x∗)− F ′(x) +Q(x∗, x∗)−Q(x, x∗)

+ Q(z, x∗)−Q(z, x) +Q(x, x∗)−Q(x, y) +Q(z, y)−Q(z, x∗)] ‖
≤ ‖H(x∗)−1 [F ′(x∗)− F ′(x) +Q(x∗, x∗)−Q(x, x∗)

+ Q(z, x∗)−Q(z, x) + [Q(x, x∗, y)−Q(z, x∗, y)](x∗ − y)] ‖
≤ 2l0∗‖x− x∗‖+ 2p0

∗‖x− x∗‖+ q0
∗‖x− z‖‖y − x∗‖

≤ 2(l0∗ + p0
∗)‖x− x∗‖+ q0

∗(‖x− x∗‖+ ‖z − x∗‖)‖y − x∗‖.

By the definition of r∗ (12), we get

2(l0∗ + p0
∗)r0 + 2q0

∗r
2
0 < 1.(14)

Then, by the Banach Lemma on invertible operators [2], A is invertible and

‖(I − (I −H ′(x∗)−1A))−1‖ = ‖A−1H ′(x∗)‖(15)
≤ [1− 2(l0∗ + p0

∗)‖x− x∗‖ − q0
∗(‖x− x∗‖+ ‖z − x∗‖)‖y − x∗‖]−1.

Suppose, that xn−2, xn−1, xn ∈ U . Then the operator

An = F ′(xn) +Q(xn, xn−1) +Q(xn−2, xn)−Q(xn−2, xn−1)

is invertible. Next, we can write

‖xn+1 − x∗‖ = ‖xn − x∗ −A−1
n (H(xn)−H(x∗))‖

(16)

≤ ‖A−1
n H ′(x∗)‖‖H ′(x∗)−1[H(xn)−H(x∗)−An(xn − x∗)]‖.

In view of (8)–(11), we get

‖H ′(x∗)−1[H(xn)−H(x∗)−An(xn − x∗)]‖ =
=‖H ′(x∗)−1[F (xn)− F (x∗) +Q(xn)−Q(x∗)−An(xn − x∗)]‖

≤‖H ′(x∗)−1
∫ 1

0
(F ′(x∗ + t(xn − x∗))− F ′(xn))dt‖‖xn − x∗‖

+ ‖H ′(x∗)−1 [Q(xn, x∗)−Q(xn, xn) +Q(xn, xn)−Q(xn, xn−1)−Q(xn−2, xn)
+ Q(xn−2, xn−1)] ‖‖xn − x∗‖
≤(l∗ + p∗)‖xn − x∗‖2

+ ‖H ′(x∗)−1[Q(xn, xn, xn−1)−Q(xn−2, xn, xn−1)]‖‖xn − xn−1‖‖xn − x∗‖
≤(l∗ + p∗)‖xn − x∗‖2 + q∗‖xn − xn−2‖‖xn − xn−1‖‖xn − x∗‖.
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Then, from (15) and (16), we obtain the estimate (13). Moreover, from in-
equalities (13), (14) we have in a turn

‖xn+1 − x∗‖ < ‖xn − x∗‖ < r∗, n ≥ 0.
Hence, iterative process (2) is well defined, generated sequence {xn}n≥0 is
in U , and converges to the solution x∗. Finally, by the last inequality, and
estimate (13) we get, that lim

n→∞
‖xn − x∗‖ = 0. �

Corollary 4. The R-convergence order of the combined iterative solver
(2) is 1.839 . . .

Proof. By estimate (13), we have that there exist a constant C, and a
natural number N , such that

‖xn+1 − x∗‖ ≤ C‖xn − x∗‖‖xn−1 − x∗‖‖xn−2 − x∗‖, n ≥ N.
Hence, the R-convergence order of solver (2) is the unique positive root of
nonlinear equation t3 − t2 − t− 1 = 0 [22], which is 1.839 . . . �

Remark 5. The conditions used in [25] instead of (3)–(11) are:
for each x, y, u, v ∈ D

‖H ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 2l1∗‖x− y‖,(17)

‖H ′(x∗)−1(Q(x, y)−Q(u, v))‖ ≤ p1
∗(‖x− u‖+ ‖y − v‖),(18)

‖H ′(x∗)−1(Q(u, x, y)−Q(v, x, y))‖ ≤ q1
∗‖u− v‖,(19)

r1
∗ = 2

3(l1∗+p1
∗)+
√

9(l1∗+p1
∗)2+16q1

∗
,(20)

(21) C1
n = 1− 2(l1∗+ p1

∗)‖xn−x∗‖− q1
∗(‖xn−x∗‖+ ‖xn−2−x∗‖)‖xn−1−x∗‖.

But
D0 ⊆ D,

so

(22)
l0∗ ≤ l1∗, p0

∗ ≤ p1
∗, q0

∗ ≤ q1
∗,

l∗ ≤ l1∗, p∗ ≤ p1
∗, q∗ ≤ q1

∗

and
(23) (Cn)−1 ≤ (C1

n)−1.

In view of (22)–(23), the new results give compared to the ones in [25].
At least as many initial points, and fewer iterations to achieve a prede-

termined accuracy. The improvements are obtained under the same or less
computational cost as in [25], since the new constants are special cases of ones
in [25]. Examples where (22)–(23) hold as strict inequalities can be found
in [27]. This technique is used to expand applicability of some solvers [7] and
can be used to do the same on other solvers.
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3. SEMI-LOCAL CONVERGENCE OF SOLVER (2)

Set U0(x0, r) = {x : ‖x − x0‖ ≤ r}. The semi-local convergence of the
combined Newton-Potra solver (2) is presented in what follows.

Theorem 6. Let F and Q are nonlinear operators, which are defined in
open convex subset D of a Banach space E1, with values in a Banach space
E2. Q(·, ·) and Q(·, ·, ·) are the divided differences of order one and two of
function Q, which are defined on set D.

Suppose, that the linear operator A0 = F ′(x0) +Q(x0, x−1) +Q(x−2, x0)−
Q(x−2, x−1), where x−2, x−1, x0 ∈ D, is invertible fore each x, y, u, v ∈ D
satisfies the Lipschitz conditions

‖A−1
0 (F ′(x)− F ′(x0))‖ ≤ 2l00‖x− x0‖,(24)

‖A−1
0 (Q(x0, x0)−Q(x, x0))‖ ≤ λ‖x0 − x‖,(25)

‖A−1
0 (Q(x, x0)−Q(x, y))‖ ≤ µ‖x0 − y‖,(26)

‖A−1
0 (Q(z, u)−Q(z, x))‖ ≤ ξ‖u− x‖,(27)

‖A−1
0 (Q(x0, x−1, x0)−Q(x−2, x−1, x0))‖ ≤ q0‖x0 − x−2‖,(28)

Set
D1 = D ∩ U(x0, r0), r0 = 1−q0a(a+b)

2(l00+p0
0) for q0a(a+ b) < 1(29)

and p0
0 = max{λ, µ, ξ}.

For each x, y, u, v ∈ D1

‖A−1
0 (F ′(x)− F ′(y))‖ ≤ 2l0‖x− y‖,(30)

‖A−1
0 (Q(x, y)−Q(u, v))‖ ≤ p0(‖x− u‖+ ‖y − v‖),(31)

‖A−1
0 (Q(u, x, y)−Q(v, x, y))‖ ≤ q0‖u− v‖.(32)

Let a, b and c are a nonnegative numbers, such that
‖x0 − x−1‖ ≤ a, ‖x−1 − x−2‖ ≤ b, ‖A−1

0 (F (x0) +Q(x0))‖ ≤ c.(33)
Let r1 is a nonnegative number, such that

r1 >
c

1−γ ,

γ = (l0+p0)c+q0a(a+b)
1−q0a(a+b)−2(l00+p0

0)r1
, 0 < γ < 1,

and the closed ball U0(x0, r1) is included in D. Then, real sequence {tk}k≥−2
defined as

t−2 = r1 + a+ b, t−1 = r1 + a, t0 = r1, t1 = r1 − c

tn+1 − tn+2 = (l0+p0)(tn−tn+1)+q0(tn−1−tn)(tn−2−tn)
1−(2l00+λ+ξ)(t0−tn+1)−(µ+ξ)(t0−tn)−q0a(a+b)(tn − tn+1).(34)



106 I.K. Argyros, S. Shakhno, Yu. Shunkin and H. Yarmola 7

is nonnegative and decreasing converging to some t∗ ∈ R, such that

r1 − c
1−γ ≤ t∗ ≤ t−1.

Then the iterative process (2) is well defined, remains in U0(x0, r1) and con-
verges to a solution x ∈ U0(x0, r1) of equation F (x) + Q(x) = 0, Moreover,
the following estimates are true

‖xn − x∗‖ ≤ tn − t∗.(35)

Proof. Using mathematical induction, we show that the iterative process
(34) is well defined

tk+1 − tk+2 ≤γ(tk − tk+1),(36)
tk+1 ≥tk+2 ≥ r1 − c

1−γ .(37)

Using (34) and k = 0, we obtain

t1 − t2 = (l0+p0)(t0−t1)+q0(t−1−t0)(t−2−t0)
1−(2l00+λ+ξ)(t0−t1)−q0a(a+b) (t0 − t1)

≤ (l0+p0)c+q0a(a+b)
1−q0a(a+b)−2(l00+p0

0)r1
(t0 − t1),

t0 ≥t1, t1 ≥ t2 ≥ t1 − γ(t0 − t1) = r1 − (1− γ)c = r1 − (1−γ2)c
1−γ

≥r1 − c
1−γ ≥ 0,

so (36)–(37) are true for k = 0.
Suppose, that estimates (36)–(37) are satisfied for each k ≤ n. Then, for

k = n we have the following

tn+1 − tn+2 = (l0+p0)(tn−tn+1)+q0(tn−1−tn)(tn−2−tn)
1−(2l00+λ+ξ)(t0−tn+1)−(µ+ξ)(t0−tn)−q0a(a+b)(tn − tn+1)

≤ (l0+p0)c+q0a(a+b)
1−q0a(a+b)−2(l00+p0

0)r1
(tn − tn+1) = γ(tn − tn+1),

tn+1 ≥tn+2 ≥ tn+1 − γ(tn − tn+1) ≥ r1 − (1−γ2)c
1−γ ≥ r1 − c

1−γ ≥ 0.

Hence, that {tn}n≥−2 is decreasing, nonnegative sequence which converges
to some t∗ ≥ 0. Next, we show, that iterative process (2) is well defined, and
following estimate is true for each n ≥ −2

‖xn − xn+1‖ ≤ tn − tn+1, n ≥ −2.(38)
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In view of Lipschitz conditions (24)–(28), for k = n+ 1, we obtain

‖I −A−1
0 An+1‖ =

= ‖A1
0(A0 −An+1)‖

≤ ‖A−1
0 [F ′(x0)− F ′(xn+1)]‖

+ ‖A−1
0 [Q(x0, x−1)−Q(x0, x0) +Q(x−2, x0)−Q(x−2, x−1) +Q(x0, x0)

−Q(xn+1, x0)+Q(xn+1, x0)−Q(xn+1, xn)+Q(xn−1, xn)−Q(xn−1, xn+1)] ‖
= ‖A−1

0 [F ′(x0)− F ′(xn+1)]‖+ ‖A−1
0 [(Q(x0, x−1, x0)−Q(x−2, x−1, x0))

× (x−1 − x0) +Q(x0, x0)−Q(xn+1, x0) +Q(xn+1, x0)−Q(xn+1, xn)
+Q(xn−1, xn)−Q(xn−1, xn+1)]‖
≤ 2l00‖x0 − xn+1‖+ q0a(a+ b) + λ‖x0 − xn+1‖+ µ‖x0 − xn‖+ ξ‖xn − xn+1‖
≤ 2(l00 + p0

0)(t0 − tn+1) + q0a(a+ b) ≤ 2(l00 + p0
0)t0 + q0a(a+ b)

≤ 2(l00 + p0
0)r1 + q0a(a+ b) < 1.

Hence, An+1 is invertible and

‖A−1
n+1A0‖ ≤

[1−q0a(a+ b)−2l00‖x0−xn+1‖−λ‖x0−xn+1‖−µ‖x0−xn‖−ξ‖xn−xn+1‖]−1.

Taking into account the definition of the divided difference and conditions
(30)–(32) we get in a turn

‖A−1
0 [F (xn+1) +Q(xn+1)]‖ =

=‖A−1
0 [F (xn+1) +Q(xn+1)− F (xn)−Q(xn)−An(xn+1 − xn)]‖

≤
∥∥∥A−1

0

∫ 1

0

(
F ′(xn + t(xn+1 − xn))− F ′(xn)

)
dt
∥∥∥‖xn − xn+1‖

+ ‖A−1
0 [Q(xn, xn+1)−Q(xn, xn)+(Q(xn, xn, xn−1)−Q(xn−2, xn, xn−1))

× (xn−xn−1)]‖‖xn − xn+1‖
≤(l0 + p0)‖xn − xn+1‖2 + q0‖xn−2 − xn‖‖xn−1 − xn‖‖xn − xn+1‖.

Hence

‖xn+1 − xn+2‖ = ‖A−1
0 H(xn+1)‖ ≤ ‖A−1

0 A0‖‖A−1
0 [F (xn+1) +Q(xn+1)]‖

≤ (l0+p0)‖xn−xn+1‖2+q0‖xn−1−xn‖‖xn−2−xn‖‖xn−xn+1‖
1−(2l00+λ)‖x0−xn+1‖−µ‖x0−xn‖−ξ‖xn−xn+1‖−q0a(a+b)

≤ (l0+p0)(tn−tn+1)+q0(tn−1−tn)(tn−2−tn)
1−(2l00+λ+ξ)(t0−tk+1)−(µ+ξ)(t0−tn)−q0a(a+b)(tn − tn+1)

= tn+1 − tn+2.

That is, iterative process (2) is well defined for each n. Moreover

‖xn − xk‖ ≤ tn − tk, −2 ≤ n ≤ k,(39)
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so the sequence {xn}n≥0 is fundamental, and as such convergent in the Banach
space E1. By letting k →∞ in (39), we get (35).

Let us show, that x∗ is a root of equation F (x) +Q(x) = 0.

‖A−1
0 H(xn+1)‖ ≤
≤ (l0 + p0)‖xn − xn+1‖2 + q0‖xn − xn−2‖‖xn − xn−1‖‖xn − xn+1‖ → 0

for n→∞. Hence, F (x∗) +Q(x∗) = 0.
Next we will show the uniqueness of solution x∗. Suppose, that x∗∗ ∈

U0(x0, r1), exists x∗∗ 6= x∗ and H(x∗∗) = 0. Denote

P =
∫ 1

0
F ′(x∗ + t(x∗∗ − x∗))dt+Q(x∗∗, x∗).

Then P (x∗∗ − x∗) = H(x∗∗) −H(x∗). In case operator P−1 is invertible, we
obtain, that x∗∗ = x∗.

‖I −A−1
0 P‖ = ‖A−1

0 (A0 − P )‖ ≤

≤ ‖A−1
0

∫ 1

0
(F ′(x0)− F ′(x∗ + t(x∗∗ − x∗)))dt‖

+ ‖A−1
0 [Q(x0, x−1) +Q(x−2, x0)−Q(x−2, x−1)−Q(x∗∗, x∗)]‖

≤ (l00 + p0
0)(‖x0 − x∗‖+ ‖x0 − x∗∗‖) + q0a(a+ b)

≤ 2(l00 + p0
0)r1 + q0a(a+ b) < 1.

Hence, P−1 exists. �

Theorem 7. Let conditions of Theorem 6 are true. Then for each n ≥ 1
the following estimate is true

‖xn − x∗‖ ≤ (l0+p0)(tn−1−tn)+q0(tn−3−tn−1)(tn−2−tn−1)
1−q0a(a+b)−(l00+p0

0)(2t0−tn) (tn−1 − tn).(40)

Proof. Taking into account estimates (24)–(27), we get∥∥∥I −A−1
0

( ∫ 1

0
F ′(x∗ + t(xn − x∗))dt+Q(xn, x∗)

)∥∥∥ ≤
≤
∥∥∥A−1

0

∫ 1

0
(F ′(x0)− F ′(x∗ + t(xn − x∗)))dt

∥∥∥+
∥∥A−1

0 [Q(x0, x−1)

−Q(x0, x0) +Q(x−2, x0)−Q(x−2, x−1) +Q(x0, x0)−Q(xn, x∗)]
∥∥

≤ (l0 + p0)(‖x0 − xn‖+ ‖x0 − x∗‖) + q0a(a+ b)
≤ (l00 + p0

0)(2t0 − tn) + q0a(a+ b) < 1.

Hence,
∫ 1

0 F
′(x∗ + t(xn − x∗))dt+Q(xn, x∗) is invertible and∥∥∥( ∫ 1

0
F ′(x∗ + t(xn − x∗)

)
dt+Q(xn, x∗))−1A0

∥∥∥ ≤
≤ (1− q0a(a+ b)− (l00 + p0

0)(‖x0 − xn‖+ ‖x0 − x∗|))−1.
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Using the estimation

‖xn − x∗‖ =
∥∥∥( ∫ 1

0
F ′(x∗ + t(xn − x∗))dt+Q(xn, x∗)

)−1
(H(xn)−H(x∗))

∥∥∥
≤‖(

∫ 1

0
F ′(x∗ + t(xn − x∗))dt+Q(xn, x∗))−1A0‖‖A−1

0 H(xn)‖,

we obtain estimate (40). �

Remark 8. The corresponding conditions in [25] are given for each x, y, u, v ∈
D by

‖A−1
0 (F ′(x)− F ′(y))‖ ≤2l10‖x− y‖,

‖A−1
0 (Q(x, y)−Q(u, v))‖ ≤p1

0(‖x− u‖+ ‖y − v‖),
‖A−1

0 (Q(u, x, y)−Q(v, x, y))‖ ≤q1
0‖u− v‖,

q0a(a+ b) <1,
r1 >

c
1−γ ,

where
γ = (l10+p1

0)c+q0a(a+b)
1−q1

0a(a+b)−2(l10+p1
0)r1

, 0 < γ < 1.

We have that D1 ⊆ D, so as in the local convergence case

l00 ≤ l10, l0 ≤ l10,
p0

0 ≤ p1
0, p0 ≤ p1

0,

q0
0 ≤ q1

0, q0 ≤ q1
0

and the old majorizing sequence call it {sn} (using l10, p1
0, q

1
0) is less tight than

tn [25]. Hence, the applicability of solver (2) has been extended in the semilocal
convergence too. �

4. NUMERICAL EXPERIMENTS

In order to demonstrate the results of iterative solver (2), we carried out
numerical experiments on test cases with nondifferentiable operator. The
calculations are performed for different initial approximations with accuracy
ε = 10−10. The iterative process was performed until following conditions are
satisfied:

‖xn+1 − xn‖∞ ≤ ε, ‖H(xn+1)‖∞ ≤ ε.
Additional initial approximations were chosen by the following formula:

x−1 = x0 − 10−4, x−2 = x0 − 2 · 10−4.

To compare the convergence speed of the combined Newton-Potra solver with a
basic solvers, the number of iterations, required to obtain a solution of systems
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of nonlinear equations, are presented in a table. The Newton-type solver for
equation (1) has the form [3]:

xn+1 = xn − [F ′(xn)]−1H(xn), n ≥ 0,(41)
and the Potra solver [22]:

xn+1 = xn − [H(xn, xn−1) +H(xn−2, xn)−H(xn−2, xn−1)]−1H(xn), n ≥ 0.
(42)

Consider the system of two equations

Example 9. {
4xy2 − x3 + y3 − 1 + |x| = 0,
2y2 − x2y2 + 1 + |x+ y| = 0.

The solution of this system is (x∗, y∗) = (2,−1). The numerical results are
presented in Table 1.

Newton type Potra Newton-Potra
x0 solver (41) solver (42) solver (2)

(1.1,0.1) 23 19 14
(5,−5) 24 25 18

(1.85, −0.85) 13 11 7

Table 1. Number of iteration made to solve the problem, for initial
approximation x0.

Consider the system of three equations.

Example 10. 
z2(1− y)− xy + |y − z2| = 0,
z2(x3 − x)− y2 + |3y2 − z2 + 1| = 0,
6xy3 + y2z2 − xy2z + |x+ z − y| = 0

It is known, that one of solutions of the system is (x∗, y∗, z∗)T = (−1, 2, 3)T .
The results of solvers (2), (41), (42) are presented in Table 2.

Newton type Potra Newton-Potra
x0 solver (41) solver (42) solver (2)

(−0.5, 2.3, 3.5) 142 11 10
(−1.5, 2.5, 3.5) 131 10 8
(−10, 20, 30) 128 23 17

Table 2. Number of iteration made to solve the problem.

5. CONCLUSIONS

Based on the obtained results we showed the advantages of combined solver
(2) over basic solvers, in particular, over Potra solver (42), even the theoreti-
cal convergence order of both solvers are the same. Moreover the convergence
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region of iterative solvers in general is small, which limits the choice of ini-
tial points. So by using the new Lipschitz constants we get at least as many
initial points and fewer iterations to achieve predetermined accuracy, without
any additional cost. This technique can be applied to extend the applicabil-
ity of other iterative solvers. Therefore, the proposed combined solver (2) is
an effective alternative for solving nonlinear equations with nondifferentiable
operator.
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[6] I.K. Argyros, A.A. Magréñan, A Contemporary Study of Iterative Methods, Elsevier
(Academic Press), New York, NY, USA, 2018.

[7] I.K. Argyros, S.M. Shakhno, Extended local convergence for the combined Newton-
Kurchatov method under the generalized Lipschitz conditions, Mathematics, 7 (2019) 207.

[8] E. Catinas, On some iterative methods for solving nonlinear equations, Rev. Anal.
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