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COMPARISON OF SOME OPTIMAL DERIVATIVE–FREE
THREE–POINT ITERATIONS

THUGAL ZHANLAV† and KHUDER OTGONDORJ†,∗

Abstract. We show that the well-known Khattri et al. [5] methods and Zheng
et al. [14] methods are identical. In passing we propose suitable calculation for-
mula for Khattri et al. methods. We also show that the families of eighth-order
derivative-free methods obtained in [13] include some existing methods, among
them the above mentioned ones as particular cases. We also give the sufficient
convergence condition of these families. Numerical examples and comparison
with some existing methods were made. In addition, the dynamical behavior of
methods of these families is analyzed.
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1. INTRODUCTION

At present there exist many optimal derivative-free three-point iterations
see, for example, [1–3, 5–9, 13, 14] and references therein. They mainly distin-
guished among themselves by approximations of f ′(zn) at the last step. Let
the values of f(x) be known at points xn, wn, yn and zn. Often the follow-
ing three approaches are used for approximation f ′(zn). The most preferred
approximation (see [1],[6, 7, 9],[14]) is

f ′(zn) ≈ N ′3(zn),(1)

where N3(z) is Newton’s interpolation polynomial of degree three at the point
xn, wn, yn and zn. The second approach is [5]

f ′(zn) ≈ ν1f(xn) + ν2f(wn) + ν3f(yn) + ν4f(zn).(2)

The real constants ν1, ν2, ν3 and ν4 are determined such that the relation (2)
holds with equality for the four functions f(x) = 1, x, x2, x3. While in [13]
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was used the approximation

f ′(zn) ≈ af(xn) + bf(yn) + cf(zn) + dφ(xn),
φ(xn) = f(wn)−f(xn)

wn−xn
= f [xn, wn].(3)

The real constants a, b, c and d in (3) are determined such that the equality
(3) holds with accuracy O(f(xn)4). Note that in last years have been appeared
papers, in which were used another approximations such as Pade approximant
[3] and rational approximations [2] and so on. As we seen from (1), (2) and (3)
more suitable and guaranteed approximation is (3). In general, all these three
approaches turn out to be identical. This is well-known long ago fact [16].
This idea motivated us to make detail comparison of methods based on (1),
(2) and (3). Note that the detail comparison of optimal three-point methods
was made in [4] and such comparison for optimal derivative-free methods is
still needed. The paper organized as follows. In Section 2 we consider some
methods based on the approximations (1), (2), (3) and made comparison of
them. We obtain the sufficient convergence condition for these families in Sec-
tion 3. Numerical and visual comparison some optimal derivative-free methods
are made in Section 4.

2. SOME METHODS BASED ON THE APPROXIMATION (1), (2) AND (3)

The well-known Zheng et al. [14] methods (Z8) based on (1) and has a form

yn = xn − f(xn)
f [xn,wn] , wn = xn + γf(xn), γ ∈ R \ {0}

zn = yn − f(yn)
f [xn,yn]+f [yn,wn]−f [xn,wn] ,(4)

xn+1 = zn − f(zn)
f [zn,yn]+(zn−yn)f [zn,yn,xn]+(zn−yn)F ,

where F = (zn − xn)f [zn, yn, xn, wn]. Based on (2) the well-known Khattri et
al. [5] methods (KS8) has the following form:

yn = xn − f(xn)
f [xn,wn] ,

zn = yn −
f(yn)

xn−yn+γf(xn)
(xn−yn)γ − (xn−yn)f(wn)

(wn−yn)γf(xn) −
(2xn−2yn+γf(xn))f(yn)

(xn−yn)(wn−yn)

,(5)

xn+1 = zn − f(zn)
H1+H2+H3−H4

.

Here

H1 = − (yn−zn)(wn−zn)
(xn−zn)γ(xn−yn) ,

H2 = (yn−zn)(xn−zn)f(wn)
(wn−zn)(wn−yn)γf(xn) ,(6)

H3 = (xn−zn)(wn−zn)f(yn)
(yn−zn)(wn−yn)(xn−yn) ,

H4 = γ(xn−2zn+yn)f(xn)+x2
n+(−4zn+2yn)xn+3z2

n−2ynzn

(yn−zn)(xn−zn)(wn−zn) f(zn).
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In [5], the authors pointed out that these methods given by (5), (6) is similar to
the already known methods proposed in [1, 6, 7, 9], in particular to method in
[14], however, they are not the same methods. From (4) and (5) we see that the
second and third substeps in (5) are much complicated as compared with (4).
The formula, requiring many mathematical operations absolutely unfitted for
numerical and stability points of view. Hence, the formula (5) needed further
simplifications. The families of derivative-free optimal methods proposed in
[13] are based on (3) and have a form

yn = xn − f(xn)
f [xn,wn] ,

zn = yn − τ̄n f(yn)
f [xn,wn] ,(7)

xn+1 = zn − αn f(zn)
f [xn,wn] ,

where

τ̄n = c+(d̂nc+d)θn+ωθ2
n

c+dθn+bθ2
n

, c+ d+ b 6= 0, c, d, b, ω ∈ R.(8)

and

αn = 1(
1+anwn

(
f [zn,xn]
f [xn,wn]−1

)
+bnγn

(
f [zn,yn]
f [xn,wn]−1

)) ,(9)

with

anwn = (1− τn)2τn+γφn+(τn+γφn)2

(τn+γφn)(1+γφn) ,

bnγn = τn(τn+γφn)
1+γφn

, φn = f [xn, wn],(10)

τn = 1 + τ̄nθn, θn = f(yn)
f(xn) .

We call the representation (7) of three-point methods as canonical form. Each
derivative-free three-point methods, in particular the methods (4) and (5) can
be written in canonical form uniquely. Note that all the considered methods
(4), (5) and (7) are optimal in the sense of Kung and Traub [17]. So they
has an efficiency index 81/4 ≈ 1.68179. The methods (4) and (5) contain one
free parameter γ, whereas the methods (7) contain, in addition γ, yet four
parameter c, d, b and w. Hence, in our opinion, the families (7) represent a
wide class of optimal three-point methods. Our aim is to compare the above
mentioned methods in detail. First, we will show that the optimal derivative-
free methods (4) and (5) are identical. Namely, we obtain

Theorem 1. The optimal derivative-free methods (4) and (5) are equiva-
lent.

Proof. Using easily verifying relations

f [xn, yn] = φn(1− θn), f [yn, wn] = φn(1− θn
1+γφn

),(11)
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the second-step in (4) and (5) can be easily rewritten as

zn = yn − τ̄n f(yn)
f [xn,wn] ,(12)

where
τ̄n = 1

1−d̂nθn
, d̂n = 2+γφn

1+γφn
.(13)

Thus, the first two sub-steps of (4) and (5) are the same. In passing, we obtain
very simple calculation formula (12) for iteration method (5). It remains to
compare the third sub-steps in (4) and (5). The third sub-steps in (4) and (5)
can be rewritten as

xn+1 = zn − αn f(zn)
f [xn,wn] ,

where
αn = φn

f [zn,yn]+(zn−yn)f [zn,yn,xn]+(zn−yn)F(14)

for iteration (4) and

αn = φn

H1+H2+H3−H4
,(15)

for iteration (5). Using the following relations

f [zn, yn] = φn

τ̄n
(1− υn), υn = f(zn)

f(yn) , f [zn, xn] = φn

τn
(1− θnυn),

f [zn, yn, xn] = φ2
n

τnf(xn)
τ̄n(1−θn)−(1−υn)

τ̄n
,(16)

f [zn, yn, xn, wn] = φ3
n

f2(xn)(τn+γφn)
( θn

1+γφn
− τ̄n−τn+υn

τ̄nτn

)
,

one can write (14) as:

αn = 1
τn(τn+γφn)

(τn−1)(1+γφn)θn + (1− τn) 2τn+γφn

τn(τn+γφn) −Qθnυn
,(17)

where Q = τn(3τn−2)+γφn(2τn−1)
τn(τn−1)(τn+γφn) . In a similar way, using (16), the expression

(15) can be easily rewritten as (17). Thus, the third-step of (4) and (5) also
coincide with each other.

Therefore, the iterations (4) and (5) are identical. �

So the methods (5) can be considered as rediscovered variant of Zheng et
al. [14] ones. Now, we use the relations (16) in (9). After some algebraic
manipulations we again arrive at (17). It means that the third sub-step of
iterations (4) and (7) are the same.

Therefore, the iterations (4), (5) and (7) can be written in more convenient
and unified form as:

yn = xn − f(xn)
f [xn,wn] ,

zn = yn − τ̄n f(yn)
f [xn,wn] ,(18)

xn+1 = zn − f(zn)
f [zn,yn]+(zn−yn)f [zn,yn,xn]+(zn−yn)F ,
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where τ̄n is given by (8) for (7) and is given by (13) for (4) and (5). When
c = 1, d = −d̂n and ω = b = 0 in (8), τ̄n coincides with (12). In this case
the iterations (4) and (5) and (18) are identical. So our iterations (7) contain
the methods (4) and (5) as particular cases. In addition, the iterations (18)
contain some well-known iterations as particular cases (see Table 1).

Later on, we denote the method (18) with c = 1, d = −d̂n, b = − 1
1+γφn

and
ω = 0 by M1. These parameters are chosen to have a large region of conver-
gence and a big basin of attraction for family (18). Moreover, the iteration
c d b w τ̄n methods
1 −d̂n 0 0 1

1−d̃nθn
(Z8), (KS8)

1 − 1
1+γφn 0 ad̂n

2
1+θn+ad̂n

θ2
n
2

1− θn
1+γφn

Lotfi (L8) [6]

1 β − 1− d̂n 2−β
1+γφn β

1+(β−1)θk+βθ2
k

1+(β−2− 1
1+γφk

)θk+ β−2
1+γφk

θ2
k

King’s type (K8) [7]

1 − 1
1+γφn 0 0 1+θn

1− θn
1+γφn

Sharma (S8)[9]

1 −2α− 1
1+γφn

2α
1+γφn H(θn) 1

1−2αθn
H(θn)

(1− θn
1+γφn )

Chebyshev-Halley (CH8)[1]

1 −d̂n d̂2
n

4 0 1
(1− d̂n

2 θn)2
[4]

1 −d̂n 1
1+γφn 0 1

1−d̂nθn+ 1
1+γφn θ

2
n

Thukral (T8)[12]
Kung-Traub (KT8)[17]

1 −d̂n 1
1−φn 0 1

(1− θn
1−φn )(1−θn)

Soleymani (SS8) [10]

1 −1 0 1
(1+γφn)2 (1 + θn

(1+γφn) + θ2
n

(1+γφn)2 ) 1
1−θn Soleymani (SV8) [11]

1 −d̂n − 1
1+γφn 0 1

1−d̂nθn− θ2
n

1+γφn

M1

Table 1. Choices of parameters for methods.

(18) can be rewritten as

yn = xn − f(xn)
f [xn,wn] , wn = xn + γf(xn), γ ∈ R \ {0}

zn = ψ4(xn, yn, zn),(19)
xn+1 = zn − f(zn)

f [zn,yn]+(zn−yn)f [zn,yn,xn]+(zn−yn)F ,

where ψ4 is any optimal fourth order derivative-free method. From (19) we
see that the each iteration of the family of derivative-free optimal three-point
iterations (19) essentially depends on the choice ψ4 or the choice of iteration
parameter τ̄n in (18).

3. CONVERGENCE ANALYSIS

Generally, the convergence properties of family of iterations (18) essentially
depend on the convergence of iterations consisting of the first two sub-steps
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in (18) i.e.,

yn = xn − f(xn)
f [xn,wn] ,

zn = yn − τ̄n f(yn)
f [xn,wn] ,(20)

where τ̄n is given by (8). It is easy to show that if the iterations (20) converge
then its convergence order is four. Moreover, if the iterations (20) converge,
so does (18) with convergence order eight. From this clear that in order to
establish the convergence of (18) it suffice to establish the convergence of
iterations (20). To this end we use Taylor expansion of function f ∈ C2(I)
and another form of second-step in (20) as

zn = xn − τn
f(xn)
φn

, τn = 1 + τ̄nθn.(21)

As a result, we have

f(zn) =
(
1− f ′(xn)

φn
τn + wn

2
f ′(xn)2

φ2
n

τ2
n

)
f(xn).(22)

where

wn = f ′′(ξn)f(xn)
f ′(xn)2 .(23)

From (22) it follows
|f(zn)| ≤ q̄|f(xn)|,(24)

where

q̄ = |1− ηn + wn
2 η2

n|, ηn = f ′(xn)
φn

τn.(25)

From (24) we see that the convergence of iterations (20) is expected only when
q̄ < 1.(26)

Thus, it suffice to find conditions for which (26) holds true. It is easy to prove
that

Lemma 1. Let the wn ∈ (−2, 1). Then the inequality (26) holds true under
conditions:

0 < ηn < 2 when 0 < wn < 1,(27a)
0 < ηn < 1 when − 2 < wn < 0.(27b)

Theorem 2. Let 1+γφn > 0 and wn ∈ (−2, 1). Then the two-point iterative
methods (20) converge under condition

|θn| < 1 + γφn.(28)
.
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Proof. Using the following relations
f ′(xn)
φn

= 1− γφn
1 + γφn

θn +O(f2
n),

and
τn = 1 + θn + d̂nθ

2
n + . . . ,

in (25) we obtain

ηn = 1 + 1
1 + γφn

θn +O(f2
n).(29)

If we use (29) then the condition (27) can be written in term of θn as (28) within
the accuracy O(f2(xn)). In other words, (26) holds true under condition
(28). �

From (8) we obtain

τ̄n − 1 = θn(d̂nc+ (ω − b)θn)
c+ dθn + bθ2

n

= θnϕ(θn)
c+ dθn + bθ2

n

,(30)

where
ϕ(θn) = d̂nc+ (ω − b)θn.

Let |ω− b| < d̂nc. Then ϕ(θn) > 0 on θn ∈ [−1, 1]. Then from (30) we deduce
that the following relations

τ̄n → 1, θn → 0,
are equivalent and the convergence of sequences f(zn) and θn to zero as n→
∞ expected simultaneously with equal order four. On the other hand, the
iteration (20) can be considered as damped Newton’s method

yn = xn −
f(xn)
f ′(xn)ηn,

with damping parameter ηn given by (28). As is known that, the damped
Newton’s method converges [15] if

0 < ηn < 2.(31)
In term of θn the condition (31) gives the same result (29).

4. NUMERICAL EXPERIMENTS AND DYNAMICAL BEHAVIOR

In this section, we will give a numerical comparison of our method M1 with
other well known optimal eighth order methods listed in Table 1. For this
purpose, we consider several test functions given in Table 2. In particular,
f2 = 0 is Kepler’s equation which relates the eccentric anomaly E, the mean
anomaly M and the eccentricity ε in an elliptic orbit.

Additionally, we will make comparison of method M1 and other methods
based on the dynamical behaviour.
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Test functions Roots

1. f1 = exp(−x2 + x+ 2) + sin(πx) exp(x2 + x cos(x)− 1) + 1, [6] x∗ ≈ 1.55
2. f2 = M − E + ε sin(E), 0 < ε < 1, [1] x∗ ≈ 0.38

Table 2. Nonlinear functions.

Further, we will use the abbreviated names for methods (see last column of
Table 1). In Tables 3 to 5, we consider method (CH8) using the weight function
H(θn) = 1+(1−2α)θn with values of the parameter α = 0,±1 (see [1]), method
(L8) for (a = 0,±1) and method (K8) for (β = 0,±1). In addition to compare
family (18) with other methods we also consider some optimal methods, which
third substeps are different from method (18). Namely, we used the following
substeps:

Derivative-free Soleymani et al. [11] three-step method (SV8) has the fol-
lowing substep:

xn+1 = zn − f(zn)
f [zn,yn]

(
1− 1

f [xn,wn]−1
( f(yn)
f(xn)

)2 + (2− f [zn, yn]) f(zn)
f(wn)

)
.

Derivative-free Kung-Traub’s [17] three-step method (KT8) has the following
substep:

xn+1 = zn − f(yn)f(wn)(yn−xn+f(xn)/f [xn,zn])
(f(yn)−f(zn))(f(wn)−f(zn)) .

Derivative-free Thukral’s [12] three-step method (T8) has the following sub-
step:

xn+1 = zn −
(
1− f(zn)

f(wn)

)−1

×
(
1 + 2f(yn)3

f(wn)2f(xn)

)−1(
f(zn)

f [zn,yn]−f [xn,yn]+f [zn,xn]

)
.

Derivative-free Soleymani et al. [10] three-step method (SS8) has the following
substep:

xn+1 = zn − f(zn)f(wn)
(f(wn)−f(yn))f [xn,yn]

×
(
1 + f(zn)

f(yn)

)(
1 + (2− f [xn, wn]) f(zn)

f(wn)

)
×

(
1 +

( f(zn)
f(xn)

)2)(
1 + (1− f [xn, wn])

( f(yn)
f(wn)

)2)
.

All computations are carried out using Maple18 computer algebra system
with 1000 digits. We use the following stopping criterion for the methods:
|xn − x∗| ≤ ε where ε = 10−50 and x∗ is the exact solution of the considered
equation. In all examples, we consider that the parameter γ = −0.01.

To check the theoretical order of convergence of methods, we calculated the
computational order of convergence ρ (see [19–21]) using formula
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ρ ≈ ln(|xn − x∗|/|xn−1 − x∗|)
ln(|xn−1 − x∗|/|xn−2 − x∗|)

,

where xn, xn−1, xn−2 are last three consecutive approximations in the iteration
process. In Tables 3 and 4, we use test functions f1, f2, f3 and exhibit the
iteration numbers n, the absolute value |xn−x∗| and the computational order
of convergence ρ. When the iteration diverges for the considered initial guess
x0, we denote it by ′−′. From Tables 3 and 4 we see that the convergence order
of all the methods in Table 1 confirmed by numerical experiments. From the
result of Tables 3 and 4, we can observe that the region of convergence of
methods M1 and Z8 are wider than that of other considered methods.

Methods n |xn − x∗| ρ n |xn − x∗| ρ
x∗ = 1.55 x0 = 0.8 x∗ = 1.55 x0 = 1

M1 3 0.5590e-58 7.94 3 0.3688e-69 7.98
Z8 − − 3 0.8486e-64 7.93
L8 (a = 0) − − 3 0.2124e-57 7.88

(a = −1) − − 3 0.4607e-55 7.86
(a = 1) − − 3 0.4097e-60 7.91

K8 (β = 0) − − 3 0.2369e-64 7.93
(β = −1) − − 3 0.7934e-65 7.92
(β = 1) − − 3 0.4687e-64 7.94

S8 − − 3 0.2124e-57 7.88
CH8 (α = 0) − − 3 0.2734e-60 7.90

(α = −1) − − 3 0.1654e-54 7.85
(α = 1) − − 3 0.1648e-70 7.97

[4] − − 3 0.2639e-60 7.90
SS8 − − 4 0.8295e-191 7.99
T8 − − 4 0.1898e-204 7.99
SV8 − − 4 0.2008e-174 7.99
KT8 − − 4 0.4856e-324 8.00

Table 3. Comparison of various iterative methods for f1(x)

Generally, higher order convergence methods consist of multi-steps which
may use more evaluations of functions than the original one. In this case,
multi-point methods may have the extraneous fixed points (black points). In
order to find the extraneous fixed points, we rewrite any three–point method
as [4]:

xn+1 = xn −
f(xn)

f [xn, wn]Hf (xn),

where Hf = 1 + θn(τ̄n +αnυn). Clearly, the root x∗ of f(x) is a fixed point of
the method. The points ξ 6= x∗ for which Hf (ξ) = 0 are also fixed points of
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Methods n |xn − x∗| ρ
x∗ = 0.38 x0 = 1

M1 3 0.3388e-266 8.00
Z8 3 0.4157e-250 8.00
L8 (a = 0) 3 0.1081e-232 8.00

(a = −1) 3 0.6929e-256 8.00
(a = 1) 3 0.2358e-222 8.00

K8 (β = 0) 3 0.2496e-219 8.00
(β = −1) 3 0.1278e-252 7.99
(β = 1) 3 0.4075e-217 7.99

S8 3 0.1081e-232 8.00
CH8 (α = 0) 3 0.1081e-232 8.00

(α = −1) 3 0.6152e-205 7.99
(α = 1) 3 0.2496e-219 7.99

[4] 3 0.5045e-221 8.00
SS8 3 0.1295e-199 7.99
T8 3 0.2398e-206 7.99

SV8 3 0.2008e-174 7.99
KT8 3 0.4915e-151 7.99

Table 4. Comparison of various iterative methods for f2(x)

the method. These fixed points are called extraneous fixed points. As we all
know, a fixed point ξ is called:
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• attractive if |R′(ξ)| < 1,
• repulsive if |R′(ξ)| > 1,
• parabolic if |R′(ξ)| = 1,

where R(z) = z − f(z)
f [z,w]Hf (z) is the iteration function.

In addition, if |R′(ξ)| = 0, the fixed point is superattracting. Now, we will
discuss the extraneous fixed points of each method for comparison. To make
it easier , we have taken the simple quadratic polynomial p(z) = z2−1, whose
roots are z = ±1.

In Table 5, we have collected the extraneous fixed points of the methods Z8,
KS8, M1.Next nine methods are analyzed and found that they are unable to
compare with other methods. These methods have more than 20 extraneous
fixed points. Therefore, we have not include those results in Table 5. For
methods Z8 and KS8, we found that the methods have same ten extraneous
fixed points. All fixed points are repulsive.

The basin of attraction of iterative methods is another tool for comparing
them. Thus, we compare our methods (18) with other methods by using the
basins of attraction for polynomials p(z) = z3 − 1.

To illustrate the behavior of the iterative methods, We take 600×600 equally
spaced points in the square [−3, 3] × [−3, 3] ⊂ C. In Fig. 1, the basin of
attraction for 12 methods are displayed. The red, green and blue colors are
assigned for the attraction basin of the three zeros and the roots of function
are marked with white points. Black color is shown lack of convergence to any
of the roots. In this cases, the stopping criterion ε = 10−4 and maximum of
25 iterations are used. These dynamical planes have been generated by using
the Mathematica 11. From Fig. 1 and Table 5, we can also see that methods
M1 and Z8 is much more stable than the others. It can be observed from the
figures that the methods M1 along with the existing methods Z8 have wide
attraction basins to corresponding zeros than other methods. Z8 also has the
least number of black points.
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5. CONCLUSION

We have shown that the well-known Khattri et al. [5] methods and Zheng et
al. [14] methods are identical. For the Khattri methods, we propose a suitable
calculation formula (18) instead of (5). Our proposed method (18) represents
wide class of optimal derivative-free iterations. The method (18) contain some
well known iterations as particular cases (see Table 1). The comparison of
some eighth-order methods was made from the dynamic behavior of view. We
observe that the methods M1 and Z8 are much more stable than the others.
Note that the family of derivative-free methods (18) can be extended to the
systems of nonlinear equations and this study is currently ongoing.
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paper. This work was supported by the Foundation of Science and Technology
of Mongolian under grant SST 18/2018.

MethodsThe extraneous fixed points ξ Numbers of ξ
−0.555220397255420± 1.15928646739103i
−0.460115602837211± 0.456390703516719i

Z8 −0.450000501793328± 0.129063966758804i 10
1.89303155290658± 0.233570409469479i
1.79931236664623, 2.67863086464586
−0.555220397255420± 1.15928646739103i
−0.460115602837211± 0.456390703516719i

KS8 −0.450000501793328± 0.129063966758804i 10
1.89303155290658± 0.233570409469479i
1.79931236664623, 2.67863086464586
−0.676558832763406± 1.36018262584118i
−0.624888463964184± 0.20890104128772i
−0.493766364512498± 0.607060501953625i
−0.461962845726289± 0.221119195986523i

M1 −0.204327487662501± 0.86651046669376i 16
1.932083323± 0.1163156841i
2.004864313± 0.7365790432i
2.083325978± 0.4554281653i

aTo save space, we do not include other points in Table 5.

Table 5. The extraneous fixed points.
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(a) M1 (b) KS8 (c) L8

(d) S8 (e) SS8 (f) SV8

(g) T8 (h) [4] (i) Z8

(j) CH8 (k) K8 (l) KT8

Fig. 1. (color online) Basins of attraction of different derivative–free
three–point iterations on z3 − 1.
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