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PRECONDITIONED CONJUGATE GRADIENT METHODS FOR
ABSOLUTE VALUE EQUATIONS

NASSIMA ANANE∗ and MOHAMED ACHACHE†

Abstract. In this paper, we investigate the NP-hard absolute value equations
(AVE), Ax − B |x| = b, where A, B are given symmetric matrices in Rn×n,
b ∈ Rn. By reformulating the AVE as an equivalent unconstrained convex qua-
dratic optimization, we prove that the unique solution of the AVE is the unique
minimum of the corresponding quadratic optimization. Then across the latter,
we adopt the preconditioned conjugate gradient methods to determining an ap-
proximate solution of the AVE. The computational results show the efficiency of
these approaches in dealing with the AVE.
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1. INTRODUCTION

The absolute value equations (AVE) of the type:

(1) Ax−B|x| = b,

where A and B are given matrices in Rn×n, b ∈ Rn and |x| denotes the vector
with absolute values of each components of the vector x, was investigated by
[1], [11], [12], [15]. A special case of (1) when B = I (I denotes the identity
matrix) is the AVE of the type:

Ax− |x| = b.

The AVEs arise in many scientific areas and mathematical problems such as
linear complementarity problems (LCP), boundary value problems, equilib-
rium problems and interval linear equations. As is known in [11], the general
NP-hard linear complementarity can be formulated as the AVE (1), then it is
an NP-hard in its general form. Furthermore, much research has been devoted
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to achieve their numerical solutions efficiently (see, e.g., [1], [2], [7], [8], [9],
[12], [15]).

In this paper, by reformulating the AVE (1) into an equivalent uncon-
strained quadratic optimization problem, we prove first under the condition
that the smallest singular value of A is greater than the largest singular value
of B, the AVE (1) is uniquely solvable for any b. Secondly, we show that the
unique minimum of the corresponding unconstrained quadratic problem is the
unique solution of the AVE (1). Then across the latter, we apply the conju-
gate gradient algorithms to approximate numerically the solution of the AVE
(1). In the presence of the ill-conditioned, preconditioned conjugate gradient
methods can be used to ensure and to accelerate the convergence of the basic
CG algorithms. We show across some examples of the AVE, the efficiency of
these approaches.

Now we describe our notation. The scalar product of two vectors x and y
in Rn is denoted by xT y. For x ∈ Rn, the norm ‖x‖ will denote the Euclidean
norm (xTx)1/2, and sign(x) will denote a vector with components equal to
+1, 0 or −1, depending on whether the corresponding component of x is pos-
itive, zero or negative, respectively. In addition, D(x):= ∂|x| = sign(x)) will
denote the diagonal matrix corresponding to sign(x) where ∂|x| denotes the
generalized Jacobian for the absolute value |x| based on a sub-gradient. The
vector of ones and the inverse of a nonsingular matrix A are denoted, respec-
tively, by e and A−1. λmin(M) and λmax(M) stand for the minimal and the
maximal eigenvalues of a matrix M .

As it is known, for a symmetric matrix M , the minimal and the max-
imal singular values of M , are defined by σmin(M) = min‖y‖=1 ‖My‖ and
σmax(M) = ‖M‖ = max‖y‖=1 ‖My‖, respectively. Here, ‖M‖ is called the
spectral induced norm. Finally, the spectral condition number of a non-
singular symmetric matrix M is denoted by κ(M) = |λmax(M)|

|λmin(M)| .
The paper is built as follows. In Section 2, the unique solvability of the

AVE (1) as well as its equivalence reformulation to unconstrained quadratic
optimization and the basic conjugate gradient methods for solving the AVE
(1) are stated. In Section 3, the preconditioned conjugate gradient algorithms
are proposed. Numerical results are reported in Section 4. The paper is ended
with a conclusion and future work in Section 5.

2. BASIC CONJUGATE GRADIENT METHODS

Before describing the conjugate gradient algorithm, the following results are
useful. For given symmetric matrices A and B, we define, for any diagonal
matrix D whose elements are equal to 1, 0 or −1, the matrix Q = A−BD. To
prove the unique solvability of the AVE (1), the following result is required.

Lemma 1. If symmetric matrices A and B satisfy:

σmin(A) > σmax(B),
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then the matrix A − BD is nonsingular for any diagonal matrix D whose
elements are equal to +1, 0 or −1.

Proof. Assume the contrary, that A−BD is singular, then for some nonzero
vector x with ‖x‖ = 1, we then have that (A − BD)x = 0, which derives a
contradiction. This implies that Ax = BDx. Hence

σmin(A) = min
‖y‖=1

‖Ay‖ ≤ ‖Ax‖ = ‖BDx‖

≤ ‖B‖‖D‖‖x‖ ≤ ‖B‖ = σmax(B).
This contradicts our condition. Hence A−BD is non-singular. �

Now according to the equality D(x)x = |x|, with D(x) = diag(sign(x)) the
AVE (1) can be transformed into the following linear system of equations:
(2) Qx = b,

where Q = A−BD.

Lemma 2. If symmetric matrices A and B satisfy
σmin(A) > σmax(B),

then the AVE (1) is uniquely solvable for any b.

Proof. Based on the result of Lemma 1, the matrix Q is non-singular for
any arbitrary diagonal matrix D whose elements are equal to 1, 0 or −1 and
therefore the AVE (1) has a unique solution for any b. �

One of the important numerical tools to solve the system (2) is to transform
it into an equivalent quadratic optimization problem:
(3) min

x∈Rn
f(x) = 1

2(Qx− b)T (Qx− b).

The gradient and the Hessian matrix of f(x) are given by:

g(x) := ∂f(x) = QT (Qx− b)
and

H(x) := ∂2f(x) = QTQ.

Since H(x) is positive definite for any diagonal matrix D whose elements are
equal to +1, 0 or −1, the problem (3) has a unique minimum that satisfies

g(x) = 0
or
(4) QTQx = QT b.

Since Q is non-singular therefore (4) is equivalent to (2) and so is equivalent to
AVE (1). Hence solving the AVE (1) is equivalent to find the unique minimum
of (3).

The conjugate gradient methods are known to be effective in solving qua-
dratic problems in finite termination [4], [5], [16], [17], [18]. These methods
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start with an initial point x0 and generate a sequence {xk} according to the
following recurrence formula:

(5) xk+1 = xk + αkdk, k = 0, 1, 2, . . .

where αk > 0 is the step-size obtained by a line search and the directions dk
are computed by the rule:

(6) dk = −gk + βkdk−1, k ≥ 1, d0 = −g0,

where βk is a suitable positive scalar known as the conjugate updating param-
eter and gk refers to g(xk).

2.1. Exact line search. Determining the step-size αk in (5) along the di-
rection dk, for an objective function f(x), which is to be minimized, can be
simplified to finding the value of αk = α which consequently minimizes the
function:

f(xk+1) = f(xk + αdk) = m(α).

The function m(α) is of a single variable, that is α. Therefore, the αk is
calculated by an exact line search as follows. Using Taylor’s expansion, we
have,

m(α) = f(xk + αdk) = f(xk) + αgTk dk + α2

2 d
T
kHkdk,

so
∂m
∂α = 0⇔ α = − gT

k dk

dT
k
Hkdk

.

Therefore the exact line search is taken as:

(7) αk = − gT
k dk

dT
k
Hkdk

,

where Hk refers to H(xk).

2.2. Computation of βk. The coefficients βk being chosen in such a way that
dk is conjugated with all the preceding directions, in other words

dTkQdk−1 = 0,

then it implies that:

dTkQdk−1 = −gTkQdk−1 + (βkdk−1)TQdk−1 = 0,

and so:

(8) βk = gT
k Qdk−1

dT
k−1Qdk−1

.
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2.3. Basic conjugate gradient algorithms. We are now ready to state the
basic CG algorithms for solving the AVE (1).

• Step 1. Choose an arbitrary initial point x0 ∈ Rn, ε > 0 and d0 = −g0,
k = 0;
• Step 2. Compute αk from (7) and set xk+1 = xk + αkdk;
• Step 3. If ‖Axk − B|xk| − b‖ < ε then STOP, otherwise compute dk

according to dk = −gk + βkdk−1 with βk is computed from (8);
• Step 4. Set k = k + 1, and go to Step 2.

In [4], and [17], it is shown that the convergence of the CG methods is
linearly global to the unique minimum x∗. It is known that the convergence of
CG methods depends heavily on the condition number κ(Q). If κ(Q) is close
to 1, i.e., if the matrix Q is well-conditioned then CG methods converge fast
to the solution. Otherwise, in the presence of ill-conditioned of the matrix Q,
these methods have a very slow convergence.

3. PRECONDITIONED CONJUGATE GRADIENT ALGORITHMS

Preconditioning is mainly used in CG methods in order to accelerate their
convergence when κ(Q) is very far from 1, i.e., when Q is ill-conditioned.
Based on this fact, we can consider the preconditioned AVE (1):

(9) PAx− PB |x| = Pb,

where P is a non-singular matrix, called the preconditioner. Obviously, the
form (9) is a general form of the AVE (1). For P = I, the form (9) reduced
to the AVE (1). Again using D(x)x = |x|, then (9) becomes the following
preconditioned linear system:

(10) PQx = Pb.

Hence the system (10) has a unique solution if the matrix PQ is invertible.
Since P is assumed to be non-singular, then we only prove that Q is non-
singular. By Lemma 1, the matrix Q is non-singular for any diagonal matrix
D whose elements are 1, 0, or −1, and consequently, the system (10) has a
unique solution and so the preconditioned AVE in (9) is uniquely solvable for
each b. Based on this observation, therefore, the equivalent preconditioned
quadratic optimization problem is:

(11) min
x∈Rn

fP (x) = 1
2(PQx− Pb)T (PQx− Pb).

The gradient and the Hessian matrix of f are:

gP (x) := ∂fP (x) = (PQ)T (PQx− Pb)

and
HP (x) := ∂2fP (x) = (PQ)T (PQ).
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It is clear that if P = I, the problem (11) reduces to the original problem
(3). Also since (PQ)T (PQ) is positive definite matrix, the problem (11) has
a unique minimum that satisfies:

gP (x) = 0,

or
(PQ)T (PQx− Pb) = 0,

which means that the unique minimum is the unique solution of the precondi-
tioned system and which is in turn the unique solution of the AVE (1). For the
preconditioned problem (10), with same manner as the basic CG algorithms,
we compute the exact line search αk and the conjugate parameter βk along
the new preconditioned modified search direction by the formulas:

(12) αk = − (gPk )Tdk
dTkH

P
k dk

,

and

(13) βk = (gPk )TQdk−1
dTk−1Qdk−1

.

Now the preconditioned conjugate gradient (PCG) algorithm for solving the
AVE (1) is described as follows.

3.1. Preconditioned conjugate gradient algorithm.
• Step 1. Choose an arbitrary x0 ∈ Rn, a preconditioner matrix P , ε > 0

and d0 = −gP0 , k = 0;
• Step 2. Compute αk from (12) and set xk+1 = xk + αkdk;
• Step 3. If ‖Axk − B|xk| − b‖ < ε then STOP, otherwise compute dk

according to dk = −gPk + βkdk−1 with βk is computed from (13);
• Step 4. Set k = k + 1, and go to Step 2.

Note that there is no unique strategy for choosing the preconditioning matrix
P for the conjugate CG methods. In fact, the strategy of choosing P is based
on a such way that the κ(PQ)� κ(Q). For more details see [4].

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments on some examples
of solvable AVE (1) to confirm the viability of the PCG algorithms. The ex-
periments are performed with MATLAB 7.9 and carried out on a PC where
our tolerance is set to ε = 10−6. The initial point and the true solution of
AVE (1) are denoted by x0 and x∗, respectively. Meanwhile, the number
of iterations, the elapsed times and the residue are denoted by Iter, CPU
and RSD=‖Axk−B|xk|− b‖, respectively. In our numerical implementation,
the appropriate choice of the preconditioners are P = 1

nI, n ≥ 1, and P = A−1.
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Example 3. Let the symmetric matrices A, B and the vector b be given
as:

A =(aij) =


4n, if i = j,

n, if |i− j| = 1
0.5, otherwise

B =(bij) =


n, if i = j,
1
n , if |i− j| = 1,
0.125, otherwise

b =(548, 647.5, . . . , 647.5, 548)T .

With the initial points x0
1 = (0.001, . . . , 0.001)T and x0

2 = (0.9, . . . , 0.9)T , the
computational results with different size of n, are summarized in Table 1.

Size n x0 P = I (basic CGA) P = 1
nI, n > 1 P = A−1

x0
1

Iter
CPU(s)

RSD

29
0.0186

6.087 0 · 10−6

21
0.0161

8.408 9 · 10−6

2
0.0057

4.506 8 · 10−07

100 x0
2

Iter
CPU(s)

RSD

27
0.0178

6.779 0 · 10−6

19
0.0158

9.178 3 · 10−6

3
0.0074

6.933 3 · 10−06

x0
1

Iter
CPU(s)

RSD

33
3.5787

5.433 6 · 10−6

21
2.4979

8.559 4 · 10−6

2
0.2273

4.535 2 · 10−08

1000 x0
2

Iter
CPU(s)

RSD

31
3.3429

6.044 3 · 10−6

19
2.0959

9.301 0 · 10−6

3
0.3293

8.866 5 · 10−15

x0
1

Iter
CPU(s)

RSD

34
26.6083

5.790 8 · 10−6

21
16.2365

8.403 5 · 10−6

2
1.5644

2.268 4 · 10−08

2000 x0
2

Iter
CPU(s)

RSD

32
24.4110

6.472 0 · 10−6

19
14.6529

9.216 0 · 10−6

3
2.2716

1.502 9 · 10−14

x0
1

Iter
CPU(s)

RSD

34
90.5026

8.470 9 · 10−6

21
53.2645

8.303 2 · 10−6

2
4.9661

1.512 4 · 10−08

3000 x0
2

Iter
CPU(s)

RSD

32
83.9471

9.547 3 · 10−6

19
48.7091

9.158 1 · 10−6

3
5.7692

2.755 6 · 10−14

Table 1. Numerical results for Example 3.

The true solution is x∗ = (4
3 ,

4
3 , . . . ,

4
3 ,

4
3)T .
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Example 4. The hydrodynamic equations (equilibrium problem [13], is
modeled as the following non-differentiable algebraic equations:

Bx+ max(0, x) = c,

where B ∈ Rn×n, c ∈ Rn are given. Using the identity
max (a, b) = 1

2 (a+ b+ |a− b|) ,
equality, the hydrodynamic equation can be reformulated as an AVE (1). We
have, Bx + 1

2 (x+ |x|) = c ⇔ Ax − |x| − b = 0 where A = −(2B + I) and
b = −2c.

Consider now, a randomly hydrodynamic equation where B ∈ Rn×n and c
are given by:

B = (bij) =


bii = −25.5,
bi,i+1 = ai+1,i = −2.5,
bij = 0,

and
c = (−27,−29.5, . . . ,−29.5,−27)T .

The initial points are x0
1 = (0.5, . . . , 0.5)T and x0

2 = (0.9, . . . , 0.9)T . The com-
putational results with different size of n, are summarized in Table 2.

The true solution of this example is x∗ = e.

Example 5. Given a matrix M and a vector q, the LCP [3], consists in
finding w, z ∈ Rn such that

w ≥ 0, z ≥ 0, w −Mz = q, zTw = 0.
Letting w = |x| − x, z = |x| + x, then, w ≥ 0, z ≥ 0, and zTw = 0. By
substituting w and z in LCP, then an equivalent AVE (1) with A = (I −
M)−1(I + M), and b = −(I −M)−1q, provided that (I −M) is invertible, is
obtained. Note that if x solves the AVE (1), then z = |x| + x ≥ 0 solves the
LCP. Let M ∈ Rn×n and q be given as:

M =(aij) =


0.6, if i = j,

−0.01, if |i− j| = 1,
0, otherwise,

q =− e.

The initial points are x0
1 = (0.001, · · · , 0.001)T and x0

2 = (0.9, · · · , 0.9)T
and the obtained computational results with different size of n, are stated in
Table 3.

The true solution is
x∗ = (0.8477, 0.8618, 0.8621, . . . , 0.8621, 0.8618, 0.8477)T ,

and then
z∗ = (1.6954, 1.7237, 1.7241, . . . , 1.7241, 1.7237, 1.6954)T

is the solution of LCP.
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Size n x0 P = I (basic CGA) P = 1
nI, n > 1 P = A−1

x0
1

Iter
CPU(s)

RSD

11
0.0143

6.135 7 · 10−6

8
0.0133

5.793 9 · 10−6

4
0.0081

4.801 3 · 10−8

100 x0
2

Iter
CPU(s)

RSD

10
0.0170

5.632 1 · 10−6

7
0.0113

5.194 1 · 10−6

3
0.0068

2.009 6 · 10−6

x0
1

Iter
CPU(s)

RSD

11
1.1760

5.890 6 · 10−6

7
0.7838

2.553 7 · 10−6

4
1.5308

4.811 2 · 10−8

1000 x0
2

Iter
CPU(s)

RSD

10
1.1115

5.423 9 · 10−6

6
0.6666

2.281 5 · 10−6

3
1.1335

2.021 9 · 10−6

x0
1

Iter
CPU(s)

RSD

11
8.9451

5.860 9 · 10−6

6
4.7227

5.700 2 · 10−6

4
5.5383

4.811 6 · 10−8

2000 x0
2

Iter
CPU(s)

RSD

10
8.1684

5.402 3 · 10−6

5
4.0932

5.078 2 · 10−6

3
5.3227

2.022 6 · 10−6

x0
1

Iter
CPU(s)

RSD

11
28.4459

5.850 3 · 10−6

6
15.5639

3.799 3 · 10−6

4
13.9749

4.811 7 · 10−8

3000 x0
2

Iter
CPU(s)

RSD

10
25.7548

5.394 8 · 10−6

5
12.8931

3.385 3 · 10−6

3
10.7083

2.022 8 · 10−6

Table 2. Numerical results for Example 4.

Example 6. The matrices A and B are given by:

A =(aij) =


aii = 10001, if i = 1,
aij = 1

i+j−1 , if i 6= j,

aii = 1
i+j−1 + 1, i = j, i 6= 1,

B =I.
For example, if n = 4, then:

A =


10001 1

2
1
3

1
4

1
2

4
3

1
4

1
5

1
3

1
4

6
5

1
6

1
4

1
5

1
6

8
7

 .

The spectrum of A is given by {10001, 1.657, 1.0189, 1.0002}. Since λmin(A) =
1.0002 > λmax(I) = 1, then the AVE is uniquely solvable for any b. The
matrix A is ill-conditioned since κ(A) = 10001

1.0002 = 9999 � 1. Based on κ(A),
we have deduced that κ(Q)� 1 for some matrices D whose diagonal elements
are 1, 0, or −1, which confirms for n = 4 that Q is ill conditioned. For n ≥ 4,
a careful investigation is needed to confirm the ill-conditioning of Q. In fact,
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Size n x0 P = I (basic CGA) P = 1
nI, n > 1 P = A−1

x0
1

Iter
CPU(s)

RSD

7
0.0152

2.037 8 · 10−6

5
0.0090

2.314 1 · 10−6

4
0.0083

9.337 5 · 10−6

100 x0
2

Iter
CPU(s)

RSD

6
0.0106

3.394 0 · 10−6

4
0.0081

3.822 6 · 10−6

4
0.0104

7.306 8 · 10−6

x0
1

Iter
CPU(s)

RSD

7
1.6359

1.918 2 · 10−6

4
1.0504

2.437 8 · 10−6

4
0.9420

9.344 12 · 10−6

1000 x0
2

Iter
CPU(s)

RSD

6
1.4547

3.287 0 · 10−6

3
0.6995

4.116 3 · 10−6

4
0.9617

7.311 7 · 10−6

x0
1

Iter
CPU(s)

RSD

7
7.2802

1.909 1 · 10−6

4
4.1854

1.218 7 · 10−6

4
4.1506

9.344 0 · 10−6

2000 x0
2

Iter
CPU(s)

RSD

6
6.1432

3.279 5 · 10−6

3
3.0415

2.059 0 · 10−6

4
4.8948

7.311 6 · 10−6

x0
1

Iter
CPU(s)

RSD

7
20.3593

1.905 9 · 10−6

3
8.6417

6.765 5 · 10−6

4
11.5123

9.344 0 · 10−6

3000 x0
2

Iter
CPU(s)

RSD

6
18.1800

3.277 0 · 10−6

3
8.6375

1.372 9 · 10−6

4
11.6423

7.311 6 · 10−6

Table 3. Numerical results for Example 5.

the matrix A is constructed from the Hilbert matrix, which is known to be
ill-conditioned.

Next, for b = (A− I)e ∈ Rn, and with the initial point x0 = (0, 0, · · · , 0)T ,
the computational results for this example with different size of n, are illus-
trated in Table 4.

The ”*” means that the basic CG and the preconditioned CG with P =
1
nI, n > 1 algorithms failed.

The true solution of this example is x∗ = e.

5. CONCLUSION AND FUTURE WORK

In this paper, we have presented preconditioned conjugate gradient meth-
ods for solving the NP-hard absolute value equations. The obtained numerical
results with the preconditioned matrix P = A−1 are the best since the number
of iterations and the elapsed times are minimum compared with those obtained
by the basic conjugate gradient algorithms (P = I). We hope that the pre-
conditioned absolute value equations serves as a basis for future research on



11 Preconditioned conjugate gradient methods for absolute value equations 13

Size n P = I (basic CGA) P = 1
nI, n > 1 P = A−1

4
Iter

CPU(s)
RSD

3530
0.1300

9.995 9 · 10−6

2701
0.0983

9.995 2 · 10−6

2
0.0050

4.116 8 · 10−16

10
Iter

CPU(s)
RSD

16483
0.6712

9.999 1 · 10−6

12079
0.4594

9.998 3 · 10−6

2
0.0051

6.753 · 10−16

1000
Iter

CPU(s)
RSD

∗ ∗
2

0.2494
3.955 0 · 10−14

2000
Iter

CPU(s)
RSD

∗ ∗ 2
1.5669

7.200 0 · 10−14

Table 4. Numerical results for Example 6.

other more choice for the preconditioned matrix P to intend an efficient study
of the absolute value equations.
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