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GOLDBACH PARTITIONS AND NORMS OF CUSP FORMS

SIMON DAVIS∗

Abstract. An integral formula for the Goldbach partitions requires uniform
convergence of a complex exponential sum. The dependence of the coefficients
of the series is found to be bounded by that of cusp forms. Norms may be defined
for these forms on a fundamental domain of a modular group. The relation with
the integral formula is found to be sufficient to establish the consistency of the
interchange of the integral and the sum, which must remain valid as the even
integer N tends to infinity.
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1. INTRODUCTION

An equivalence between a formula for the number of Goldbach partitions of
an even integer n

(1.1) G(n) =
∑
p1,p2

∫ 1

0
e2πi(p1+p2−n)αdα =

∑
p1,p2

δp1+p2,n

and the contour integral

(1.2)
∫ 1

0

∑
p1

e2πip1α
∑
p2

e2πip2αe−2πinαdα

exists if uniform convergence of the double sum can be proven.
The interchange of the double sum and the integral in the estimates of

the number of prime partitions of integers through the circle method follows
from the choice of a finite upper limit for the sums. However, for the binary
partitions of an even integer, the error in the evaluation of the integral over
the major and minor arcs is sufficiently large that the formula does not yield
a non-zero lower bound for G(n) [1].

Another method, equating the regularized surface integrals in (r, θ) and
(z, z̄) coordinates in a unit disk, provides a series expansion consisting of
singular and nonsingular terms [2]. A finite upper limit again may be set
for the sums in the contour integral, and following interchange of the sums
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and the integral, equivalence with the number of Goldbach partitions may be
established. With a support function, the equality between the (r, θ) and (z, z̄)
integrals and cancellation of singular terms will generate nontrivial expressions
for the coefficients in its definition and nonsingular relations between {G(m)}
for 4 ≤ m ≤ n [3]. Any ambiguities arising from the sums with arbitrarily large
upper limits and the interchange of the sum and the integral in the formula
for G(n) are resolved in an expansion of the complex series

∑∞
m=4G(m)e2πimz

in the upper-half plane H. The divergence in the sum with an infinite limit
is reflected in the singular terms in expansion of the sums in the powers of
y = Im z, and, after separating the contribution of the nonsingular terms, the
values of contour integrals of related complex series exist. Therefore, although
the coefficients in the recursion relation depend on the value of z̄

z in the limit
z → 0, a valid non-zero lower bound then can be derived for the number of
Goldbach partitions of an even integer.

An evaluation of several sets of terms in the sums reveals that cancellations
are required to establish a form of convergence for rational values of α. The
double sum may be re-expressed as a series with coefficients related to the
partitions of the integers m ≥ n into a sum of two primes. The periodicity
of the complex exponential function for rational values of α characterizes the
sum of the form

∑
m ame

2πim r
s . When α is irrational, it follows by the equidis-

tribution theorem [4] that the distribution of the values of integer multiples
of α modulo 1 is uniform, which would cause similar cancellations in the sum
similarly. Bounds derived for finite exponential sums and arbitrary values of
α are considered. A refined upper limit for the sums S(α) =

∑
n≤N Λ(n)e2πinα

is known to have a similar polynomial form with a different exponent [5].
The relation with Fourier series

∑∞
m=4 ame

2πimx then yields upper bounds
for the coefficients to achieve absolute and uniform convergence. These in-
equalities are not satisfied initially by the series

∑∞
m=4G(m)e2πimx in the

contour integral (1.2). However, the series does have coefficients that have
magnitudes between limits defined for Fourier series with coefficients increas-
ing as O(mc) and cusp forms. Analytic continuation of the Fourier series
domain in the upper half plane to a neighbourhood of the interval [0, 1] there-
fore will provide a series expansion of bounds for the contour integral in powers
of the imaginary coordinate y. Contour integration selects the O(1) term in
the series and the values derived from the limiting series may be viewed as
bounds related to the magnitude of G(n).

2. SUMMATION IN CONTOUR INTEGRAL FORMULA

A set of terms in the sum
∑
p1

∑
p2 e

2πi(p1+p2−n)α will be considered for
various values of α. First suppose that α is a rational number r

s . Then the
exponential is equal to 1 if p1 + p2 − n is a multiple of s. When r is even and
s is odd, there will be an infinite positive contribution to the sum. Similarly,
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if r is odd and 2 ‖ s, the exponential is −1 for p1 + p2−n = k · s2 with k being
odd, yielding −∞.

Returning the fraction with even r and odd s, it is not possible to multiply
r by a half-integer since p1 +p2−n must be integer. Consequently, any choice
given by a multiple of s−1

2 and s+1
2 , for example, will yield a value that is close

to e2πi = 1. There is no such direct cancellation of sets of terms in the sum
for a fixed value of α.

However,
∑s−1
m=0 e

2πim
s = 0, and there is a periodicity with lag s. The

double sum can be equated to a series with weighting factors given by the
number of Goldbach partitions of each integer. With the asymptotic estimate
G(m) ∼ 2Ctwin m

lnm ln(m−2) ,
∑∞
m=2G(m)e2πi(m−n) r

s may be estimated.

Theorem 1. The sum
∑∞
m=2G(m)e2πim r

s is bounded below by
s−1∑
m=2

G(m)e2πi r
s + 1

e2πi rs−1

[
lim
N→∞

G(N)−G(s)
]

− Ctwins

2(e2πi rs−1)

∞∑
k=1

[
1

(k+ 1
s )(ln(ks+1))2 ln(ks−1) + 1

(k− 1
s )(ln(ks+1))(ln(ks+1))2

]
·

·
[
1− 1

ln(ks+1) −
1

(1− 2
ks+1 ) ln(ks−1) +O

(
1

(ks+1)2

) ]
.

for odd r and even s.

Proof. When the series is partitioned into sets of s elements,

(2.1)
∞∑
m=4

G(m)e2πim r
s =

s−1∑
m=4

G(m)e2πim r
s +

∞∑
k=1

(k+1)s−1∑
m=ks

G(m)e2πim r
s .

Multiplication of the finite sum in the second term by e2πi r
s − 1 gives

(e2πi r
s − 1)

(k+1)s−1∑
m=ks

G(m)e2πim r
s =(2.2)

=
(k+1)s∑
m=ks+1

G(m− 1)e2πim r
s −

(k+1)s−1∑
m=ks

G(m)e2πim r
s

= G((k + 1)s− 1)−G(ks) +
(k+1)s−1∑
m=ks+1

(G(m− 1)−G(m))e2πim r
s .

By the asymptotic estimate for G(m),

G(m−1)−G(m) ∼ 2Ctwin
[

m−1
ln(m−1) ln(m−3) −

m
lnm ln(m−2)

]
=(2.3)
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= −2Ctwin 1
lnm ln(m−2)

[
1− 1

lnm + 1
(1− 2

m) ln(m−2) +O
(

1
m2

) ]
.

Then

(k+1)s−1∑
m=ks

G(m)e2πim r
s =

= G((k+1)s−1)−G(ks)
e2πi rs−1

(2.4)

− 2Ctwin
e2πi rs−1

(k+1)s−1∑
m=ks+1

1
lnm ln(m−2)

[
1− 1

lnm −
1

(1− 2
m) ln(m−2) +O

(
1
m2

) ]

and

∞∑
k=1

(k+1)s−1∑
m=ks

G(m)e2πim r
s = 1

e2πi rs−1

∞∑
k=1

[G((k + 1)s− 1)−G(ks)]

(2.5)

− 2Ctwin
e2πi rs−1

∞∑
k=1

(k+1)s−1∑
m=ks+1

1
lnm ln(m−2)

[
1− 1

lnm −
1

(1− 2
m) ln(m−2) +O

(
1
m2

)]

= 1
e2πi rs−1

∞∑
k=1

[G((k+1)s)−G(ks)]+ 1
e2πi rs−1

∞∑
k=1

[G((k+1)s−1)−G((k+1)s)]

− 2Ctwin
e2πi rs−1

∞∑
k=1

(k+1)s−1∑
m=ks+1

1
lnm ln(m−2)

[
1− 1

lnm −
1

(1− 2
m) ln(m−2) +O

(
1
m2

)]

= 1
e2πi rs−1

∞∑
k=1

[G((k + 1)s)−G(ks)]

− 2Ctwin
e2πi rs−1

∞∑
k=1

(k+1)s∑
m=ks+1

1
lnm ln(m−2)

[
1− 1

lnm −
1

(1− 2
m) ln(m−2) +O

(
1
m2

) ]
= 1

e2πi rs−1
[ lim
N→∞

G(N)−G(s)]

− 2Ctwin
e2πi rs−1

∞∑
k=1

(k+1)s∑
m=ks+1

1
lnm ln(m−2)

[
1− 1

lnm −
1

(1− 2
m) ln(m−2) +O

(
1
m2

)]
.

If r is odd and s is even, e2πi(m+ s
2 ) rs = −e2πim r

s , and

(k+1)s∑
ks+1

e2πimr
s

lnm ln(m−2)

[
1− 1

lnm −
1

(1− 2
m) ln(m−2) +O

(
1
m2

) ]
=(2.6)
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=
(k+ 1

2 )s∑
ks+1

e2πim r
s

{
1

lnm ln(m−2)

[
1− 1

lnm −
1(

1− 2
m+ s

2

)
ln(m−2)

+O
(

1
m2

) ]

− 1
ln(m+ s

2 ) ln(m+ s
2−2)

[
1− 1

ln(m+ s
2 ) −

1(
1− 2

m+ s
2

)
ln(m+ s

2−2)
+O

(
1

(m+ s
2 )2

)]}
.

Since

1
lnm ln(m−2) −

1
ln(m+ s

2 ) ln(m+ s
2−2) =(2.7)

= 1
lnm ln(m−2)

[
1− 1(

1+
ln(1+ s

2m)
lnm

)(
1+

ln
(

1+ s
2(m−2)

)
ln(m−2)

)]

= t 1
lnm ln(m−2)

[
t

ln(1+ s
2m )

lnm +
ln
(
1+ s

2(m−2)

)
ln(m−2) +O

(
1

(lnm)2

) ]

≈ s
2m(lnm)2 ln(m−2) + s

2(m−2) lnm(ln(m−2))2 +O
(

1
m(lnm)4

)
.

The following upper bound

2Ctwin
e2πi rs−1

∞∑
k=1

(k+ 1
2 )s∑

m=ks+1

[
s

2m(lnm)2 ln(m−2) + s
2(m−2) lnm(ln(m−2))2 O

(
1

m(lnm)4

) ]
·

(2.8)

·
[
1− 1

lnm −
1

(1− 2
m) ln(m−2) +O

(
1
m2

) ]
< Ctwin
e2πi rs−1

∞∑
k=1

s2

2

[
1

(ks+1)(ln(ks+1))2 ln(ks−1) + 1
(ks−1) ln(ks+1)(ln(ks−1))2 +O

(
1

(ks)(ln(ks))4

)]
·

·
[
1− 1

ln(ks+1) −
1

(1− 2
ks+1 ) ln(ks−1) +O

(
1

(ks+1)2

) ]
= Ctwins

2(e2πi rs−1)

∞∑
k=1

[
1

(k+1
s )(ln(ks+1))2 ln(ks−1) + 1

(k−1
s ) ln(ks+1)(ln(ks−1))2 +O

(
1

k (ln(ks))4

)]
[
1− 1

ln(ks+1) −
1

(1− 2
ks+1 ) ln(ks−1) +O

(
1

(ks+1)2

) ]
.

converges since the exponent of the logarithm equals 3. Therefore, the complex
exponential series has the given lower bound. �

Then
∑∞
m=4G(m)e2πim r

s diverges and the another method for defining the
contour integral would be required when the integrand consists of infinite sums.

For sequences equidistributed modulo 1, limm→∞
1
m

∑m
i=1 e

2πikai = 0 [6],
which resembles the vanishing of the finite sum for rational values of α. The
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limit limm→∞
∑m
i=1 f(ai) equals

∫ 1
0 f(x)dx. Since

∞∑
m=2

G(m)e2πi(m−n)α =
n∑

m=2
G(m)e2πi(m−n)α + lim

`′→∞

`′∑
`=1

G(`+ n)e2πi`α(2.9)

=
n∑

m=2
G(m)e−2πi(n−m)α + lim

`′→∞

`′∑
`=1

G(`+ n)e2πiη`

where η` = `α (mod 1), the second sum could be re-expressed

(2.10)
∫ 1

0
G(x)e2πix

withG(x) = limq→∞G(`q+n), where {`q} is a subsequence such that lim
q→∞

`qα =
x, although the absence of a continuous limit prevents the integral from being
well-defined.

Consider a complex exponential sum f(α) =
∑N
xi=1 exp(2πiP (xi)α) where

P (x) is a polynomial of degree k. Then
∫ 1
0 |f(α)|λdα �P,ε Nµ(λ) where

(λ, µ(λ)) is located on a polygonal line with vertices (2ν , 2ν−ν+ε), ν = 1, ..., k
[7]. For the set of primes, the polynomial would equal nearly x ln x, which
may be bounded above by a quadratic function of x. The squared absolute
value is not equivalent to f(α)2, although the inequality

(2.11)
∫ 1

0
f(α)2dα ≤

∫ 1

0
|f(α)|2dα

is valid. Choosing λ = 2, and supposing that the degree k = 2 may be used in
the formula, (2, λ(2)) is located on the line with vertices (2, 1+ε) and (4, 2+ε)
for some positive real number ε. It would follow that

∫ 1
0 f(α)2dα ≤ N2+ε.

Estimates increasing as a power of N have been found for finite complex
exponential sums arising in the formula for the number of ternary Goldbach
partitions of an odd integer. Let S(α) =

∑
n≤N Λ(n)e2πinα. For every α ∈ R

such that there exists a fraction a
q with

∣∣α − a
q

∣∣ ≤ 1
q2 , q ∈ Z+, gcd(a, q) = 1,

the upper bound |S(α)| � (Nq−
1
2 +N

4
5 +N

1
2 q

1
2 )(log N)4 [5].

3. UNIFORM CONVERGENCE OF THE FOURIER SERIES

The Fourier series f(t) ∼
∑
m ame

imt converges uniformly to f in [a, b] if f(t)
is continuous and satisfies periodic boundary conditions while f ′(t) is piecewise
continuous on [a, b]. Uniform convergence of a series

∑
n un may be determined

by the Weierstrass M-test, where supx∈I un(x) ≤ Mn and Mn ≤ C
na , C > 0,

a > 1. For functions in the α-Hölder class, the uniform convergence of the
series requires |f(t)− (SNf)(t)| ≤ K lnN

Nα , where the partial sum is (SNf)(t) =∑N
m=−N ame

imt, and generally, the coefficients must be decreasing with n.
When the domain of the function is changed to the upper half plane, other

types of coefficients are allowed. For cusp forms of weight 2k, with f(γz) =
(cz+d)2kf(z), γz = az+b

cz+d and a0 = 0, it can be demonstrated that an = O(nk).
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The L2 convergence of a Fourier series, or equivalently the finiteness of the
L2 norm, may be extended to the functions F (z) = Im(z)

k
2 f(z) [8][9]. These

norms are defined in terms of integrals over the fundamental domain of the
modular group PSL(2;Z) which does not reach the real line. An analytic
modular form in this fundamental domain may be mapped to a nonsingular
function on the upper-half plane, although analytic continuation would be
necessary for the definition of the function on the interval [0, 1] since the
image of the boundary is not include a segment on the real axis after a finite
number of transformations.

A modular or cusp form with a finite norm related to the series
∞∑
m=4

G(m)e2πimα

would provide bounds for an absolutely convergent sum in the fundamental
domain and the upper-half plane. An example would be Eisenstein series [10]

G2k(z) = 2ζ(2k) + 2(−1)k (2π)2k

(2k−1)!

∞∑
n=1

σ2k−1(n)e2πinz,

with σ`(n) ∼ ζ(`+ 1)n` +O(nmax(0,`−1)), being the generalized sum-of-divisor
function, and coefficients |an| = O(n2k−1), where k may be chosen to be 3

4 for
the lower bound and 1 for the upper bound.

The dependence of the coefficients in this series is given by

(3.1) 2Ctwin m
lnm ln(m−2) = 2Ctwin m

eln lnmeln ln(m−2) = 2Ctwinm1− ln(lnm ln(m−2))
lnm .

and the exponent would be 1− ln(lnm ln(m−2))
lnm .

If am = O(mc), for constant c, f(z) =
∑∞
m=0 ame

2πimz = O(y−c−1) because
|f(x+ iy)| <

∑∞
m=0 ame

−2πmy and

∞∑
m=0

mce−2πmy= (−1)c
(2π)c

dc

dyc

∞∑
n=0

e−2πny= (e−2πmy)c
(1−e−2πy)c+1 +. . .=(2π)−c−1y−c−1+. . .

(3.2)

near the real line. To derive the exponent of the coefficients from the depen-
dence of the function, let |f(x+ iy)| < B(x)y−c and consider
(3.3)

1
λ

τ0+λ∫
τ0

∞∫
0

B(x)y−ce
−2πim(x+iy)

λ dx dy = 1
λ

τ0+λ∫
τ0

B(x)e−2πmixdx

∞∫
0

y−ce−
2πmy
λ dy.

Let ỹ = my. Then

∫ ∞
0

y−ce−
2πmy
λ dy =

∫ ∞
0

mcỹ−ce−
2πmỹ
λ 1

mdỹ = m−c−1
∫ ∞

0
ỹ−1e−

2πỹ
λ dỹ.

(3.4)

With the introduction of a non-zero lower limit, the integral is O(mc−1).
Given a modular or cusp form of a given weight, there is a corrsponding

meromorphic function with isolated poles satisfying a functional relation in s
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[11]. This meromorphic function equals

(3.5) Φ(s) =
(
λ
2π

)s
Γ(s)ϕ(s)

and there then exists an analytic continuation of the ϕ(s) =
∑
m
am
ms and the

formula

f(iy)− a0 =
∞∑
m=1

ame
− 2πmy

λ =
∞∑
m=1

am
1

2πi

∫
Re s=σ0

Γ(s)
(

2πmy
λ

)−s
ds(3.6)

=
∫

Re s=σ0
Φ(s)y−sds

may be used to determine the analytic continuation of f(iy). For a cusp form
with a0 = 0, if y is replaced by −ix,

(3.7) f(x) =
∫

Re s=σ0
Φ(s)(−ix)−sds.

When am = O(mc), Re s must be selected to be larger than c+1 for the series
ϕ(s) =

∑∞
m=1 amm

−s to converge. The contour of the integral
∫

Re s=σ0
Φ(s)y−sds

is located to the right of the singularities of Γ(s) or ϕ(s) such that Φ(s) con-
verges as a series.

The analogue of f(x) when ϕ(s) is ζ(2s) is θ(t) = 12 +
∑∞
n=1 e

πin2t. Then
θ(t + 2) = θ(t), θ

(
− 1

t

)
=
(
t
i
) 1

2 θ(t). Then θ(it) = 1
2 +

∑∞
m=1 e

−πm2t → 1
2 as

t→∞ and there is a divergence if t→ 0. The theta function is conventionally
defined only on the upper half-plane, because the contribution of each of the
arcs in the contour integral (3.6) can prevent its evaluation for real t. It may
be noted, however, that a direct evaluation of theta function yields 1

2 as t→ 1
if the alternating sum is set equal to zero. For t ∈ (0, 1), the value of θ(t)
would determined by distribution {n2t(mod 1)}. However, if an infinitesimal
imaginary part is added to the integration variable, the function would be
regularized, since

(3.8) θ(x+ iy) = 1
2 +

∞∑
m=1

e−πm
2yeπim2x.

There are summation and integral representations of the zeta function that
are valid for other regions in the complex plane [12], and the Mellin transform
provides another formula for the theta function.

The series
∑∞
m=4G(m)m−s is bounded by

∑∞
m=1mm

−s =
∑∞
m=1m

−(s−1) =
ζ(s− 1) which has a pole at s = 2. When s = 2,

(3.9)
∞∑
m=4

G(m)m−s '
∞∑
m=4

2Ctwinm
lnm ln(m−2)m

−2 =
∞∑
m=4

2Ctwin
m lnm ln(m−2) <∞
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because
∫∞
4

dx
x lnx ln(x−2) < ∞, and any singularity would be located to the

right to the right of the line Re s = 1
2 . Since

(3.10)
∞∑
m=4

m
1
2 e−2πmy <

∞∑
m=4

m
lnm ln(m−2)e

−2πmy <
∞∑
m=4

me−2πmy,

(2πy)−
3
2−(1+

√
2+
√

3)+... <
∞∑
m=4

m
lnm ln(m−2)e

−2πmy < (2πy)−2...− 6 + ... ,

(3.11)

and the analytic continuation of a series bounded by two other series in the
neighbourhood of an interval is bounded by the analytic continuation of the
limiting series.

Let am = m, ϕ(s) = ζ(s − 1), Φ(s) =
(
λ
2π
)sΓ(s)ζ(s − 1) and Φ(3 − s) =(

λ
2π
)3−sΓ(3−s)ζ(2−s). Given ξ(s) = π−

π
2 Γ
(
s
2
)
ζ(s) and the functional relation

ξ(s) = ξ(1 − s), π−
s−1

2 Γ
(
s−1

2
)
ζ(s − 1) = π−

2−s
2 Γ

(2−s
2
)
ζ(2 − s). There are no

constant values of λ and k yielding an equality between Φ(s) and Φ(3 − s),
and the Fourier series is not a modular form. Similarly, if am = m

1
2 , ϕ(s) =

ζ
(
s− 1

2
)
, Φ(s) =

(
λ
2π
)sΓ(s)ζ

(
s− 1

2
)

and Φ
(5

2 − s
)

= ( λ2π )
5
2−sΓ

(5
2 − s

)
ζ
(3

2 − s
)
,

and Φ(s) 6= Φ
(5

2 − s
)

for constant λ and k, and this lower bound is not a
modular form.

Nevertheless, these Fourier series will be sufficient to establish bounds for∑∞
m=4G(m)m−s by removal of the singularities in the upper and lower limits

as y → 0. This result has been established generally for Dirichlet series with
almost period coefficients through a bound by the integral representation for
Lerch transcendents [13]. The integral of the series with coefficients G(n)
would be well-defined over the interval [0, 1] because the pole is not located at
s = 1.

Since a Fourier series f(z) =
∑∞
m=1 ame

2πimz diverges as O(y−c−1) when
the coefficients am increase as O(mc), it may be expanded in powers of y,
such that the terms with negative exponents reflect the singularity on the real
axis. A full expansion of the limiting series in Eq. (3.6) yields

2Ctwin
[
(2πy)−

3
2 + ...− (1 +

√
2 +
√

3) + ...

]
<

<
∞∑
m=4

G(m)e−2πmy < 2Ctwin
[
(2πy)−2y−2 − 73

12 + 113
4 y + ...

]
.(3.12)

Inclusion of the complex argument when x = r
s in the upper bound for the

Fourier series gives
(3.13)
∞∑
m=4

me−2πmye2πim r
s =

s−1∑
m=4

me−2πmye2πim r
s +

∞∑
k=1

(k+1)s−1∑
m=ks

me−2πmye2πim r
s .
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Theorem 2. The expansion of the upper limit for the complex series∑∞
m=4G(m)e2πimxe−2πmy in powers of y begins at O

(
1
y2

)
.

A calculation similar to that for G(m) yields
s−1∑
m=4

me−2πmye2πim r
s + 1

e
2πi

r
s−1

[ lim
N→∞

Ne−2πNy − se−2πsy]−(3.14)

− 1
e2πi rs−1

∞∑
r=1

(k+1)s∑
m=ks+1

e2πim r
s (me−2πmy − (m− 1)e−2π(m−1)y)

Near y = 0,
(3.15)
me−2πmy − (m− 1)e−2π(m−1)y = 1− 2π(2m− 1)y+ 2π2(3m2− 3m+ 1)y2− ...

and

− lim
y→0

1
e2πi rs−1

∞∑
k=1

(k+1)s∑
m=ks+1

e2πim r
s [1−2π(2m−1)y+2π2(3m2−3m+1)y2+...]

(3.16)

= lim
y→0

1
e2πi rs−1

∞∑
k=1

(k+1)s∑
m=ks+1

[4πmye2πim r
s − 6π2m(m− 1)y2e2πim r

s + ...] = 0

and limN→∞Ne
−2πNy = 0, such that the remainder of Eq.(3.14) is

(3.17) lim
y→0

{
1

e2πi rs−1
(−se−2πsy) +

s−1∑
m=4

me−2πmye2πim r
s

}
Since se−2πsy is maximized at s = 1

2πy , let the denominator of the fractions
have this value such that this expression is

− 1
2πey

1
e4π2iry−1

+

1
2πy−1∑
m=4

me−2πmy+4π2imry(3.18)

= i
8π3ery2

(
1 + 2π2iry − 4π4r2y2 + ...

)
− (e−2πy+4π2iry + 2e−4πy+8π2iry + 3e−6πy+12π2iry)

− 1
2πy(1−2πir)

(
1− (2π−4π2ir)

2 y + ...
) (

1− 1
e

)
− 1

2πey

= i
8π3ery2

(
1 + 2π2iy − 4π2r2y2 + ...

)
− (e−2πy+4π2iry + 2e−4πy+8π2iry + 3e−6πy+12π2iry)

− (1− 1
e)

2πy(1−2πir) −
1

2πey + 1
2

(
1− 1

e

)
+ ... .
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Integration of the variable x over [0, 1] can be split into a sum over the
numerator r and a summation over irrational values. As

∞∑
`=1

1
2πy−1∑
r=0

1
r < 1 +

∫ 1
2πy−1

1
dx
x = 1 + ln

(
1

2πy − 1
)

(3.19)

1
2πy−1∑
r=0

1
r ry = 1

2πy · y = 1
2π

1
2πy−1∑
r=0

1
r r

2y2 = 1
8π2 − y

4π ,

the summation over r in the first term in Eq.(3.18) gives

∑
r

i
8π3ery2 (1− 2π2iry − ...) =

(3.20)

= i
8π3ey2

[ (
1 + ln

(
1

2πy − 1
))

− 2π2i
(

1
2π

)
− 4

3π
4
(

1
8π2 − y

4π

)
+ ...

]
.

The expansion of 1
e4π2iry−1

follows from e4π2iry−1 = 4π2iry
∑∞
k=0

(4π2iry)k
(k+1)! and

1∑∞
k=0

(4π2iry)k
(k+1)!

= 1
1+
∑∞

k=1
(4π2ry)k

(k+1)!

=

(3.21)

= 1−
∞∑
k=1

(4π2iry)k
(k+1)! +

( ∞∑
k=1

(4π2iry)k
(k+1)!

)2

−
( ∞∑
k=1

(4π2iry)k
(k+1)!

)3

+ ...

= 1 +
∞∑
k=1

(4π2iry)k
∞∑
`=1

(−1)`
∑

k1+...+k`=k

1
(k1+1)!...(k`+1)! .

Similarly,

(3.22)

1
2πy−1∑
r=0

1
r (ry)k = yk

1
2πy−1∑
r=0

rk−1 = 1
k

(
1

2π

)k
+O(y)

Then

∑
r

i
8π3ery2 (1− 2π2iry + ...) =

(3.23)

= i
8π3ey2

[
1+ln

(
1

2πy−1
)
+
∞∑
k=1

(2πi)k
k

∞∑
`=1

(−1)`
∑

k1+...+k`=k

1
(k1+1)!...(k`+1)!

]
+O

(
1
y

)
.
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and the summation over r of the entire expression (3.18) is

i
8π3ey2

[
1 + ln

(
1

2πy − 1
)

+
∞∑
k=1

(2πi)k
k

∞∑
`=1

(−1)`
∑

k1+...+k`=k

1
(k1+1)!...(k`+1)!

]
+ ...

(3.24)

−

1
2πy−1∑
r=0

(e−2πy+4π2iry + 2e−4πy+8π2iry + 3e−6πy+12π2iry)

−(1− 1
e)

2πy

[
1 + 1

2π

∞∑
k=2

(
ik−1

kyk

) ]
− 1

4π2ey2 + 1
4πy

(
1− 1

e

)
+ ... .

The sums
∑ 1

2πy−1
r=0 e4`π2iry vanish, leaving a series beginning at O

(
1
y2

)
,

i
8π3ey2

[
1 + ln

(
1

2πy − 1
)

+
∞∑
k=1

(2πi)k
k

∞∑
`=1

(−1)`
∑

k1+...+k`=k

1
(k1+1)!...(k`+1)!

]
+ ...

(3.25)

− (1− 1
e)

2πy

[
1 + 1

2π
∑
k=2

(
ik−1

kyk

) ]
− 1

4π2ey2 + 1
4πy

(
1− 1

e

)
+ ... .

because
∑
k≥2

ik−1

kyk
= −i

∑
m

(−1)m
2my2m +

∑
m

(−1)m
(2m+1)y2m+1 ≈

(
i
2 −

1
2y

)
ln
(
1− 1

y2

)
.

One estimate of the contribution of the irrational values of x follows from
the

(3.26)
∞∑
m=4

me−2πmye2πimx =
∞∑
m=4

me−2πmye2πiηm

where {ηm = mx(mod 1)} is an equidistributed sequence over the unit interval.
It is evident that the series

∑∞
m=4 e

−2πmye2πiηm is absolutely convergent for
y > 0 since

(3.27)
∞∑
m=4

e−2πmy = 1
e2πy−1 − (e−2πye2πiη1 + e−4πye2πiη2 + e−6πye2πiη3).

The derivative of the complex series is

(3.28) d
dx

∞∑
m=4

e−2πmye2πimx = 2πi
∞∑
m=4

me−2πmye2πiηm .

In the limit as y → 0, absolute convergence is not preserved. Furthermore,
there does not exist N0 such that the partial sum SN =

∑N
m=4 e

2πimx differs
from SM for M, N > N0 by less than ε for a given N0, and the sum is not
uniformly convergent. Consequently, the derivative and the limit cannot be
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interchanged. Nevertheless,

1
2πi

d
dx

∞∑
m=4

e−2πmye2πimx(3.29)

= 1
2πi

d
dx

(
1

e2πye−2πix−1

)
− (e−2πye2πiη1 + 2e−4πye2πiη2 + 3e−6πye2πiη3)

= e2πye−2πix

(e2πye−2πix−1)2 − (e−2πye2πiη1 + 2e−4πye2πiη2 + 3e−6πye2πiη3),

and, since the limit can be interchanged with finite sums, estimates of partial
sums

∑N
m=4me

2πiηm exist.
Although the limit

lim
y→0

1
e2πi rs−1

∞∑
k=1

(k+1)s∑
m=ks+1

e2πi r
s (me−2πmy − (m− 1)e−2π(m−1)y)

had been shown to be zero, if s is set equal to 1
2πy , it equals

(3.30) lim
y→0

1
e4π2iry−1

∞∑
k=1

k+1
2πy∑

m= k
2πy+1

[4πye4π2imry − 6π2m(m− 1)y2e4π2imry + ...]

which will include O(1) terms in the expansion in powers of y.
The beginning of the series at O

(
1
y2

)
is evident in the formula

1
e2πi rs−1

∞∑
m=s

4πmye2πim r
s

∣∣∣∣
s= 1

2πy

=

= 4πy
e4π2iry−1

lim
N→∞

1
4π2ir

d
dy

N∑
m=s

e4π2imry

(3.31)

= 4πy
e4π2iry−1

lim
N→∞

[
(e4π2iry−1)(N+1)·4π2ir·e4π2i(N+1)ry−(e4π2i(N+1)ry−1)·4π2ire4π2iry

]
(e4π2iry−1)2 .

With limN→∞ e4π2i(N+1)ry = 0, the remainder is

(3.32) 4πye4π2iry

(e4π2iry−1)3 = 4πye4π2iry

(4π2iry−8π4r2y2+...)3

which has a leading-order dependence on y of O
(

1
y2

)
. Summation over r with

the upper limit 1
2πy − 1 does not alter the initial exponent of the series. �

The O
(

1
y`

)
terms with ` > 0 generally have arguments which do not cancel

with e−2πinα, and the integrals over α would vanish. This leaves an O(1)
term that must generate the asymptotic formula for the number of Goldbach
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partitions. Therefore, separating the series in the form

(3.33)
N∑
m=4

me−2πmye2πimx +
∞∑

m=N+1
e−2πmye2πimx,

the first sum in the limit y → 0 equals

(3.34)
N∑
m=4

me2πix = (N + 1) e2πi(N+1)x

e2πix−1 − (e2πix + 2e4πix + 3e6πix).

Since
∑

p1, p2
4≤p1+p2≤N

e2πi(p1+p2−n)α = e−2πinα∑N
m=4G(m)e2πimα, the integral over

the majorized sum

∫ 1

0
e−2πinx

[
(N+1)e2πi(N+1)x

e2πix−1 − (e2πix + 2e4πix + 3e6πix)
]

=(3.35)

=
∫ 1

0

[
(N + 1)e2πi(N−n)x(1 + e−2πix + e−4πix + ...)

− (e−2(n−1)πix + 2e−2(n−2)πix + 3e−2(n−3)πix)
]
dx

equals N + 1 for N ≥ n and n ≥ 4, which is an upper bound for G(n).
A bound for the contour integral (1.2) over the interval [0, 1] can be de-

fined by removing the singular terms proportional to negative powers of y
in Eq.(3.25). The other limit would follow from the estimate of the series∑∞
m=4m

1
2 e−2πmye2πimx. Finiteness of the integral could be considered with

respect to the formula (1.1) with the sum and integral interchanged. How-
ever, it serves only as a verification of the asymptotic estimate of the number
of Goldbach partitions which must be used for all of the integers in the sum.

The contour integral (1.2) may be converted to surface integrals over the
unit disk [2]. Cancellation of the singular terms in the (r, θ) and (z, z̄) inte-
grals yields a set of nonsingular equations that determine a relation between
the numbers of binary Goldbach partitions of even integers. The method of
the removal of divergences is similar to that required for a finite remainder
that may be related to G(n). It may be recalled that a support function had
been necessary to derive nontrivial relations between {G(m)}, m ≥ n. Al-
though there is no direct correlation because a conversion to surface integrals
is necessary, these integrals in the z, z̄ coordinates may be represented through
a Cauchy formula that includes derivatives of the function at an interior point
and contour integrals.

Evaluation of the contour integrals before the summation generically se-
lects specific values of the index as a consequence of the vanishing the integral
of an exponential with non-zero argument over the circle. It is this identity
that causes the series representing the number of Goldbach partitions to be
truncated in Eq. (1.1). The representations of the number of binary prime
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partitions of even integers in Eq. (1.2) and the number of ternary prime parti-
tions of odd integers are regularized conventionally through finite upper limits
for the sums, such that the bounded sums and integrals may be interchanged.
This technique is valid because the sums do not continue indefinitely, with a
given value being selected in the contour integral. It follows, therefore, that
the use of the formula with finite upper limits in the sums would allow the
method of conversion of the integral to a surface integral and the subsequent
derivation of recursion relations for number of Goldbach partitions.

4. CONCLUSION

There exists a formula for the number of Goldbach partitions G(n) which
is given by a summation over prime pairs of the contour integrals of the ex-
ponential e2πi(p1+p2−n)α, α ∈ [0, 1]. Interchange of the sum and the integral
yields an equivalent method for evaluating this number if the series is uni-
formly convergent. Conventional techniques consist of replacing the infinite
upper limit by a finite value, such that the interchange is valid, and estimat-
ing the contributions to the contour integral. However, in the limit n → ∞,
the condition of the interchange of the integral and sum must be satisfied for
a valid representation of the number of binary prime partitions of all even
integers greater than or equal to four.

The double sum may be equated with e−2πinx∑∞
m=4G(m)e2πimx which is

divergent for real x. A Fourier series
∑
m ame

2πimx is convergent only for
decreasing coefficients am. Complex series

∑
m ame

2πimz with coefficients in-
creasing as am = O(mc) are characteristic of cusp forms, which converge in
the upper half-plane Im z > 0 and have norms defined on fundamental regions
of a modular group. Similarly, the series

∑∞
m=4G(m)e2πimz will be uniformly

convergent in H, even though the coefficients are increasing.
The divergence on the real line prevents a direct analytic continuation to

the interval [0, 1]. The meromorphic function Φ(z) = (2π)−zΓ(z)ϕ(z), where
ϕ(z) =

∑∞
m=4

G(m)
mz is well-defined for Re z ≥ 2 and can be analytically contin-

ued to the rest of the complex plane. The function represented by the series∑∞
m=4G(m)e2πimz then might be determined through a Mellin transform of

Φ(z), although the contribution of each arc in the contour integral could pre-
vent its evaluation. The theta function, for example, which is derived for
ϕ(s) = ζ(2s), does not have a standard definition on the real line.

An alternative technique for defining the complex series begins with an
expansion of the series in powers of y = Im z. It is demonstrated that the series
in y begins at O

(
y−2) and will diverge as y → 0. However, this formula allows

the interpretation of G(n) in terms of the contour integral of the nonsingular
part after removal of the singular terms. The integral of the O(1) terms would
give the number of Goldbach partitions and this is verified by its evaluation
for the limiting series

∑∞
m=4me

−2πmye2πimx for the series representation of
the integrand in the formula for the asymptotic estimate of G(n).
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There is no strict ordering of the complex series. There is an ordering of
the real sums of the magnitudes with the asymptotic estimates of G(m). This
method therefore receives confirmation from the validity of the estimate of
G(n) for each value of n. It cannot be used to prove relations for the exact
value of G(n) without valid bounds. However, the existence of singular terms
in the expansion in powers of y and their removal in the evaluation of the
contour integral provide support for this technique more generally.
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