
The Graduate Review The Graduate Review

Volume 7 Article 12

2022

Developing an iOS Game Application: Magnet Hockey Developing an iOS Game Application: Magnet Hockey

Trevor D. Wysong
Bridgewater State University

Follow this and additional works at: https://vc.bridgew.edu/grad_rev

 Part of the Databases and Information Systems Commons, Graphics and Human Computer Interfaces

Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Wysong, Trevor D. (2022) Developing an iOS Game Application: Magnet Hockey. The Graduate Review, 7,
91-103.
Available at: https://vc.bridgew.edu/grad_rev/vol7/iss1/12

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State
University, Bridgewater, Massachusetts.
Copyright © 2022 Trevor D. Wysong

http://vc.bridgew.edu/
http://vc.bridgew.edu/
https://vc.bridgew.edu/grad_rev
https://vc.bridgew.edu/grad_rev/vol7
https://vc.bridgew.edu/grad_rev/vol7/iss1/12
https://vc.bridgew.edu/grad_rev?utm_source=vc.bridgew.edu%2Fgrad_rev%2Fvol7%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=vc.bridgew.edu%2Fgrad_rev%2Fvol7%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=vc.bridgew.edu%2Fgrad_rev%2Fvol7%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=vc.bridgew.edu%2Fgrad_rev%2Fvol7%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=vc.bridgew.edu%2Fgrad_rev%2Fvol7%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

The Graduate Review • 2022 • 91Bridgewater State University

Developing an
iOS Game
Application:
Magnet Hockey
TREVOR D. WYSONG
Bridgewater State University

Introduction
The Magnet Hockey app is built for iOS using,

the SpriteKit framework in Xcode. iOS is an operating
system that powers people to navigate Apple devices
such as the iPhone, iPad, and iPod. Xcode is Apple’s
software development environment used to create iOS
applications. Xcode is shown in Figure 1.

Figure 1
Apple’s Development Environment Called Xcode

SpriteKit is a framework that can be imported within
Xcode to make creating iOS game applications easi-
er for a developer. Swift is a programming language
that Apple designed that gives developers the ability
to write logic and instructions to create an application.
The Swift programming language defines the rules for
writing code. Code in Swift is used to access the differ-
ent functionalities offered by the SpriteKit framework,
while working in the Xcode environment to create iOS
applications.

Magnet Hockey is the title of the iOS game ap-
plication I developed that has two game options for a
player to choose from; each of which has its own set
of game types. The Magnet Hockey app has a Magnet
Hockey game option that includes two-player game
types named “Standard Mode” and “Repulsion Mode.”
The objectives of the Magnet Hockey game “Standard
Mode” are to avoid bumping into two or more mag-
nets and to score the ball in the opponent’s goal. In
the “Repulsion Mode” game type, players can repel
magnets away from them, if the magnets are travelling
at a slow speed. In this game type, magnets moving
at faster speeds will still attract towards the player. In
the “Standard Mode” game type, the players do not
have this “repulsion” property, and the magnets will
always attract towards the player regardless of speed,
so long as the magnets are within a defined proximity
to the player. The other game mode option in the Mag-
net Hockey app is Air Hockey. The Air Hockey game
option has one-player and two-player game types. The
only way to earn a point in Air Hockey is to strike the
puck into the opponent’s goal; there are no magnets
for the players to avoid. A player can challenge a ro-
bot (or a CPU opponent) in the one-player Air Hockey

92 • The Graduate Review • 2022 Bridgewater State University

game option. This robot uses algorithms to respond to
different game scenarios to behave like a human play-
er. In the two-player game option, a player can face a
friend and choose between playing with one puck or
two pucks. In both the Magnet Hockey and Air Hockey
game modes, the players’ sides are separated by the
half line that is placed at exactly half of the device’s
screen height.

In the Magnet Hockey game modes, each play-
er controls a mallet (like in Air Hockey) to strike a ball
away from the circular goal on their side. One way to
score is to strike the ball into the opposing player’s
goal. In the middle, at the intersection of both players’
sides, there are three magnets spaced evenly across the
width of the screen. These magnets move around the
screen when the ball collides with them. The magnets
utilize spring force physics to cling towards a play-
er, who is within a defined proximity. If an opposing
player’s mallet contacts two or more of these magnets,
then the player will earn a point. One objective of this
game is to avoid colliding with the magnets. Whenever
a point is scored by either player, the ball, the magnets,
and both players’ mallets are reset to their starting po-
sition for a new round.

The Magnet Hockey app’s interface includes
an info scene, a settings scene, a store scene, a statistics
scene, a pause menu, an interactive tutorial, and more.
Scenes are different views within the application. By
using scenes or multiple views, the app does not al-
ways have to process everything. For instance, the
main menu and store scenes are not loaded while play-
ing in one of the Air Hockey or Magnet Hockey game
scenes. The main menu shown in Figure 2 permits the
user to navigate the various scenes throughout the app.

The info scene describes the Magnet Hockey app. In
the settings scene, a user can change game preferences.
In the store scene, a user has the option to buy in-app
purchases to improve their experience in the Magnet
Hockey app. The user can see a history of their games
played in the statistics scene. The pause menu is pres-
ent when the user presses the pause button that appears
on the screen during games. From the pause menu, the
player can opt to view the interactive tutorial that will
highlight game objects and explain what they do.

Figure 2: Main Menu for Magnet Hockey

Application Development
Scalable and Sustainable Development Practices

Responsive and intuitive design was a big fo-
cal point during the development of Magnet Hockey.
A button to return to the main menu appears in various
scenes. The designs for the info, store, settings, and
statistics scenes are thematic. Each of the listed scenes
has its own icon representing it. While in a scene, the
icon is placed towards the top of the screen inside of

The Graduate Review • 2022 • 93Bridgewater State University

a red circle that matches the theme of other buttons in
the menu. Additionally, each scene has an emitter in
the background that uses this icon. Emitters continu-
ously spawn the scene’s icon in the form of small par-
ticles. As a result of these design choices, every one of
these scenes is uniquely identifiable, but they are each
intuitive to navigate, if the user has previously navi-
gated any of the other scenes. All buttons in Magnet
Hockey are programmed so that the user can visually
tell if they have pressed down on a button, but the but-
ton’s functionality is triggered only if the user releases
their finger inside the button. This logic is handled in-
side of the touchesBegan() and touchesEnded() func-
tions. These functions are included with the SpriteKit
framework. A function is a block of code that can be
used repeatedly. These functions help the developer
to programmatically determine where on the screen a
touch begins or ends. In programming, variables are
used to store information for later reference. There are
different types of variables depending on the informa-
tion that is being stored. Variables of type Boolean can
store values of true or false. A Boolean indicating that
the user has touched a button is set to true, and the
button’s opacity is reduced when a touch begins inside
of a button. If a touch ends in a button, that Boolean
must be true, indicating that it started in the button to
cause functionality. Otherwise, the button’s opacity is
returned to its untouched state, and the Boolean is reset
to be false. A user must both start and end a touch in-
side of a button for it to work. This gives an extra level
of confirmation to the user for each touch.

Responsive and adaptive design is important so
that an app can run consistently on different devices. In
the iOS ecosystem, devices have varying screen sizes,

aspect ratios, and constraints. Aspect ratio is the mea-
sure of width relative to height for a screen. Art assets
often need an iPhone version and an iPad version to
avoid appearing warped. This is because an iPad is rel-
atively wider than an iPhone. When an art asset does
not have a horizontal and vertical line of symmetry,
having separate art assets is usually necessary. Mod-
ern iPhones and iPads have safe areas around the notch
where the camera is and at the bottom of the device
where the home button used to be. These devices need
to have different borders to restrict users from interact-
ing with that portion of the screen. To make the design
more interesting, information is sometimes placed in
this safe zone for newer devices. For instance, each
time a player collides with a magnet in the Magnet
Hockey game mode, an indicator is placed in the top
corner of their side (as seen in Figure 3). This magnet
collision indicator cannot be interacted with; therefore,
it is a good candidate to take up space in the safe area.

Figure 3: Magnet Hockey Game Mode

94 • The Graduate Review • 2022 Bridgewater State University

Apple is continuously introducing new devices
to its ecosystem. App maintenance can be time con-
suming and tricky. It is important for a developer to
program an app in a way that makes maintaining and
updating it to support these new devices more sustain-
able. A common programming paradigm that is used
to do this is Object-Oriented Programming or OOP.
OOP is used to create blueprints of different objects in
software. In Magnet Hockey, the three magnets share
many of the same attributes. A blueprint of a magnet
(or a class) can be used to quickly create these three
magnet objects, rather than programming all the attri-
butes of the three magnets individually. When the three
magnets need to be altered in some way, the blueprint
can instead be modified to alter all three magnets at
once. This OOP paradigm is used throughout the Mag-
net Hockey app, causing there to be less duplicate
code and making the code more readable and main-
tainable. Modular programming is used in conjunc-
tion with OOP. The process of modular programming
breaks down a program or application into different
smaller parts. These parts are usually distinguishable
by functionality. Modules are abstracted from the main
application, making the application easier to maintain.
Modular programming is particularly useful for pre-
venting duplicate code when implementing the same
functionality within multiple areas of an app. The code
for creating, writing, and reading from the database is
abstracted from the scene in which it is being used,
so that these actions can be executed from any scene
in the Magnet Hockey app with only one implemen-
tation. Many other Magnet Hockey features follow a
similar pattern.

In-Game Pause Menu
The player has the option to stop a game at any

moment with the pause button on-screen. When this
button is pressed, the pause menu appears. The player
can navigate back to the menu, turn off the sound ef-
fects, or enter the tutorial mode from the pause menu.
Players do not like to feel restricted or trapped with-
in a certain part of an app. For instance, if a player
starts a game with settings that they do not prefer, they
may feel frustrated if they are forced to play through
the entire game before being able to change the game
settings. Giving players the option to change settings
in-game or to return to the menu eliminates this issue.
 When the pause button is pressed, the game ob-
jects’ velocities are saved to temporary variables. The
velocities for these objects are then set to zero vec-
tors. Multi-touch is disabled when the pause menu is
activated. This prevents glitches where the user could
select multiple options at once, like resuming the game
and launching the tutorial mode. If the player chooses
to return to play, then the game objects’ vectors will
be restored back to what they were before the game
was paused. Multi-touch is enabled again, so that both
players can individually control their mallets with sep-
arate touches. The pause button and its functionality
are designed to be unobtrusive to the player’s expe-
rience. The pause button remains discreetly along the
center line and is blended with the game, so that it does
not block any game objects that pass underneath. This
same button is used to resume the game while the game
is paused. The icon switches from a pause image to a
play image.

The Graduate Review • 2022 • 95Bridgewater State University

Magnet Hockey Game Tutorial
To inform players of the rules of the Magnet

Hockey game option, a tutorial was created. This tuto-
rial appears as an overlay on top of the Magnet Hock-
ey game mode when the user starts their first game.
The tutorial is also accessible through the pause menu
at any time. The goals, the player’s mallets, the mag-
nets, and the score are all highlighted step by step to
explain how to play (seen in Figure 4). Several func-
tions were made to create a pulsing glow effect around
highlighted game objects. The glow is created as a path
around a game object. Functions can be designed to ac-
cept parameters or information that influence the effect
or output. The path’s size is calculated by taking in a
game object as a parameter and making the path for the
glow slightly larger than the radius of the game object.
To accept different types of game objects, the create
glow function is overloaded. An overloaded function
is a function that is defined more than one time, but
with different parameters in each definition to make
the function more flexible. Another function creates a
pulsing effect for the glow. This function is called in
the update function. In SpriteKit, the update function
is called at every frame or time unit. When called in the
update function, this flashing glow function accepts a
glow path as a parameter and then ranges up and down
between two specified widths to create a pulsing effect.

Figure 4: Tutorial Interface

The glows are hidden and do not flash when
the user is not on a step for the specific game object
being explained. A black image is placed to cover the
entire scene except for the current tutorial objects be-
ing highlighted. As seen in Figure 4, the opacity of this
black image is reduced, so that the user can still see
their game in the background. Another invisible image
is placed on top of the current game objects to pre-
vent the player from moving game objects in the tu-
torial mode. The tutorial interface is placed above the
invisible image so that the player can progress through
the steps of the tutorial. The z-positions of the game
objects, or the coordinate position used to determine
how game objects are layered on top of each other, are
manipulated for each step of the tutorial. If an object is
being highlighted by the current step, then its z-posi-
tion will be changed to be an integer that is between the
z-positions of the black background and the invisible
image that blocks touches.

96 • The Graduate Review • 2022 Bridgewater State University

The tutorial interface is strategically positioned
on the screen for each step of the tutorial. When high-
lighting the magnets, the interface moves depending
on the locations of the magnets. If most of the magnets
are on one player’s side, the instructions will move to
the opposite side. Logic is in place for this dynamic
positioning to work, even if one or two of the magnets
have already been collected when the tutorial is start-
ed. Similarly for highlighting the player’s mallets, the
interface moves to the best location on screen to pre-
vent the tutorial’s description or buttons from covering
either of them.

Mobile Revenue Models
To profit from app development, a developer

can pursue a revenue model to extract value from other
people enjoying their app. In recent years, the gaming
industry has been progressing towards a free-to-play
model. This model initially gained traction on mobile
app stores before later spreading to other platforms,
due to the success of games like Fortnite. With a free-
to-play model, an enormous number of people can
have access to an app or game with little to no barriers
to play. Advertisements and in-app purchases (or mi-
crotransactions) are commonly incorporated to make
free-to-play games sustainable to build and maintain.
If a player enjoys a game, it may be tempting for them
to pay a small amount of money from time to time to
enhance their experience with new content. This model
incentivizes developers to focus on supporting as many
platforms as possible. It also incentivizes developers to
maintain their app and release new content on a regular
basis. If executed properly, this model is a win-win for
the user, the developer, and the community.

Advertisements
 The Magnet Hockey app implements Google’s
AdMob framework to deliver advertisements to users
while in the menu and in between games. Ad units are
registered on the AdMob website. Magnet Hockey uses
banner ads and interstitial ads. Banner ads are rectan-
gular and appear at the bottom of different scenes in
the menu. Interstitial ads are full screen ads that appear
when the game-over condition is met in the Air Hock-
ey or Magnet Hockey game modes. Interstitial ads are
called before the game-over scene is loaded. When the
interstitial ad is closed, the transition to the game-over
scene occurs. A developer can change preferences for
the types of ads being delivered on the AdMob web-
site. This is helpful for tailoring ads to your users based
on the genre of the application. Additionally, AdMob
uses the user’s device ID to track activity across other
apps to further personalize ads. The developer is com-
pensated through the AdMob web platform when users
click on the ads inside of the app. Having ads that are
relevant to your app’s typical userbase can help drive
engagement.

In-App Purchases
Magnet Hockey also incorporates a store into

its menu’s interface. The user may be tempted to pay
to remove all advertisements from the game or to un-
lock additional colors to change the way that the ball or
puck looks. By using the payment transaction observer
in Apple’s StoreKit framework, it is possible to access
a user’s payment queue. By iterating the user’s pay-
ment queue, the developer can act on different states
of a specific transaction. The transaction’s product can
be accessed by the product identifier. Apple will handle

The Graduate Review • 2022 • 97Bridgewater State University

the interface so that the user can pay. If the state of the
transaction is in the case of being successfully restored
or purchased, then the developer should create a receipt
to persist this purchase. Fortunately, Apple will prevent
a user from paying for the same in-app purchase more
than once. Products must be registered and approved
online on Apple’s developer platform. Each in-app pur-
chase has a unique identifier. If a purchase is attempt-
ed by a matching Apple ID and product identifier, no
charges will occur. It is important to include a restore
purchases button, as per Apple’s guidelines for in-app
purchases. This ensures that users have a clear option
to recover any lost in-app purchases. An app may be
rejected by Apple if it does not have this option.

Data Persistence
Application data can be persisted in a variety

of different ways. The method a developer chooses de-
pends on the type of data, how secure the given data
should be, and how long the data should be kept. Us-
erDefaults, Keychain, and SQLite were each utilized
for different purposes in the Magnet Hockey app. An
SQLite database was implemented to store game his-
tory and statistics for the different game modes. Basic
game preferences, like the number of rounds a player
wants to play, and whether sound effects are enabled
or not, are stored in the UserDefaults property list file.
Secure receipts for in-app purchases are stored with
Keychain.

Data Persistence with SQLite Database
An SQLite database is useful for storing small

or large amounts of related data or lists for as long as
the app remains installed on the user’s device (Pan-

chal, 2019). A local SQLite database is created when
a person downloads the Magnet Hockey app. This da-
tabase has four tables. One table includes a game his-
tory for all game modes, while the other three tables
correspond with the following individual game modes:
Magnet Hockey, 1-Player Air Hockey, and 2-Player Air
Hockey. When a player finishes a game of either the
Magnet Hockey game mode or one of the Air Hockey
game modes, the database is opened. A new row is then
inserted into the table with all game modes. A new row
is also inserted into the table that corresponds to the
game the user just played. The score for the top player,
the score for the bottom player, and the ways in which
points were scored (magnet collision or ball/puck in
goal) for the top and bottom player are represented
by four different columns in each row. After the game
data have been inserted, the database is closed, and the
game-over scene is loaded.

In the main menu, there is an icon that can bring
the user to the statistics scene, when it is pressed. In the
statistics scene, the user can choose which data from
the database they would like to see. To see results, the
user selects one of the four tables and chooses whether
they want to see a history of games played or an over-
view of the table. An overview of the table will display
to the user how many games have been played, how
many games the top player has won, and how many
games the bottom player has won. To retrieve this in-
formation, the appropriate table is iterated to append
all row contents into a two-dimensional array. An array
is a collection of elements. A two-dimensional array
is a collection of arrays. This iteration process is done
inside of the database helper file. This array is shared
between the database helper file and statistics scene

98 • The Graduate Review • 2022 Bridgewater State University

file. Then, the array is iterated in the statistics scene.
During each iteration loop (corresponds to each row
in the database table), if the bottom score is greater
than the top score for a given row, then the number
of games the bottom player has won is incremented
and vice versa for the top player. The number of games
played is the number of iterations in the outer loop or
the number of rows in the table.

The process is a little more complicated to vi-
sualize the results for the game history in the statistics
scene. Five results are shown at a time, starting with
the most recent. Buttons are placed on the screen to al-
low the user to go back and forth between pages to look
through all the results. Above the icons responsible for
changing pages, there is text that indicates which results
are currently being displayed. The number of pages of
results needs to be calculated, so that it can be dynamic
with the number of games played. The logic for the
buttons to switch between pages depends on this. The
results query should work if there are zero results or
1000 results, and everything above and between. Mod-
ulus is a math operator in programming that gives the
integer remainder for division. To calculate the number
of pages of results, the total number of games or results
modulus the number of results shown per page (five
per page), is computed. If the modulus is equal to zero,
then the number of pages is equal to the number of re-
sults divided by the number of results shown per page.
If the modulus is not equal to zero, then the number of
pages is equal to the number of results divided by the
number of results per page, plus one.

Having the number of result pages makes it
feasible to calculate the text that indicates which re-
sults are showing. Each time a page is displayed, it is

determined whether the user is viewing the last page of
results, based on the number of pages. If the user is on
the last page, then the text will display the total number
of results as the second number in the range. The first
number in the range will be calculated by subtracting
four (the number of results per page, minus one) from
the product of the current page number and the number
of results per page. In Figure 5, there are thirty-four re-
sults; therefore, the last results will be shown on page
seven with a label “31 to 34” (‘seven times five, minus
four’ to ‘number of results’).

Figure 5: Game History with SQLite Database

Formatting the order for which points were
scored was the biggest challenge with visualizing
the database in the statistics scene. The point order is
stored in the database as an integer composed of ones
and twos. A one digit represents a point scored by a
goal, while a two digit represents a point scored by
magnets. To get the point order, an algorithm calcu-
lates the point order integer modulus two. If this result

The Graduate Review • 2022 • 99Bridgewater State University

is equal to zero, then that means the last digit in the
integer corresponds to a point caused by collision with
magnets. If that result is not equal to zero, then the last
digit in the integer corresponds to a point scored by a
goal. After this is determined, a digit is removed from
the end of the point order integer by dividing it by ten
and then taking the floor value. This process is done
repeatedly for each side’s score (top and bottom), and
for each result being displayed.

 Because there is an option to change the num-
ber of rounds in each game in the settings scene, the
number of icons displayed for each result’s point order
can vary from two icons to thirteen icons. Copies of a
goal sprite and a magnet sprite are created as needed
for each page. When the user changes the result page
or returns to the menu, all the sprites are removed from
memory. This approach ensures that only necessary
sprites are saved in memory at a given time. Since the
image, the goal sprite, and the magnet sprite use are
parts of the statistics scene sprite sheet, creating and
drawing new sprites on demand and using these imag-
es are very quick and efficient. Sprite sheets strategi-
cally combine images that are accessed simultaneously
into a single larger image to reduce loading times and
improve the app’s performance.

Data Persistence with UserDefaults
UserDefaults is useful for storing preferences

that do not need to be protected with encryption. Us-
erDefaults is a property list file that is structured like
a dictionary (Apple, n.d.). A dictionary is a data struc-
ture, where a given value can be accessed with a key
value. When adding data to UserDefaults, it is neces-
sary to have both a key and a value. In UserDefaults,

information is stored in plaintext and can easily be ma-
nipulated, if a person uses computer software to access
the contents of the app’s folder. Basic game settings,
if sound effects are enabled or not, are recorded into
UserDefaults. It is not necessary for these preferences
to be secure or for them to persist, if the application is
deleted. Additionally, because these preferences only
have one value at a time and have little relation to any-
thing else, an SQLite database would not be appropri-
ate to store them.

Data Persistence with Keychain
 Securing data on an iOS device is possible
with Keychain. Each iOS device has its own local
and unique Keychain. Using the Keychain services
API, developers can encrypt users’ data (Apple, n.d.).
Third-party wrappers can be implemented to make
Keychain implementation very easy. ‘KeychainWrap-
per’ is a popular wrapper that makes adding data to the
Keychain very similar to adding data to UserDefaults.
With UserDefaults, the data type, key, and value are all
similarly set in one line of code (Jason, 2022).

In Magnet Hockey, the preference for ball col-
or is securely stored with Keychain, because it is tied
to an in-app purchase that gives the player additional
ball colors from which to choose. To prevent the play-
er from modifying the color manually by editing the
UserDefaults property list file, these are given an extra
layer of protection. For a developer of a free app, it is
important to not make it easy for people to steal the
content that brings revenue. The encryption for Key-
chain is handled by the wrapper and the Keychain API
(Sipila, 2017).

100 • The Graduate Review • 2022 Bridgewater State University

When the developer needs to retrieve these data
for the user, they can simply do so by accessing the key
name that was previously set. In Magnet Hockey, the
receipt, stored as a Boolean, for purchasing to remove
ads, was stored in Keychain. The presence of this re-
ceipt is verified in the app before loading and display-
ing advertisements. One advantage of using Keychain
is that the data are persisted even if the app is deleted.
While this may not be necessary for most preferences,
it is helpful to prevent in-app purchases from needing
to be restored manually. If the in-app purchase to re-
move advertisements was stored with UserDefaults,
the advertisements would appear, if the app was de-
leted and reinstalled. This is because the UserDefaults
property list file is removed when the app is deleted.

Review Request
 Review request urges users to rate and review
an application. Reviews and ratings help give an app
exposure to more people on the app store. It is import-
ant to request a user to review an app at favorable times
to prevent poor reviews. In the Magnet Hockey app, the
user is prompted to rate the app in the game-over scene,
after they have completed five games of any game
mode. An alert view appears on screen, asking the user
if they are having fun. If the user answers “No,” then
they are not prompted to rate the app. This response
is also saved in UserDefaults to prevent the user from
ever being prompted to review or rate the app again.
If the user answers “Yes,” then the prompt to rate the
Magnet Hockey app appears as another alert view.

Apple permits developers to prompt a user to
rate an app three times within a one-year period. Ap-
ple will not initiate the alert for rating an app if the

user has already left a rating. In Magnet Hockey, on
the second and third rating requests, the user may be
prompted with Apple’s rating alert view, if they have
not left a rating the first time, and if they answered
“Yes” to having fun playing the app during the first re-
quest. This second and third request is initiated, when
a user finishes a game seven days or more after last
being prompted to review. This time, the calculation
is done by using time stamps stored in UserDefaults
(Loco, 2019). Since the developer cannot determine if
the user has already left a rating or review, the prompt
asking whether the player is having fun will not appear
on the second and third requests.

Player Retention and Challenges
Creating Bot Mode

Having a mode for a user to play without
a friend is important for retention. Developing a
one-player mode for the Magnet Hockey game mode
proved to be a challenge. There were many unforeseen
cases. Coding an algorithm that solves each case with-
out breaking another case was very difficult and un-
realistic without a machine-learning implementation.
The bot must consider avoiding magnets, defending
a goal that can be attacked from all directions, and
striking a ball that may have a goal or magnets in its
path. Avoiding all three magnets was challenging on its
own. The bot must consider the speed, direction, and
slope of the magnet’s velocity. The bot must also con-
sider its relative position to the magnet (above or be-
low, to the left, or to the right) to determine which way
it should navigate. Creating a system that prioritizes
the different bot objectives depends on many different
circumstances and is complicated. For instance, should

The Graduate Review • 2022 • 101Bridgewater State University

a bot collide with a magnet to reach the ball in time
to save a shot on target? The answer to this question
might depend on whether the bot already has picked
up one magnet.

Two-Player Air Hockey Game Mode
An Air Hockey mode makes creating a

one-player bot mode less intensive. Air Hockey is also
a more familiar experience to lure new people into
downloading the app (Schilling, 2005). People are
more apt to embrace something if it has a connection
to something, with which they are already comfort-
able (Thompson, 2018). The Air Hockey game option
was first developed for two-Players. To create this, the
circular goals and magnets from the Magnet Hockey
game mode were removed. Then a goal was placed
flush against the top and bottom borders of the screen.
Air Hockey will need two player mallets (like Magnet
Hockey), a puck, and one goal on each side. Semi-cir-
cles were attached to the goals on each side for de-
sign. Also, there is a new full circle in the middle that
previously went carefully around the magnets in Mag-
net Hockey. To score in Air Hockey, a player needs
to strike the puck into the opposing player’s goal. A
two-puck game mode was also added as an option for
two-player Air Hockey. This two-puck game mode has
new scoring and collision logic. For a round to end,
both pucks must go into a goal, unless a player’s score
has already reached the game winning score when the
first puck was scored. Additionally, there is collision
detection added for the second puck, and when two
pucks collide with each other.

One-Player Air Hockey Algorithm
Work began on the one-player Air Hockey bot

mode once the two-player Air Hockey mode was ful-
ly completed. The algorithm for the bot was split into
three separate functions or objectives: defend, attack,
and mirror. These functions hold the logic for how the
bot should behave. The mirror function dictates how
the bot should position itself when the puck is on the
player’s side. The defend function is active when the
puck is on the bot’s side, and the puck’s y-position is
greater than the bot’s y-position. The defend function
is also active when the puck is moving on target to
score a goal. The attack function is active when the bot
is appropriately positioned to strike the puck towards
the player’s goal, and the puck is on the bot’s side.

When the puck is in the player’s half, the mir-
ror function is acting on the bot’s velocity to manip-
ulate its position. The bot moves left and right, with
the puck to follow it. If the puck is to the left or to the
right of the goal frame, the bot waits at the goal post,
on the side to which the puck is closest. This is done
so that the bot is well-positioned to defend the goal.
While the mirror mode is active, the bot retreats to a
y-position near its goal frame, if it is not already there.
 Linear algebra is used to aid the behavior of
the bot for defending. A function named “ballIsOnTar-
get()” returns a Boolean, informing whether the puck
is moving in the direction of the goal. This is calculated
by using the slope of the puck’s velocity vector to cre-
ate a semi-infinite ray. If this ray crosses paths within
the bot’s goal frame, then the shot is on target, and the
function will return true. Additionally, the magnitude
or length of the puck’s velocity vector is checked to
determine if the puck will reach the goal. If the mag-

102 • The Graduate Review • 2022 Bridgewater State University

nitude is greater than or equal to the distance between
the bot’s goal and the puck, then the puck can reach the
goal. If the puck can reach the goal, and the puck is on
target, then the puck is considered dangerous by the
bot, and the bot should defend. As pictured in Figure
6, the bot is programmed to move towards the puck’s
expected x-position (coordinate), when it reaches the
goal frame. If the bot can get to this position on time
(before the puck goes into the goal), then the bot will
enter attack mode.

Figure 6: Explaining Bot Algorithm

The bot attempts to strike the puck, when the
attack mode Boolean is true. In the instance, where the
bot is located, at the point in the goal frame at which the
puck is expected to travel, the bot will begin moving
towards the puck. Since the bot is already on the puck’s
path, the bot can multiply the puck’s velocity slope by
negative one to travel towards the puck and strike it.

Conclusion
 Magnet Hockey was designed to be simplistic
yet intuitive. Linear algebra and physics are applied
to create the Magnet Hockey and Air Hockey game
modes. Spring force, collision detection, collision re-
sponse, and vector math were a few of the topics ex-
plored. The Magnet Hockey app also integrates three
different types of data persistence: UserDefaults, Key-
chain, and SQLite database. Each of these methods of
handling data fit different use cases. Keychain is good
for securing preferences, SQLite is good for handling
large lists of related data, and UserDefaults is good for
efficiently storing preferences that do not need to be
secured. Keychain is securely helpful for persisting in-
app purchases. In-app purchases and advertisements
are two ways that Magnet Hockey monetizes its free-
to-play model. To instill trust in the userbase of the
Magnet Hockey app, emphasis was placed on design-
ing the game and menu to be thematic and attractive.
The menu and game modes always have a means of
navigating from scene to scene to prevent a feeling of
entrapment for the player.

By creating Magnet Hockey, I experienced
many common mobile application development chal-
lenges. It is important to have a careful plan to support
new devices more feasibly. Creating a responsive and
intuitive user experience can be tricky and time-con-
suming. This is important for player retention. The
Magnet Hockey app is still being developed and im-
proved. Online game options are currently being add-
ed to connect players around the world. The Magnet
Hockey app has been downloaded over 150 times in 44
different countries.

The Graduate Review • 2022 • 103Bridgewater State University

References
Apple. (n.d.). UserDefaults. Apple Developer Doc-

umentation. Retrieved September 9, 2021 from
https://developer.apple.com/documentation/foun-
dation/userdefaults Apple. (n.d.). Keychain Ser-
vices. Retrieved December 14, 2020, from https://
developer.apple.com/documentation/security/key-
chain_services

Jason. (2022, May 12). A simple wrapper for the
IOS keychain to allow you to use it in a similar
fashion to user defaults. written in swift. Swifto-
bc. Retrieved November 15, 2021, from https://
swiftobc.com/repo/jrendel-SwiftKeychainWrap-
per-swift-security

Loco, K. (2019, April 29). Requesting a review for
your app. YouTube. Retrieved October 5,\2021,
from https://www.youtube.com/watch?v=kMK-
8m2P4Cec

Panchal, K. (2019, February 13). Everything you need
to know about sqlite mobile database. Our Code
World. Retrieved November 28, 2021, from https://
ourcodeworld.com/articles/read/737/everything-
you-need-to-know-about-sqlite-mobile-database

Schilling, M. A. (2005). Strategic management of tech-
nological innovation. McGraw Hill Education.

Sipila, J. (2017, February 25). Securing user data
with Keychain for iOS. Retrieved December 14,
2020, from https://medium.com/ios-os-x-devel-
opment/securing-user-data-with-keychain-for-ios-
e720e0f9a8e2

Thompson, D. (2018, May 8). The four-letter code
to selling anything. YouTube. Retrieved June 25,
2021, from https://www.youtube.com/watch?v=-
6pY7EjqD3QA

About the Author
Trevor D. Wysong is pursuing his Master of Science
in Computer Science at Bridgewater State University.
His research project began in 2020. This research
project is still in progress during spring 2022 under the
mentorship of Dr. Enping Li. Trevor’s graduate studies
and research are funded by the GAANN Fellowship.
Trevor began work as a software engineer in June 2022.

	Developing an iOS Game Application: Magnet Hockey
	Recommended Citation

	tmp.1667584780.pdf.EKNnK

