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Abstract In the college admissions problem, we consider the incentives
confronting agents who face the prospect of being matched by a random stable
mechanism. We provide a fairly complete characterization of ordinal equilibria.
Namely, every ordinal equilibrium yields a degenerate probability distribution.
Furthermore, individual rationality is a necessary and sufficient condition for an
equilibrium outcome, while stability is guaranteed in ordinal equilibria where firms
act straightforwardly. Finally, we relate equilibrium behavior in random and in
deterministic mechanisms.
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1 Introduction

The study of two-sided matching has been mainly devoted to centralized markets.
These matching markets work by having each agent of the two sides of the market
submit a rank ordered preference list of acceptable matches to a central clear-
inghouse, which then produces a matching by processing all the preference lists
according to some algorithm. Typically, such mechanisms are deterministic in the
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sense that the outcome depends on the submitted lists in a way that involves no
element of chance. As a consequence, the existing results do not generally allow
us to address behavior in many labor markets and other two-sided matching situa-
tions where lotteries ultimately determine the outcome. In discrete problems where
agents have opposite interests randomization is surely one of the most practical tools
to achieve procedural fairness.1 Hence, equity considerations provide an impor-
tant justification for the introduction of chance in many instances of centralized
matching. On the other hand, lotteries are especially attractive as a means of rep-
resenting the frictions of a decentralized market. Indeed, in the extremely complex
environment of a real life market, decentralized decision making will often lead to
uncertain outcomes: the question of who will match with whom depends on the
realization of random events—random meetings.

This paper studies a class of matching mechanisms that are random: given
agents’ behavior, chance determines the final outcome. These mechanisms may be
used in centralized markets as a means to promote procedural fairness. Or they may
arise in the context of decentralized decision making: starting from an arbitrary
matching, agents from the two sides of the market meet bilaterally in a random
fashion. We assume that each individual has preferences over the other side of the
market and the prospect of being unmatched; however, they are not compelled to
behave in a straightforward manner, according to these true preferences. Instead,
agents are confronted with a game in which they act in what they perceive to be
their own best interest. Hence, upon meeting, the paired agents match if this is
consistent with their strategies, and separate otherwise. Since one of the clear-
est lessons from the study of deterministic procedures is that understanding such
incentives is crucial to understand the behavior of the market, the paper is devoted
to equilibrium analysis.

Our study was largely motivated by Roth and Vande Vate (1990, 1991). In the
context of the marriage problem where matching is one-to-one, Roth and Vande
Vate (1990) proved that, starting from an arbitrary matching, the decentralized
decision making process of allowing randomly chosen blocking pairs to match will
converge to a stable matching with probability one. Under a stable matching no
individual or pair of agents has incentives to circumvent the matching. It is argued
that such process can be thought of as an approximation to real life dynamics. In the
related paper Roth and Vande Vate (1991), strategic considerations are made for
the marriage market, focusing on the class of truncation strategies, i.e., strategies
that are order-consistent with true preferences, but may regard fewer partners as
acceptable. In a one-period game in which every agent states a list of preferences
and then a matching stable with respect to those preferences is selected at random,
it is shown that all stable matchings can be reached as equilibria in truncations.
However, certain unstable matchings can also arise in this way. A multi-period
extension is then considered to rule out such undesirable outcomes.

As in Roth and Vande Vate (1991) we assume that random meeting among
agents will eventually converge to a stable matching with respect to the chosen
strategy profile. Hence, such process induces a lottery exclusively over stable out-
comes. However, the present paper extends their contribution in two ways. First,

1 At least to move towards procedural fairness. A random matching mechanism is procedurally
fair whenever the sequence of moves for the agents is drawn from a uniform distribution. See
Moulin (1997, 2003).
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we take equilibrium analysis further, going beyond the analysis of truncations.
A concept of equilibrium based on first-order stochastic dominance is used, given
that preferences are ordinal in nature and probability distributions over matchings
are to be compared. The notion of ordinal Nash equilibrium guarantees that each
agent plays his best response to the others’ strategies for every utility representation
of the preferences.2

Second, the analysis is conducted in the context of the college admissions
problem. In this setting, agents belonging to two disjoint sets (henceforth firms and
workers) have preferences over the other side of the market; in addition, each firm
can employ at most some fixed number of workers, while each worker can fill only
one position. Strategic issues in this context have been studied for a deterministic
stable matching rule. Roth (1985) shows that no stable matching rule exists that
makes it a dominant strategy for all players to report their true preferences. More-
over, he proves that there are equilibrium misrepresentations that generate any
individually rational matching with respect to the true preferences.3 Ma (2002)
shows that in order to obtain stability with respect to true preferences, we have to
use a refinement of the Nash equilibrium concept and restrict to truncations at the
match point (i.e., strategies that preserve the ordering of the true preferences, but
rank as unacceptable all the agents that are less preferred than the current match).
More precisely, all strong equilibria in truncations at the match point produce sta-
ble outcomes. Further, Ma (2002) establishes that every Nash equilibrium profile
admits at most one stable matching with respect to the true preferences; if, indeed,
such a matching is admitted, it will always be achieved.

In this paper we characterize equilibria arising in the game induced by a random
stable matching mechanism, providing simultaneously some results that extend to
deterministic mechanisms. First, we show that when ordinal Nash equilibria are
considered, a unique matching is obtained as the outcome of the random process.
In addition, this outcome is individually rational with respect to the true prefer-
ences. Since every individually rational matching for the true preferences can be
achieved as an equilibrium outcome, we establish that a matching can be reached
at an ordinal Nash equilibrium if and only if it is individually rational for the true
preferences. We then turn our attention to equilibria where firms behave straight-
forwardly. In fact, there are reasons to contemplate truth telling as a salient form
of behavior in situations involving uncertainty; further, sophisticated strategic play
does not even make sense in settings where firms follow an objective criterion to
fill their positions. We prove that, even though workers may not play straightfor-
wardly, stability with respect to the true preferences holds for any matching that
results from a play of equilibrium strategies in which firms reveal their true pref-
erences. Conversely, every matching that is stable for the true preferences can be
achieved as an equilibrium outcome. In closing, we relate the equilibrium strategy
profiles in the games induced by both random and deterministic mechanisms. In
particular, for any random stable matching mechanism that always assigns positive
probability to two different stable matchings (when they exist), we show that a

2 This concept was introduced in d’Aspremont and Peleg (1988); it has been used in the con-
text of voting theory in Majumdar and Sen (2004) and in matching markets in Ehlers and Massó
(2003), Majumdar (2003), Pais (2004a,b).

3 For a detailed explanation of these and other results see Roth and Sotomayor (1990), a
comprehensive treatment of the matching problem.
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strategy profile is an ordinal Nash equilibrium if and only if it has a unique stable
matching and it is a Nash equilibrium in the game induced by some deterministic
stable mechanism.

We proceed as follows. In Sect. 2 we present the college admissions problem
and introduce notation. We describe random matching mechanisms and the equilib-
rium concept used in Sect. 3. In Sect. 4 we turn our attention to individual decision
making. The matching process is modeled as a one-period game and its equilibria
are then characterized. In Sect. 5 we briefly discuss equilibria in the context of a
sequential game. Some concluding remarks follow in Sect. 6.

2 The model

The agents in the college admissions problem are two finite and disjoint sets, the
set W = {w1, . . . , wp} of workers and the set F = { f1, . . . , fn} of firms. We let
V = W ∪ F and sometimes refer to a generic agent by v, while w and f represent a
generic worker and firm, respectively. Each worker w can work for at most one firm
and each firm f has a quota q f , the maximal number of workers it may employ.

Each worker w has a complete, transitive, and strict preference relation Pw over
the set F ∪{w}. For example, the preferences of w on { f1, f2, f3, f4}∪{w} can be
represented by Pw : f1, f2, w, f3, f4, indicating that the best firm for w is f1, his
second choice is f2, and he prefers being unemployed than working for either f3
or f4. Each firm f also has a complete, transitive, and strict preference relation Pf
over the set W ∪{ f } . For example, the preferences of f on {w1, w2, w3, w4}∪{ f }
can be represented by Pf : w3, w1, f, w2, w4, indicating that the best worker for
f is w3, its second choice is w1, and it prefers having a position unfilled to hiring
any other worker. A worker is acceptable if the firm prefers to employ him rather
than having a position unfilled. Formally, the set of acceptable workers for f is
A(Pf ) = {w ∈ W : wPf f }. Given Pw, we can similarly define an acceptable
firm and the set of acceptable firms for w as A(Pw) = { f ∈ F : f Pww}. In the
above examples, the set of acceptable workers for f is A(Pf ) = {w1, w3} and
the set of acceptable firms for w is A(Pw) = { f1, f2}. We let P = (Pf1, . . . ,
Pfn , Pw1, . . . , Pwp ) denote the profile of all agents’ preferences; we sometimes
write it as P = (Pv, P−v) where P−v is the set of preferences of all agents other
than v. We let Pv denote the set of all possible preference relations for agent v and
let P = ∏

v∈V Pv be the set of admissible preference profiles. We write v′ Pvv
′′

when v′ is preferred to v′′ under preferences Pv and we say that v prefers v′ to
v′′. Since agents will have to compare two potential partners v′ and v′′ that may
actually be the same, we write v′ Rvv

′′ to denote that either v′ = v′′ or else v′ Pvv
′′.

In this case, we say that v likes v′ at least as well as v′′. The set of agents that v
likes at least as well as v′′ is UPv (v

′′) = {v′ ∈ V : v′ Rvv
′′}.

Each firm with quota greater than one must be able to compare groups of work-
ers. Following Roth (1985), we assume firms’ preferences over groups of workers
are responsive to the preferences over single agents. A preference P̄ f for f over
sets of workers is responsive to its preference Pf over single workers if, for all
S ∈ 2W such that |S| < q f ,

1. For all w, w′ ∈ W\S, S ∪ {w}P̄ f S ∪ {w′} if and only if wPf w
′;

2. For all w ∈ W\S, S ∪ {w}P̄ f S if and only if wPf f ;
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and for all S ∈ 2W such that |S| > q f , ∅P̄ f S.4

Responsive preferences are assumed throughout the paper.
Since firms may have to compare two groups of workers S and S′ that may

actually be the same, we use R̄ f , a responsive extension of R f . We write S R̄ f S′
to denote that either S = S′ or else S P̄ f S′. We let UP̄f

(S) = {S′ ∈ 2W : S′ R̄ f S}
denote the set of groups of workers f likes at least as well as S.

An outcome for the college admissions problem (F, W, P) is a matching , a
mapping µ from the set V into 2W ∪ V satisfying the following:

1. For all w ∈ W, either µ(w) ∈ F or else µ(w) = w;
2. For all f ∈ F, |µ( f )| ≤ q f and µ( f ) ∈ 2W ;
3. For all (w, f ) ∈ W × F, µ(w) = f if and only if w ∈ µ( f ).

Observe that, while a worker may be matched to a firm or to himself—the latter
meaning being unmatched— a firm is always matched to a subset of workers and
being matched to the empty set stands for being unmatched. We denote the set of
all matchings by M.

We can extend preferences over partners to preferences over matchings in the
following, natural, way: each worker’s preferences over matchings correspond pre-
cisely to his preferences over his own assignments at the matchings; similarly, firms’
preferences over matchings are tantamount to the preferences over its assignments.
For instance, w prefers µ to µ′ when µ(w)Pwµ′(w), while f prefers µ to µ′ if
µ( f )P̄ f µ

′( f ).
A matching µ is individually rational if, for every w ∈ W , µ(w)Rww and if,

for every firm f and w in µ( f ), wPf f .5 A firm f and a worker w are a blocking
pair for µ if they are not matched under µ but prefer one another to one of their
assignments, i.e., w /∈ µ( f ) but f Pwµ(w), wPf f , and either (i) |µ( f )| < q f or
(ii) if |µ( f )| = q f then there exists w′ ∈ µ( f ) such that wPf w

′. A matching µ
is stable if it is individually rational and if there is no blocking pair for µ. Note
that the stability of µ depends on preferences over individuals, irrespective of the
responsive extension that is being used. We let I R(P) and S(P) denote the set of
all individually rational and the set of all stable matchings respectively with respect
to a profile P . A firm f and a worker w are achievable for each other if f and w
are matched under some stable matching.

The proof of existence of stable matchings in Gale and Shapley (1962) is con-
structed by means of the deferred-acceptance algorithm. For a given preference
profile P , proposals are issued by one side of the market accordingly, while the
other side merely reacts to such offers by rejecting all but the best in P . In the
case that firms make job offers, the algorithm arrives at the firm-optimal stable
matching µF [P], with the property that all firms are in agreement that it is the
best stable matching. The deferred-acceptance algorithm with workers proposing
produces the worker-optimal stable matching µW [P] with corresponding proper-
ties. Further, the optimal stable matching for one side of the market is the worst
stable matching for every agent on the other side of the market, a result presented
in Knuth (1976) but attributed to John Conway.

4 Note that, while P̄ f is used to compare sets of workers, namely the empty set, Pf compares
single workers and f itself, the latter representing having an unfilled position.

5 By responsiveness, the latter requirement is equivalent to µ( f )R̄ f S, for every S ⊆ µ( f ).
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3 Random matching and ordinal Nash equilibria

Many matching markets do not employ centralized procedures. Agents are free to
issue offers and make acceptations and rejections as they please and matching is
performed over the telephone network, using the mail, or through the Internet. In
such environments, randomness determines the order in which agents communi-
cate: it may depend on which telephone call goes through, on the speed of the mail,
or on how fast firms react to eventual proposals. When a central clearinghouse
does exist, chance is widely used to restore procedural fairness—any deterministic
mechanism is bound to favor a subset of the agents involved. In two-sided matching
markets, the need for compromise solutions is especially intense given the strong
polarization of interests of agents reflected in the structure of the set of stable
matchings. Some real life applications of random procedures concern allocation
problems as on-campus housing, namely in American universities, or public hous-
ing.6 Student placement mechanisms that assign students to colleges are another
example of mechanisms where randomness plays a role, as well as procedures used
to match students to optional courses or even children to summer camps.7 Finally,
randomness is present in any matching mechanism where the position in a queue
or the order of arrival may influence assignments.

Formally, a random matching rule ϕ̃ is a mapping from preference profiles to
lotteries over the set of matchings: ϕ̃ : P −→ �M. A random matching ϕ̃[Q] is
the image of a preference profile Q under a random matching rule, i.e., a lottery
over matchings. Throughout the paper, we consider only random stable match-
ing rules by restricting the range of random matching rules to the set of lotteries
whose supports are subsets of the sets of stable matchings, i.e., we consider ϕ̃ such
that, for every Q in P , the support of ϕ̃[Q], denoted by supp ϕ̃[Q], is included in
S(Q). While ϕ̃[Q] denotes a lottery over matchings, we let ϕ̃v[Q] represent the
probability distribution induced over agent v’s achievable matches. Whenever the
probability distribution ϕ̃[Q] is degenerate, we abuse the notation slightly by letting
ϕ̃[Q] denote the unique outcome matching; similarly, if the distribution ϕ̃v[Q] is
degenerate for some agent v, ϕ̃v[Q] denotes v’s unique match in the random stable
matching ϕ̃[Q]. Observe however that in general supp ϕ̃[Q] is a subset of the set
of stable matchings S(Q). In contrast, a deterministic matching rule ϕ is a function
from preference profiles to matchings: ϕ : P −→ M. We consider only determin-
istic stable matching rules that produce a unique stable matching ϕ[Q] for every
profile of preferences Q. In particular, ϕF and ϕW denote the deterministic stable
matching rules that yield the firm-optimal µF [Q] and the worker-optimal µW [Q]
stable matchings, respectively, for every Q in P . Finally, we let ϕv[Q] denote v’s
partner under the matching ϕ[Q].

In a matching market (F, W, P), we consider the game induced by a random
stable matching rule ϕ̃ in which agents are each faced with the decision of what
strategies to act on. As a first approach, we examine a one-period game where the
strategy space of player v in the game is the set of all possible preference lists Pv .
Given the true preference ordering Pv , each player v may eventually reveal a differ-
ent order Qv over the players on the other side of the market, and then a matching
µ stable with respect to the stated preferences Q is selected at random among all

6 See Abdulkadiroglu and Sönmez (1999).
7 See Abdulkadiroglu and Sönmez (2003) for a description of student assignment mechanisms.
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the potential matchings, i.e., the elements of supp ϕ̃[Q]. To be precise, we consider
the mechanism (P, ϕ̃), where P is the set of admissible strategy profiles and ϕ̃ is
a random stable matching rule; we refer to (P, ϕ̃) as a random stable matching
mechanism. Once the preferences P of the agents are specified, the above mech-
anism induces the game (P, ϕ̃, P). Analogously, (P, ϕ) is a deterministic stable
matching mechanism that induces the game (P, ϕ, P). In Sect. 5, we discuss an
extension of the obtained results to a more complex setting where agents’ strategy
spaces are broader.

In the game (P, ϕ̃, P), agents compare probability distributions over match-
ings when deciding which strategic course to take. Since preferences are ordinal,
there is no natural utility representation of these preferences for expected utility
calculations. It follows that to address strategic questions we need to develop ideas
about what constitutes a “best decision” to be taken by an agent. With this purpose
in mind, let Q̂ be a strategy profile and consider w ∈ W . Let ϕ̃w[Q̂](S) be the
probability that w obtains a partner in S ⊂ F ∪ {w} when the profile Q̂ is used in
the game (P, ϕ̃, P); in particular, let ϕ̃w[Q̂](UPw(v)) be the probability that w is
matched to a partner at least as good as v when the profile Q̂ is used in (P, ϕ̃, P).
Given a random stable matching rule ϕ̃ and given Q̂−w, we say that the strategy Qw

stochastically Pw-dominates Q′
w if, for all v ∈ F ∪{w}, ϕ̃w[Qw, Q̂−w](UPw(v)) ≥

ϕ̃w[Q′
w, Q̂−w](UPw(v)). This means that, for all v ∈ F ∪{w}, the probability of w

being assigned to v or to a strictly preferred agent is higher under ϕ̃w[Qw, Q̂−w]
than under ϕ̃w[Q′

w, Q̂−w]. Similarly, given ϕ̃ and given Q̂− f , we say that the strat-
egy Q f stochastically Pf -dominates Q′

f if, for all S ∈ 2W and for every responsive

extension P̄ f of Pf , we have ϕ̃ f [Q f , Q̂− f ](UP̄f
(S)) ≥ ϕ̃ f [Q′

f , Q̂− f ](UP̄f
(S)).

This means that f is not able to increase the probability of obtaining any set of
workers S′ (with whom it may end up matched) and all sets ranked higher than S′ in
its list of preferences P̄ f , when using Q′

f instead of Q f . Hence, if we consider the

problem that agent v faces given the strategy choices Q̂−v of the other players, a
particular strategy choice Qv may be preferred if it stochastically dominates every
other alternative strategy. This provides the basis for the solution concept we will
adopt throughout the paper.

Definition 1 The profile of strategies Q is an ordinal Nash equilibrium (ON equi-
librium) in the game (P, ϕ̃, P) if, given Q−v , Qv stochastically Pv-dominates
every alternative strategy Q′

v for every agent v.

It follows from the above definition that Q is an ordinal Nash equilibrium when
no agent v can gain in expected utility terms by unilaterally deviating from Qv ,
no matter what utility function is used to represent its true preferences. We will
then be concerned in finding a profile of strategies Q that is a Nash equilibrium for
every utility representation of agents’ preferences.

4 Equilibrium analysis

We now turn to characterize ordinal Nash equilibria in the game induced by a ran-
dom stable mechanism. Proposition 1 asserts that no ordinal equilibrium supports
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more than one stable matching. Using the decentralized interpretation, we can say
that the outcome in equilibrium is immune to the order in which agents meet when
players behave strategically, even though truth revealing often leads to a lottery
over matchings. Agents manipulate to protect themselves against uncertainty.

Proposition 1 Let Q be an ordinal Nash equilibrium in the game (P, ϕ̃, P). Then,
a single matching is obtained with probability one.

Proof By contradiction, assume that Q is an ON equilibrium in (P, ϕ̃, P)
and |supp ϕ̃[Q]| ≥ 2. Then, there exists a worker w ∈ W and matchings µ,
µ̂ ∈ supp ϕ̃[Q] such that µ(w) �= µ̂(w). Let µ′(w) be the best match among all
given by the elements of supp ϕ̃[Q], i.e., µ′(w)Rwµ(w), for all µ ∈ supp ϕ̃[Q]. Let
Q′

w be such that A(Q′
w) = {µ′(w)} and let Q′ = (Q′

w, Q−w). Note that µ′ is stable
for Q and, once w changes his strategy, it remains stable for Q′ (it remains indi-
vidually rational and no blocking pairs emerge). Further, since the set of matched
agents is the same under every stable matching, w is matched to µ′(w) under every
matching in S(Q′). Then, 1 = ϕ̃w[Q′](UPw(µ′(w))) > ϕ̃w[Q](UPw(µ′(w))) and
Qw does not stochastically Pw-dominate Q′

w. It follows that Q is not an ON equi-
librium in (P, ϕ̃, P). �


As a consequence, in the particular case that the random matching rule always
assigns positive probability to at least two different matchings (if such matchings
exist), the set of stable matchings of each ordinal Nash equilibrium is a singleton.
In general, however, the set of stable matchings of an ordinal Nash equilibrium may
contain several elements. As proved in Ma (2002) for a deterministic stable match-
ing rule, the random stable rule then chooses the matching that is unanimously
preferred among all the stable matchings with respect to the submitted profile.

Lemma 1 Let Q be an ordinal Nash equilibrium in the game (P, ϕ̃, P). Then, for
any matching µ ∈ S(Q),

1. ϕ̃w[Q]Rwµ(w) for every w ∈ W and
2. ϕ̃ f [Q]R̄ f µ( f ) for every f ∈ F and every responsive extension R̄ f of R f .

Proof By Proposition 1, ϕ̃[Q] is degenerate. The result then follows from Lemma
6 in Ma (2002). �


For illustration, consider the following example.

Example 1 Let F = { f1, f2}, W = {w1, w2}, and q f1 = q f2 = 1. Suppose that
the true preferences are as follows:

Pw1 : f1, f2, w1 Pf1 : w1, w2, f1

Pw2 : f2, f1, w2 Pf2 : w2, w1, f2.

Let Qw1 : f2, f1, w1 and Qw2 : f1, f2, w2 and note that the preference profile
Q = (Qw1, Qw2 , PF ) is an ordinal Nash equilibrium in (P, ϕF , P), the game
induced by the mechanism that yields the firm-optimal stable matching. Now let
ϕ̃ be a random matching rule that assigns probability 0.5 to both the worker-
optimal and firm-optimal stable matchings. Clearly, the support of the probability
distribution induced by ϕ̃[Q] includes both µF [Q] = {( f1, w1), ( f2, w2)} and
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µW [Q] = {( f1, w2), ( f2, w1)}. By Proposition 1, Q is not an ordinal Nash
equilibrium in the game (P, ϕ̃, P). In fact, every worker can successfully deviate.
For example, by using his true preferences, w1 obtains his preferred firm f1 with
probability one.

In the context of deterministic mechanisms, Roth (1985) shows that by suitably
falsifying their preferences, agents can induce any individually rational matching
with respect to the true preferences. Unfortunately, this is not a very illuminating
result: the set of individually rational matchings includes all the matchings that
are remotely plausible. Moreover, the possibility of sustaining matchings where
agents hold non-acceptable partners is not ruled out, although individual rationality
appears to be a minimum requirement for an equilibrium outcome.

The results that follow establish that µ can be supported as an ordinal equilib-
rium if and only if it is individually rational. Hence, we provide a complete char-
acterization of ordinal Nash equilibria outcomes in the game induced by random
stable mechanisms. Furthermore, it can easily be shown that Proposition 3 can
be extended to the deterministic case, providing a necessary condition for Nash
equilibria in games induced by deterministic stable matching mechanisms.

Proposition 2 Let µ be any individually rational matching for (F, W, P) and let
ϕ̃ be a random stable matching rule. Then, there exists an ordinal Nash equilibrium
Q that supports µ in the game (P, ϕ̃, P).

Proof Let Qw be such that A(Qw) = {µ(w)}, for every w ∈ W , and let Q f be
such that A(Q f ) = µ( f ), for every f ∈ F . Clearly, S(Q) = {µ} and µ is reached
with probability one. Moreover, no agent can profitably deviate. To see this, take an
arbitrary worker w. If µ(w) ∈ F , the only agent that accepts w is µ(w). Hence, w
faces the choice of holding µ(w) or being unmatched. Since µ(w)Pww by individ-
ual rationality of µ, w has no profitable deviation. If µ(w) = w, no firm is willing
to hire w, so that w has no profitable deviation: his only alternative is to remain
unmatched. Now consider f ∈ F . If µ( f ) �= ∅, only those workers in µ( f ) are
willing to accept filling a position in f. Moreover, by individual rationality of µ,
µ( f )R̄ f S, for every S ⊆ µ( f ). If µ( f ) = ∅, no worker accepts filling a position
if f . In neither case can f improve upon µ( f ) by deviating. Hence, Q is an ON
equilibrium in (P, ϕ̃, P). �

Proposition 3 Let Q be an ordinal Nash equilibrium in the game (P, ϕ̃, P). Then,
the unique equilibrium outcome ϕ̃[Q] is individually rational for the true prefer-
ences P.

Proof By Proposition 1, a degenerate probability distribution is achieved in any
equilibrium play of (P, ϕ̃, P). Let us say ϕ̃[Q] = µ. We will prove that µ is
individually rational.

First, by contradiction, assume there exists a worker w such that wPwµ(w).
Suppose that, instead of acting according to Qw, w uses the strategy Q′

w such that
A(Q′

w) = ∅ and define Q′ = (Q′
w, Q−w). By considering every firm unaccept-

able, w is alone under every matching in S(Q′). Hence, 1 = ϕ̃w[Q′](UPw(w)) >
ϕ̃w[Q](UPw(w)) and Qw does not stochastically Pw-dominate Q′

w. It follows that
Q is not an ON equilibrium in (P, ϕ̃, P).
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Now suppose that there is a firm f and a set of workers SG � µ( f ) such
that SG P̄ f µ( f ). Let SG be, among all the subsets of µ( f ), the one that is pre-
ferred by f . Consider Q′

f , an alternative strategy for f , where only the elements

of SG are considered acceptable. We will show that Q f does not stochastically
Pf -dominate Q′

f .

To start, consider the matching µ′ such that µ′( f ) = SG and µ′( f̂ ) = µ( f̂ ),
for every f̂ �= f . Let SB = µ( f )\SG (note that SB �= ∅) and Q′ = (Q′

f , Q− f ).

Now consider the matching market (F, W\SB, Q′R), where Q′R is the same pro-
file as Q′, but restricted to W\SB . We will prove that µ′ is stable for Q′R in this
reduced market. Note that, when Q is considered, µ(w) is acceptable for every
worker w, all elements in µ( f̄ ) are acceptable for every firm f̄ �= f , and SG is the
preferred subset of µ( f ) for f . It follows that µ′ is individually rational for Q′R .
Now suppose that ( f̂ , w) blocks µ′, i.e., w /∈ µ′( f̂ ), but f̂ Q′R

w µ′(w), wQ′R
f̂

f̂ , and

either (i) |µ′( f̂ )| < q f̂ or (ii) if |µ′( f̂ )| = q f̂ then there exists w′ ∈ µ′( f̂ ) such

that wQ′R
f̂
w′. Since only the elements of µ′( f ) are considered acceptable in Q′R

f̂
,

we must have f̂ �= f . Hence, Q′R
f̂

= Q R
f̂
, where Q R

f̂
is the same strategy as Q f̂ ,

but restricted to W\SB . By definition of µ′, we have µ′( f̂ ) = µ( f̂ ), for every
f̂ �= f , and µ′(w) = µ(w), for every w ∈ W\SB . The above expression thus
becomes f̂ Q R

wµ(w), wQ R
f̂

f̂ , and either (i) |µ( f̂ )| < q f̂ or (ii) if |µ( f̂ )| = q f̂

then there exists w′ ∈ µ( f̂ ) such that wQ R
f̂
w′. Hence, in the unrestricted market,

f̂ Qwµ(w), wQ f̂ f̂ , and either (i) or (ii) holds with wQ f̂ w
′, for some w′ ∈ µ( f̂ ).

This means that ( f̂ , w) blocks µ under Q, contradicting µ ∈ S(Q). Thus, µ′
is stable in (F, W\SB, Q′R). Note that, since f is matched to SG under a sta-
ble matching, it must hold exactly SG under the firm-optimal stable matching for
(F, W\SB, Q′R), by definition of Q′R

f and of the firm-optimal stable matching.

Suppose SB join in. By Theorem 5.35 in Roth and Sotomayor (1990), every
firm must be at least as well off in the new firm-optimal stable matching. Since
only SG are considered acceptable by f in the strategy Q′

f , f cannot improve

upon SG . Thus, it must be matched to SG under the firm-optimal stable matching
of the market (F, W, Q′).

Finally, notice that since |µ( f )| ≤ q f and SB �= ∅, we have |SG | < q f .
Hence, Theorem 5.13 in Roth and Sotomayor (1990) guarantees that f must hold
the same workers under every stable matching in (F, W, Q′). Therefore, by devi-
ating and acting according to Q′

f , f will get SG with probability one instead of

µ( f ). Concluding, 1 = ϕ̃ f [Q′](UP̄f
(SG)) > ϕ̃ f [Q](UP̄f

(SG)) and Q is not an
ON equilibrium in (P, ϕ̃, P). �


The above result is as uninformative as large the set of individually rational
matchings may be. Ma (2002) shows that one way to make a sharper prediction of
equilibrium outcomes and guarantee stability is to go as far as refining the notion
of Nash equilibrium to strong Nash and require the use of a particular kind of strat-
egies: truncations at the match point (i.e., deleting the (m + 1)th and less preferred
partners when matched to the mth choice). We provide a different sufficient condi-
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tion for stability in the game induced by a random stable mechanism: every ordinal
Nash equilibrium where firms behave straightforwardly is stable for the true pref-
erences. Truth telling by firms is natural in markets where firms obey some kind
of objective criterion to fill their positions (e.g., universities admit students on
the basis of examination scores, student placement mechanisms assign students to
public schools according to the area of residence, firms hire workers according to
scores given by recruiting agencies). Moreover, in situations involving uncertainty
agents may have no clue about the form that effective strategies might have and
straightforward behavior is always an easy resort.

Proposition 4 Let Q = (PF , QW ) be an ordinal Nash equilibrium in the game
(P, ϕ̃, P). Then, the unique equilibrium outcome ϕ̃[Q] is stable for the true pref-
erences P.

Proof By Proposition 1, a unique matching is achieved as the outcome of an ON
equilibrium in (P, ϕ̃, P). Let us say that ϕ̃[Q] = µ. By Proposition 3, µ ∈ I R(P).
We will prove that µ ∈ S(P) by contradiction. Suppose that ( f, w) blocks µ when
the true preferences are considered, i.e., w /∈ µ( f ) but f Pwµ(w), wPf f , and
either (i) |µ( f )| < q f or (ii) if |µ( f )| = q f then there exists w′ ∈ µ( f ) such that
wPf w

′.
Consider Q′

w, an alternative strategy for w, such that f Q′
wv′ and vQ′

wv′ if and
only if vQwv′, for every v, v′ ∈ F\{ f } ∪ {w}. Let Q′ = (Q′

w, Q−w). By stability
under Q′, if w is not matched to f with positive probability under ϕ̃[Q′]—so that
we cannot show Q′

w is a deviation for w—then, under every matching in ϕ̃[Q′],
each position of f is filled with a worker f finds better than w. We will prove that,
in this case, f has a profitable deviation when the other agents use Q− f , so that
Q is not an ON equilibrium in the game (P, ϕ̃, P).

Let µ′ be such that µ′( f )R̄ f µ̂( f ), for every µ̂ ∈ supp ϕ̃[Q′] and let Q f be
such that A(Q f ) = µ′( f ). Note that |A(Q f )| = q f . Let Q̂ = (Q f , Q− f ). We
will show that f will get µ′( f ) under every matching in ϕ̃[Q̂], so that Q f is a
profitable deviation for f .

By contradiction, assume µ′ is not stable for Q̂. Since the definitions of Q̂ and
of Q′

w ensure µ′ ∈ I R(Q̂), this implies that there exists a blocking pair ( f̃ , w̃) for
µ′ when Q̂ is considered. As, by definition of Q f , we have f̃ �= f , this means
f̃ Q̂w̃µ′(w̃), w̃Pf̃ f̃ , and either (i) |µ′( f̃ )| < q f̃ or (ii) if |µ′( f̃ )| = q f̃ then there

exists w̄ ∈ µ′( f̃ ) such that w̃Pf̃ w̄ . As a consequence, ( f̃ , w̃) blocks µ′ for Q′
unless w̃ = w and µ′(w̃) = f . But this contradicts the assumption that, under µ′,
each position of f is filled with a worker f finds better than w. Hence, µ′ ∈ S(Q̂).
It follows from |µ′( f )| = q f and from Theorem 5.12 in Roth and Sotomayor
(1990) that f has all positions filled under every matching in S(Q̂); as the set of
agents f finds acceptable in Q f is exactly µ′( f ), f is matched to µ′( f ) under
every matching in S(Q̂) and, in particular, under every matching in ϕ̃[Q̂]. �


Two remarks are in order. First, this result can easily be applied to games arising
from deterministic stable mechanisms: stability for the true preferences is obtained
in any Nash equilibrium where firms are truthful. Second, in accordance with the
claims in Roth and Sotomayor (1990) concerning deterministic mechanisms, the
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analogous result with workers telling the truth and firms acting strategically does
not hold, although it would hold when all quotas equal one.8 The college admissions
problem, unlike the marriage problem, is not symmetric between the two sides of
the market and there are substantial differences between the two when strategic
issues are contemplated. Any firm with a quota greater than one resembles some-
thing like a coalition rather than an individual. Hence, allowing for manipulation
on the firms’ side is similar to giving such powers to sets of agents in a marriage
market and, in equilibria where workers tell the truth, stability is lost.

The converse result is given in Proposition 5, asserting that every stable match-
ing for the true preferences can be supported as the outcome of an ordinal Nash
equilibrium where firms act according to the true preferences. In fact, workers can
compel any jointly achievable outcome in the game induced by a random stable
mechanism, while firms behave straightforwardly.

Proposition 5 Let µ be any stable matching for (F, W, P) and let ϕ̃ be a ran-
dom stable matching rule. Then, there exists an ordinal Nash equilibrium Q =
(PF , QW ) that supports µ in the game (P, ϕ̃, P).

Proof Define Qw such that A(Qw) = {µ(w)} for every w ∈ W . Clearly, S(Q) =
{µ} and µ is reached with probability one.

Let us now prove that Q is an ON equilibrium in (P, ϕ̃, P). Take an arbitrary
worker w and suppose that there exists a firm f such that f Pwµ(w). We claim
that w cannot deviate to get matched to f . In fact, the stability of µ with respect
to P implies that either f P f w—in which case f declares w unacceptable—or, if
wPf f , then |µ( f )| = q f and w′ Pf w, for every w′ ∈ µ( f ). In the latter case,
since µ(w′) = f for every w′ ∈ µ( f ), then Qw′ satisfies A(Qw′) = { f } and
f ends up matched to µ( f ). Now consider firm f . The only workers willing to
accept f are those in µ( f ). Furthermore, individual rationality of µ implies that
µ( f )R̄ f S, for every S ⊆ µ( f ). It follows that f cannot improve upon µ( f ) by
deviating. In conclusion, Q is an ON equilibrium in (P, ϕ̃, P). �


Our next results establish a strong link between equilibria in games induced by
random and by deterministic stable mechanisms. We start by pointing out that every
ordinal Nash equilibrium of the random process must be a simple Nash equilibrium
of a game induced by some mechanism where chance plays no role.

Proposition 6 Let Q be an ordinal Nash equilibrium in the game (P, ϕ̃, P). Then,
there exists a deterministic stable matching rule ϕ such that Q is a Nash equilibrium
in the game (P, ϕ, P).

Proof Assume that Q is an ON equilibrium that yields µ in (P, ϕ̃, P). Proposi-
tion 1 guarantees that µ is the only element in supp ϕ̃[Q] and, by Proposition 3,
µ ∈ I R(P). Now suppose, by contradiction, that there exists no game induced by a
deterministic stable matching rule ϕ where Q is a Nash equilibrium. In particular,
consider any ϕ such that ϕ[Q] = µ—such a rule exists since µ ∈ S(Q)—and
assume that some agent has a profitable deviation.

Let such agent be a worker, w. Then, there exists a strategy Q′
w such that

ϕw[Q′] Pwµ(w), with Q′ = (Q′
w, Q−w). This implies that ϕw[Q′] ∈ F since

8 See Roth (1985).
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µ ∈ I R(P). Let f = ϕw[Q′] and define Q′′
w such that A(Q′′

w) = { f }. Observe that
under any matching in S(Q′′

w, Q−w), w is matched to f —ϕ[Q′] ∈ S(Q′′
w, Q−w)

since it remains individually rational and no blocking pairs emerge once w uses
Q′′

w. Therefore, under every matching in supp ϕ̃[(Q′′
w, Q−w)], w holds f and Qw

does not stochastically Pw -dominate Q′′
w. We get a contradiction: Q is not an ON

equilibrium in (P, ϕ̃, P).
Now assume that f ∈ F can profit by deviating from Q f in (P, ϕ, P). This

means that there exists Q′
f such that ϕ f [Q′]P̄ f µ( f ), with Q′ = (Q′

f , Q− f ). Since
µ ∈ I R(P), ϕ f [Q′] �= ∅. Define Q′′

f such that only the workers in ϕ f [Q′] are
considered acceptable. Since ϕ[Q′] ∈ S(Q′), once only the workers in ϕ f [Q′] are
considered acceptable by f , we can guarantee that ϕ[Q′] ∈ S(Q′′). The definition
of Q′′

f and the fact that under every stable matching firms have the same number
of positions filled (Theorem 5.12 in Roth and Sotomayor 1990) imply that f holds
ϕ f [Q′] in every element of S(Q′′). Therefore, 1 = ϕ̃ f [Q′′](UP̄f

(ϕ f [Q′])) >

ϕ̃ f [Q](UP̄f
(ϕ f [Q′])) = 0 and Q is not an ON equilibrium in (P, ϕ̃, P). �


In Proposition 7, we establish a partially converse statement: the set of ordinal
Nash equilibria in the game induced by a random stable mechanism includes all
the strategy profiles that are simultaneously equilibria in the games induced by the
rules that yield the firm-optimal and the worker-optimal stable matchings.

Proposition 7 Let Q be a Nash equilibrium in both (P, ϕF , P) and (P, ϕW , P).
Then, Q is an ordinal Nash equilibrium in the game (P, ϕ̃, P) for any random
sable matching rule ϕ̃.

The following Lemma is useful in proving Proposition 7.

Lemma 2 Let Q be a Nash equilibrium in both (P, ϕF , P) and (P, ϕW , P). Then,
the set S(Q) is a singleton.

Proof Assume that Q is a Nash equilibrium in both (P, ϕF , P) and (P, ϕW , P).
Suppose, by contradiction, that |S(Q)| ≥ 2. Clearly, this implies that ϕF [Q] �=
ϕW [Q]. Lemma 1 in Ma (2002) implies that, for any matching µ ∈ S(Q), we
have ϕF

w [Q]Rwµ(w), for every w ∈ W . Since Q is an equilibrium in (P, ϕW , P),
the same lemma guarantees that ϕW

w [Q]Rwµ(w), for every w ∈ W and for any
µ ∈ S(Q). It follows that ϕF

w [Q] = ϕW
w [Q], for every w ∈ W and we contradict

the initial assumption that ϕF [Q] �= ϕW [Q]. �

Proof of Proposition 7 Suppose that Q is a Nash equilibrium in both (P, ϕF , P)
and (P, ϕW , P). By Lemma 2, |S(Q)| = 1. Let us say that S(Q) = {µ̂} and
assume, by contradiction, that there exists a random stable matching rule ϕ̃ such
that Q is not an ON equilibrium in (P, ϕ̃, P).

Suppose then that there exists a worker w ∈ W and an alternative strategy
Q′

w such that Qw does not stochastically Pw-dominate Q′
w. This implies that there

exists µ ∈ supp ϕ̃[Q′
w, Q−w] such that µ(w)Pwµ̂(w). Note that, since Q is a Nash

equilibrium in the game induced by a stable matching rule, µ̂ ∈ I R(P). Hence,
µ̂(w)Rww and it must be the case that w is matched to a firm under every matching
in S(Q′

w, Q−w). Let µ′(w) be the best match for w in supp ϕ̃[Q′
w, Q−w] and define

Q′′
w such that A(Q′′

w) = {µ′(w)}. Since µ′ ∈ S(Q′′
w, Q−w) (it is still individually
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rational and no blocking pairs emerged), Theorem 5.12 in Roth and Sotomayor
(1990) ensures that w is matched to µ′(w) under every matching in S(Q′′

w, Q−w).
Then, in no game induced by a stable matching rule is Q a Nash equilibrium, since
for every stable matching rule ϕ, ϕw[Q′′

w, Q−w] = µ′(w) and µ′(w)Pwµ̂(w). It
follows that no worker can profitably deviate in the game induced by ϕ̃.

Then, there exists a firm f and a strategy Q′
f such that Q f does not sto-

chastically Pf -dominate Q′
f , i.e., there exists µ ∈ supp ϕ̃[Q′

f , Q− f ] such that

µ( f )P̄ f µ̂( f ). Since µ̂ ∈ I R(P), we have µ̂( f )R̄ f ∅ and, under every matching in
S(Q′

f , Q− f ), f has at least one position filled. Let µ′ be such that µ′( f )P̄ f µ( f ),
for every µ ∈ supp ϕ̃[Q′

f , Q− f ]. Define Q′′
f such that A(Q′′

f ) = µ′( f ). Note
that µ′ ∈ I R(Q′′

f , Q− f ) and that no pair of agents blocks µ′ under the preference
profile (Q′′

f , Q− f ). Therefore, µ′ ∈ S(Q′′
f , Q− f ) and, since firms have the same

positions filled under every stable matching (Theorem 5.12 in Roth and Sotomayor
(1990)), the definition of Q′′

f guarantees that f holds µ′( f ) in every element of
S(Q′′

f , Q− f ). Finally, for every stable matching rule ϕ, ϕ f [Q′′
f , Q− f ] = µ′( f )

and µ′( f )P̄ f µ̂( f ). It follows that there exists no stable matching rule ϕ such that
Q is a Nash equilibrium in (P, ϕ, P), contradicting the initial assumption. �


The proof of the above result reveals that a sufficient condition for an ordinal
Nash equilibrium in the game (P, ϕ̃, P) is in fact being a Nash equilibrium in every
game (P, ϕ, P), i.e., in every game induced by a deterministic stable mechanism.
This appears to be an extremely strong condition to fulfill. Nevertheless, we will
now describe a class of random matching rules for which such condition becomes
necessary for an ordinal Nash equilibrium.

In the particular case that µI is the empty matching, Roth and Vande Vate
(1990) have shown that, in the marriage model, every element of the set of stable
matchings for the revealed preferences can be achieved with positive probability
when the random matching rule they define is applied. In fact, starting from a sit-
uation in which all agents are unmatched, by successively satisfying all the pairs
of a stable matching, we can guarantee that this matching is reached with positive
probability. This random process is an instance of what we will name as really
random stable matching rule.

A really random stable matching rule ϕ̃ assigns positive probability to at least
two different elements of the set of stable matchings, i.e., |supp ϕ̃[Q]| ≥ 2 for every
Q such that |S(Q)| ≥ 2. In Example 1, the rule that assigns probability 0.5 to the
firm-optimal and to the worker-optimal stable matchings is clearly a really random
stable matching rule. The following result is an implication of Propositions 6 and 7
in the particular case that ϕ̃ is really random.

Corollary 1 Let ϕ̃ be a really random stable matching rule. Then, the profile of
strategies Q is an ordinal Nash equilibrium in the game (P, ϕ̃, P) if and only if the
set of stable matchings S(Q) is a singleton and there exists a deterministic stable
matching rule ϕ such that Q is a Nash equilibrium in the game (P, ϕ, P).

Proof Follows directly from Propositions 6 and 7, and the fact that Proposition 1
implies supp ϕ̃[Q] = S(Q) for a really random stable matching rule ϕ̃. �


For illustration, consider once more Example 1 and note that the set of stable
matchings for truth telling is a singleton; further, it can easily be shown that it is
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an equilibrium in the game induced by the matching rule that yields, say, the firm-
optimal stable matching. Corollary 1 thus implies that straightforward behavior is
an ordinal Nash equilibrium in the game induced by the random stable matching
rule described in the example.

5 Non-preference strategies

We have explored the game induced by a random matching mechanism, claiming
that one of the main motivations of this paper is the study of some decentralized mar-
kets. This may be objected on the grounds that up to this point we have restricted our
analysis to a one-period game where strategies are preference lists, which perfectly
mirrors the functioning of a centralized market, but falls short of an illustration of
a decentralized market. In particular, in matching processes of the kind described
by Roth and Vande Vate (1990), at each moment in time, a pair of randomly chosen
agents meets and (temporarily) matches if this is consistent with both agents’ strat-
egies. This clearly fits the structure of a sequential game. In this context, restricting
each agent to hold the potential partner that is higher on some fixed preference
ordering sustains the validity of the results of the preceding section. However, in
a sequential game, agents can be expected to use richer strategies, conditioning
behavior on the history of the game, and not necessarily acting consistently with
a unique preference ordering. The strategy of matching with the first partner one
meets and rejecting every other agent is an example of such kind of strategies.

One of the difficulties that arises in attempting to capture such complex forms
of behavior concerns the very essence of the matching rule that, following Roth and
Vande Vate (1990), we assume to be stable with respect to the revealed preferences.
In fact, such definition is compromised when, for some play of the game, no list of
preferences is compatible with the strategy of a player. Hence, the set of feasible
strategies of the sequential game is simply too large and precludes analysis in the
theoretical framework we have been using. One potential course of action is there-
fore to impose that under any play of the sequential game the choices actually made
are consistent with some preference ordering, even though they may correspond
to incompatible preference orderings when several plays are considered. We can
then speak of preference orderings that are “revealed” in the course of the play.
A worker w that entertains the described strategy in the example above, would
match the first firm to tender an offer to him under any play of the game, and reveal
that this firm is preferred to every other firm that he eventually meets in the course
of that play. Since meeting is random, this worker would reveal distinct preference
lists under different plays of the game.

Hence, consider a sequential game where, starting from an arbitrary matching,
at each moment in time, a pair of randomly chosen agents, composed of a firm and
a worker, meets. Agents match upon meeting if this is consistent with their strat-
egies. We assume that strategies are restricted to those strategies compatible with
a preference ordering for each play of the game, the revealed preference ordering,
even though the information gathered in the course of the play might allow for other
forms of behavior.9 According to Roth and Vande Vate (1990), once the probability

9 The lack of precision in defining what each player knows along the game is deliberate. The
result that follows is valid in a perfect information setting, as well as when agents are only partially
aware of the history of the game.
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that a given pair of agents meets is bounded away from zero, each play of the game
yields a matching stable with respect to the revealed orderings in the course of that
play. Hence, given a profile of strategies that meets the above requirement, every
outcome obtained with positive probability is stable for some revealed profile of
preferences. We let G(P) denote this sequential game.

In Proposition 8, we show that ordinal Nash equilibria in preference strate-
gies, which correspond to those obtained for the one-period game, are robust to
the enlarged strategy space. In fact, given a profile of preference strategies, if by
means of a strategy that is not consistent with a unique preference ordering, an
agent may improve his position, he is certainly capable of doing so using a simple
preference strategy.

Proposition 8 In the sequential game G(P), for any collection of stated prefer-
ences Q−v for agents other than an arbitrary agent v, agent v always has a best
response that is consistent with a unique preference ordering.

Proof First, consider an arbitrary worker w and fix Q−w. Let sw denote an arbitrary
strategy for w, revealing a preference ordering (not necessarily the same) under
each play of the game. Denote by Qi

w the preference ordering that is consistent with
sw under some play i . In general, we have supp ϕ̃[sw, Q−w] = {µ1, . . . , µk}, where
µi ∈ S(Qi

w, Q−w), for i = 1, . . . , k. Now let Qw be such that A(Qw) = {µ j (w)}
where µ j (w)Rwµi (w), for all µi ∈ {µ1, . . . µk}. Since µ j ∈ S(Q j

w, Q−w), we
must have µ j ∈ S(Qw, Q−w) (it is still individually rational and there are fewer
blocking pairs). Hence, given that the same agents are matched under any two ele-
ments of the set of stable matchings and the only firm w finds acceptable is µ j (w),
this worker is matched to µ j (w) under every matching in S(Qw, Q−w). It follows
that any lottery over S(Qw, Q−w) gives w a partner at least as good as any lottery
over S(sw, Q−w). Since sw and Q−w are arbitrary, this completes the proof for a
worker w.

Now take an arbitrary firm f . Let s f denote a strategy for f with the same
properties as the strategy for w above. Define Qi

f as the preference ordering over
individual workers that is consistent with s f for some play i of the game. Let
supp ϕ̃[s f , Q− f ] = {µ1, . . . , µk}, where µi ∈ S(Qi

f , Q− f ), for i = 1, . . . , k.
Consider any alternative strategy Q f for f such that A(Q f ) = µ j ( f ) where
µ j ( f )R̄ f µi ( f ), for all µi ∈ {µ1, . . . , µk} and for every responsive extension

R̄ f of R f . Then, µ j ∈ I R(Q f , Q− f ) since µ j ∈ I R(Q j
f , Q− f ). Moreover,

µ j ∈ S(Q f , Q− f ) since µ j ∈ S(Q j
f , Q− f ) and no blocking pairs emerged.

Given that the same positions of a firm are filled under any element of a set of
stable matchings and by definition of Q f , f is matched to µ j ( f ) under every
matching in S(Q f , Q− f ). Since s f and Q− f are arbitrary, this completes the
proof. �


Nevertheless, this is far from being a characterization of equilibria in this new
setting. In fact, the set of ordinal Nash equilibria is larger here, as the following
example demonstrates.

Example 2 (Example 1 revisited) Consider the matching market in Example 1.
Let the strategy of each agent be defined as follows: s fi = “match only with
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wi if f1 is the first firm to meet a worker; match only with w j otherwise” and
swi = “match only with fi if f1 is the first firm to meet a worker; match only
with f j otherwise”, for i = 1, 2. This strategy profile leads to a non-degenerate
probability distribution over matchings. Namely, both µ = {( f1, w1), ( f2, w2)}
and µ̂ = {( f1, w2), ( f2, w1)} are obtained with a 50% probability. Hence, Prop-
osition 1 rules out the possibility that s can be reproduced by an equilibrium in
preference strategies. Still, s is an ordinal Nash equilibrium, since any unilat-
eral deviation of a firm or worker may either leave the probability distribution
unchanged or leave the deviator unmatched with positive probability.

6 Concluding remarks

At the expense of using an ordinal equilibrium concept, we have provided a char-
acterization of equilibria that arise in the game induced by a random stable mecha-
nism. The analysis is set in the college admissions problem. First, we have proved
that every ordinal Nash equilibrium yields a unique matching, while when agents
act straightforwardly according to the true preferences several matchings may be
obtained with positive probability. Hence, agents avoid uncertainty when behaving
strategically. Furthermore, a matching can be reached at an ordinal Nash equi-
librium if and only if it is individually rational for the true preferences. Ordinal
equilibria where firms best reply by behaving straightforwardly always produce a
matching stable for the true preferences. Conversely, every stable matching can be
reached as the outcome of an equilibrium play of the game. In a different direc-
tion, we relate ordinal Nash equilibria in games induced by a random matching
mechanism with Nash equilibria arising in the games induced by deterministic
matching mechanisms. In particular, a preference profile is an ordinal equilibrium
of the game induced by a matching rule that always assigns positive probability to
two different matchings (if such matchings exists) if and only if the set of stable
matchings is a singleton and it is a Nash equilibrium in the game induced by some
deterministic stable rule. In the last section of the paper we have tried to extend the
above results, derived for a one-period game where the set of available strategies
coincides with the set of all possible lists of preferences, to the sequential game
that may arise in a decentralized market. Here we assume agents may use strategies
that correspond to different preference orderings when different plays of the game
are considered. We have shown that ordinal Nash equilibria in preference strategies
are robust to the enlarged strategy space.

In what the above results are concerned, a couple of remarks is in order. The first
observation concerns fairness and random matching mechanisms. In opposition to
deterministic mechanisms, which are bound to favor one side of the market over the
other, we have claimed that random mechanisms promote procedural fairness.10

Nevertheless, “endstate” justice is a different issue. Indeed, the results that relate
equilibria in the games induced by random and deterministic mechanisms imply
that every equilibrium outcome in the game induced by a random matching mech-
anism may be obtained by means of a deterministic mechanism. It follows that,

10 For example, in the kind of process described in Roth and Vande Vate (1990), each pair of
agents has the same probability of meeting at a certain point in the procedure, and this determines
procedural fairness.
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based on these results and in what “endstate” justice is concerned, we should not
expect random matching rules to improve upon deterministic ones if equilibrium
behavior is to be taken seriously.

Second, the aim of the last section is to shed some light on what happens once we
move towards allowing for history-dependent strategies, preserving the stability of
the mechanism. The purpose of this paper is to explore strategic behavior induced
by random stable matching mechanisms, and not to provide a thorough analysis
of the incentives agents face in decentralized markets.11 Therefore, relaxing the
restriction we impose over the strategy sets would compromise our main goal.

To conclude, equilibrium behavior in random mechanisms has barely been
treated in the matching literature. One of the difficulties that arises in attempting
to apply the common game theoretical tools stems from the need to compare the
probability distributions over matchings generated by a random rules when pref-
erences are ordinal. By means of the concept of ordinal Nash equilibrium we have
taken a step towards filling the gap in the literature, providing a fairly complete
characterization of equilibrium behavior.
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