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Race and ethnic group dependent 
space radiation cancer risk 
predictions
Francis A. Cucinotta1* & Premkumar B. Saganti2

Future space missions by national space agencies and private industry, including space tourism, will 
include a diverse makeup of crewmembers with extensive variability in age, sex, and race or ethnic 
groups. The relative risk (RR) model is used to transfer epidemiology data between populations to 
estimate radiation risks. In the RR model cancer risk is assumed to be proportional to background 
cancer rates and limited by other causes of death, which are dependent on genetic, environmental and 
dietary factors that are population dependent. Here we apply the NSCR-2020 model to make the first 
predictions of age dependent space radiation cancer risks for several U.S. populations, which includes 
Asian-Pacific Islanders (API), Black, Hispanic (white and black), and White (non-Hispanic) populations. 
Results suggest that male API and Hispanic populations have the overall lowest cancer risks, while 
White females have the highest risk. Blacks have similar total cancer rates than Whites, however their 
reduced life expectancy leads to modestly lower lifetime radiation risks compared to Whites. There are 
diverse tissue specific cancer risk ranking across sex and race, which include sex specific organ risks, 
female’s having larger lung, stomach, and urinary-bladder radiation risks, and male’s having larger 
colon and brain risks.

The makeup of astronauts and cosmonauts have become more diverse since the first missions in the 1960’s trend-
ing to be more reflective of the proportion of male and female and racial or ethnic distributions in host countries1. 
In addition, the role of private space missions and space tourism suggest significant diversity in age, sex, race 
and ethnicity of space explorers that will participate in future space missions. In this report, we predict space 
radiation cancer risks for White, Black, Hispanic (black and white) and Asian-Pacific Islander (API) populations 
in the United States (US) using background rates for tissue specific cancer and all causes of death reported by 
the National Cancer Institute SEER2,3 and U.S. Center of Disease Control and Prevention (CDC)4, respectively.

Cancer is a multistage process often described in terms of initiation-promotion-progression concepts5. The 
Hallmarks of cancer6 describe these steps in terms of aberrant changes in critical biological processes involved 
in tumor development, including self-sufficiency in growth signals, insensitivity to anti-growth signals, tissue 
invasion and metastasis, limitless replicative potential, sustained angiogenesis (blood vessel growth), and evasion 
of apoptosis (cell death). The multistage model, the role of cancer hallmarks, and the minimal latency between 
radiation exposure and tumor development, which is typically more than 5 years for solid cancer and 1 year 
for leukemia, suggests that radiation likely produces only a subset of the changes necessary for tumor develop-
ment, while spontaneous processes influence the development and expression of cancer7. Galactic cosmic rays 
(GCR) and solar particle events (SPE) are efficient producers of DNA damage, while low doses of GCR produce 
inflammatory changes important in cancer development8–11, however it is not clear if all the cancer hallmark 
processes are induced by low doses of space radiation (< 1 Gy), which would be incurred on long-term space 
missions. These observations lend support to a relative risk (RR) model to transfer risk estimates across popula-
tions with varying background cancer rates. Evidence in support of the RR model was also provided by Storer 
et al.12 whom studied the transfer of risk between 5 strains of male and female mice exposed to gamma-rays 
at moderate acute doses (≤ 2 Gy) in comparison to the results from the Life Span Study (LSS) of atomic bomb 
survivors. It was concluded that for most tumor types, susceptibility to radiation carcinogenesis is related to 
spontaneous incidence, while RR derived from mouse studies were consistent with those from the LSS for tumors 
of the lung, breast, liver and leukemia. Several other cancer types important in humans such as stomach, colon 
and brain were not considered in the results of Storer et al.12 due to limitations in the types of tumors found in 
various mouse strains studied.
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The most recent studies of LSS provides extensive parameterizations of the age and age at exposure depend-
ence of tissue specific cancer incidence for males and females, and considers improved estimates of the influence 
of life-style factors such as the use of tobacco products on cancer risk13–22. We use these recent LSS findings and 
the NASA Space Cancer Risk model (NSCR-2020)23–27 to make predictions of cancer risks from GCR for U.S. 
populations as a function of sex and age for Asian-Pacific Islanders (API), Black, Hispanic (Black and White), and 
White (non-Hispanic) populations. The NSCR uses quality factors (QF) influenced from particle track structure 
concepts and parameterized against extensive mouse tumor and surrogate cancer endpoints in cell culture stud-
ies. Probability distribution functions (PDFs) that estimate uncertainties in epidemiology data, organ exposures 
in space, dose-rate and radiation quality effects, including non-targeted effects (NTEs), are considered. For low 
doses of high LET radiation NTEs make important contributions to risk estimates, including increasing uncer-
tainty distributions. We use the NSCR model to estimate cancer risks for annual GCR exposures to compare 
point estimates of risks for males and females of several racial or ethnic groups. We also consider estimates for a 
Mars mission where uncertainty distributions are considered for several populations without or including NTE 
estimates based on earlier work23,24.

Results and discussion
Data from the Center of Disease Control and Prevention (CDC)4 and the NIH Surveillance Epidemiology and 
End Results (SEER)2,3 are used to estimate the life-table (probability of survival to a given age) and tissue spe-
cific cancer incidence and mortality rates for the time-period of 2014–2018. The life expectancy of males and 
females of different racial or ethnic groups in the U.S. are shown in Table 1. Life expectancy estimates for API’s 
was not available in the 2018 report4, and we based the API estimate on the larger values compared to Hispan-
ics (~ 2 to 3 years) from other recent time periods28. Figure 1 shows the survival probability for those alive at 
age 35 years for the various populations considered. Table 2 summarizes the SEER age adjusted incidence rates 
for the different races and males and females2. Hispanics and API’s compared to Blacks and Whites have health 
advantages for both cancer and lifespan and similar advantages for circulatory diseases. Black and White males 
have the largest age adjusted cancer rates, while Black males have the lowest life expectancy of 71 years. For 
API’s a further division between Asian immigrants compared to Pacific Islanders suggest a health disparity with 
Pacific Islanders having overall lower life expectancy and larger cancer incidence29. Indeed, further division of 
Hispanic populations into racial groups or all groups into U.S. states or regions would reveal differences in life 
expectancy and cancer rates. The calculations described next illustrate the manifestation on radiation risks for a 
range of such differences on radiation risk predictions. Tissue specific differences in cancer rates are described 
by the SEER data base and used in the analyses described below.

Table 1.   Life Expectancy in 2018 for several U.S. racial and ethnic groups for both males and females4. a Data 
for 2018 was not available and estimate is based on trend for other recent years.

Race Life expectancy (years) females Life expectancy (years) males

Asian Pacific-Islandersa 86 81

Black 78.0 71.3

Hispanic (white and black) 84.3 79.1

White 81.1 76.2

Figure 1.   Survival probability after age 35 years for U.S. females and males of different racial or ethnic groups. 
Panel (A) is females and panel (B) is males.
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Low LET epidemiology data is used in the NSCR model with space radiation quality factors (QF) and space 
radiation environmental and transport models used to make predictions for space exposures22–24. Results from 
LSS for tissue specific excess relative risk (ERR) for incidence as a function of age and latency are used as they 
provide data for a similar dose range as space missions and is a whole-body exposure; which is often not true 
of lower dose protracted occupational exposures or high dose fractionated exposures in various medical proce-
dures. For thyroid and remainder cancers we use the BEIR VII report parametrizations of ERR30. We note that 
GCR heavy ion energy deposition in cells occurs at very high dose-rates (< 10–16 s) with doses of 0.1 to > 2 Gy 
deposited per cell traversed dependent on charge number and kinetic energy, which are similar doses to the acute 
exposures in the atomic bomb survivors. Dose-rate reduction factors for the low LET components of GCR are 
described using a Bayesian analysis as described previously23.

The most recent series of LSS analyses13–22 have longer follow-up times and improved adjustments for smok-
ing and other lifestyle factors compared to those used in previous NSCR versions. Table 3 show ERR parametric 
values (see “Methods”) for several tissues comparing females to males from the LSS results. Females have larger 
values of excess relative risk (ERR) compared to males for total solid, lung, stomach, liver, urinary-bladder can-
cers, and other (remainder) cancers. Males have larger ERR for colon and brain cancers. There are differences 
due to sex dependent cancers (breast, ovarian, and prostate), and the most recent LSS study finds a significant 
ERR for pancreatic cancer for females but not for males. Females and males are found to have similar ERR for 
leukemia (excluding chronic lymphatic leukemia (CLL)) and esophageal cancer. These age, sex and tissue specific 
ERR models are folded with the background rates for cancers and age dependent survival to make absolute risk 
predictions as described next.

Table 2.   Age adjusted total cancer incidence rates per 100,000 persons in SEER delay adjusted model2,3 for 
2014–2018 for several U.S. racial and ethnic groups for both males and females.

Race Females Males

Asian Pacific-Islanders 328.2 311.2

Black 400.2 516.1

Hispanic (white and black) 355.9 371.0

White 460.2 520.4

Table 3.   Parameters for Excess Relative Risk (ERR) models from Life Span Study (LSS) of atomic bomb 
survivors, and ratio of female (F) to male (M) risk for exposure at age 30 years and incidence at age 70 years. 
Estimates of effects of age at exposure and attained age are fit with a common model for females and males. 
Estimates of ERR per Sv are higher for females for most cancers with the exception of colon and brain cancers. 
For several tissues values were not reported because they are non-significant. For esophagus and leukemia 
excluding chronic lymphatic leukemia (CLL) differences between females and males were not reported because 
they were essential the same. For the group of other also denoted as remainder cancers parameters from the 
BEIR VII report30 are used. a For Leukemia time since exposure is used with power − 0.81 [− 1.31, − 0.28].

Cancer ρM, Gy−1 ρF, Gy−1 F/M ratio
η (attained age), 
year−1

% Decline per 
decade, 100(1−eγ)

γ, year−1

(age of exposure)

All solid 0.33 [0.25, 0.42] 0.6 [0.49, 0.72] 1.81 [1.42, 2.35] − 1.66 [− 2.11, 
− 1.2] − 21[− 29, − 12] 0.019

Leukemiaa 0.79 [0.03, 1.93] 0.79 [0.03, 1.93] 1 − 1.09 [− 2.01, 
− 0.27] – –

Lung 0.42 [0.16, 0.84] 1.2 [0.74, 1.75] 2.83 [1.38, 7.83] − 2.5 [− 4.3, 
− 0.71] 7 [− 16, 35] − 0.007

Stomach 0.21 0.45 2.2 [1.15, 4.8] − 1.93 [− 2.94, 
− 0.82] – –

Colon 0.77 [0.36, 1.3] 0.5 [0.2,  0.9] 0.65 [0.24, 1.48] − 3.63 [− 6.17,  
− 1.14] 24 [− 16, 82] − 0.0274

Liver 0.46 [0.19, 0.83] 0.7 [0.29, 1.23] 1.51 [0.69, 3.2] − 1.1 [− 3.3, 1.3] − 23 [− 47, 2] − 0.027

Urinary track 
(bladder) 0.64 [0.18, 1.2] 2.2 [1.2,  3.5] 3.4 [1.4,  8.6] − 0.43 [− 2.8, 2.4] – –

Esophagus 0.3 [0.05,  0.65] 0.3 [0.05, 0.65] 1 – – –

Brain 2.46 [1.0,  4.89] 0.77 [0.05,  1.95] 0.31 − 1.31 [− 3.23,  
0.82]

− 32.7 [− 94.8,  
29.4] 0.028

Pancreas 0.13 [− 0.26, 0.75] 0.77 [0.16, 1.56] 5.92 – – –

Breast 1.12 [0.73, 1.59] – – − 1.5 [− 2.6, − 0.4] − 5 [− 23, 15] 0.0049

Ovary 0.3 [− 0.22, 1.11] – – – – –

Prostate – 0.57 [0.21,  1.0] – – – –

Other 0.75 [0.31,  1.33] 1.08 [0.56, 1.8] 1.5 [0.7, 3.3] − 0.79 [− 2.4, 1.0] − 26 [− 51, 4] 0.023
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We used the data described above and the NSCR model of space radiation QF’s and tissue specific particle 
fluence and doses to estimate the risk of exposure induced cancer (REIC) and the risk of exposure induced 
death (REID) for average solar minimum conditions and spacecraft shielding of 20 g/cm2 of aluminum. Fig-
ure 2 shows tissue specific REIC and REID predictions for females for 1-year GCR exposures at average solar 
minimum conditions. White females have the largest REIC values for leukemia, urinary bladder, brain, lung, 
breast, remainder and total cancer amongst female groups. Hispanics and APIs have the largest REIC for stomach 
cancers. A similar comparison is shown in Fig. 3 for males. The differences between groups for males is smaller 
than females, however Black and White males have a modestly larger total REIC values than APIs or Hispanic.

Figure 4 shows comparison of REIC predictions for females and males of identical race or ethnic group. The 
relative risks of females to males is to a large extent common to each race or ethnic group, however some dif-
ferences occur. Females have larger radiation induced stomach cancer risks in all groups except for APIs where 
females and males have nearly identical risks. The disparity in lung cancer risk with females having much larger 
than males is reduced to a large extent in APIs.

Age is an important factor in the expression of cancer, and the role of the remaining lifespan at older ages due 
to competing risks reduces radiation risk for increasing ages of exposure. However, it should be noted that the 

Figure 2.   (A) Predictions of risk of exposure induced cancer (REIC) for 35 year old U.S. females of different 
races or ethnic groups for 1-year galactic cosmic ray exposures near solar minimum. (B) Predictions of risk 
of exposure induced death (REID) for 35 year old U.S. females of different races or ethnic groups for 1-year 
galactic cosmic ray exposures near solar minimum.

Figure 3.   (A) Predictions of risk of exposure induced cancer (REIC) for 35 year old U.S. males of different 
races or ethnic groups for 1-year galactic cosmic ray exposures near solar minimum. (B) Predictions of risk of 
exposure induced death (REID) for 35 year old U.S. males of different races or ethnic groups for 1-year galactic 
cosmic ray exposures near solar minimum.
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fraction of life remaining compared to the unirradiated for radiation cancer death is nearly constant with age at 
exposure. Figure 5 shows predictions of the REIC versus age at exposure from 20 to 60 years of age. Females have 
the larger risk at all ages at exposure with White females having the largest risk. Females have a larger decline in 
REIC above age 40 years compared to males due to the large role of declining breast cancer risk with age of expo-
sure. Results using the average US population rates would be slightly reduced compared to predictions for Whites.

We next predicted cancer risks for a references Mars mission of 940 days (400 days transit time and 540 days 
on the Mars surface)31. We considered estimates for a mission near average solar minimum conditions and used 
the shielding of Mars atmosphere as described previously32. Calculations are made in the conventional targeted-
effects (TE) model and a model with non-targeted effects (NTE) as described previously23–26. Because there are 
no model factors that describe the interaction of radiation with the underlying causes of different background 
rates, we report in Table 4 only the lowest and highest risk populations which are API’s and Whites, respectively. 
Age at exposure is the most important factor in controlling risk, however the results of Table 4 suggest differ-
ences on the order of 30% and 100% occur between the most sensitive and resistant females and males of a given 
age. These differences are larger than possibilities for radiation shielding (e.g., aluminum, water, polyethylene 
or carbon composites)33. Non-targeted effects as described previously23–26 would lead to large increases in Mars 
mission risks of a factor of 2 or more. Results for whites are similar to previous NSCR predictions for the US 
average population. For 40-y old female and male predictions of REID with NTEs of 7.59% [2.03, 20.3] and 
4.94% [1.18, 12.2], respectively were found as compared to the present results for 35-year old white female and 
male of 8.0 [3.2, 16.6] and 5.2% [2.1, 10.7].

In previous versions of the NSCR model23–27,34,35 we considered a mixture model comprised of weighted 
predictions using the multiplicative (relative risk (RR)) and additive risk (AR) models. The AR model assumes 
radiation risks have no dependence on background cancer risks other than the impacts from the life-table. 
The impacts of the life-table that enter into both RR and AR models are important in the evaluation of lifetime 
risks when comparing populations with reduced life expectancy such as Blacks to those with much longer life 

Figure 4.   Comparison between female and male risks of exposure induced cancer (REIC) for 35 year old 
females and males of different races or ethnic groups. Panel (A) is Whites, panel (B) is Blacks, panel (C) is 
Hispanics (Whites and Blacks), and panel (D) is Asian-Pacific Islanders.
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expectancy such as Asian-Pacific Islanders. Following the BEIR VII report, the NSCR-2013 multiplicative risk 
transfer model had a larger weight of 70% for most tissue sites with the exception of lung, breast and thyroid 
cancer. For thyroid cancers a RR model was used and for breast cancers a pure AR model was used. The NSCR-
2013 model deviated from BEIR VII for lung cancer used equal transfer weights for lung cancer of 50%, while 
BEIR VII recommended a RR model weight of 30% based on older studies of the LSS.

We suggest that the assumption of the AR model is at odds with current theories of cancer development 
including the role of multiple processes described in the Hallmarks of cancer description6, while the RR model 
is also to be preferred based on results from studies of radiation carcinogenesis in multiple strains of mice12. A 
different approach is described by the Adverse Outcome Pathway (AOP) models, which allows for additivity of 
risks from different stressors36, including between molecular-level perturbation of a biological system and an 
adverse outcome at a level of biological organization37. However, information to describe various stressors related 
to cancer risks for the different populations considered herein are not available.

Epidemiology studies that compare risks in different populations potentially could shed light on the transfer 
model assumptions of the multiplicative and additive risk models30,38. However, such comparisons are limited 
due to differences in exposure types, such as chronic versus acute or fractionated exposures, X-rays versus 
gamma-rays of different photon energies with varying neutron doses and energies, and the heterogeneity of 
characteristics within the population. Each of these factors could lead to as much as a twofold difference in risk 
predictions, which limits conclusions on transfer models to some extent. In addition, background cancer rates 
continue to change in various countries. Comparisons of transfer model predictions comparing the most recent 
LSS results13–22 to other epidemiology studies have not been made. Consideration of the risks for various racial 
and ethnic groups within a population would be a useful objective of future analysis in this area.

For lung cancer risk we applied the LSS results of a generalized multiplicative risk model with the level of 
smoking set to zero in the model15. A synergistic interaction between radiation and smoking is predicted in the 
LSS for modest levels of smoking usage (< 1 pack per day), while the potential impact of second-hand smoke was 
not quantified15. In our previous work the risks for never-smokers was estimated to be 20–30% lower (dependent 
on age at exposure and sex) compared to risks for the US average population34,35. Astronauts are largely never-
smokers, while participants in private space missions or space tourism would likely have diverse smoking habits. 
For calculating life-time risk the increased lifespan of never-smokers is an important consideration, and previous 
calculations considered the lower risks of never-smokers compared to the average US population for chronic 

Figure 5.   (A) Prediction of risk of exposure induced cancer (REIC) versus age of exposure for females of 
different races or ethnic groups from 1-year GCR exposures. (B) Prediction of risk of exposure induced cancer 
(REIC) versus age of exposure for males of different races or ethnic groups from 1-year GCR exposures.

Table 4.   Risk predictions for 35 years old crew persons for 940 days Mars mission. Mission parameters are 
400 days total transit and 540 days on surface during average solar minimum conditions with average of 20 g/
cm2 aluminum shielding. The conventional (targeted effects (TE)) model and model with estimates of non-
targeted effect (NTE) as described in the methods section and previously23–26 are shown. Results for highest 
cancer risk group (Whites) and lowest risk group (Asian-Pacific Islanders (API)) are shown.

%REIC (TE model) %REID (TE Model) %REIC (NTE model) %REID (NTE model)

White females 11.9 [4.3, 28.6] 3.5 [1.5, 10.3] 22.4 [9.3,37.7] 8.0 [3.2,16.6]

API females 9.5 [3.3, 24.1] 2.9 [1.0, 7.7] 18.9 [7.4, 35.7] 5.6 [2.3, 12.2]

White males 7.1 [2.7, 18.1] 2.6 [0.95, 6.7] 14.3 [5.9, 28.7] 5.2 [2.1, 10.7]

API males 5.4 [2.0, 14.2] 2.0 [0.71, 5.2] 11.1 [4.4, 23.1] 4.0 [1.6,8.4]
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obstructive pulmonary disease (COPD), circulatory diseases, and several cancer types34,35. A larger reduction 
in the prediction of radiation lung cancer risks would occur if lifespan differences were not considered. In some 
respect this is similar to the comparison made here for cancer risks for black and white males. Overall cancer 
rates are similar, however the reduced lifespan for black males leads to a slightly lower lifetime cancer risk predic-
tion compared to white males. The use of tobacco products is not a static parameter and future research should 
consider current estimates of usage across males and females of different ages, and racial and ethnic backgrounds.

Our predictions do not account for underlying mechanisms related to genetic, dietary and environmental 
factors that influence spontaneous cancers39–41 in relation to how damage induced by protons and heavy ions 
in space could interact with spontaneous processes impacting cancer risk. However, we suggest that research in 
this area is clearly warranted. High LET radiation produces not only more complex forms or DNA damage, but 
also modulates signaling pathways in a distinct manner to other radiation types8–11, with unknown implications 
for risks in individuals with distinct racial and ethnic backgrounds.

Cancer risks for short-term space missions (< 90 days) are predicted to be modest, however increases to levels 
above 1% fatality for longer duration missions with upper 95% confidence levels exceeding 10% for a Mars mis-
sion. In the past the U.S. has followed guidance from the NCRP to limit fatality risks to 3%42,43, and uncertainties 
have been considered in risk projections due to the limited understanding of high LET effects. However, the 
acceptable level of risks for future space missions continues to be debated44. We have suggested that such con-
siderations are distinct for privately funded missions compared to missions funded by government agencies25.

In conclusion, we find important differences in predictions of space radiation cancer risks for several racial 
and ethnic groups. These differences suggest inadequacies in risk predictions that consider only a U.S. average 
population, with possible implications for advising individuals of their potential risks and minimizing risks 
for specific missions. The science and legal status of genetic based risk evaluations is immature at this time45. 
We suggest that assessing risks based on age, sex and racial and ethnic background should be considered in an 
operational context for space missions in both the private and government sectors. Interestingly, astronaut selec-
tion is based on variety of factors such as requirement for vision, blood pressure, height and weight, and degree 
in a STEM education discipline46,47. Each of these criteria has likley genetic and environmental contributions. 
We suggest for high risk missions’ similar considerations should be considered in crew selection if the result is 
a lower mission radiation risk.

Methods
We briefly summarize recent methods developed to predict the risk of exposure induced cancer (REIC) and risk 
of exposure induced death (REID) for space missions and associated uncertainty distributions23–27. The instanta-
neous cancer incidence or mortality rates, λI and λM, respectively, are modeled as functions of the tissue averaged 
absorbed dose DT, or dose-rate DTr, gender, age at exposure aE, and attained age a or latency L, which is the time 
after exposure L = a − aE. The λI (or λM) is a sum over rates for each tissue that contributes to cancer risk, λIT (or 
λMT). These dependencies vary for each cancer type that could be increased by radiation exposure. The REIC is 
calculated by folding the instantaneous radiation cancer incidence-rate with the probability of surviving to time 
t, which is given by the survival function S0(t) for the background population times the probability for radiation 
cancer death at previous time, summing over one or more space mission exposures, and then integrating over 
the remainder of a lifetime:

where z is the dummy integration variable. In Eq. (1), Nm is the number of missions (exposures), and for each 
exposure, j, there is a minimum latency of 5-years for solid cancers, and 2-years for leukemia assumed. Tissue 
specific REIC estimates are similar to Eq. (1) using the single term from λI of interest. The equation for the REID 
estimate is similar to Eq. (1) with the incidence rate replaced by the mortality rate (defined below). We terminate 
the integral in Eq. (1) at the age of 100 years.

The tissue-specific cancer incidence rate for an organ absorbed dose, DT, is written as a RR model after adjust-
ment for radiation quality and dose-rate through introduction a function RQF:

where λ0IT is the tissue-specific cancer incidence rate in the reference population, and ERRT the tissue specific 
excess relative risk per Sievert. Extension of Eq. (2) for a spectrum of particle is described below. The tissue 
specific rates for cancer mortality λMT are modeled following the BEIR VII report30 whereby the incidence rate 
of Eq. (2) is scaled by the age, sex, and tissue specific ratio of rates for mortality to background incidence in the 
population under study:

Lifetables from the U.S. Center of Disease Control and Prevention (CDC) for white, black and Hispanic (black 
and white) male and females are used4, while the life-table for Asian-Pacific Islander populations are adjusted 
from the data for the Hispanics for their higher life expectance of ~ 2–3 years. Total and tissue specific cancer 
incidence and mortality rates from U.S. SEER are used with data collected from 2014 to 2018, which provide 
race, age, and sex specific rates. For cancer incidence we used the SEER delay-adjusted rates, which estimate the 

(1)REIC(aE ,DT ) =

Nm
∑

j=1

∫

aEj

dt�Ij(aEj , t,DTj)S0(t)e
−

Nm
∑

k=1

t
∫

aE

dz�Mk
(aEk ,z,DTk)

(2)�IT (aE , a,RQFDT ) = ERRT (aE , a)�0IT (a)RQFDT

(3)�MT (aE , a,HT ) =
�0MT (a)

�0IT (a)
�IT (aE , a,HT )
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delay in reporting of cancer cases2,3. In several cases (e.g., liver and brain cancers), the delay-adjusted rates led 
at older ages (> 80 years) to age-specific mortality rates greater than the delay adjusted incidence rate. For these 
cases we applied a correction to the mortality rates to ensure the mortality rate was 10% larger than the delay 
adjusted age specific incidence rates.

ERR functions.  The ERR function was parameterized for various solid cancer to depend on age at exposure, 
aE, attained aged, a using the parametric form14–22:

Values for the parameters (ρ,γ, and η)from several reports are shown in Table 3. For lung cancer we use the 
results from a generalized multiplicative model15, which includes the effects of tobacco usage, however with the 
number of cigarettes per day set to 0. For leukemia risk excluding CLL uses a dependent on time since exposure 
in place of age at exposure13:

with parameter values also listed in Table 3. For thyroid and remainder (other) cancers we use similar para-
metrizations from the BEIR VII report30. Estimates for uterine cancer were small and not included in the results 
section.

Radiation quality and dose‑rate descriptions.  The radiation rates in Eqs. (2) and (3) are scaled for 
GCR ions at low dose-rates to gamma-rays using a scaling factor denoted, RQF. The RQF has two terms that repre-
sent the track core and penumbra contributions to ion effects. The parameters of RQF are estimated from relative 
biological effectiveness factors (RBE’s) determined from low dose and dose-rate particle data relative to acute 
γ-ray exposures for doses of about 0.5–3 Gy, which we denote as RBEγAcute to distinguish from estimates from 
RBEmax based on less accurate initial slope estimates and a DDREF estimated from Bayesian analysis described 
previously. The penumbra term contains a dose and dose-rate reduction effectiveness factor (DDREF). The scal-
ing factor is written23–26:

where

with the parametric function23–26

where E is the particles kinetic energy per nucleon in units of MeV/u, L is the LET, Z is the particles charge num-
ber, Z* the effective charge number, and β the particles speed relative the speed of light. The model parameters 
(Σ0/αγ, κ and m) in Eqs. (6) and (7) are fit to radiobiology data for tumors in mice or surrogate cancer endpoints 
as described previously23–26. Distinct parameters are used for estimating solid cancer and leukemia risks based 
on estimates of smaller RBEs for acute myeloid leukemia and thymic lymphoma in mice compared to those 
found for solid cancers.

The space radiation QF model corresponds to a pseudo-action cross section (biological effectiveness per unit 
fluence) of the form,

The Σ is denoted as a pseudo-biological action cross section for tumor induction in units of µm2 with the 
designation as “pseudo” given because time-dependent factors have been suppressed, which impact values for 
the cross-sectional area predicted by fits to the experiments.

Non‑Targeted effects on QF.  In the NTE model we assume the TE contribution is valid with a linear 
response to the lowest dose or fluence considered, while an additional NTE contribution occurs such a pseudo-
action cross section is given by,

where F is the particle fluence (in units of µm2) and the η function represents the NTE contribution, which is 
parameterized as a function of x = Z*2/β2 or similarly LET as:

In Eq. (10) the area, Abys, determines the number of bystander cells surrounding a cell traversed directly by a 
particle that receives an oncogenic signal. The RBE (or QF) is related to the cross section by RBE = 6.24 Σ/(LET 

(4)ERR(D, sex, a, aE) = ρsexD
( a

70

)η

exp[γ (aE − 30)]

(5)ERR(D, sex, a, aE) = ρsexD
( a

70

)η

exp[υ(a− aE)/40]

(6)RQF = QL(Z,E)/DDREF + QH (Z,E)

(6a)QL(Z,E) = [1− P(Z,E)]

(6b)QH (Z,E) = 6.24�0P(Z,E)/(αγ L)

(7)P(Z,E) = [1− exp(−Z∗2/κβ2)]m[1− exp(−E/0.2)]

(8)�TE(Z,E) = �0P(Z,E)+ αγ L[1− P(Z,E)]/6.24

(9)�NTE(Z,E) = �TE(Z,E)+ η(Z,E, F)/F

(10)η = η0 xe
−η1 x[1− e−FAbys ]
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αγ) where αγ is the gamma-ray linear slope coefficient. Therefore, only the ratio of parameters η0/αγ is needed 
for risk estimates.

Space radiation organ exposures.  GCR exposures include primary and secondary H, He and HZE par-
ticles, and secondary neutrons, mesons, electrons, and γ-rays over a wide energy range. We used the HZE parti-
cle transport computer code (HZETRN) with quantum fragmentation model nuclear interaction cross sections 
and Badhwar–O’Neill GCR environmental model to estimate particle energy spectra for particle type j, φj(Z,E) 
as described previously23,32. GCR organ dose equivalent show little variation from 10 to 50 g/cm2 of shielding33, 
and we use 20 g/cm2 for calculations, which is a typical average shielding amount.

For the TE model, a mixed-field pseudo-action cross section is formed by weighting the particle flux spectra, 
φj(E) for particle species, j, contributing to GCR exposure evaluated with the HZETRN code with the pseudo-
biological action cross section for mono-energetic particles and summing over all particles and kinetic energies:

Equations for the mixed-field pseudo-action cross section in the NTE model as folded with particle specific 
energy spectra as:

Further details on uncertainty analysis of model components are described in previous reports23–27. We note 
that estimates of uncertainties in particle spectra and organ doses, dose-rate modifiers, and radiation quality 
function parameters are included in our approach. PDF’s for each component are formulated and Monte-Carlo 
sampling performed to propagate the uncertainty over each factor to obtain an estimate of the overall uncertainty.
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