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Abstract
The decline in snowpack across the western United States is one of the most pressing threats posed by climate change to 
regional economies and livelihoods. Earth system models are important tools for exploring past and future snowpack vari-
ability, yet their coarse spatial resolutions distort local topography and bias spatial patterns of accumulation and ablation. 
Here, we explore pattern-based statistical downscaling for spatially-continuous interannual snowpack estimates. We find that 
a few leading patterns capture the majority of snowpack variability across the western US in observations, reanalyses, and 
free-running simulations. Pattern-based downscaling methods yield accurate, high resolution maps that correct mean and 
variance biases in domain-wide simulated snowpack. Methods that use large-scale patterns as both predictors and predictands 
perform better than those that do not and all are superior to an interpolation-based “delta change” approach. These findings 
suggest that pattern-based methods are appropriate for downscaling interannual snowpack variability and that using physi-
cally meaningful large-scale patterns is more important than the details of any particular downscaling method.

Keywords  Snow water equivalent · Empirical orthogonal functions · Canonical correlation analysis · Teleconnections · 
Water resources

1  Introduction

The decline in snowpack across the western United States 
is one of the most pressing threats posed by climate change 
to regional economies and livelihoods (Mankin and Diff-
enbaugh 2015; Mote et al. 2018; Xiao et al. 2018; Huning 
and AghaKouchak 2020). Spring snowmelt is critical for 
regional water managers—more than half of annual runoff 

in the western US derives from snowpack (Li et al. 2017). 
Snow plays a central role in local and regional climates and 
ecosystems, from its cooling effect on temperatures to its 
modulation of the timing and intensity of streamflow and 
soil moisture anomalies (Walsh et al. 1982; Marks and Doz-
ier 1992; Bales et al. 2006; Maurer and Bowling 2014; Li 
et al. 2017). The observed decline in snowpack is the result 
of several interacting factors including shifts in the timing 
and intensity of seasonal precipitation and temperature pat-
terns, each of which are exacerbated by warming tempera-
ture trends and the attendant changes in accumulation and 
ablation (Pierce et al. 2008; Kapnick and Hall 2012; Peder-
son et al. 2013; Klos et al. 2014; Xiao et al. 2018). These 
snowpack deficits are of a magnitude and extent unprec-
edented in the observational period (McCabe and Wolock 
2009; Mote et al. 2018; Schoenemann et al. 2020) and are 
expected to worsen in the future (Fyfe et al. 2017; Marshall 
et al. 2019; Siler et al. 2019).

Yet it remains difficult to observe snowpack uniformly 
across large spatial domains. Spatially-continuous high-
resolution maps of snowpack are therefore a challenge to 
produce, particularly in areas with complex terrain (Erickson 
et al. 2005; Meromy et al. 2013). Different sensor types and 
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measurement strategies focus on distinct—if related—fac-
ets of the system, such as snow water equivalent (SWE), 
snow-covered area, and snow depth. Each has unique uncer-
tainties, coverage, and observational spans, making them a 
challenge to integrate (Dozier et al. 2016; Dong 2018). In 
most locations the observational record only extends for a 
few decades into the past (e.g. Serreze et al. 1999), making it 
difficult to place observed variability in a long-term context.

An array of modeling approaches provides ways to esti-
mate gaps in the observational record and produce con-
tinuous spatiotemporal data. From standalone hydrological 
bucket models to the complex land-surface components of 
Earth system models, snowpack simulations attempt to cap-
ture the interacting drivers of snowpack variability across 
spatial and temporal scales. These models allow for assess-
ments of the mechanistic uncertainty of these drivers and 
uncertainty in their observations (Clark et al. 2011). Even 
simple models provide useful information for constraining 
noisy observations (Broxton et al. 2016). Although the skill 
of current-generation snow models is high overall, issues 
remain in the representation of processes like ablation at 
near-freezing temperatures (Rutter et al. 2009; Broxton et al. 
2016; Krinner et al. 2018). Regional and global snow models 
must run on daily to sub-daily time scales, so a reduction in 
spatial resolution may be required to minimize computa-
tional costs. This tradeoff makes accurate spatial modeling 
of snowpack difficult, even when the underlying process 
models are physically appropriate.

Snow accumulation and ablation is sensitive to local 
topography, particularly in the mountainous regions that 
receive the most snowfall (Anderson et al. 2014; Tennant 
et al. 2017; Jennings and Molotch 2019). The coarse reso-
lution of most simulations smooths over mountain peaks 
and deep valleys, introducing temperature biases that either 
melt snow too quickly or prevent it from accumulating at 
all (Rhoades et al. 2018). The tendency for snow models to 
underpredict accumulated SWE has been well documented. 
Xu et al. (2019) showed that increasing model resolution 
from 0.44◦ to 0.11◦ increases the accuracy of simulated SWE 
by 35%. Such low-snow biases in regional and global snow 
simulations preclude their use by local water managers with-
out corrections to this fundamental scale mismatch. Some 
form of downscaling is required to estimate fine-resolution 
snowpack maps from coarser-resolution simulation outputs 
(McGinnis 1997; Pons et al. 2010; Tryhorn and Degaetano 
2013). However, this is increasingly accomplished via an 
additional high-resolution regional climate model or by forc-
ing a hydrological model with atmospheric data downscaled 
by constructed analogue methods, both of which require data 
on hourly to daily time scales, making them computationally 
infeasible for assessing variability on time horizons greater 
than a few decades (Rhoades et al. 2018; Chegwidden et al. 
2019; Fiddes et al. 2019; Ikeda et al. 2021).

Non-local “pattern-based” statistical downscaling meth-
ods are an effective alternative to quickly generate fine-scale, 
long-term ensembles from existing coarse-resolution cli-
mate model simulations. Pattern-based methods decompose 
observed and simulated climate fields into a limited number 
of spatiotemporal patterns or “modes of variability,” find-
ing statistical relationships that translate one set of modes 
into the other (Bretherton et al. 1992; Tippett et al. 2008; 
Simon et al. 2013; Maraun and Widmann 2018). Because 
they find associations between internally-consistent predic-
tor and predictand fields, pattern-based statistical methods 
share some benefits with more computationally expensive 
dynamic downscaling methods that preserve the physical 
consistency of the simulated climate fields. These methods 
are “non-local” in that they focus on associations between 
large-scale patterns, rather than local associations between 
an observed location and the overlapping simulation grid 
cell. The simulation grid cell that best captures the observed 
variability at a given location is often not the correspond-
ing local grid cell (van den Dool et al. 2000; Maraun and 
Widmann 2015; Nicholson et al. 2019). While local mean 
conditions reflect local terrain, year-to-year departures from 
the mean often reflect teleconnections to remote, large-scale 
atmosphere-ocean variability (van den Dool et al. 2000; 
Hewitt et al. 2018). Anchoring the downscaling process 
in these large-scale physical mechanisms leads to a higher 
signal to noise ratio (Benestad et al. 2015), ensuring the 
estimated statistical relationships are internally consistent 
and likely to remain stable over time.

Here, we explore pattern-based statistical methods for 
downscaling interannual variability in March mean SWE 
across the western United States. We find that a few leading 
modes—present in observations, simulations, and reanaly-
ses—capture the majority of snowpack variability in this 
domain. We compare several related regression methods 
for finding associations between observed and simulated 
patterns and show that even simple linear models perform 
well under cross validation. These methods yield accurate 
high resolution maps that correct mean and variance biases 
in domain-wide simulated SWE. Methods that use large-
scale patterns as both predictors and predictands perform 
better than those that use those patterns on only one side of 
the regression equation, and all pattern-based methods are 
superior to a local “delta change” approach. These findings 
suggest that pattern-based methods are indeed appropriate 
for downscaling interannual snowpack variability, and that 
employing physically-meaningful large-scale patterns is 
more important for accuracy than the details of any particu-
lar downscaling method. Our findings here demonstrate the 
utility of applying these approaches where more computa-
tional- or data-intensive methods are impractical, including 
paleoclimate modeling and data assimilation.
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2 � Data

2.1 � Observations

We focused on a domain between 125–102◦ W and 31–49◦ 
N, covering the western US states of Arizona, California, 
Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, 
Utah, Washington, and Wyoming. Observed March SWE 
was calculated from the University of Arizona (UA) Daily 
4 km SWE data product, a gridded record of daily SWE 
and snow depth for water years 1982–2017 at 4 km reso-
lution across the conterminous US (Broxton et al. 2019). 
March mean SWE has been shown to approximate the 
more commonly used April 1st SWE measure, but is less 
sensitive to sampling variability than a single daily value 
(Mankin and Diffenbaugh 2015; Ye 2019). The UA-SWE 
data were based on a simple ablation and accumulation 
model driven by gridded daily PRISM temperature and 
precipitation fields (Daly et al. 2008), rescaled by relative 
anomalies from hundreds of in situ observations of SWE 
and snow depth from the SNOTEL and COOP networks, 
respectively (Broxton et al. 2016; Zeng et al. 2018). We 
also acquired the raw PRISM temperature and precipi-
tation fields to assess local relationships between SWE 
accumulation and seasonal hydroclimate variability.

Although both the UA-SWE and underlying PRISM 
data incorporate direct, point based observations, the need 
to interpolate these observations into a spatially continu-
ous gridded product involves additional modeling assump-
tions. These assumptions, such as a binary temperature 
cutoff between rain and snow (Broxton et al. 2016) or 
the lack of influence of atmospheric humidity on snow 
ablation (Harpold and Brooks 2018), may bias these grid-
ded “observations” in ways that may artificially inflate 
the apparent skill of any downscaling model fit to them. 
Thus, we supplemented these gridded products with direct, 
point-based April 1st SWE observations from in situ SNO-
TEL stations and a selection of manual measurements 
from snowcourses and aerial markers from the Natural 
Resources Conservation Service (https://www.wcc.nrcs.
usda.gov/snow/, accessed 11/23/18). However, given our 
specific focus on modeling gridded SWE fields, we still 
refer to the PRISM and UA-SWE products as “observa-
tions” for simplicity and clarify when specific point-based 
observations are used instead.

2.2 � Reanalyses and simulations

Modeled SWE for the downscaling experiments was 
derived from the CERA 20th century (CERA-20C) rea-
nalysis product (variable name SD) (Laloyaux et al. 2018). 

CERA-20C is a long-term reanalysis product that uses 
the European Centre for Medium-Range Weather Fore-
cast (ECMWF) system spanning 1901–2010 at six-hourly 
temporal resolution and ∼1◦ spatial resolution. It assimi-
lates sea level pressure and ocean temperature observa-
tions from across this period in order to avoid temporal 
inconsistencies from the later introduction of, for example, 
satellite observations. We also acquired monthly sea sur-
face temperatures and 500 mb geopotential heights from 
the same reanalysis to assess large-scale atmosphere-ocean 
teleconnections. We used the means of the 10-member 
ensemble for all analyses as the individual ensemble mem-
bers showed few major differences over the most recent 
six decades.

As a preliminary evaluation of whether these methods 
could be applied to free-running paleoclimate model simula-
tions, we also analyzed outputs from the CCSM4 Last Mil-
lennium simulation (Landrum et al. 2013) and the CESM 
Last Millennium Ensemble (Otto-Bliesner et al. 2016), their 
associated twentieth century extensions (variable name 
H2OSNO, CMIP5 standard name SNW), and version 3 of 
the NOAA-CIRES-DOE 20th Century Reanalysis (20CRv3) 
(variable name WEASD) (Slivinski et al. 2020) in order to 
assess modes of snowpack variability in free-running Earth 
system models of different native resolutions ( ∼1◦ and ∼2◦ ) 
and reanalysis data from different modeling groups, respec-
tively. Herein, we collectively refer to both reanalyses and 
free-running climate models as “simulations” for simplicity.

2.3 � Preprocessing

Both observed and simulated data were truncated to the 
overlapping period of 1982–2010 and aggregated from daily 
to monthly timescales by calculating the average March 
SWE value for each grid cell and year (Fig. 1). We used 
bilinear interpolation to resample each of the large-scale 
simulation outputs to a common 1 ◦ grid. We also resampled 
the 4 km snow observations to an 8 km grid to decrease 
computational costs without degrading the high-resolution 
spatial signal. Grid cells that experienced no SWE accu-
mulation throughout the observational period were masked 
from successive analyses.

3 � Methods

3.1 � Estimating modes of snowpack variability

We isolated key modes of observed snowpack variability 
using principal components analysis (PCA). The observed 
and simulated data were area weighted to prevent undue 
influence from grid cells at higher latitudes by multiplying 
the observations at each grid cell by the square root of of the 
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cosine of the cell’s latitude in radians (Livezey and Smith 
1999). We calculated interannual SWE anomalies by mean-
centering the data before analysis. We do not use standard-
ized or detrended anomalies in order to preserve spatial pat-
terns of variance across the field (Zeng et al. 2018).

The PCA results in a set of orthogonal principal compo-
nent time series or “amplitudes,” eigenvalues representing 
the variation accounted for by each amplitude time series, 
and eigenvectors or “empirical orthogonal functions” 
(EOFs) mapping the amplitude time series back onto the 
original spatial grid. We standardized the PC amplitudes to 
unit variance and reweighted the eigenvectors by the square 
root of their corresponding eigenvalues to give higher weight 
to the leading spatial modes (Hannachi et al. 2007). Thus, 
the original dataset could be reconstructed by multiplying 
each amplitude time series by its corresponding EOF spatial 
pattern, summing the results to get SWE anomalies, and 
adding in the sample mean of the grid cell. Using only a 
subset of these spatiotemporal patterns to reconstruct the 
original SWE field effectively removes “noise” associated 
with the higher order modes, limiting the data to a subspace 
representing only the most important axes of variation. The 
truncation level k for each field was selected by cross valida-
tion (see Sect. 3.3).

We used several techniques to examine the leading 
spatiotemporal modes. We visualized the EOF modes by 
calculating the Pearson correlation coefficient between 
each PC amplitude time series and each grid cell’s origi-
nal time series. We explored potential atmosphere-ocean 

teleconnections by calculating the correlation between each 
PC amplitude and average October-March global sea sur-
face temperatures (SSTs) and 500 MB geopotential heights 
from the CERA-20C reanalysis (Laloyaux et al. 2018) and 
regional temperature and precipitation observations from 
PRISM (Daly et al. 2008), assessing statistically significant 
correlations using the false discovery rate (Wilks 2006, 
2016). We also applied a varimax rotation to the leading 
PCs to examine regional response patterns (Richman 1986), 
although unrotated PCs were used for downscaling due to 
their favorable statistical properties and similarity to the 
rotated PCs.

Although we attempted to find physically-meaningful pat-
terns where they were present, we did not consider the lack 
of physical interpretation to be a criterion for excluding a 
particular mode from the downscaling model. We ensured 
only that the retained modes collectively reflected large-scale 
atmosphere-ocean variability. In other words, the choice of 
truncation level k and the combined set of coupled patterns 
were more important to our downscaling process than the 
physical interpretation of any particular mode.

3.2 � Pattern‑based downscaling

Pattern-based downscaling models use some combination of 
observed and simulated PC time series to predict one climate 
field from another. There are multiple statistical methods 
capable of doing so, many of which are variants on multiple 
linear regression (Bretherton et al. 1992; Tippett et al. 2008). 

Fig. 1   Mean March snow 
water equivalent (SWE) in mm 
for 1982–2010 from A UA 
4 km daily SWE observations 
(Broxton et al. 2019), B CERA-
20C reanalysis (Laloyaux et al. 
2018), C CCSM4 Last Mil-
lennium simulation extension 
(Landrum et al. 2013). Note the 
scale of the observations differs 
from the simulations by nearly 
an order of magnitude due to 
differences in model resolution
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They generally differ in whether they maximize explained 
variance in the observations as opposed to the shared vari-
ance between observations and simulations, and whether 
they use PCs as predictors, predictands, or both (Table 1). 
We compared four downscaling methods that spanned this 
methodological spectrum along with an additional “local” 
null model.

Canonical correlation analysis (CCA) is one of the most 
common approaches to coupled pattern analysis (Maraun 
and Widmann 2018). It yields a set of patterns that maxi-
mizes the shared correlation between the predictor and 
predictand fields (Tippett et al. 2008). We applied CCA to 
the leading predictor and predictand modes of variability to 
regularize the model and make it computationally tracta-
ble (Barnett and Preisendorfer 1987; Bretherton et al. 1992; 
Benestad 2001; Tippett et al. 2008). Downscaling models are 
prone to overfitting on shorter calibration windows, so this 
PCA prefiltering step increases the signal-to-noise ratio to 
ensure the resulting patterns are statistically robust.

Principal components regression (PCR) is a similar 
method that uses the PC time series in independent multi-
ple linear regressions. Traditional PCR fits a different model 
to the predictor PCs for each predictand grid cell, although 
here we take the more efficient approach of using predictand 
PCs directly (Benestad et al. 2015). Because the PC time 
series are mutually uncorrelated each predictand PC can be 
modeled independently and there is no concern of multi-
collinearity. PCR is asymmetric in that it only explains the 
variance of the predictands, contrary to CCA, although both 
methods are linear and are equivalent under certain condi-
tions (Tippett et al. 2008). We also tested a nonlinear variant 
of PCR which replaces the linear models with penalized 
piecewise polynomials estimated in a generalized additive 
model (PCR-GAM).

Empirical orthogonal teleconnections (EOT) finds a set 
of grid cells that explain the most variance in the observa-
tion domain by fitting a linear model between all pairs of 
predictor and predictand grid cells (van den Dool et al. 2000; 
Appelhans et al. 2015). The simulation grid cell that pre-
dicts the most variance in all of the predictand grid cells is 
selected as the first pattern. Then the algorithm is run again 
on the residuals from the regressions on the first pattern, 
and the process is repeated until a set number of patterns is 
reached. EOT yields more localized spatial patterns, similar 
to rotated EOFs, than methods that use predictor and pre-
dictand PCs directly. Although PCA can be used to denoise 
both fields prior to the analysis, EOT focuses on the grid-cell 
level time series and is not constrained to fit the large scale 
patterns used by CCA and PCR.

We compared these non-local pattern-based techniques to 
a null model using simple interpolation. This “delta change” 
approach involved subtracting the long-term simulated mean 
SWE field from each simulated year, bilinearly interpolating 
these low-resolution anomalies to the higher resolution of 
the observations, and adding back in the observed high-res-
olution means (Maraun and Widmann 2018). We tested delta 
change models using both this “additive” approach as well 
as an alternative “multiplicative” approach that used multi-
plication and division instead of addition and subtraction to 
estimate proportional rather than absolute changes in SWE. 
While conceptually similar to the pattern-based methods 
outlined above, these delta change methods use only local 
information and cannot correct any spatial biases caused by 
the smoothed topography of the simulation (Maraun and 
Widmann 2018). We used these models to assess the added 
value of the non-local downscaling approaches relative to 
common local methods.

All downscaling methods were implemented in R ver-
sion 4.0.3 (R Core Team 2020) using the packages stars, 
tidyverse, tidyEOF, mgcv, remote, and MuMIN 
(Wood 2006; Appelhans et al. 2015; Wickham et al. 2019; 
Bartoń 2020; Gauthier 2020; Pebesma 2021). Code for 
reproducing the main analysis and figures is available at 
https://​doi.​org/​10.​5281/​zenodo.​51103​95.

3.3 � Cross validation

Each of the pattern-based downscaling methods required 
the number of coupled patterns to be defined by a hyper-
parameter k. The methods that used PCA prefiltering also 
required selection of a truncation level for the predictor and 
predictand PCs. We used a five-fold cross validation routine 
to tune the hyperparameters of each model, fitting and pre-
dicting from models with all possible combinations of up to 
ten predictor patterns kx , predictand patterns ky , and coupled 
patterns kxy , with the constraint that kxy ≤ min(kx, ky).

Table 1   Pattern-based downscaling methods: canonical correlation 
analysis (CCA), principal components regression (PCR), principal 
components regression via generalized additive models (PCR-GAM), 
and empirical orthogonal teleconnections (EOT)

Either the predictors (x), predictands (y), or both are subjected to 
PCA prefiltering prior to downscaling. Asymmetric models seek to 
explain variance of the predictands while symmetric models explain 
the shared correlation. Cross-validated performance metrics for the 
best-performing model of each class are the space-time root mean 
square error and the Pearson correlation between observed and simu-
lated domain-wide SWE. The additive delta change approach using 
bilinearly interpolated anomalies is also included here as a local base-
line for the nonlocal downscaling approaches

Method PCA Prefiltering Symmetric RMSE Correlation

CCA​ x, y Yes 41.4 0.940
PCR x, y No 43.1 0.949
PCR-GAM x, y No 42.7 0.932
EOT y No 48.5 0.918
DELTA None No 53.2 0.912

https://doi.org/10.5281/zenodo.5110395
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We divided the 29-years calibration period into five con-
tiguous folds, four of which contained six years and one of 
which contained five. We held out one fold at a time, fitting 
each model and parameter combination on the remaining 
folds and using them to predict the held out fold. The entire 
modeling workflow—anomaly calculation, PCA truncation, 
and model fitting—was repeated for each training and testing 
fold independently to prevent leaking information among 
the folds (Van Den Dool 1987; Livezey and Smith 1999; 
Smerdon et al. 2010). We repeated this process until each 
fold had been used four times for training and once for test-
ing, after which we combined the test folds into a single 
29 years sequence from which we calculated the prediction 
error against the observed sequence. It is often preferable 
to use a nested cross validation routine when doing model 
selection and performance assessment simultaneously, but 
we did not do so in this case because our sample size was 
limited and the different models were of broadly the same 
type with a low number of similar hyperparameters (Wainer 
and Cawley 2018).

We used two metrics to assess the skill of each model and 
parameter combination. First we examined the correlation 
between the observed and predicted domain-wide total SWE 
time series. We calculated total domain SWE by multiply-
ing each SWE value by the area of its grid cell and sum-
ming the result. We then assessed the local spatial skill of 
the downscaled product by calculating the total space-time 
root mean square error (RMSE) between all observed and 
predicted grid cells. We selected the models and parameter 
combinations that maximized domain-wide correlation and 
minimized RMSE under cross validation, and refit the best 
performing model to the entire data series. We compared 
the predictions from this final model to the raw CERA-20C 
reanalysis to assess the added value of downscaling for cor-
recting mean and variance biases in domain-wide SWE. We 
demonstrated the spatial skill of the model by comparing the 
spatial anomalies of observed, reanalysis, and downscaled 
fields during a known extreme year, and assessed the added 
spatial value of pattern-based downscaling over the local, 
interpolation-based null model using a network of long-term 
point-based SWE observations. To test the method’s sensi-
tivity to recent warming trends, we refit the best model hold-
ing out the years with the top 20% warmest October-March 
average temperatures in the PRISM observations. We also 
compared these CERA-20C based reconstructions to models 
using the NOAA-CIRES-DOE 20CRv3 reanalysis (Slivinski 
et al. 2020) as an alternative predictor to assess the sensitiv-
ity of the outputs to the specific reanalysis methodology.

A downscaling model trained on reanalysis data must 
also be able to make predictions from unseen, free-running 
simulations to make skillful climate-change impact assess-
ments beyond the observational period (Maraun and Wid-
mann 2018). As a proof-of-concept of the generalizability of 

the final model and EOF patterns, we used it to downscale 
additional 300-years simulated snowpack sequences by pro-
jecting data from the CCSM4 and CESM Last Millennium 
simulations onto the reanalysis PC patterns. As these free-
running simulations were not constrained to match the year-
to-year evolution of the observations as were the reanaly-
ses, the added value of downscaling was assessed through 
improvements in the mean and variance biases on a 50-years 
distributional basis.

4 � Results

A limited set of climate modes explain the majority of 
observed and simulated March SWE variance. Four spati-
otemporal patterns explain 76% of the observed variance in 
March snowpack over the western United States (Fig. 2a). 
The leading ten patterns explain nearly 90% of the observed 
variance. These patterns represent recurring modes of spa-
tiotemporal variability and are an efficient means of captur-
ing the high dimensional spatiotemporal snowpack field in 
a limited subspace of patterns.

Similar patterns are found in coarse-resolution simula-
tions. The leading 10 PCs of the 110 year CERA-20C rea-
nalysis explain 96% of the variance in simulated snowpack, 
and the leading four explain 89% of the variance (Fig. 2b). 
These reanalysis PCs are associated with the same broad 
spatial patterns as the observed PCs, but the longer sample 
windows allows for greater separation between the leading 
modes than with the 36 year observational record.

Large-scale snow patterns reflect orography and atmos-
phere-ocean variability. The spatial EOF patterns associated 
with the leading snowpack PCs exhibit clear relationships 
to regional precipitation and temperature (Fig. 3) as well 
as global pressure systems and sea surface temperatures 
(Fig. 4). EOF/PC1 is a domain-wide signal with high load-
ings in the Rocky Mountains, Sierra Nevada, and Cascade 
ranges. It is associated with simultaneous cold and wet 
conditions (or vice versa) over the domain and anomalous 
pressure systems over northwestern North America. EOF/
PC2 exhibits a north–south dipole pattern with opposite-
sign loadings in the Cascades and northern Rockies and the 
Sierra Nevada and southern Rockies, respectively. Unlike 
EOF1, this pattern is associated the precipitation, not tem-
perature, anomalies over the domain and a far more zonal 
geopotential height anomaly over North America. EOF3 is 
localized to the Rocky Mountains and is associated with 
domain-wide temperature anomalies and geopotential and 
SST dipoles over the north Pacific. EOF4 is a domain-wide 
mode associated with temperature anomalies and SST and 
geopotential height anomalies off the Pacific coast and in 
the tropics. Although the SST correlations exhibit spatial 
structure resembling ENSO and other modes of Pacific SST 
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variability (Fig. 4b), none of these are significant during the 
1982–2010 period (although the horseshoe-shaped PC3-SST 
and coastal PC4-SST patterns are significant in SST obser-
vations that extend to 2017 (Huang et al. 2017)).

Higher order PCs/EOFs beyond the leading four also 
show spatially coherent variability. While these PC/EOF 
pairs may resemble physical climate patterns, they are 
not interpreted here as the orthogonality constraints may 
lead to mixed or otherwise poorly resolved patterns spread 
across multiple PCs. Given the small sample size, it can 
be difficult to distinguish such “degenerate multiplets” 
from proper modes (North et al. 1982). While the first two 

observed PCs are distinct modes of variability, PCs 3–4 
and 5–10 are degenerate multiplets that cannot be readily 
distinguished from one another given the limited 36-year 
observational period (1982–2017). Likewise, the first four 
reanalysis PCs represent distinct modes while PCs 5–7 and 
8–10 are degenerate multiplets. A varimax rotation of the 
leading ten PCs alleviates some of these concerns, yield-
ing more discrete zones reflecting topographic interception 
of different directions of atmospheric flow. Regardless, 
that these patterns are present in reanalysis and simula-
tion data from much longer time spans (1901–2010 and 
840–2005, respectively) suggests the observed patterns are 

Fig. 2   The leading four EOF spatial patterns expressed as the Pearson 
correlation coefficient between each PC time series and March snow 
water equivalent in A UA-SWE observations (1982–2017) (Broxton 
et  al. 2019), B CERA-20C reanalysis (1901–2010) (Laloyaux et  al. 

2018), and C the CCSM4 Last-Millennium simulation and historical 
extension (850–2005) (Landrum et al. 2013). These patterns represent 
between 76 and 90% of the variance in their respective spatiotempo-
ral fields
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robust in time and can be used as anchoring points for a 
non-local downscaling approach.

Downscaling with coupled patterns has higher cross-vali-
dated skill than similar local and non-local methods. CCA is 

the best-performing downscaling model under cross valida-
tion, with the lowest space-time root mean square error and 
effectively tied for the highest correlation with total western 
US SWE (Table 1). The most important parameter for model 

Fig. 3   Pearson correlation coefficients between the leading four 
observed PC time series and October–March A total precipitation and 
B average temperature from PRISM (Daly et al. 2008) over the 1982–

2017 period. Contour lines indicate regions of statistically significant 
correlation with a false discovery rate below 0.1

Fig. 4   Pearson correlation coefficients between the leading four 
observed PC time series and October–March (A) 500mb geopotential 
height and (B) sea surface temperature from CERA-20C (Laloyaux 

et  al. 2018) over the 1982–2010 period. Contour lines indicate 
regions of statistically significant correlation with a false discovery 
rate below 0.1
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skill is the number of coupled patterns kxy , while the precise 
number of prefiltering patterns kx and ky is less important as 
long as they are greater than or equal to the optimal number 
of coupled patterns (Fig. 5). A CCA model with five coupled 
patterns maximizes the domain-wide correlation, but even 
one coupled pattern yields a high correlation coefficient. 
Likewise, a model with seven coupled patterns is the most 
accurate in reconstructing the entire spatiotemporal field 
(lowest cross validated RMSE), but a five-pattern model 
also performs reasonably well.

All models have comparable skill to CCA for domain-
wide SWE correlations, yielding a cross validated correla-
tion of around 0.9, but there is greater spread for space-
time RMSE. Both PCR models perform similarly to CCA 
for domain-wide SWE correlation, but the spatial skill is 
degraded due to the asymmetrical relationships between the 
predictors and predictands. PCR and PCR-GAM models pro-
duced largely similar reconstructions, yet the nonlinear PCR-
GAM consistently performs slightly worse than the linear 
PCR method due to its potential to overfit.

EOT yielded spatial patterns similar to the coupled-
pattern methods but with notably more instability under 
cross validation than the pattern methods because the base 
grid cell tended to vary between folds (Fig. 6). All meth-
ods are better than the delta change approach with additive 
anomalies, which performed similar to the pattern-based 

methods with only one or two patterns. The multiplicative 
delta change approach was by far the least effective, as 
the use of multiplicative anomalies introduced artifacts in 
years with unusually high SWE over areas with SWE aver-
ages close to zero. These artifacts significantly degraded 
the overall temporal and spatial skill, and were particularly 
severe under cross validation. These results support the 
interpretation that anchoring downscaling relationships 
in spatial patterns, rather than grid-cell level relation-
ships, increases the robustness of the resulting downscaled 
predictions.

Downscaling reduces spatial and temporal biases in sim-
ulated snowpack. Downscaling the CERA-20C reanalysis 
with any of the above pattern-based methods considerably 
reduces spatial and temporal biases in the raw reanalysis. 
Without downscaling, the CERA-20C reanalysis tends to 
underpredict domain-wide total SWE averages and overpre-
dict their variance. CCA downscaling with five coupled pat-
terns reduces this mean and variance bias relative to obser-
vations (Fig. 7). By construction, pattern-based downscaling 
also improves the spatial structure of simulated SWE anoma-
lies and removes spatial biases caused by the coarse resolu-
tion of the simulated topography in a way that interpolating 
the simulated anomalies does not (Fig. 8).

The increase in the spatial skill of the non-local CCA 
method over the local, interpolation-based “delta change” 

Fig. 5   Cross validation results for the three CCA parameters after 
Smerdon et  al. (2010): the number of predictor PCs kx , the number 
of predictand PCs ky , and the number of coupled patterns kxy . A–C 

Cross validation results for space-time root mean square error in mil-
limeters (lower is better). D–E Correlation between observed and 
downscaled total domain SWE (higher is better)
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Fig. 6   Comparison of CCA and EOT downscaling under five-fold 
cross validation. A Space-time root mean square error, in millimeters 
of SWE, for increasing number of coupled patterns. Lower RMSE 
corresponds to more accurate reconstructions. B Correlation between 
observed and reconstructed total SWE over western North America. 

The dashed horizontal line indicates the cross validated skill of the 
additive delta change model, a “local” interpolation-based downscal-
ing approach. The curves for the PCR and PCR-GAM models (not 
shown) resemble those of the CCA model

Fig. 7   Total Western US March 
SWE in teraliters ( km3 ) from 
the CERA-20C reanalysis with 
five-pattern CCA downscal-
ing (black) and without (gray), 
compared to recent observations 
(red). Downscaling adds value 
to the raw reanalysis by increas-
ing the mean and decreasing the 
variance relative to observations

Fig. 8   Standardized SWE 
anomalies for the 1997 El Niño 
in A CERA-20C reanalysis, B 
downscaled CERA-20C rea-
nalysis using CCA with seven 
coupled patterns, and C gridded 
UA-SWE observations. B and C 
Are both scaled by the observed 
SWE standard deviation to 
allow comparison. Note the 
lower standardized anomalies 
in the downscaled reanalysis 
relative to the observations, due 
to the residual variance unex-
plained by the leading patterns
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method is also apparent in reference to point-based SWE 
measurements from SNOTEL and snow-course sites that 
are not subject to the potential biases of the gridded UA-
SWE product and span a wider range of the 1901–2010 
period than was used for model calibration (Fig. 9). Grid-
ded SWE estimates downscaled using CCA are consist-
ently more accurate at predicting point-based SNOTEL 
and snow-course observations than those from the additive 
delta change method. The increase in spatial skill from the 
pattern-based methods is most apparent in the relatively 
thin Sierra Nevada and Cascade ranges, both of which are 
severely smoothed in low-resolution simulations. Because 
they rely on only local information at the grid cell level, the 
delta change methods are unable to correct these extensive 
topographic biases.

The spatial skill of the best-performing CCA model does 
not appear to be sensitive to recent warming trends. Using a 
model fit on the 80% coolest years to predict the 20% warm-
est years in the calibration period (1992, 1999, 2000, 20003, 
2004, 2005) yields a space-time RMSE of 40.9 mm, with 
virtually no spatial bias between the performance of this 
“cool” model and the full one. However, both models do 
tend to underestimate the total domain SWE deficits in the 
driest years, suggesting that while the pattern-based meth-
ods can represent recent warming trends in space, they may 
still be inheriting small temporal biases from the underlying 
reanalysis.

Reconstructions driven instead by the NOAA-CIRES-
DOE 20th century reanalysis are consistent with those 
downscaled from CERA-20C. The raw CERA-20C and 
20CRv3 SWE fields have a domain-wide SWE correlation 
of 0.90 and a space-time RMSE of 77 mm, while the down-
scaled fields have a correlation of 0.88 and RMSE of 31 mm, 
indicating that downscaling substantially improves the spa-
tial coherence of the reanalysis data while leaving temporal 
coherence largely the same. Notably, the RMSE among the 
two downscaled reanalysis fields is well bellow that of the 
best performing downscaling model under cross validation, 
suggesting that uncertainty due to changing calibration win-
dows is greater than that from the selection of the particular 
predictor dataset.

A CCA model fit to the reanalysis data also reduces biases 
in the free-running CCSM4 Last Millennium simulation. 
Downscaling CCSM4 outputs by simply projecting them 
onto the patterns estimated from CERA-20C corrects mean 
and variance biases in total domain-wide SWE relative to the 
raw simulation (Fig. 10). Domain-wide SWE downscaled 
from CCSM4 exhibits the same broad temporal correlations 
to simulated temperature and precipitation trends internal 
to the raw CCSM4 simulation, indicating that downscaling 
does not break the physical consistency of the water balance 
from the free-running simulation.

That simply projecting the CCSM4 data onto the CERA-
20C patterns, without additional transformations, results in 
reasonable estimates at all is informative. For a statistical 
model fit on large-scale patterns from one simulation to 

Fig. 9   Added value of non-local CCA downscaling relative to local, 
interpolation-based “delta change” methods for spatial prediction. 
The difference in root mean square error (mm of SWE) is shown 
between the gridded estimates from each method and direct SWE 
observations from SNOTEL/snowcourse sites. Approximately three 
quarters of these sites contain observations that extend back beyond 
the 1982–2010 period over which these models were calibrated. Neg-
ative (blue) RMSE values indicate the CCA model is more accurate 
than the delta change method at predicting the observed SWE values 
at a given site

Fig. 10   Total Western US March SWE in teraliters ( km3 ) from the 
CCSM4 Last Millennium simulation (Landrum et  al. 2013) with 
CCA downscaling (dark gray) and without (light gray), compared 
to the 1982–2017 observed mean (dashed line). Unlike CERA-20C, 
CCSM4 is not constrained to be synchronous with observations and 
is instead assessed on a 50-years distributional basis. The same model 
fit from Fig. 7 is used here, with the CCSM4 data simply projected 
onto the reanalysis PC space to enable downscaling. This approach 
was less successful when applied to CESM-LME outputs (not 
shown), as its ∼2◦ native resolution was too coarse to meaningfully 
project onto the 1 ◦ reanalysis patterns
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meaningfully generalize to those from a different simulation 
is not guaranteed. Indeed, this is not the case for the coarser 
2 ◦ CESM-LME simulation. Although the spatial patterns 
from CESM-LME are visually similar to those in Fig. 2, they 
are too different at the grid cell level to be used directly for 
downscaling. This constraint holds regardless of whether the 
CESM-LME data are first resampled to the 1 ◦ resolution of 
CERA-20C and CCSM4 or when CERA-20C is resampled 
to the lower CESM resolution. This indicates that the prob-
lem is not due to grid-size per se, but rather the impact of the 
simulation’s native resolution on the underlying dynamics. 
That the downscaling model can generalize to both a distinct 
reanalysis dataset (20CRv3) and free-running climate model 
(CCSM4) at the same native resolution as the CERA-20C 
data used to fit the model, but not to the coarser CESM data, 
suggests the model generalizes well only to simulations run 
with a similar native resolution to the training data.

5 � Discussion

A small number of climate modes explain the majority of 
observed and simulated interannual variance in snowpack 
across the western United States. Five to seven of these 
coupled modes are sufficient to downscale accurate high-
resolution maps of regional snow water equivalent from 
coarse-resolution climate simulations. Even an extremely 
simple model with only one mode is able to reproduce 
the time evolution of the total volume of water stored in 
snow across the whole domain, although this is unlikely to 
be sufficient for full field spatiotemporal analyses. In spite 
of known biases in simulated SWE arising from issues of 
scale and process uncertainty, these findings suggest mod-
ern numerical simulations capture enough of the large scale 
atmosphere-ocean dynamics that drive interannual snowpack 
variability to be appropriate predictors for high resolution 
downscaling products.

Given judicious choice of physically meaningful pat-
terns as predictors and predictands, even a simple linear 
downscaling method yields skillful hindcasts of observed 
SWE variability. This approach relies on the ability of cli-
mate and weather models to accurately simulate large-scale 
atmosphere-ocean variability. Rather than deriving complex 
transfer functions between a variety of local variables—a 
process that often breaks the physical consistency of climate 
model outputs—this approach uses the internal physical con-
sistency of those simulations to its advantage by finding a 
simple mapping between simulated and observed patterns. 
Anchoring statistical downscaling methods in a mechanis-
tic understanding of the climate system, instead of using 
downscaling as a replacement for that understanding, is of 
paramount importance to any downscaling project.

The leading two principal modes of variability high-
lighted in this study—a coherent domain-wide signal and 
a north/south dipole—have been identified previously in 
observational data of snow and several variables (Redmond 
and Koch 1991; Cayan 1996; McCabe and Dettinger 2002; 
Jin et al. 2006; McCabe et al. 2013; Pederson et al. 2013; 
Malevich and Woodhouse 2017). The first mode represents 
a domain-wide temperature anomaly associated with PNA-
type atmospheric circulation. The second represents the 
influence of tropical Pacific SST variability (ENSO, PDO) 
deflecting storm tracks north or south and causing coinci-
dent temperature and precipitation anomalies in each region. 
This pair of influences is robust over time and appears in 
long-term tree-ring reconstructions from similar domains 
(Woodhouse 2003; Pederson et al. 2011; Coulthard 2015; 
Barandiaran et al. 2017).

There is less certainty as to the drivers of the successive 
modes of variability. Possible influences include cold vs. 
warm El Niño years, atmospheric rivers, temperature anom-
alies due to the Northern Annular Mode and North Atlantic 
Oscillation, or overlapping multidecadal modes of Pacific 
SST variability (QDO, PDO, IPO) (Ghatak et al. 2010; 
Seager et al. 2010; Barrett et al. 2015; Barandiaran et al. 
2017; Goldenson et al. 2018). Complicating matters further 
is that the same large scale pattern can influence snowpack 
through multiple physical pathways and different telecon-
nections can act through the same pathway (Mote 2003; Ge 
et al. 2009; Ghatak et al. 2010). For example, ENSO vari-
ability influences both temperature and precipitation, and by 
extension snow accumulation and ablation, simultaneously. 
Likewise, Pacific SST variability can influence storm tracks 
across multiple spatial and temporal scales.

Ultimately, these large-scale patterns represent the out-
come of nonlinear, interacting processes that may not neces-
sarily be well represented by linear statistical methods like 
PCA and CCA. What may appear to be distinct climatic 
modes in a PCA may instead reflect the method’s linear-
ity assumptions and orthogonality constraints. While these 
methods are nevertheless useful for downscaling because 
they isolate the parsimonious subspace of variability most 
influenced by these large-scale dynamics, interpretations of 
the individual modes must always be treated with caution. 
An alternative approach would be to use nonlinear feature 
extraction methods such as independent components analy-
sis, self-organizing maps, or variational autoencoders to gen-
erate statistically independent patterns with increased inter-
pretability and out-of-sample predictability (Reusch et al. 
2005; Fassnacht and Derry 2010; Henderson et al. 2017; 
Baño-Medina et al. 2020; He and Eastman 2020). However, 
the risk of overfitting nonlinear methods remains high given 
the short observational window, and standard linear methods 
are already highly skillful.
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Regardless of whether this large-scale variability is 
captured by linear or nonlinear methods, a degree of unex-
plained local variability will remain. About 20% of the local 
SWE variance observed at the grid cell level is left unex-
plained by the large-scale patterns. By definition, methods 
that use a restricted number of patterns on the left hand 
side of the regression equation will explain only a subset of 
the observed variance. Ideally, a downscaled SWE product 
would preserve this full range of variability and give some 
insight into the uncertainty in the downscaled estimates 
(Hewitt et al. 2018). An intuitive approach would be to add 
the residual variance back to each grid cell as uncorrelated 
white noise. However, we find here that the residual fraction 
is non-normal, spatially autocorrelated, and varies in mag-
nitude across the study domain. While an analytical solu-
tion to the CCA noise fraction exists (Wilks 2014), a more 
pragmatic approach may be to fit Gaussian process or copula 
models to the cross-validated errors directly. Regardless of 
the precise method, this residual internal variability should 
be modeled in order to yield downscaled data appropriate 
for localized climate-change impact assessments (Towler 
et al. 2017).

To be truly useful to researchers, stakeholders, and policy 
makers in the western US, downscaled snowpack products 
should take advantage of the wide range of long-term pale-
oclimate simulations to generate long-term ensembles of 
high-resolution snowpack variability. Such products would 
provide a crucial baseline for assessing present and future 
climate changes. Downscaled SWE estimates can also serve 
as spatially-explicit priors for data-assimilation (Huang et al. 
2017; Devers et al. 2019; Fiddes et al. 2019; Girotto et al. 
2020), combining high-resolution snowpack fields with 
snow-sensitive tree-ring proxies (Coulthard et al. 2021) to 
generate integrated paleoclimate reconstructions (Hakim 
et al. 2016). We applied our reanalysis-based downscal-
ing approach to a free-running CCSM4 simulation to test 
the generality of the leading SWE patterns, suggesting that 
pattern-based downscaling of long-term paleoclimate simu-
lations is indeed possible. Operational downscaling for long-
term climate-change impact assessments will require fur-
ther steps to ensure the robustness of the coupled patterns, 
such as Common EOF analysis on combined reanalysis and 
GCM fields (Benestad 2001) and perfect model experiments 
(Maraun and Widmann 2018) to determine whether a long-
term climate change signal can be captured by changes in 
the relative expression of existing spatial patterns. Neverthe-
less, our results indicate that leading modes of snowpack 
variability have been sufficiently stable for at least the past 
few centuries, and that pattern-based downscaling provides 
clear added value for assessing changing snowpack over the 
long-term.
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