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ABSTRACT
The last decade has seen considerable progress in scientific research on vegetation ecosystem 
services. While much research has focused on forests and wetlands, grasslands also provide 
a variety of different provisioning, supporting, cultural, and regulating services. With recent 
advances in remote sensing technology, there is a possibility that Earth observation data could 
contribute extensively to research on grassland ecosystem services. This study conducted 
a systematic review on progress, emerging gaps, and opportunities on the application of remote 
sensing technologies in quantifying all grassland ecosystem services including those that are 
related to water. The contribution of biomass, Leaf Area Index (LAI), and Canopy Storage 
Capacity (CSC) as water-related ecosystem services derived from grasslands was explored. Two 
hundred and twenty-two peer-reviewed articles from Web of Science, Scopus, and Institute of 
Electrical and Electronics Engineers were analyzed. About 39% of the studies were conducted in 
Asia with most of the contributions coming from China while a few studies were from the global 
south regions such as Southern Africa. Overall, forage provision, climate regulation, and primary 
production were the most researched grassland ecosystem services in the context of Earth 
observation data applications. About 39 Earth observation sensors were used in the literature to 
map grassland ecosystem services and MODIS had the highest utilization frequency. The most 
widely used vegetation indices for mapping general grassland ecosystem services in literature 
included the red and near-infrared sections of the electromagnetic spectrum. Remote sensing 
algorithms used within the retrieved literature include process-based models, machine learning 
algorithms, and multivariate techniques. For water-related grassland ecosystem services, biomass, 
CSC, and LAI were the most prominent proxies characterized by remotely sensed data for under-
standing evapotranspiration, infiltration, run-off, soil water availability, groundwater restoration 
and surface water balance. An understanding of such hydrological processes is crucial in providing 
insights on water redistribution and balance within grassland ecosystems which is important for 
water management.
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1. Introduction

Grasslands represent the most extensive land cover 
on the earth’s surface (Briske 2017). They are a mixture 
of grass, clover, and other leguminous species, herbs, 
and shrubs and are generally managed as natural 
ecosystems (Carlier et al. 2009; Zerga 2015). 
Grasslands are particularly important because they 
occupy a large area of rangeland vegetation types, 
covering 31.5% of the global landmass and occurring 
naturally on all continents excluding Antarctica 
(Latham et al. 2014). Globally, grasslands are 

recognized for their significant role in biodiversity 
conservation and the provision of a variety of ecosys-
tem services (Habel et al. 2013; Jin et al. 2014).

The last decade has seen rapid progress in ecosys-
tem services (ES) related research activities. While the 
past research mostly focused on forests and wetlands, 
grasslands were largely neglected, yet they also pro-
vide a variety of provisioning (forage production, 
genetic resources), supporting (nutrient cycling, pri-
mary production), cultural (recreation, educational), 
and regulating (water regulation, climate regulation) 
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ecosystem services (Havstad et al. 2007; Zhao et al. 
2020). Grassland ES refer to physical and non-physical 
resources provided by ecosystem structure and func-
tioning of grasslands to meet human survival as well 
as biodiversity maintenance (Lemaire, Hodgson, and 
Chabbi 2011; Sala et al. 2017). This implies that accu-
rate and timely information about the geographic 
extent and health condition of grasslands is of crucial 
importance for the management of this natural 
capital.

One of the most valuable services provided by 
grasslands is that of water management. In terms 
of water flow regulation, grasslands mainly occur 
in the main catchment areas (Cadman, De Villiers, 
and Lechmere-Oertel 2013). As such, they form an 
effective system for water capture by inducing 
high infiltration rates, reducing run-off and soil 
erosion while regulating streamflows (Egoh et al. 
2011; Cadman, De Villiers, and Lechmere-Oertel 
2013). However, grasslands are becoming more 
vulnerable to land-use changes (Alkemade et al. 
2013), alien plant invasion (Seastedt and Pyšek 
2011) and climate change (Bellocchi and Picon- 
Cochard 2021). Such threats compromise their eco-
system productivity resulting in the deterioration 
of the role of grassland biomes in water flow 
regulation.

Grass biophysical parameters such as biomass, leaf 
area index (LAI) and canopy storage capacity (CSC) are 
prominent attributes that could offer valuable infor-
mation to understand hydrological processes and 
water balance within grasslands (Xu et al. 2006; 
Bulcock and Jewitt 2010). Biomass refers to the mass 
of plant organic matter per unit area (Pang et al. 
2020). It is a critical component of global carbon 
cycling and it directly influences hydrological pro-
cesses such as surface run-off and infiltration (Duley 
and Domingo 1949; Jin et al. 2014). LAI is the ratio of 
a leaf area per unit ground surface area (Zheng and 
Monika Moskal 2009). It is a major control of vegeta-
tion productivity, biophysical feedback on atmo-
spheric energy and water exchanges (Law, Cescatti, 
and Baldocchi 2001). CSC is the amount of water 
retained in plant canopies that controls rainfall inter-
ception, evaporation from vegetation canopy, 
throughfall, interception, infiltration, and ground 
water restoration (Bulcock and Jewitt 2010; Zou 
et al. 2015).

Remote sensing has become a cost-effective tool 
for regional and global mapping (Feng et al. 2010), 
modeling (Andrew, Wulder, and Nelson 2014) and 
quantifying ecosystem properties (Barbosa et al. 
2015). Several studies (Ustin et al. 2004; Jiang et al. 
2007; Muraoka and Koizumi 2009; Vargas, Willemen, 
and Hein 2019; del Río-Mena et al. 2020; Niu et al. 
2021; Wang et al. 2021) have demonstrated the cap-
ability of remote sensing technologies in quantifying 
ES. A notable advantage of Earth observation tech-
nologies is their capability to provide synoptic, unlim-
ited, spatially explicit, and frequent information at 
varying spatial and temporal resolutions (Xu et al. 
2008; Wachendorf, Fricke, and Möckel 2018). With 
recent advances in remote sensing technology, 
there is a possibility that Earth observation data 
could contribute extensively to research on grass-
lands ES (Soubry et al. 2021).

In terms of literature, grasslands ecosystem reviews 
have been carried out (Ceotto 2008; Prochnow et al. 
2009a, 2009b; Pablo et al. 2016; Zhao et al. 2020). 
However, most of the above-mentioned reviews did 
not focus on remote sensing applications in grassland 
ES. Within the remote sensing context, there are 
a number of reviews that look at the development 
and significant advances of remote sensing technolo-
gies within grassland studies (Ali et al. 2016; 
Wachendorf, Fricke, and Möckel 2018; Reinermann, 
Asam, and Kuenzer 2020). To the best of our knowl-
edge, the aforementioned studies did not conduct 
any bibliometric analysis of the studies that focus on 
remote sensing of ES provided by grasslands, with 
particular attention to their accuracies. Additionally, 
few studies have assessed literature on the utility of 
remote sensing on deriving grasslands biophysical 
parameters with a special interest in characterizing 
water-related grassland ES (Soubry et al. 2021). The 
recent systematic review by Soubry et al. (2021) spe-
cifically looked at the application of geospatial tech-
niques in characterizing ecosystem health attributes, 
indicators, and measures of forest and grassland. 
Nevertheless, the study focused on ecological indica-
tors and attributes derived from GIS and remote- 
sensing data in the context of ecosystem health 
assessment, not the application of Earth observation 
data in characterizing ES provided by grassland eco-
systems, with particular attention to model 
accuracies.
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Therefore, the current study conducted a systematic 
literature review to understand the progress, emerging 
gaps and opportunities on the use of remote sensing 
technologies in quantifying grasslands ES including 
those that are related to water. The study seeks to further 
explore the contribution of variables such as biomass, 
LAI, and CSC in water management. An understanding of 
the contribution of such parameters will provide insights 
of their significant role in the hydrological cycle. This will, 
in turn, assist water resource managers to facilitate map-
ping hotspot areas for interventions within degraded 
grasslands.

2. Materials and methods

2.1 Literature search, inclusion, and exclusion 
strategy

The studies included in this systematic literature 
review were retrieved through an extensive search 
for peer-reviewed journal articles published in Web 
of Science (WOS), Scopus and Institute of Electrical 
and Electronics Engineers (IEEE). The following search 
terms combination were used in all the three data-
bases: “grassland productivity AND remote sensing 
OR GIS,” “grassland productivity monitoring,” “grass-
land ecosystems AND remote sensing OR GIS,” “grass-
land ecosystem services AND remote sensing OR GIS,” 
“grassland LAI AND remote sensing OR GIS,” “grass-
land canopy storage capacity AND remote sensing,” 
“grassland productivity AND water management AND 
remote sensing OR GIS.” The literature search was 
conducted without any restrictions on the year of 
publication.

A total of 784 references from WOS, 773 from 
Scopus and 89 references from IEEE were collected. 
Following the literature search, the retrieved refer-
ences (n = 1646) were exported in Endnote for screen-
ing. The number of studies identified, included, or 
excluded were recorded following the Preferred 
Reporting Items for Systematic Reviews and Meta- 
analysis statement (Page et al. 2021) (Figure 1). The 
articles eligible for the meta-analysis had to meet the 
following criteria:

(1) The study focuses on grasslands and no other 
vegetation types (e.g. forests, crops) are 
included since those will be denoting different 
ecosystems.

(2) The study focuses on grasslands productivity 
concepts (biophysical and biochemical para-
meters of grasslands).

(3) The study is based on GIS or remote-sensing 
techniques in grassland productivity monitor-
ing and management.

(4) Results or prediction accuracies of remote sen-
sing technology (sensors or algorithms or vege-
tation indices) used in the study are stated.

(5) The article is published in an accredited journal.
(6) The article is written in English.

From the retrieved literature searches, the study 
carried out the first exclusion process of removing 
all duplicates. In total, 641 records were excluded. 
Secondly, essential bibliography information (title 
and abstract) of the remaining articles (n = 1005) 
were examined to check whether the studies 
applied remote sensing to examine grasslands 
parameters. Upon title and abstract screening, irre-
levant articles (n = 819) were excluded including 
studies that were not written in English. Of the 186 
articles remaining, 45 of them were unavailable in 
portable document format (pdf), and inaccessible 
in full length. As a result, they were excluded. The 
remaining 141 articles were assessed for eligibility 
and additional articles (n = 81) were identified 
through the reference lists of the included articles 
using the backward reference searching (Horsley, 
Dingwall, and Sampson 2011). These were 
retrieved using the Google scholar web search 
engine. In total, 222 articles met the selection cri-
teria and were used for data extraction.

2.2 Data extraction

The data from Endnote was exported into an excel 
spreadsheet. Endnote was set to export key biblio-
graphic information such as author name, 
publication year, article title, journal name, keywords, 
abstract digital object identifier (DOI), uniform resource 
locator (URL). In addition to this, information on study 
area location (country and continent), Earth observation 
sensor technology utilized, type of vegetation indices, 
remote sensing algorithms with special attention on 
derived accuracies and biophysical or biochemical 
parameter(s) being investigated were extracted after 
reading through each article. With regard to accuracies, 
the root mean square error values were not used in this 
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study because ES variables are measured in different SI 
units. Consequently, the coefficient of determination (R2) 
value was used in assessing the accuracies derived in 
estimating these grasslands ES. The R2 value is 
a common accuracy estimation parameter used to 
explain the magnitude of variation between the pre-
dicted and measured samples of a specific grassland 
variable also known as the goodness of the model’s fit 
(Cameron and Windmeijer 1997; Chicco, Warrens, and 
Jurman 2021). The R2 ranges from 0 to 1, with values 
closer to 1 indicating a great model fit or a more accurate 
model depending on what is predicted (Singh et al. 
2017). The frequency of articles was used in this study 
for quantification purposes. Specifically, the measures 
used for the extracted data included counts and percen-
tages while the R2s were extracted from respective 
manuscripts.

2.3 Data analysis

The retrieved articles and extracted data were sub-
jected to quantitative and qualitative synthesis and 
analysis. Firstly, bibliometric analysis was performed 
to visualize occurrence and co-occurrence networks 
of key terms from the retrieved literature. Bibliometric 
analysis is a widely used meta-analytical tool that can 
identify interconnections of key terms related to 
a given topic or field from published papers (Han 
et al. 2020). This was carried out using VOSviewer 
software (Eck, Jan, and Waltman 2010). VOSviewer 
provides network visualization of key terms in the 
form of linked clusters. Creating a map in VOSviewer 
include four steps which are:

(1) Selecting a counting method (binary counting 
or full counting).

WOS = 784 

Scopus = 773 

IEEE = 89 

Total = 1646 

Title and abstract screening     
(n = 1005) 

Unavailable pdf screening       
(n = 186)

Full-text articles assessed for 
eligibility (n = 141) 

Studies included in qualitative 
synthesis (n = 222) 

Studies included in quantitative 
synthesis analysis             
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Figure 1. PRISMA flow diagram for selection of studies considered in the review.
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(2) Selecting minimum number of occurrences for 
a term (calculating similarity index).

(3) Calculating relevance score for the co- 
occurrence terms and based on this score, dis-
play most relevant items

(4) Displaying a map based on the selected terms.

The functionality of VOSviewer for bibliometric map-
ping and analysis is detailed in Eck, Jan, and Waltman 
(2010). The titles, abstracts, and keywords of the final 
database were used as input text data in VOSviewer 
to provide graphical visualization based on occur-
rence and co-occurrence of key terms.

To assess the progress of remote sensing technolo-
gies in grassland ES, basic statistical frequencies and 
trend analysis were conducted using Microsoft Excel 
(Carlberg 2014). ES provided by grasslands were cate-
gorized using the classification scheme proposed by 
the Millennium ecosystem assessment report (MA, 
Millennium Ecosystem Assessment 2005) (Table 1). 
The Millennium Assessment (MA) classification scheme 
was chosen following its present wide recognition as 
a robust classification approach in distinguishing eco-
system functions into regulating, provisioning, sup-
porting and cultural services.

Grassland biophysical and biochemical parameters 
are key indicators of ecosystem services (Lavorel et al. 
2011). Given this context, biophysical and biochemical 

parameters were used to identify ES within the reviewed 
studies. Additionally, biochemical parameters relating to 
chemical components such as chlorophyll content and 
nitrogen concentration are an indirect measure of vege-
tation nutrient status which in turn relates to nutrient 
regulation services (Tong and Yuhong 2017; Wang et al. 
2017). Therefore, studies relating to the proportion of 
nitrogen and chlorophyll concentration were classified 
under nutrient regulation service.

The review was then separated into two sections to 
address the research objectives. The first section 
explored the progress in remote sensing technologies 
applied in grassland ES. This section detailed the lit-
erature search characteristics, identified ecosystem 
services, trends in the distribution of studies and 
remote sensing technologies applied within grassland 
ES studies. The outcomes of the first phase were then 
used to articulate existing research gaps on the role of 
remote sensing in quantifying grassland water- 
related ES in the second phase.

3. Results

3.1 Literature search characteristics

In analyzing literature characteristics of the retrieved 
studies, the network map in Figure 2 categorized the 
identified literature into four clusters of concepts. The 

Table 1. Non-exhaustive grassland-related ecosystem services classification based on Millennium ecosystem assessment as explained 
in Leemans and De Groot (2003).

Category Ecosystem service Explanation

Provisioning 
services

Food (fodder) Range of food products derived from plants, animals, and microbes.

Genetic resources Genes and genetic information used for animal and plant breeding and biotechnology.
Fresh water Water is obtained from different water ecosystems (dams, rivers, oceans).

Regulating 
services

Climate regulation Regulation processes related to the greenhouse effect, atmospheric chemical composition, ozone layer, and 
atmospheric weather conditions at both local and global scales. Regulation of both temperature and 
precipitation at a local scale. On a global scale, ecosystems play an important role in climate by Carbon 
sequestration storage.

Water regulation Regulation of hydrological flows, water storage and water retention (i.e. timing and magnitude of runoff, 
flooding, aquifer recharge and the system’s water storage potential) are regulated by changes in land cover.

Air quality regulation Sequestration and storage of carbon as well as the release of oxygen, influence air quality.
Erosion regulation Soil retention and regulation of soil erosion and landslides.
Water purification and 

waste treatment
Purification of water through filtering out and decomposing organic wastes introduced into inland waters, 

coastal and marine ecosystems.
Natural hazard regulation Ecosystems can dramatically regulate the damage caused by landslides, wildfires etc.

Supporting 
services

Nutrient cycling Nutrients such as nitrogen, and phosphorus cycle through ecosystems.

Primary production or 
photosynthesis

Assimilation of energy and nutrients by biota. 
Production of energy required by most living organisms through photosynthesis.

Habitat Providing living spaces for animals or plants while maintaining biodiversity.
Soil formation Soil formation and changes in soil formation which impact human well-being

Cultural 
services

Recreation and ecotourism Provision of recreational parks and touristic attractions.

Educational values Provide a basis for both formal and informal education in societies.
Esthetic values Provide esthetic value in the light of urban development.
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green cluster had its key terms being “prediction accu-
racy,” “performance,” “ann,” “support vector machines,” 
“multiple linear regression,” “plsr,” “prospect,” “random 
forest” “biophysical parameters.” This cluster links accu-
racy assessment of algorithm performance with estimat-
ing biophysical parameters. The inclusion of terms such 
as “Landsat,” “hyperspectral data,” “spectroradiometer” 
in this cluster presents the linkage between satellite 
imagery, ground-level spectral reflectance, remote sen-
sing modeling techniques, and principal biophysical 
parameters, which directly implies the utility of various 
remote sensing technologies in grasslands ecosystem 
services.

The second cluster (yellow) had its key terms as 
“band,” “spectral bands,” “sensor,” “red-edge,” “senti-
nel,” “worldview.” This relates to the influence of the 
spectral band settings (reflectance measured) on the 
sensor’s performance in estimating grass productivity 
(Wang et al. 2019b). The blue cluster had “synthetic 
aperture radar“ and “soil moisture” as its key terms 
which directly implies the potential of synthetic aper-
ture radar (SAR) sensors in estimating soil moisture 
content. Lastly, the red cluster connected terms such 
as “China,” “modis ndvi,” “carbon cycle.” This articulates 
the wide usage of MODIS derived NDVI as a proxy for 
studying grasslands as a major component of carbon 

cycling, with most studies carried out in China (Xinyu 
et al. 2014; Liu et al. 2017; Kong et al. 2019). The red 
cluster also categorized terms such as “climate change,” 
“net primary productivity,” “precipitation,” “tempera-
ture.” Precipitation and temperature are crucial vari-
ables in controlling net primary production which is 
a key measure of ecosystem functioning used in under-
standing global climate change (Jia et al. 2015).

3.2 Progress in the use of remote sensing 
technologies to monitor grasslands ecosystem 
services

3.2.1 Grassland ecosystem services identified in 
literature
Results of this study illustrate that nine-grassland ES 
were mentioned in the retrieved articles (Figure 3). 
A total of 79 studies utilized remote sensing in studying 
grassland provisioning services of which forage provi-
sion had the highest frequency of studies (n = 75). Forty- 
three studies investigated grassland supporting services 
relating to primary production, 17 studies focused on 
nutrient cycling and thirteen studies were based on 
habitat for wildlife species. Seventy-five studies focused 
on grassland regulating services, of which 51 studies 
focused on climate regulation. The results show that 

Figure 2. Topical concepts in grasslands ecosystem services studies derived using data from titles, abstract and keywords.
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only one study (Quansheng et al. 2014) utilized Earth 
observation data to monitor grasslands tourist seasons 
that relates to cultural ecosystem services.

For water regulation service, three studies 
(Davidson, Wang, and Wilmshurst 2006; Hajj et al. 
2014; Sibanda et al. 2021) evaluated the utility of 
remotely sensed data in mapping moisture content 
elements related to biomass. In addition, studies 
by Pan and Shangguan (2006) and Kautz et al. 
(2019) used the spatial extent of vegetation cover 
derived using remotely sensed data to estimate 
run-off while Xing et al. (2014) use it to estimate 
soil moisture within grasslands. Meanwhile, five 
studies (Shimoda and Oikawa 2008; Vetter, 
Schaffrath, and Bernhofer 2012; Schaffrath and 
Bernhofer 2013; Zhu et al. 2013; Castelli et al. 
2018) utilized remotely sensed data to characterize 
LAI in the context of hydrological models linked to 
evapotranspiration. Remotely sensed LAI was also 
used as input data to understand hydrological pro-
cesses relating to water balance (Nouvellon et al. 
2001; Sridhar and Wedin 2009), ecological water 
requirement (Zhang et al. 2010) and precipitation 
use efficiency (Jia et al. 2015) within grassland 

ecosystems. Aiming, Murray, and Richter (2017) 
used process-based models which simulate LAI as 
a dynamic input in a grass growth model. The 
model was used to estimate evapotranspiration, 
drainage, and water productivity within different 
grassland systems.

In terms of CSC, one study (Yu et al. 2012) utilized 
water budget balance and artificial wetting methods 
to model canopy rainfall storage capacity in relation 
to grassland degradation and its impact on the hydro-
logical cycle. Additionally, a study by Sibanda et al. 
(2021) utilized remote sensing methods to assess 
grassland CSC. Three studies (Bertoldi et al. 2014; 
Baghdadi et al. 2015; El; Hajj et al. 2015) were based 
on the use of remotely sensed data to estimate soil 
moisture content in grasslands which is a key para-
meter for many hydrological processes. Paruelo et al. 
(1999) used remotely sensed aboveground net pri-
mary production data as an estimate of water avail-
ability within grasslands. Saatchi, van Zyl, and Asrar 
(1995) used synthetic aperture radar (SAR) data to 
estimate soil moisture and canopy water content of 
natural grasslands which is of fundamental impor-
tance to understanding eco-hydrological processes.
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3.2.2 Geographic distribution and publication trends
In terms of spatial distribution, the studies included in 
the meta-analysis were conducted in 31 different 
countries (Figure 4). Ten articles were large-scale stu-
dies conducted at a regional scale and two studies 
(Xia et al. 2014; Yang et al. 2017) were conducted on 
a global scale. These studies were included in the 
meta-analysis but could not be classified under 
a certain country in Figure 4. In assessing the fre-
quency of publications per nation, it was observed 
that studies on grasslands ES were conducted across 
all continents excluding Antarctica. Thirty-three 
per cent of these studies were conducted in Asia, 
with China having most studies.

Although 18% of the studies were conducted in 
Africa, (13%) were conducted in Southern Africa, mostly 
in South Africa. About 22% of the studies were con-
ducted in Europe, 18% in North America, 5% in South 
America, and 3% in Australia. 1% of the studies collected 
in this study were conducted at a global-scale. From 
Figure 4, considerable gaps in the geographic distribu-
tion of published articles can be observed especially in 
South America, Australia, and most parts of Africa. 
Interestingly, 11 out of 23 studies on water-related eco-
system services were conducted in the global south and 
12 in the global north. More research efforts need to be 
exerted toward the utilization of remotely sensed data in 
assessing grassland water-related ES globally.

Figure 4. Spatial distribution of remote sensing studies in the context of grassland ecosystem services. Studies conducted at regional 
and global scales are not shown.
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The earliest publication of grassland ES was in 1983 
(Figure 5). Meanwhile, few articles (n = 10) were pub-
lished between 1983 and 1996. A constant number of 
publications occurred between 1997 and 2001 after 
which a considerable fluctuation in publications was 
observed. Since then, the use of remote sensing in grass-
land ES studies has been increasing steadily reaching 
a total of 222 published articles in 2021 (Figure 5).

3.2.3 Sensor technologies, spectral settings, and 
derived vegetation indices
The use of Earth observation sensors used in remote 
sensing of grassland ES studies has considerably 
increased. Thirty-nine sensor types were noted in 
the literature reviewed (Figure 6). As illustrated in 
the characterization of literature in Figure 2 (red clus-
ter), Moderate Resolution Imaging Spectroradiometer 
(MODIS) had the highest frequency of studies (34%), 
followed by the Landsat system (25% (TM = 11%, 
OLI = 8%, ETM+ = 6%)).

Meanwhile, a significant number of studies (18%) 
have used handheld hyperspectral devices for the in- 
situ acquisition of remotely sensed data for character-
izing grass biophysical and biochemical parameters. 
The findings of this study also illustrate that 14% of 
the studies utilized digital elevation models (DEM) in 
estimating and mapping grassland ecosystem ser-
vices. Of these studies, about 4% specifically used 
the Shuttle Radar Topography Mission (STRM) and 

2% used the Advanced Spaceborne Thermal 
Emmision and Reflection Radiometer (ASTER) derived 
digital elevation models.

The new generation of sensors such as Sentinel 2 
multispectral instrument (MSI) has shown great 
potential in grassland ES studies (13%). High spatial 
resolution satellites such as Worldview-2 and 
Worldview-3 have also been utilized in 3% of the 
studies. Although applied in a few studies, results 
from the searched literature showed that recent tech-
nologies in remote sensing such as the Unmanned 
Aerial Vehicle (UAV)-based sensors have also been 
utilized in grasslands ES studies (3%) (Figure 6).

Results show that the use of sensors such as 
Advanced Very High-Resolution Radiometer 
(AVHRR), spectroradiometer and platforms such as 
UAVs started trending within the 1980ʹs (Figure 7). 
The 1990ʹs saw the introduction of sensors such as 
SPOT and Landsat TM sensor-system within the 
grassland ES research. The use of MODIS sensor 
can be observed from 2005 and it has been used 
almost in all years. Additionally, the use of Landsat 
ETM+ started trending in 2001 up until now. 
Although the results show that Worldview-2 had 
also been utilized in mapping grassland ES, it was 
observed to have been utilized for five years, from 
2013 to 2018. The period from 2014 to 2021 wit-
nessed a shift in the frequent use of Sentinel-2 and 
Landsat 8 OLI sensors.
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The sensors used in the grassland ES studies show 
a high range of average prediction accuracies with R2 

values of 55% to 90.5% (Figure 8). The highest aver-
age R2 value (90.5%) was obtained from the utility of 
UAVs. Meanwhile, freely available moderate spatial 
resolution satellites such as Landsat TM, OLI, and 
ETM+ had high mean prediction accuracies of 70, 76, 
and 83%, respectively. Additionally, the high spatial 

resolution Sentinel 2 satellite data yielded a high 
mean prediction accuracy of 77%. Interestingly, SAR 
systems yielded considerable average prediction 
accuracies ranging from 58% to 73% (Figure 8).

Numerous vegetation indices have been derived 
from Earth observation sensors for mapping and 
monitoring grasslands ES. Although a plethora of 
vegetation indices were identified in the literature 
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considered in this study, Table 2 only shows the 
vegetation indices applied in more than three studies. 
Most indices were not captured because they were 
used in less than three studies. Subsequently, the 
study reports on the sections of the electromagnetic 
spectrum that have been widely utilized to derive 
those vegetation indices as in Loris and Damiano 
(2006), Boschetti, Bocchi, and Alessandro Brivio 
(2007), Bing and Yuhong (2019), Wang et al. (2019a) 
and Sibanda et al. (2021).

The widely used sections of the electromagnetic 
spectrum for the derived vegetation indices were the 
red and near-infrared regions (NIR). In this regard, the 
Normalized Difference Vegetation Index (NDVI) was uti-
lized in 65% of the studies, the Enhanced vegetation 
index (EVI) in 13%, the Soil adjusted vegetation index 
(SAVI) in 10%, and the Simple Ratio (SR) in 6% of the 
studies. A considerable number of studies (6%) used 
red-edge-based vegetation indices, which are calculated 
based on the red-edge region of the electromagnetic 
spectrum (Filho et al. 2020). Although most studies used 
vegetation indices, the results of this review showed 
that about 8% of the studies assessed the utility of 
topographic indices derived from DEM in predicting 
and estimating grassland ecosystem services.

In terms of water-related ES, the used sensors were 
COSMO-SkyMed, RADARSAT-2, MERIS, MODIS, Sentinel 
2, SPOT, TerraSAR-X, Landsat fleet and hand-held spec-
tral devices. Vegetation indices utilized in these studies 
were Soil Adjusted Total Vegetation Index (SATVI), 
NDVI and SR. Additionally, red-edge, NIR, and short- 
wave infrared (SWIR) bands were reported to be critical 
in characterizing water-related ES. Moreover, only three 
studies (Bertoldi et al. 2014; Saatchi, van Zyl, and Asrar 
1995; Sibanda et al. 2021) used topographic indices in 
estimating water-related ES.

G = gain factor; C1, C2 = coefficients of the aerosol 
resistance term, which uses the blue band to correct 
for aerosol resistance term; L = soil brightness correc-
tion factor (Liu and Huete 1995).

3.2.4 The role of remote sensing prediction and 
modelling algorithms in grassland ecosystem services
Results of this review show that there are 37 algo-
rithms that have been utilized in studying grasslands 
ES. These thirty-seven algorithms fall into three cate-
gories that are as follows:

(1) production efficiency models (n = 18)
(2) machine learning algorithms (n = 10)
(3) multivariate analysis techniques (n = 9)

Figure 9a shows the average coefficient of determina-
tion accuracies of production-efficiency models that 
were used in more than three studies. Fifteen of the 
18 production efficiency models were excluded from 
Figure 9a as they were used in less than three studies 
(Table 3A: Appendix). The included models yielded 
high average R2s ranging from 60.6% to 72.8% 
(Figure 9a). Results of this study show that PROSAIL 
was the most widely used model among the produc-
tion efficiency models. Results also show that light use 
efficiency (LUE) models are utilized in estimating eco-
system primary production services. For LUE and 
Carnegie–Ames–Stanford approach (CASA), it was 
observed that the major inputs for the models were 
a fraction of Photosynthetic Active Radiation (fPAR) 
derived from remote sensing data and meteorological 
data.

Figure 9b shows the average coefficient of deter-
mination accuracies of three widely used machine- 
learning algorithms. Seven of the algorithms were 
excluded from Figure 9b because they were applied 
in less than three studies (Table 3A: Appendix). The 
average R2s of the algorithms ranged from 64.5% to 
75%, showing considerable high prediction accura-
cies across all the algorithms used in estimating grass-
land ES. Random forest (RF) had the highest average 
prediction accuracy (75%) followed by artificial neural 
networks (ANN) and support vector machines (SVM) 
with average accuracies of 68% and 64.5%, 

Table 2. Summary of the commonly used vegetation indices in grassland ecosystem services studies.
Index name Abbreviation Formula R2 range Reference

Enhanced Vegetation Index EVI G NIR� RED
NIRþC1�RED� C2�BLUEþL

0.44–0.95 (Liu and Huete 1995)

Normalized difference vegetation index NDVI NIR� RED
NIRþRED

0.22–0.95 (Rouse et al. 1974)

Sentinel 2 Normalized difference red edge index NDRE NIR� REDEDGE
NIRþREDEDGE

0.47–0.84 (Liu et al. 2018)

Soil adjusted vegetation index SAVI (1 + L) NIR� RED
NIRþREDþL 0.49–0.75 (Huete 1988)

Simple ratio SR NIR
RED

0.27–0.83 (Jordan 1969)
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respectively. These algorithms were detected using 
the network analysis in Figure 2 (green cluster) as 
topical elements of grassland ES mapping. 
Meanwhile, multivariate analysis techniques reported 
in most studies are illustrated in Figure 9c. The R2 

average accuracies ranged from 54% to 86.5%, indi-
cating high model prediction accuracies (Richter et al. 
2012). Discriminant analysis (DA) had the highest 
average prediction accuracy (86.5%) followed by 
sparse partial least square regression (SPLSR) and par-
tial least square regression (PLSR) with average 
accuracies of 78% and 71%, respectively. 
Exponential regression had the lowest average pre-
diction accuracy of 54%.

Algorithms reported in studies that focused on 
water-related ES include hydrological models (Soil- 
vegetation-atmosphere transfer (SVAT), Water 

cloud, Process-based model, NOAH Land Surface 
Model (LSM), Rangeland Hydrology and Erosion 
Model (RHEM), Two Source Energy Balance 
Atmosphere Land Exchange Inverse (TSEB ALEXI), 
GEOTop and BROOK90 models), ordinary least 
square regression (OLSR), linear regression (LR), 
SPLSR and RF. However, most of these models are 
excluded from Figure 9 analysis because they were 
applied in less than three studies (Table 3A: 
Appendix). Overall, it was observed that the major-
ity of multivariate techniques and machine learn-
ing algorithms (i.e. RF, SVM, ANN, PLSR, and OLSR) 
performed well in literature considered in this 
study. Also, it was observed that they had 
a feature selection capability for identifying the 
most influential spectral features for estimating 
grass biophysical parameters.
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4. Discussion

4.1 Progress in remote sensing of grassland 
ecosystem services

4.1.1 Geographic distribution and publication trends
Results of this study showed that most grassland ES 
were conducted in China. This could be explained by 
the fact that China possesses vast grassland ecosys-
tems that include alpine steppe, meadow steppe, 
desert steppe, and typical steppe which accounts for 
10% of the total grasslands area (Dai et al. 2016). 
Additionally, China has experienced relative scientific 
advancement of ecological science and technology 
(Jun et al. 2020). As an example, China designed and 
launched environmental and disaster monitoring HJ-1 
satellites. Such datasets have become operational in 
ecological monitoring, including grassland ecosys-
tems (Xing et al. 2014; Meng et al. 2017).

On the other hand, results also showed consider-
able gaps in the spatial distribution of published arti-
cles in Africa, Australia, and South America. This is an 
interesting finding contrary to the notion that large 
areas in these continents are covered with tropical 
grasslands (Lehmann et al. 2011). Overall, it was 
observed that studies on remote sensing of grassland 
ES are significantly increasing (Figure 5). Remote sen-
sing technologies have rapidly developed, providing 
grassland researchers with multi-source and multi-
platform remotely sensed data (Tong et al. 2021). 
Additionally, remote sensing provides the possibility 
of complimenting ground truth data through remote 
sensing inversion and data assimilation (Tong et al. 
2021). This could possibly explain the increase in 
grassland remote sensing ES research.

4.1.2 Earth observation sensors
Results in this study showed that MODIS and the 
Landsat fleet had the highest utilization frequency. 
Soubry et al. (2021) also noted an extensive utilization 
of data from the MODIS and Landsat sensors fleets in 
grassland remote sensing research. The high utiliza-
tion frequency of such sensors could be attributed to 
the fact that until recently, Earth observation imagery 
has been dominated by traditional optical sensors 
such as MODIS and Landsat (Thenkabail, Smith, and 
De Pauw 2002). Such sensors have been in orbit for 
the longest time, and they have global coverage, 
consistently supplying researchers with freely avail-
able remotely sensed imagery suitable for retrieving 

grass biophysical parameters. Meanwhile, the results 
of this study also showed that a significant number of 
studies have explored the utilization of handheld 
hyperspectral devices. These findings are similar to 
those of Soubry et al. (2021) who also noted 
a significant number of studies (16.5%) that were 
conducted based on hyperspectral sensors. Such sen-
sors provide a wide range of sections of the electro-
magnetic spectrum in relation to other sensors (i.e. 
Landsat and MODIS), hence they provide higher, and 
optimal accuracies in estimating and mapping bio-
physical and optical properties of vegetation 
(Cerasoli et al. 2018). In this regard, the use of in situ 
hyperspectral sensors has the potential of minimizing 
several errors since data is acquired proximal to the 
canopy when compared to satellite and airborne sen-
sors (Agapiou, Hadjimitsis, and Alexakis 2012).

Results showed that the application of remote sen-
sing technologies in grassland ecosystems draws back 
to the 1980s. Initially, this era was associated with 
aerial photography (Dancy, Webster, and Abel 1986). 
The changes in remote sensing techniques from aerial 
images to satellite-borne sensors have achieved 
a significant advancement in the grassland ES 
research community. Specifically, the launch of 
MODIS in 2000 marked a shift within the remote 
sensing field which may probably explain the con-
stant frequency in the publications on grassland ES 
occurring in the 2000s decade (Kawamura et al. 2005; 
Fei et al. 2013; Yu et al. 2021). More so, recent 
advancements in Earth observation sensors include 
the launching of Sentinel 2 MSI and the Landsat 8 
OLI, offering data on free access policy. With such 
advancements, the number of studies on mapping 
and monitoring grassland ES has increased along 
with the associated accuracies.

A considerable number of studies explored the 
possibility of using SAR sensors in estimating grass-
land ES; especially those related to water. SAR has 
several advantages which include an all-weather cap-
ability, independence from solar energy and the abil-
ity to select an appropriate wavelength for studying 
belowground properties and soil substrates (Holmes 
1992). Furthermore, changes in vegetation and soil 
moisture contents contribute to the total backscat-
tered radar signal which influences the absorption, 
transmission, and reflection of microwave energy 
(Wang, Linlin Ge, and Xiaojing Li 2013; Xing et al. 
2014). Being active sensors, acquiring data in all 
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weather conditions and being sensitive to vegetation 
and soil moisture content explains their prospective 
utility in assessing water-related ES.

4.1.3 Spectral features (wavebands and vegetation 
indices)
This review highlights that the widely used vegetation 
indices relied on near-infrared and red bands with 
NDVI being the widely used index. NDVI is calculated 
through a normalization procedure using spectral 
reflectance from the red and the near-infrared 
bands, which makes it simple to assess vegetation 
health and vigor (Xue and Baofeng 2017). Despite 
the wide application of NDVI, it is sensitive to atmo-
spheric effects, leaf canopy, soil brightness, and cloud 
shadow (Thenkabail, Smith, and De Pauw 2000; Xue 
and Baofeng 2017). As a result, SR, EVI and SAVI have 
been proposed to reduce noise effects from non- 
vegetation matter (Zhengxing, Chuang, and Alfredo 
2003; Xue and Baofeng 2017). The application of such 
indices has greatly promoted the prediction of ES 
such as forage provision (Kawamura et al. 2005) and 
primary production (Zhou et al. 2014).

Additionally, the advent of Sentinel 2 MSI offers 
fine spatial and robust spectral resolution covering 
the red-edge section of the electromagnetic spec-
trum. This section is very important for characteriz-
ing vegetation attributes (Boochs et al. 1990; 
Curran, Dungan, and Gholz 1990; Ruiliang et al. 
2003; Mutanga and Skidmore 2007; Sibanda et al. 
2019). In several studies (Ramoelo et al. 2015; Tong 
and Yuhong 2017; Munyati, Balzter, and Economon 
2020), indices that utilized wavelengths from the 
red-edge region (i.e. NDRE) performed well in esti-
mating grassland ES as compared to the normal 
broadband indices (i.e. NDVI), especially in relation 
to characterizing water-related ecosystems 
(Sibanda et al. 2021). The reflectance in the red- 
edge (680–780 nm) provides information on the 
rapid rise of vegetation reflectance at 680 nm 
with the highest absorption occurring at 780 nm 
which better estimates vegetation pigment, physi-
cal and chemical parameters (Gao et al. 2019). As 
such, red-edge-based indices have been suggested 
to effectively correct variations caused by atmo-
spheric influence, bidirectional reflectance distribu-
tion function and background noise (Tong and 
Yuhong 2017).

4.1.4 Prediction, modeling, and classification 
algorithms
In terms of remote sensing algorithms, the use of 
multivariate analysis techniques in grassland ES has 
been widely reported (Sakowska, Juszczak, and 
Gianelle 2016; Pang et al. 2020). Multivariate analysis 
techniques were the most widely used algorithms 
probably because of their simplicity and ease of 
implementation. However, multivariate techniques 
are generally associated with data assumptions, 
which are not always easy to attain based on ecolo-
gical data (Finch 2005). For instance, to utilize multi-
variate techniques data has to meet the assumptions 
of normality and homogeneous covariance matrices. 
Meanwhile, Arjasakusuma, Swahyu Kusuma, and 
Phinn (2020) illustrated that multivariate techniques 
are susceptible to high data dimensionality and noted 
that they tend to overfit the models, which reduce the 
model accuracies.

More research has also been conducted based on 
machine learning algorithms (Gao et al. 2020; 
Lehnert et al. 2015; Mutanga and Skidmore 2004). 
The successful application of machine learning algo-
rithms can be explained by the notion that they are 
non-parametric and therefore do not rely on any 
assumptions about data distribution (Barrett et al. 
2014). In this regard, they are insensitive to over- 
fitting and could be the best option for modeling 
grasslands biophysical parameters (Cawley and 
Talbot 2010). Overall, the majority of the multivariate 
and the machine learning algorithms showed opti-
mal performance in estimating grassland ES mainly 
due to their feature selection capability. In this 
regard, the development of accurate remote sensing 
models for predicting grass biophysical parameters 
seems to largely depend on the algorithm used in 
selecting optimal spectral features from remotely 
sensed data as noted by Verrelst et al. (2019) and 
Richter et al. (2012).

Results of this study also showed that production 
efficiency models are prominent for monitoring ES 
such as primary production (Propastin et al. 2012; 
Zhang et al. 2016). A review by Reinermann, Asam, and 
Kuenzer (2020) also showed that most studies used 
CASA, LUE, and PROSAIL modeling approaches in ana-
lyzing grassland production traits and management. 
Most of the production efficiency models take into con-
sideration the LUE theory which states that there is 
a constant relationship between photosynthetic carbon 
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uptake and radiation interception at the plant canopy 
level (Monteith 1972; Anderson et al. 2000). Results also 
showed that the major input for these models is fraction 
of photosynthetically active radiation (fPAR). This can be 
explained by the notion that production efficiency mod-
els require inputs of meteorological data and satellite 
Earth observation derived fPAR in order to simulate the 
total primary production (McCallum et al. 2009). The 
integration of remote sensing and production efficiency 
models represents an important approach for monitor-
ing terrestrial carbon exchange across a wide range of 
spatial and temporal scales. The high average prediction 
accuracies obtained from these production efficiency 
models imply that they all exhibit robust techniques to 
evaluate remote sensing data that can effectively quan-
tify and map grassland ES.

4.2 Remote sensing of biomass, LAI, and CSC to 
characterize water-related grassland ecosystem 
services

Results of this present study have shown that various 
remote sensing technologies have been widely applied 
in characterizing ES such as forage provision, genetic 
resource, climate regulation, natural hazard regulation, 
primary production, nutrient cycling, and habitat sup-
port. However, very few studies were noted that sought 
to understand the role of remote sensing in characteriz-
ing biomass, LAI and CSC in relation to water-related 
ecosystems services management.

Results in this study showed that only three studies 
evaluated the utility of remotely sensed data in map-
ping the grass moisture content elements related to 
biomass. There is paucity of literature that directly 
focus on the role of remote sensing in estimating 
grass biomass in relation to water resources despite 
the fact that grass prevalence has a considerable 
effect on some hydrological elements. For instance, 
dense biomass coverage has a direct impact on grass 
and soil water-holding capacity through induced infil-
tration (Duley and Domingo 1949). This promotes soil 
water availability, groundwater restoration, and sur-
face water balance within grassland biomes.

Meanwhile, results showed that few studies have 
sought to utilize LAI in the context of estimating eva-
potranspiration. Remote sensing provides spatial and 
temporal estimations of LAI which can be coupled with 
meteorological variables in hydrological modeling 
mostly in evapotranspiration processes (Tesemma 

et al. 2015; Rong et al. 2018). Evapotranspiration is 
the combination of two ecohydrological processes 
which are plant-mediated transpiration and evapora-
tion (soil surface evaporation and evaporation of rain-
fall intercepted by plant canopies) (Smallman and 
Williams 2019). As such, it is a crucial terrestrial com-
ponent of the hydrological cycle which impacts the 
magnitude of surface water and variability of catch-
ment water yield and ultimately water balance (Zhang 
et al. 2008). Although LAI is a critical variable in evapo-
transpiration, it should be noted that it is also an 
important structural parameter driving biophysical 
processes such as transpiration and precipitation inter-
ception which in turn influence hydrological processes 
such as the provision of water by stream flow, super-
ficial runoff as well as the absolute water balance 
(Boussetta et al. 2013; Zhenwang et al. 2016).

Results showed that two studies (Yu et al. 2012; 
Sibanda et al. 2021) utilized remote sensing methods 
to understand the impact of CSC on the hydrological 
cycle. CSC is an important attribute in controlling 
actual canopy interception which determines the 
amount of water reaching the ground (Ochoa- 
Sánchez, Crespo, and Célleri 2018). It is an important 
component of the water balance influencing hydro-
logical processes such as run-off, erosion, infiltration, 
and flood generation (Tsiko et al. 2012). An under-
standing of such hydrological processes is crucial in 
understanding water redistribution within grassland 
ecosystems, which is important for water manage-
ment. Additionally, CSC is a prominent variable that 
depends on various canopy structural parameters 
including biomass and LAI (Xiong et al. 2021). The 
dense canopy coverage of grasslands biomass 
means high LAI which reduces surface run-off, thus 
leading to aquifer water recharge, water flow regula-
tion and balance amongst other elements.

Results in this study show that there are very few 
studies that considered the utility of DEM derived topo-
graphic metrics in estimating water-related grassland ES. 
DEM provide eco-hydrological information on the profile 
of the terrain regarding its direct impact on nutrient 
resources and moisture availability for plants, its impact 
on hydrological components such as runoff percolation 
and how these variables interact with each other 
(Lukyanchuk, Kovalchuk, and Pidkova 2020). The work 
by Sibanda et al. (2021) concluded that topographic 
variables such as Topographic Wetness Index, maximum 
curvature, and aspect were important in characterizing 
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eco-hydrological proxies such as LAI and CSC that are 
associated with hydrological ES. There is, therefore, 
a need for more research efforts to be exerted toward 
understanding the impact and contribution of topo-
graphic variables in mapping and monitoring water- 
related grassland ES using remotely sensed data.

4.3 Limitation of the study

In conducting the literature search, some studies 
were unavailable in full length, and others were 
not written in English. This may have a negative 
effect on quantifying all the studies which focus on 
grassland ES. More so, the exclusion of these stu-
dies has an impact on the spatial distribution of 
grassland ES studies.

The fundamental basis of utilizing remote sen-
sing technologies is based on their reliability to 
provide accurate spatially explicit information. 
This implies that accuracy assessment and valida-
tion of remotely sensed data is essential for deci-
sion-making and sustainable ecosystem 
monitoring. However, in this study R2 was used 
as an indicator of prediction accuracy since other 
accuracy assessment measures are based on differ-
ent SI units of measurement. It is important to 
note that R2 is one performance value amongst 
other parameters such as RMSE, relative room 
mean square error (RRMSE), standard error of pre-
diction (SEP). It also must be outlined that R2 

assesses the goodness-of-model fit. Furthermore, 
accuracy assessment parameters associated with 
remotely sensed data models, inclusive of R2, are 
impacted by many factors that include data sample 
size, sampling techniques, sensor type, vegetation 
indices or modeling approach being applied. That 
needs to be also considered in interpreting and 
contextualizing the findings of this study.

Considering that we intended to explore 
whether there were generally significant differ-
ences in the accuracies derived using different 
sensors, algorithms, or vegetation indices, we 
assumed that the international peer review system 
followed by each of the journals considered in this 
study was sufficient and robust in evaluating the 
credibility and verification of the accuracies pre-
sented in each article.

4.4 Research gaps and opportunities

The following gaps and opportunities have been 
identified from the results of this study in the context 
of applications of remote sensing technologies in 
grassland ES studies:

● Considerable gaps still exist around the world 
and more specifically in the African continent 
on the integration of remote sensing into grass-
land ES.

● Grasslands provide more ES than the ones stated 
in this review. For instance, grasslands offer ES 
that are related to the hydrological cycle such as 
the canopy storage capacity, facilitation of infil-
tration and underground water storage refills. 
There is a paucity of literature on the application 
of Earth observation data in quantifying the full 
range of such grassland ES. Meanwhile, some of 
these ES such as CSC that are related to LAI, can 
be characterized using remotely sensed data. LAI 
is arguably the most important vegetation struc-
tural parameter responsible for water and carbon 
exchange of vegetated land surfaces. Spatial dis-
tribution of LAI has an impact on the total water 
interception by plant canopy, which directly 
influence plant CSC. Remotely sensed LAI and 
CSC data combined with remote sensing algo-
rithms have a clear advantage of modeling eco-
hydrological processes (evapotranspiration, run- 
off, precipitation interception, surface water 
variability) which are crucial for understanding 
water balance within grasslands

● The application of remote sensing technologies 
for estimating biomass in relation to water man-
agement has not attracted significant attention 
from the research community. Remote sensing- 
based modeling can be a useful tool for large- 
scale prediction or estimation of surface water 
supply within grasslands. Remotely sensed bio-
mass data can be used as an input in hydrologi-
cal models. Such data can be simulated with run- 
off datasets to predict surface water supply.

● Erosion regulation can be estimated using remote 
sensing-based vegetation indices such as modi-
fied normalized vegetation index (mNDVI), nor-
malized difference soil index (NDSI) and tasseled 
cap transformation (TCT) based vegetation 
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indices. These indices are frequently used to inves-
tigate soil exposure, assess soil properties, and 
estimate soil erosion processes (Xu et al. 2019).

● There is a paucity on studies that have sought to 
evaluate the influence of variations in topo-
graphic metrics on water-related grass ES. The 
integration of vegetation indices and topo-
graphic metrics may provide robust models cap-
able of predicting water-related grasslands ES 
especially at local scales.

● Integration of remote-sensing data and public par-
ticipation geographic information systems (PPGIS) 
may be useful for quantitative evaluation of cul-
tural services offered by grasslands. PPGIS pertains 
to the use of geographic information systems to 
produce local knowledge with the goal of includ-
ing and empowering marginalized populations 
(Brown, Montag, and Lyon 2012). Remote sensing 
of land use/land cover changes and local spatial 
knowledge may help in understanding how social 
and ecological systems are interacting over time. 
Also, PPGIS may help integrate people’s cultural 
values to grassland ecosystems. The capabilities of 
PPGIS have been successfully implemented to 
assess ES provided by wetlands (Loc et al. 2021) 
and protected forests (Peng et al. 2019).

● There is also a need to consider the impact on 
newly launched sensors such as Landsat 9 OLI in 
characterizing water-related grasslands ES.

5. Conclusion

The objective of this study was to conduct a systematic 
review of literature, specifically assessing progress, 
identifying research gaps and opportunities on the 
application of remote sensing technologies in quantify-
ing grassland ecosystem services, with particular atten-
tion to water-related services. Nine-grasslands 
ecosystem services were mentioned in the reviewed 
studies with forage provision, climate regulation, and 
primary production having the highest frequencies. 
Over the past decade, grassland ES studies have experi-
enced exponential growth, reaching a total of 222 
published articles in September 2021. The results 
show that the integration of remote sensing technolo-
gies into grassland ES has been well incorporated. This 
is explained by the ability of Earth observation sensor- 
systems, vegetation indices, and remote sensing algo-
rithms to quantify and map several ES with 

considerable high prediction accuracies. Grass biophy-
sical parameters such as biomass, LAI and CSC are 
prominent attributes for understanding hydrological 
processes and water balance within grasslands. The 
remote-sensing-based estimation of such parameters 
in relation to water management is still in infancy. In 
this regard, there is room for more research efforts in 
understanding their effective contribution to the hydro-
logical cycle which is important in water management.
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Appendix

Table 3A. Additional remote sensing algorithms applied in the studies.
Algorithm Application Results Reference

Machine learning  
Algorithms

Adaptive neuro-fuzzy 
inference system (ANFIS)

Grassland yield estimation R2 = 0.86 & RMSE = 11.07 kgDM/ha (Ali et al. 2014)

Extremely randomized trees 
(ETR)

Classifying grassland types OA ˃ 87.4 % 
Kappa ˃ 85%

(Barrett et al. 2014)

Classification and regression 
trees

Species distribution modelling OA = 90.62 % 
Kappa = 79.07 %

(De Simone et al. 2021)

Cubist regression trees Canopy cover 
Aboveground biomass

R2 = 0.67 & RMSE = 14.4 % 
R2 = 0.68 & RMSE = 76.9 g m-2

(John et al. 2018)

Stochastic gradient 
boosting

Grass nutrients R2 range of 0.65–0.72 
RMSE range of 2.42 to 3.11 % DM

(Singh et al. 2018)

Decision trees Pasture productivity 90.9 % prediction accuracy (Zhang et al. 2006)

High-Accuracy-Surface- 
modelling (HASM)

Aboveground biomass R2 = 0.8459 & RMSE = 29 g/m2 (Zhou et al. 2021)

Production 
Efficiency 
models

Alpine vegetation model 
(AVM)

GPP R2 = 0.857 & 
Conversion coefficient 19.91 g C m−2

(Fei et al. 2013)

Vegetation photosynthesis 
model (VPM)

GPP GPP predicted relative error range 1.4 to 7.4 
%

(Zhengquan et al. 2007)

MODIS MOD 17 Net Primary 
Production Product

Aboveground NPP Average NPP = 2163 kg ha−1 (paired t-test, 
t = 2.43, d.f. = 16, P2-sided = 0.027).

(De Leeuw et al. 2019)

Soil-leaf-canopy radiative 
transfer model

LAI 
BIOMASS

R2 = 78% & NRMSE = 30% 
R2 = 90% & NRMSE = 47 %

(Schwieder et al. 2020)

Plant canopy mortality 
model

Biomass carbon storage 
Carbon density

4.95Tg, 4.53Tg, 4.80Tg (1Tg = 1 × 1012 g) in 
2002, 2005 and 2009 

43.41 g/m2, 39.69 g/m2, 41.36 g/m2 
respectively in 2002, 2005 and 2009.

(Chen, Wu, and Qing 
2015)

Canopy height model Canopy height 
Aboveground biomass

R2 = 0.90, RMSE = 19.79 cm & 
rRMSE = 16.5%, p < 0.001) 

R2 = 0.89, RMSE = 91.48 g/m2, 
rRMSE = 16.11%, p < 0.001)

(Zhang et al. 2018)

MODIS GPP GPP Mean GPP = 353 and 375 g C m− 2 for 2000 & 
2001 respectively

(Zhang et al. 2007)

Piecewise regression GPP GPP r = 0.82–0.98 and d = 0.71–0.97 cross 
validation with tower-based GPP 

mean GPP = 402 and 431 g C m− 2 for 
2001 and 2001

(Zhang et al. 2007)

Biome BGC GPP R2 = 0.94 & RMSE = 0.95 gC/m2/da 
R2 = 0.83 & RMSE = 0.48 gC/m2/da 
R2 = 0.68 & RMSE = 1.66 gC/m2/da

(You et al. 2019)

GLOPEM-CEVSA NPP Adjusted R2 = 0.80 (p < 0.01). (Ye et al. 2019)

Defoliation formulation 
model

NPP Annual NPP predicted between 1982– 
2011 = 179.41 gC·m-2 yr-1. 

Increase rate per time period 1.18 
gC·m-2 yr-1 (Adjusted R2 = 0.63, p < 0.01)

(Ye et al. 2019)

Bayesian model data fusion 
(MDF)

Biomass 
Carbon balance

r = 87.5% (biomass harvest) 
r = 83 % (biomass annual yields) 

r = 0.80 overlap = 90% (grazing intensity)

(Myrgiotis et al. 2021)

(Continued)
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Table 3A. (Continued).
Algorithm Application Results Reference

LINGRA Grass yield Average normalized error between observed 
and predicted: 

14 % for irrigated grass 
19 % for non-irrigated grass

(Schapendonk et al. 1998)

Boreal Ecosystem 
Productivity Simulator 
(BEPS)

NPP 
GPP

Total NPP = 2.235 GtC 
Mean NPP = 235.2 gC m−2 yr−1 

Total GPP = 4.418 GtC 
Mean GPP = 465 gC m−2 yr−1

(Feng et al. 2007)

Improved Solar-energy 
efficiency

NPP Total NPP = 2.9 × 1013 gC/a in 2006, with an 
average of 261.01gC/m2•a.

(Wang and Wei Yang 
2012)

Multivariant 
analysis 
techniques

Principal Component 
regression

Biomass R2 = 0.31 & RMSE = 2.48 g/m2 (Darvishzadeh et al. 2014)

Hydrological 
models

Soil-vegetation-atmosphere 
transfer (SVAT)

Canopy evapotranspiration 
Transpiration

Correlation between ET measured from Eddy 
covariance method and SVAT (r2 = 0.85; 

ET-SVAT = 0.91 × ET-Eddy + 0.05). 
5 July = (0.39 × LAI + 4.3, r2 = 0.64, 

P < 0.001 
31 July = (0.15 × LAI + 4.0, r2 = 0.32, 

P < 0.001).

(Shimoda and Oikawa 
2008)

BROOK90 Evapotranspiration Explained model variance range R2 = 0.54– 
0.98 

Nash–Sutcliffe model efficiency (E NS) 
range = 0.53–0.82

(Vetter, Schaffrath, and 
Bernhofer 2012)

BROOK90 Evapotranspiration BROOK90 mean coefficient of variance (CV) 
range = 25%-75%. 

Correlation between BROOK 90 and 
MODIS evapotranspiration data R2 = 0.63, 

n = 160

(Schaffrath and Bernhofer 
2013)

Rangeland Hydrology and 
Erosion Model (RHEM)

Rainfall fun-off Total run-off volume R2 range = 0.53 to 0.54 
& PBIAS % range = −50.33 to −113.27 
Peak run-off R2 range = 0.50 to 0.53 & 

PBIAS % range = −2.71 to – 56.56.

(Kautz et al. 2019)

Two Source Energy Balance 
Atmosphere Land 
Exchange Inverse (TSEB 
ALEXI)

Evapotranspiration TSEB RMSE = 0.421 mm day−1 

DisALEXI MOD RMSE = 1.877 mm day−1 

DisALEXI MOD vs TSEB RMSE = 1.75 mm 
day−1

(Castelli et al. 2018)

NOAH Land Surface Model Soil moisture 
Evapotranspiration 
Energy balance components

Predicted soil moisture range = 3–25Vol.% & 
Root zone moisture = 60–120 mm 
Predicted ET range = 0 mm-75 mm 

Predicted energy balance range = −10 – 
150 MJ/m2/day

(Sridhar and Wedin 2009)

Water cloud model Soil moisture RMSE = 4.7 & 7.5 Vol.% 
Bias = 0.7 & −0.4Vol.%

(El Hajj et al. 2015)

Water cloud model Soil moisture R 2 = 0.7075, RMSE = 3.3219 m 2 /m 2). (Xing et al. 2014)

GEOTop Hydrological model Soil moisture content R2 = 0.2, RMSE = 0.13 m3/m3 & 
bias = −0.02 m3/m3

(Bertoldi et al. 2014)

Process based models Water productivity R2 range = 66.5–75.3 &Water productivity 
estimate range = 11.8–42.6 kg ha−1 

mm−1.

(Aiming, Murray, and 
Richter 2017)
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